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Abstract

We consider computationally-efficient incentive-compatible mechanisms that use the VCG pay-
ment scheme, and study how well they can approximate the social welfare in auction settings. We
obtain a 2-approximation for multi-unit auctions, and show that this is best possible, even though
from a purely computational perspective an FPTAS exists. For combinatorial auctions among
submodular (or subadditive) bidders, we prove an Ω(m

1

6 ) lower bound, which is close to the known

upper bound of O(m
1

2 ), and qualitatively higher than the constant factor approximation possible
from a purely computational point of view.

1 Introduction

1.1 Background

Algorithmic Mechanism design attempts to design protocols for distributed environments, such as
the Internet, where the different participants each have their own selfish goals and are assumed to
rationally attempt optimizing their own goals rather than just follow any prescribed protocol. The
key target in this area is the design of incentive-compatible mechanisms – also called truthful or
strategy proof mechanisms – whose payment schemes motivate the participants to correctly report
their private information1. For a general introduction to the economic field of mechanism design see
[19] and for an introduction to algorithmic mechanism design and further motivation see [23].

Typical problems in this setting involve allocation of various resources and a paradigmatic abstrac-
tion is that of combinatorial auctions. In this problem m heterogenous “items” need to be allocated
between n “bidders”. Each bidder i holds a valuation function vi that specifies for each subset of the
items S ⊆ {1...m} the bidder’s value vi(S) from winning the “bundle” S. The challenge is to find
a partition S1...Sn of the items that maximizes the social welfare Σivi(Si). This problem presents
a combination of algorithmic difficulty (it is NP-complete), representational difficulty (the valuation
functions are exponential size objects) and strategic difficulty (ensuring incentive compatibility).

The key positive technique for achieving incentive compatibility is that of VCG mechanisms
[26, 3, 10]: if player i’s value from the chosen algorithmic outcome a is vi(a), then we charge player
i the quantity hi(v−i) − Σj 6=ivj(a), where hi is an arbitrary fixed function that does not depend on
vi. A powerful observation is that if the algorithmic outcome a always maximizes the social welfare,
Σivi(a), then the VCG payment rule results in an incentive compatible mechanism. However, in

∗The School of Computer Science and Engineering, The Hebrew University of Jerusalem, {shahard,
noam}@cs.huji.ac.il. Supported by grants from the Israel Science Foundation and the USA-Israel Bi-national Science
Foundation.

1More generally, one could design protocols where one gets the desired results as equilibria, but the revelation
principle allows converting such general mechanisms to incentive compatible ones.
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most interesting computational scenarios, including combinatorial auctions, achieving exact optima
is computationally intractable, and one must settle for heuristics or approximations. A key clash
between the strategic and algorithmic considerations is that once only approximations or heuristics
are chosen, the VCG payment rule no longer leads to incentive compatibility [18, 22].

In [22] a detailed examination was carried out of when are “VCG-based” mechanisms, i.e., those
obtained using the “VCG” payment method – each bidder i pays hi(v−i) − Σj 6=ivj(a), where a is
the algorithmic output) incentive compatible. It is easy to see that the following family of allocation
algorithms do yield incentive-compatible VCG-based mechanisms:

Definition: An allocation algorithm (that produces an output a ∈ A for each input v1...vn, where
A is the set of possible alternatives) is called “maximal-in-range” (henceforth MIR) if it completely
optimizes the social welfare over some subrange R ⊆ A. I.e., for some R ⊆ A, we have that for all
v1...vn, a ∈ arg maxa∈R Σivi(a).

The main result of [22] states that this is essentially it:

Theorem [22]: The allocation algorithm of any incentive-compatible VCG-based mechanism for
combinatorial auctions is equivalent to a maximal-in-range algorithm.

“Equivalent” here means that the social utilities are identical for all inputs, i.e. if a and b are the
outputs of the two allocation algorithms for input v1...vn then Σivi(a) = Σivi(b). In particular the
outputs must coincide generically – except perhaps in case of ties. In [22] this is viewed as a negative
result since “reasonable”2 allocation algorithms will have a full range, and thus will never lead to
truthful mechanisms (unless they are optimal and thus computationally intractable).

However, it turns out that one may construct “unreasonable” incentive-compatible VCG-based
mechanisms that do have non-trivial approximation guarantees: In [11] it is shown that bundling the
items into O(log m) equi-sized bundles and then allocating these bundles optimally (in time exponen-
tial in log m and thus polynomial in m) achieves a non-trivial O(m/

√
log m)-approximation ratio –

yielding an truthful VCG-based mechanism3. In [5] the subcase of “complement-free” valuations was
considered, and a truthful VCG-based mechanism with an O(

√
m) approximation ratio was obtained.

The basic question that we ask is how good an approximation ratio can be obtained this way –
using VCG-based mechanisms or, equivalently, using maximum-in-range allocation algorithms? We
should emphasize that our focus is not just on one technique among many. The VCG payment rule4 is
the only technique known for achieving incentive-compatibility except for very few exceptions: single
dimensional domains (e.g., [18, 2, 20]) and a single additional example [1]. (This paper concerns
deterministic mechanisms; slightly more is known for randomized ones [4, 16, 7]5.) In fact, it is
known [25, 9] that indeed in sufficiently “rich” domains, the only incentive-compatible mechanisms
are (weighted) VCG-based. Partial results along these lines for the case of combinatorial auctions
were shown in [15], who left open the general question of whether non-VCG-based mechanisms (up
to minor deviations) for combinatorial auctions exist.

1.2 Multi-Unit Auctions

It is perhaps best to illustrate the issues with a simple problem: multi-unit auctions. In this problem
a set of M identical items are auctioned among n bidders. In the simple – “single minded” – case,

2In [22] a formal definition was used which stipulates that an item that has positive value for just a single bidder
be allocated to him.

3Actually, [11] studied a subclass or maximum-in-range mechanisms that arises as a characterization of
communication-efficient ex-post Nash equilibria of an optimal allocation mechanism.

4More precisely, weighted versions of it that correspond to similarly weighted version of the social welfare. All our
lower bounds apply also to arbitrary weighted-VCG-based mechanisms.

5But all our lower bounds apply also to randomized VCG-based mechanisms.
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each bidder i has a value of pi for obtaining at least qi items. The problem is to find the set of
“winning bidders” W such that Σi∈W qi ≤ M with maximum value of Σi∈W pi. In the more general
case, each bidder i may hold a function vi : {1..m} → R, that specifies i’s value vi(q) for every possible
number of elements obtained. In this case the auction must decide on a quantity qi to allocate to
each bidder such that Σiqi ≤ M and Σivi(qi) is maximized.

The reader may have already noticed that, computationally speaking, the single-minded problem
is exactly the well known knapsack problem. (The general problem turns out to be computationally
very similar.) While the knapsack problem is known to be NP-complete, it is also well known that
it has a fully polynomial approximation scheme, based on the simple observation that the unary
version of the problem has a polynomial time algorithm. More specifically, the knapsack problem
can be solved in polynomial time using dynamic programming either if all pi’s are given in unary
(and the qi’s are arbitrary) or if all qi’s are given in unary (and the pi’s are arbitrary). Both of these
algorithms generalize to the general multi-unit auction problem.

However, none of these algorithms suffices for providing incentive-compatible approximation
mechanisms. Versions that round the pi’s will provide a fully polynomial approximation scheme
but are not maximal in range and thus turn out to lose all incentive properties. Version that round
the qi’s to unary will be maximal in range but loses the approximation properties. Can one get a
variant that maintains both properties? A negative answer is suggested by [15] where it is shown
that in the special case of two player mechanisms that always allocate all items, no approximation
factor better than 2 may be obtained by any non-optimal incentive-compatible mechanism. For the
strategically simpler single-minded case, a fully polynomial approximation mechanism was recently
obtained in [2] improving upon a 2-approximation mechanism of [20]. To date, no truthful approx-
imation algorithm, with any non-trivial quality of approximation, is known for general multi-unit
auctions6.

We first show that a variant of the method of rounding the qi’s, which is maximal in its range
and thus incentive-compatible, yields a 2-approximation mechanism:

Theorem: There exists a polynomial-time computable incentive-compatible VCG-based mechanism
for multi-unit auctions that gives a 2-approximation.

We also show that this is best possible. Specifically, that every non-optimal VCG-based mechanism
for multi-unit auctions among two bidders must lose a factor of 2 for some inputs. This implies that
no computationally efficient VCG-based mechanisms can obtain a better than 2-approximation.

1.3 Our Main Result

Our main result provides a lower bound for the approximation factor that can be achieved by
incentive-compatible VCG-based mechanisms for combinatorial auctions. Our lower bound applies
to the subclass of submodular valuations (vi(S ∪T )+ vi(S ∩T ) ≤ vi(S)+Vi(T ) for all S, T ) and thus
also to its superset class of complement-free valuations (vi(S ∪ T ) ≤ vi(S) + vi(T ) for all S, T ) – two
classes of valuations which have been extensively studied [17, 5, 7, 6, 8, 12]. Table 1 summarizes the
known lower and upper bounds on the approximation factors that may be achieved in polynomial
time for these subclasses of valuations (a) algorithmically, (b) using incentive-compatible mechanisms
and (c) using incentive-compatible VCG-based mechanisms. A word about the computational model
is in place here: the “inputs” to the mechanism, the vi’s, are exponential sized objects (in the number
of items m), but the mechanisms should run in time polynomial in n and m. Thus it is assumed that
the mechanism repeatedly queries the bidders. The upper bounds in the table always assume some

6A randomized 2-approximation truthful in expectation mechanism was presented in [16]. An “almost truthful”
mechanism for this problem, with further restrictions on the valuations, was obtained in [13].
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General Algorithms Incentive Compatible Maximum in Range

General Θ(
√

m) [21] Θ(
√

m) [4] (randomized) O( m√
log m

) [11]

O( m√
log m

) [11]

Complement Free ≤ 2 [7] O(
√

m) [5] O(
√

m) [5]

≥ 2 [5] Ω(m
1
6 ) (Section 3)

Submodular ≤ e
e−1 − 10−4 [8] O(log2 m) [4] (randomized) O(

√
m) [5]

≥ 20
19 [8] O(

√
m) [5] Ω(m

1
6 ) (Section 3)

Multi Unit FPTAS ≤ 2 (Section 2) 2 (Section 2)

Table 1: All upper bounds require demand queries. All lower bounds are for any family of queries.

specific natural type of query (usually a “demand query”), while all lower bounds apply for every
type of query and are in fact communication lower bounds.

As is evident from the table, there is very little known specifically regarding truthful mechanisms:
all deterministic upper bounds are by VCG-based mechanisms and all lower bounds apply to general
algorithms. We show that the known non-trivial but weak O(

√
m) approximation factor obtained

by truthful VCG-based mechanism [5] for complement-free valuations is close to optimal.

Theorem: Every VCG-based mechanism for approximating the welfare in combinatorial auctions
with submodular bidders that uses a sub-exponential number of queries to the bidders achieves an
approximation factor of min(Ω(n),Ω(m1/6)).

The proof proceeds by combinatorially analyzing maximum in range allocation algorithms7. The
analysis shows that if the range is “large” then optimizing over it requires exponential communication,
while if it is “small” then it can not achieve a good approximation ratio. It turns out that “large”
and “small” in this sense cannot just be interpreted in terms of the size of the range. Instead we
define two ”complexity measures” of a set of partitions (which is what the range is). One of them,
termed the intersection number, is shown to bound from below the communication complexity of
optimization over the range. The other, termed the cover number, is shown to bound from above
the approximation ratio achieved by allocations in the range. Our main combinatorial lemma, which
may be of independent interest, shows that these two complexity measures are related to each other.

Our main open problem is to determine how good an approximation can be achieved by efficient
VCG-based mechanisms for general valuations. The only upper bound known achieves the the nearly
trivial approximation ratio of O(m/

√
log m), while the known lower bound is Ω(m1/2−ε) which holds

for general algorithms. We believe that the truth is close to the upper bound (and that, in fact,
this holds for general incentive-compatible deterministic mechanisms, even non VCG-based ones).
Closing the gap between our lower bound of Ω(m1/6) for submodular or complement-free bidders
(which we can push to m1/5−ε) and the O(

√
m) upper bound is another open problem.

Paper Structure

As a warm-up in Section 2 we present the multi-unit case. In Section 3 we prove the main theorem.
Appendix A brings the characterization of VCG-based mechanisms of [22], modified for our scenarios.

2 Multi-Unit Auctions

We consider the multi-unit auction problem with general valuations: m identical items are auctioned
between n bidders. Each bidder has a valuation function vi : {0..m} → R, where vi(q) denotes the

7While formally the characterization of [22] applies to mechanisms over general valuations, it needs only minor
modifications to apply also to submodular valuations. For completeness we bring the modified proof in the appendix.
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value that i gets from receiving q elements. We assume that vi(0) = 0 (normalization) and that
vi is weakly monotone (free disposal). We consider the case where m is “large” – given in binary
– and desire algorithms that are polynomial in n and log m. As a full description of the valuation
function vi is exponential in log m, we will assume in our algorithm an “oracle access” to it that may
be queried for vi(q), where q is the given bundle size8.

We will design an MIR algorithm for this problem, which directly yields an incentive compatible
VCG-based mechanism. Our MIR approximation algorithm will first split the items into n2 equi-
sized bundles of size b =

⌊
m
n2

⌋
as well as a single extra bundle of size r that holds the remaining

elements (thus n2b + r = m). The maximum in range algorithm will optimally allocate these whole
bundles among the n bidders. What we need to show is the following two simple facts:

Lemma 2.1 An optimal allocation of the bundles can be found in time polynomial in n and log m.

Lemma 2.2 Let a1...an be an optimal allocation of the bundles that was found by the algorithm, and
o1...on an optimal unrestricted allocation, then Σivi(oi) ≤ 2Σivi(ai).

The proofs are simple:
Proof: (of Lemma 2.1): The algorithm is by dynamic programming. We calculate the following
information for every 1 ≤ i ≤ n and 1 ≤ q ≤ n2: M(i, q) is the maximum value that can be obtained
by allocating at most q regular bundles among bidders 1...i, and M+(i, q) is the maximum value that
can be obtained by allocating at most q regular bundles and the “remainder” bundle among bidders
1...i. Each entry can be filled in polynomial time using the realtions: M(i, q) = maxq′≤q vi(q

′b)+M(i−
1, q−q′) and M+(i, q) = max(maxq′≤q vi(q

′b)+M+(i−1, q−q′),maxq′≤q vi(q
′b+r)+M(i−1, q−q′)).

Proof: (of Lemma 2.2): Let us start with an optimal unrestricted allocation o1...on where all items
are allocated (without loss of generality since the valuations are monotone), and look at the bidder j
that got the largest number of items oj ≥ m/n. There are now two possibilities: if vj(oj) ≥ Σi6=jvi(oi)
then by allocating all items to j (i.e. all regular-sized bundles as well as the remainder bundle) we
get the required 2-approximation. Otherwise, round up each oi to the nearest multiple of b (i.e. to
full bundles), except for bidder j that gets nothing. This is a valid allocation since we added at most
nb ≤ m/n items by rounding up, but deleted at least m/n items by removing oj , and its value is
certainly at least Σi6=jvi(oi) which gives the required approximation.

We have thus proved:

Theorem 2.3 There exists an incentive-compatible computationally-efficient VCG-based mechanism
that gives a 2-approximation for multi-unit auctions with general valuations.

We now move on to show that this is the best possible. Consider an MIR algorithm for two
bidders that does not have full range. I.e., for some 0 ≤ q∗ ≤ m it never outputs the allocation
(a1 = q∗, a2 = m − q∗). Now consider the pair of valuations where v1(q) = 1 iff q ≥ q∗ (and 0
otherwise), and v2(q) = 1 iff q ≥ m − q∗ (and 0 otherwise). The only allocation with value 2 is
(a1 = q∗, a2 = m − q∗) which is not in the range, while all other allocations have a value of at most
1.

From this we can easily get a lower bound any any computationally efficient MIR algorithm. The
lower bound is on the number of queries that the bidders must be queried, and holds for any type of
query – i.e., in a general communication setting9.

8This is analogous to the weakest “value query” in combinatorial auction setting. Our lower bounds presented later
will apply to all other query types as well.

9Note that we can not get an NP-completeness result when the valuations are simply encoded by lists of (qj
i , p

j
i )j

simply since when there are only 2 (or generally O(1)) bidders this problem is trivially optimally solvable in polynomial
time by exhaustive search. The NP-completeness of approximation does follow for any encoding of the valuations for
which finding the optimal allocation among 2 bidders is NP-complete.
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Lemma 2.4 An MIR algorithm for multi-unit auctions that achieves an approximation ratio better
than 2 requires exponential communication. The result also applies for randomized settings.

Proof: In the case of two bidders, an optimal algorithm is known to require exponential commu-
nication:

Lemma 2.5 ([24]) Finding the optimal allocation in multi-unit auctions requires exponential com-
munication, even if there are only two bidders and even for just finding the value of the allocation.
This lower bound also applies for both randomized and nondeterministic settings.

Thus, any MIR algorithm for 2 bidders that uses sub-exponential communication will be non-
optimal and thus, as argued above, gives no better than a 2-approximation. The case of more than
2 bidders follows by setting all valuations but the first two to 0.

This concludes the proof that no VCG-based mechanism can obtain a better than 2-approximation,
except for two technical details that should be explicitly mentioned:

• The fact that incentive compatible VCG-based mechanisms are equivalent to MIR algorithms
was shown in [22] for combinatorial auctions, while we need it for the somewhat different case
of multi-unit auctions. However, the proof carries over naturally, and, for completeness, in
Appendix A we give the complete proof for our case.

• Our lower bound was for MIR algorithms, while VCG-based mechanisms only proved to give
algorithms that are equivalent to MIR algorithms. However, since the lower bound holds even
for finding the value of the optimal allocation and it directly applies also to algorithms that
are equivalent to MIR algorithms.

3 Combinatorial Auctions with Submodular Bidders

3.1 Combinatorial Auctions: Preliminaries

In a combinatorial auction we have a set M , |M | = m, of heterogeneous items and a set of N bidders,
|N | = n. Each bidder i has a valuation function vi : 2M → R. We assume that each valuation vi

is normalized (i.e., vi(∅) = 0) and monotone (for each S ⊆ T , vi(S) ≤ vi(T )). An allocation is an
n-tuple S = (S1, ..., Sn), where for each i, Si ⊆ M , and for each i 6= i′, Si ∩ Si′ = ∅. Our goal is to
find an allocation S that maximizes the welfare Σivi(Si).

A valuation v is said to be submodular if it exhibits decreasing marginal utilities. I.e., for each
S ⊆ T ⊆ M and j /∈ S, we have that vi(T ∪ {j}) − vi(T ) ≤ vi(S ∪ {j}) − vi(S). We will also use a
very simple subset of submodular valuations called additive valuations. A valuation v is said to be
additive if for each S ⊆ M , we have that v(S) = Σj∈Sv({j}).

3.2 The Main Result

In this section we analyze the power of MIR algorithms in the context of combinatorial auctions with
submodular bidders. For this setting, an O(

√
m)-approximation MIR algorithm is known [5]. We will

show that this is (almost) the best approximation one can get using MIR algorithms. The theorem
is stated only for MIR algorithms but we will point out how it can be extended to algorithms that
are equivalent to MIR algorithms, and thus to all VCG-based mechanisms.

Theorem 3.1 Every MIR mechanism for approximating the welfare in combinatorial auctions with

submodular bidders that uses O(em
1
15 ) bits of communication achieves an approximation factor of

min(Ω(n),Ω(m1/6)). This result also holds for the randomized and non-deterministic settings.

6



We define two complexity measures for the range R of an MIR algorithm A: the cover number,
and the intersection number. The cover number roughly corresponds to the size of the range R.
We will show, using the probabilistic method, that if the cover number is “small” then there exists
an instance such that A fails to provide a good approximation. Therefore, the range R must be
“large”. In this case we will show that the intersection number of A must be exponential. We will
see that the intersection number serves as a lower bound to the communication complexity of A, and
so we get that any MIR-approximation algorithm that provides a good approximation ratio must
have exponential communication complexity.

The proof of the theorem starts with Subsection 3.3, where the cover number is formally defined
and its relation to the approximation ratio is shown. In Subsection 3.4 we define and discuss the
second measure: the intersection number. The proof concludes in Subsection 3.5 by showing the
relationship between the measures.

3.3 Complexity Measure I: The Cover Number

Intuitively we wish to rely on the size of the range. Yet, naive counting will fail to provide good results,
since a single allocation in the range may contain many “degenerate allocations”. For example, if the
range contains an allocation that assigns all items to some bidder i, it also contains all allocations
such that i is assigned any subset of the items, and the rest of the bidders get nothing. These
exponentially many allocations are degenerate in the sense that we can assume that they are not
in the range of the algorithm without changing the guaranteed approximation ratio of the A. We
therefore use an alternative measure for describing the “size” of the range.

Definition 3.2 A set C of allocations is said to be a cover set of another set of allocations R if for
each S ∈ R there exists some C ∈ C such that for all i, Si ⊆ Ci.

The cover number of a set of allocations R is defined to be the size of the minimum cardinality
cover set of R. The cover number is denoted by cover(R).

In the next lemma we prove that if cover(R) is small, then there exists some instance in which
A provides only Ω(n)-approximation.

Lemma 3.3 Let A be an MIR-algorithm with range R. If cover(R) < e
m

300n then there is an instance
in which A provides no more than 1.01

n -fraction of the welfare.

Proof: We randomly construct an instance of a combinatorial auction with additive valuations.
Since the valuations are additive, we only need to specify the value of vi({j}) for each bidder i and
item j. This is done in the following way: for each item j ∈ M choose exactly one bidder, where
each bidder is selected with probability of exactly 1

n . Let i be the selected bidder. We set the value
of vi({j}) to be 1. For each i′ 6= i we set the value of vi′({j}) to be 0.

First, observe that the value of the optimal solution in the random instance is exactly m. Never-
theless we will see that with non-negative probability the welfare provided by the MIR-algorithm A
is only 1.01

n m. Hence, the approximation ratio provided by A is no better than n
1.01 . The following

version of the Chernoff bounds will be useful.

Claim 3.4 (Chernoff bound) Let X1, ...Xm be independent random variables that take values in
{0, 1}, such that for all i, Pr[Xi = 1] = p for some p. Then for every 0 ≤ δ ≤ 2e − 1 it holds that:

Pr[ΣiXi > (1 + δ)pm] ≤ e−
pmδ2

3
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Let C be the minimum cardinality cover set of R with |C| = cover(R). Fix some C ∈ C. The
probability that vi({j}) = 1, and that j ∈ Ci is exactly 1

n , for any bidder i and item j. By the

Chernoff bound, Pr[Σivi(Ci) > 1+δ
n m] ≤ e−

δ2m
3n . We now claim, by using the union bound, that if

cover(R) < e
δ2m
3n then there exists some instance such that no allocation in C provides a welfare of

more than 1+δ
n m. Therefore it is obvious that no allocation in R can provide a welfare of more than

(1+δ
n )m for this instance. The lemma follows by choosing δ = .01.

3.4 Complexity Measure II: The Intersection Number

The second complexity measure to be defined is the intersection number. We will show that the
intersection number of the range of an MIR algorithm A is a lower bound to the communication
complexity of A. Before defining the intersection number, we need a structural definition of a set of
allocations.

Definition 3.5 We say that a set of allocations R is regular if there exist constants s1, ..., sn such
that for all S ∈ R and for all 1 ≤ i ≤ n it holds that |Si| = si.

We are now ready to define the complexity measure itself.

Definition 3.6 A set of allocations D is called an (i, j)-intersection set if for each D,D′ ∈ D,
D 6= D′, it holds that Di ∩ D′

j 6= ∅.
Define the intersection number of a set of allocations R, denoted by intersect(R), to be the

maximum cardinality regular (i, j)-intersecting set which is a subset of R, where the maximum is
taken over all pairs of bidders i and j.

Notice that in the definition of the intersection number we require that the intersection set will
be regular.

The next lemma shows that we can use the intersection number as a lower bound to the commu-
nication complexity of the algorithm.

Lemma 3.7 Let A be an MIR-algorithm for combinatorial auctions with submodular bidders with
range R. Let intersect(R) = d. Then, the communication complexity of A is Ω(d). This result holds
even for randomized protocols and for non-deterministic protocols.

Proof: We reduce from the disjointness problem (see [14]). In this problem Alice holds a d-bit
string a1, ..., ad, and Bob holds a d-bit string b1, ..., bd. The goal is to decide whether there exists
some index k such that ak = bk = 1. It is known that solving the disjointness problem requires Ω(d)
communication bits, even for nondeterministic and randomized protocols.

Let D = {D1, ...,Dd} be an (i, j)-intersection set of R. D is regular, so for each bidder t there
exists a constant st such that |Dt| = st, for all D ∈ D. Construct a combinatorial auction with m
items in the following way: Alice will play the role of bidder i, and Bob will play the role of the rest
of the bidders, in particular bidder j. We now define the valuations of the bidders. Let the valuation
of bidder i played by Alice be:

vi(S) =





|S|, |S| ≤ si − 1;
si, ∃k s.t. Dk

i ⊆ S and ak = 1;

si − 2−(|S|−si+1), otherwise.

The valuation vj is defined in an analogous way. Let the valuations of the rest of the bidders be
zero on any bundle. The reader is encouraged to verify that all valuations are indeed submodular.
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Observe that if there exists some index k such that the k’th input bit of both players is 1, then
the optimal welfare is si + sj. Otherwise, the optimal welfare is strictly less than si + sj. To see this
notice that if bidder i gains a value of si from the bundle S1 he was assigned by A, then there must
be an index k such that Dk

i ⊆ S1 and ak = 1. In order of bidder j to gain a value of sj he must have
an index k′ such that Dk′

j ⊆ S2. However, D is an (i, j)-intersection set and so it must hold that

Dk
i ∩ Dk′

j 6= ∅, and thus S1 ∩ S2 6= ∅. Clearly, the optimal welfare in this case is less than si + sj.
By construction, if the optimal welfare is si + sj then it can be achieved by an allocation in R. A

is a maximal-in-range algorithm, and so the value of the allocation returned by A in this case must
be si + sj. Thus, we will be able to decide if there is a some index k such that ak = bk = 1. Hence,
the communication complexity of A is at least as that of the disjointness problem: Ω(d).

Notice that our lower bound applies even for computing the value of the optimal allocation in R,
and thus applies not only to MIR algorithms but also to algorithms that are equivalent to MIR.

3.5 The Relationship between the Measures

It is easy to see that cover(R) ≥ intersect(R). This subsection shows that the gap between the two
is not too large. Specifically, if intersect(R) is small, then cover(R) is small too.

Lemma 3.8 Let R be a set of allocations with intersect(R) ≤ d. Then

cover(R) < (8d)m
3
5 n · m4m

2
5 n2

As a corollary10, let n = m
1
6 . If cover(R) > e

m
300m then intersect(R) ≥ em

1
15 . Thus, proving the

lemma, together with Lemmas 3.3 and 3.7, derives Theorem 3.1.
Proof: (of Lemma 3.8) The lemma will follow from the following claim.

Claim 3.9 Fix some w, 1 ≤ w ≤ m. Let R̃ be a regular set of allocations. If intersect(R̃) ≤ d then

there is a subset E of R̃ where |E|
|
�

R| ≥ (8d)−mn/w4−n2
, and cover(E) ≤ wnmwn2

.

The lemma is proved by partitioning R to up to mn classes of regular allocations, R1, ...,Rmn ,
one for each possible choice of constants s1, ..., sn from Definition 3.5. Since each si is between 1
and m, there are at most mn classes. The cover number of each class Rs will be upper bounded
separately, in the following way:

Let Es
1 be the set obtained from the claim. Look at Rs \ Es

1 , and obtain from the claim another
set Es

2 ⊆ Rs \ Es
1 with small cover, and so on. After (8d)

mn
w · 4n2 · log |Rs| steps Rs is completely

covered. Now cover(Rs) can be bounded from above by Σkcover(Es
k). By bounding from above the

size of each class |Rs| by |R| ≤ nm, we have that (by choosing w = m
2
5 ):

cover(R) ≤ Σmn

a=1cover(Rs) ≤ Σmn

a=1Σk|Es
k | ≤ mn · (8d)

mn
w · 4n2 ·m log n ·wnmwn2 ≤ (8d)m

3
5 n ·m4m

2
5 n2

Before proving Claim 3.9 itself, and thus Lemma 3.8, we will need some notation.

Definition 3.10 Let T1, ...., Tn ⊆ M . We say that a set of allocations R is (T1, ..., Tn)-structured if
for all S ∈ R it holds that Si ⊆ Ti.

Definition 3.11 We will say that an allocation S is w-(i, j)-aligned in structure (T1, ..., Tn), if
|Si ∩ Tj | ≤ w. We will omit w when it will be clear from the context.

10The result is actually stronger: fix a constant ε > 0, and let n < m
1

5
−ε. If cover(R) > e

m

300m then intersect(R) ≥
emε

. The statement of the theorem improves accordingly.
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The idea in proving Claim 3.9 will be to find a large subset E ⊆ R̃, which is “sufficiently” aligned.
Next we show that such subset has a small cover number.

Claim 3.12 Let E be a T = (T1, ..., Tn)-structured set of allocations. If for each pair of bidders i
and j either all allocations in E are w-(i, j)-aligned in T or all allocations in E are w-(j, i)-aligned
in T , then cover(E) ≤ wnmn2w.

Proof: (of Claim 3.12) For each bidder i define a set of bidders Ii, where bidder j is in Ii if
all allocations in E are (i, j)-aligned in T . Clearly, for each i and j, either j ∈ Ii or i ∈ Ij . Let
Bi = Ti \ (∪j∈IiTj). The construction guarantees that (B1, ..., Bn) “almost” covers E in the sense
that for bidder i and S ∈ E , |Si \ Bi| ≤ nw. Also notice that by construction for each two different
bidders i and j, Bi ∩ Bj = ∅. Define the cover C as follows:

C = {P |P is an allocation in the form ((B1 ∪ Q1) \ ∪j 6=1Qj, ..., (Bn ∪ Qn) \ ∪j 6=nQj),

and for each i, |Qi| ≤ nw}

Observe that since each |Qi| ≤ nw we have that |C| ≤ (Σw
r=1r

(
m
nr

)
)n ≤ (w(m)nw)n = wnmn2w.

Also notice that C is a cover set of E . To see this, fix an allocation S ∈ E . For each i, let Qi = Si \Bi.
Observe that each |Qi| ≤ nw, and that the Qi’s define an allocation that is in C and covers S.

Now we are ready to prove the main claim, and thus finish the proof of Lemma 3.8.
Proof: (of Claim 3.9) The construction of E will be divided into several steps. During the
construction we maintain a sequence of subsets of R̃ : R0,R1, ... and structures T 0, T 1, ..., such that
each Rt is T t-structured. We start by setting R0 = R̃ and T 0 = (M, ...,M).

In each step we look at a pair of bidders i and j such that either all allocations in Rt are (i, j)-
aligned in T t or all allocations in E are (j, i)-aligned in T t. If there is no such pair then let E = Rt

and the construction is over. Otherwise, look at all allocations in Rt that are either (i, j)-aligned or
(j, i)-aligned in T t. If there are at least |Rt|/2 such allocations then we set Rt+1 to be the largest set
of the two: all allocations in Rt that are (i, j)-aligned, or all allocations in Rt that are (j, i)-aligned.
Set the structure T t+1 to be T t. Notice that |Rt+1| ≥ |Rt|/4, and that Rt+1 is T t+1-structured. We
call this step an alignment step, and proceed to the next step.

Otherwise, let R′
t be the set of allocations in Rt that are neither (i, j)-aligned nor (j, i)-aligned.

Notice that |R′
t ≥ Rt

2 |. Take a maximal (i, j)-intersection set D ⊆ R′
t – of size at most d. Now

for every allocation S ∈ R′
t \ D there exists some D ∈ D such that Di ∩ Sj = ∅ or Dj ∩ Si = ∅.

Otherwise we have that S ∈ D, contradicting the fact that D is a maximal intersection set. Thus,
for some D ∈ D we have that for at least (|R′

t| − d)/(2d) allocations in R′
t either Di ∩ Sj = ∅ or

Dj ∩Si = ∅. Let us assume that for at least (|R′
t| − d)/(2d) allocations in R′

t the first option occurs.
Define Rt+1 to be this set of (|R′

t| − d)/(2d) ≥ |Rt|/(8d) allocations. Let T t+1
j = T t

j \ Di. Also let

T t+1
k = T t

k, for each k 6= i. Now notice that since D is a set of allocations that are not (i, j)-aligned in
Tt, we have that Di ∩ T t

j > w. We therefore have that |T t+1
j | < |T t

j | −w. (The other case is handled

similarly, but this time by shrinking T t+1
i rather than T t+1

j .) By construction we have that Rt+1 is

T t+1-structured. Term this step a shrinkage step, and continue to the next step.
Denote by l the number of steps the process went on. At most nm

w steps are shrinkage steps,
since in each shrinkage step Σi|T t

i | loses an additive of at least w. In addition, there are at most
(
n
2

)

alignment steps, one for each pair of bidders. Therefore |E| = |Rl| ≥ |
�

R|
(8d)mn/w4(n2)

. Also note that

in the end of the process for each pair of bidders i and j either all allocations in E are (i, j)-aligned
in T l or all allocations in E are (j, i)-aligned in T l (observe that an allocation that became properly
aligned after an alignment step will remain so during the rest of the process.) By Claim 3.12 we have
that cover(E) ≤ wnmn2w, and thus Claim 3.9 is proved.

This concludes the proof of Lemma 3.8.
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A Characterization of VCG-Based Algorithms

In [22] it was proved that any VCG-based mechanism for general combinatorial auctions is equivalent
to MIR algorithm. We slightly generalize this proof to hold for more settings, including the ones
considered in this paper.

Let A be a set of alternatives (in our application, A will be the set of allocations). For all i let
Vi ⊆ RA be a set of valuations on A and denote V = V1 × ... × Vn. A mechanism is composed of an
allocation rule f : V → A and payment rules p = (p1, ..., pn), where pi : V → R.

Definition A.1 A mechanism (f, p) is called VCG-based (VCGB) if for every i and some hi : V−i →
R we have that for all v, pi(v) = hi(v−i) − Σj 6=ivj(f(v)).

Definition A.2 A mechanism (f, p) is called incentive compatible (IC) if for every vi, v
′
i, v−i we

have that vi(f(vi, v−i) − pi(vi, v−i) ≥ vi(f(v′i, v−i) − pi(v
′
i, v−i).

Definition A.3 An allocation rule f is called maximal in its range (MIR) if for every v, f(v) ∈
arg maxr∈R Σvi(r), where R = {f(v)|v ∈ V } is the range of f .

Definition A.4 An allocation rule f is equivalent to an allocation rule g if for all v, Σivi(f(v)) =
Σivi(g(v)).
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Theorem A.5 (slight extension of [22]) : Assume that V satisfies Condition 1 and Condition 2
below. If a mechanism (f, p) is VCGB and IC then f is equivalent to a MIR allocation rule.

For Condition 1 and Condition 2 we will need notations:

Definition A.6 V ′ = {v ∈ V |∀a 6= b ∈ A, Σivi(a) 6= Σivi(b)}.

Condition 1 V ′ is dense in V (in the usual metric in RA).

Definition A.7 For a ∈ A and vi, zi ∈ Vi, We say that zi is a-above vi if for every b ∈ A, zi(a) −
vi(a) ≥ zi(b) − vi(b).

Condition 2 For every vi, wi ∈ Vi there exists zi ∈ Vi that is a-above vi and a-above wi.

Before we prove the theorem, let us just look at the two applications needed for this paper:

1. Multi-unit auctions: A = {(a1...an)|Σiai ≤ M}, Vi is all weakly monotone functions from
1...M to R. Condition 1 is met since V ′ has measure 0. Condition 2 is met by giving a
sufficiently high value q to getting at least ai items.

2. Combinatorial auctions with submodular bidders: A is the set of all allocations S1...Sn,
and vi is the set of submodular valuations. Condition 1 is met since again V ′ has zero measure
while V is fully dimensional. Condition 2 is met by defining an additive valuation (which in
particular is submodular) that gives a sufficiently high value for each element in Si.

Proof: Let us denote R′ = {f(v)|v ∈ V ′}. Notice that by definition Σivi(a) 6= Σivi(b) for every
v ∈ V ′ and a 6= b ∈ R′ and in particular the argmax is unique. We will follow [22] and first show that
over V ′, f is exactly maximal in the range R′. I.e. that for all v ∈ V ′, f(v) = arg maxr∈R′ Σvi(r).
Let us also assume wlog that all hi = 0.

Before proceeding with the proof let us note two simple claims:

Claim A.8 If f(w) = a and zi is a-above wi then f(zi, w−i) = a.

Proof: Assume to the contrary f(zi, w−i) = b 6= a. Since the VCG mechanism based on f is IC,
we get by looking at a player with valuation wi that wi(a)+Σj 6=iwj(a) ≥ wi(b)+Σj 6=iwj(b) while by
looking at a player with valuation zi we get zi(a) + Σj 6=iwj(a) ≤ zi(b) + Σj 6=iwj(b). Subtracting the
two inequalities we get wi(a)−zi(a) ≥ wi(b)−zi(b) but notice that the fact that zi is a-above wi gives
the opposite inequality which means that in fact wi(a) − zi(a) = wi(b) − zi(b). Adding this equality
to the second inequality above gives wi(a) + Σj 6=iwj(a) ≤ wi(b) + Σj 6=iwj(b), and thus equality holds
in contradiction to w being in V ′.

Claim A.9 If f(vi, v−i) 6= a = arg maxc∈R′ Σivi(c) and zi is a-above vi then f(zi, v−i) 6= a =
arg maxc∈R′ zi(c) + Σj 6=ivj(c).

Proof: The fact that a = arg maxc∈R′ zi(c)+ Σj 6=ivj(c) is simply since in moving from vi to zi, the
value of the argument to the argmax increased more for a than for any other c ∈ A. The fact that
f(zi, v−i) 6= a is since otherwise a bidder with valuation vi will benifit from reporting zi.

We are now ready to prove that f is exactly maximal in the range R′. Assume towards con-
tradiction that for v,w ∈ V ′, f(v) = b 6= a = arg maxc∈R′ Σivi(c), and f(w) = a. For every i
fix zi that is a-above both vi and wi (using Condition 2). Using Claim A.8 repeatedly, for all i,
we get that f(z) = a (at every stage i we look at z1...zi−1, wi, wi+1...wn vs z1...zi−1, zi, wi+1...wn.)
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On the other hand, using Claim A.9 repeatedly we get that f(y) 6= a (at every stage i we look at
z1...zi−1, vi, vi+1...vn vs z1...zi−1, zi, vi+1...vn). Contradiction.

We now need to handle V − V ′. Due to Condition 2, for every v ∈ V − V ′ we can find an infinite
sequence of points vj ∈ V ′ such that vj → v and for all j, f(vj) = a for some fixed a ∈ R′. Our
equivalent MIR allocation rule f ′ will define f ′(v) = a (using e.g. the lexicographic first possible a).
It remains to see that Σivi(a) = Σivi(f(v)). This follows since (1) Σivi(a) = limj→inf Σiv

j
i (a) (simply

since vj → v) and (2) Σivi(f(v)) = limj→inf Σiv
j
i (f(vj)). This last equality just means the continuity

of the function Σivi(f(v)) in v and can be established by looking at |Σivi(f(v))−Σiwi(f(w))| which
can be bounded by a telescopic sum of n elements of a similar form but with only a single index i
with vi 6= wi, i.e. |(vi(a) + Σj 6=ivj(a)) − (wi(b) + Σj 6=ivj(b))|, where a = f(vi, v−i) and b = f(wi, v−i.
This last difference can be bounded by max(vi(a) − wi(a), vi(b) − wi(b)) since otherwise a player
with valuation vi would rather declare wi (in case the LHS of the difference is smaller), or vice versa
(otherwise).
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