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Abstract

We introduce a 2-round stochastic constraint-satisfaction problem, and show that its approx-
imation version is complete for (the promise version of) the complexity class AM. This gives a
‘PCP characterization’ of AM analogous to the PCP Theorem for NP. Similar characterizations
have been given for higher levels of the Polynomial Hierarchy, and for PSPACE; however, we
suggest that the result for AM might be of particular significance for attempts to derandomize
this class.

To test this notion, we pose some ‘Randomized Optimization Hypotheses’ related to our
stochastic CSPs that (in light of our result) would imply collapse results for AM. Unfortunately,
the hypotheses appear over-strong, and we present evidence against them. In the process we
show that, if some language in NP is hard-on-average against circuits of size 2Ω(n), then there
exist hard-on-average optimization problems of a particularly elegant form.

All our proofs use a powerful form of PCPs known as Probabilistically Checkable Proofs of
Proximity, and demonstrate their versatility. We also use known results on randomness-efficient
soundness- and hardness-amplification. In particular, we make essential use of the Impagliazzo-
Wigderson generator; our analysis relies on a recent Chernoff-type theorem for expander walks.

1 Introduction

1.1 Background: PCPs and complexity classes

A Constraint Satisfaction Problem (CSP) is a collection ψ(x) of Boolean-valued constraints over
variables on a bounded-size alphabet Σ. A CSP in which each constraint depends on at most k
variables is called a k-CSP. A natural computational task is to determine the maximum fraction
of constraints that can be satisfied by any assignment. Cook’s Theorem [Pap94] states that this
problem is NP-complete, and the landmark PCP Theorem of Arora et al. [ALM+98] implies that,
for a sufficiently small constant ε > 0, it is NP-hard even to output an estimate that is within ε of
this maximum fraction (where in both results we may take k = 3,Σ = {0, 1}).

Given the importance of the PCP Theorem for complexity theory, researchers have looked for
analogues of the result for complexity classes other than NP. The PCP Theorem can be seen as
stating that it is NP-hard to determine within ε the value of a 1-player ‘solitaire’ game defined by
a 3-CSP. It is equally possible to study games played on a k-CSP in which 2 players alternate in
setting values to designated blocks of variables, with one player trying to maximize the fraction

∗Email: adrucker@mit.edu. Supported during part of this work by an Akamai Presidential Graduate Fellowship.

1

 

ISSN 1433-8092 

Electronic Colloquium on Computational Complexity, Report No. 19 (2010)



of satisfied clauses and the other trying to minimize this fraction. These games were explored in
several works. Ko and Lin [KL94] showed that approximating the value of such a game is hard for
the j-th level of the Polynomial Hierarchy, if the game lasts for j moves. In more recent work of
Haviv et al. [HRTS07] this result was shown to hold even if each variable is allowed to appear in
at most a constant number of constraints.

If the game is allowed to last polynomially many rounds, the approximation problem becomes
PSPACE-hard as shown by Condon et al. [CFLS95]. The same authors showed the approximation
problem for poly(n) rounds is also PSPACE-hard if a maximizing player plays against a random
player [CFLS97] (where the game’s value now is the expected number of satisfied clauses under
optimum play by the maximizer). Moreover, all of the hardness-of-approximation results mentioned
so far are in fact completeness results for the corresponding promise classes, so they can be viewed
as giving ‘PCP characterizations’ of NP,PSPACE, and the Polynomial Hierarchy.

One class that did not receive a PCP characterization based on CSP games was the Arthur-
Merlin class AM. In fact, there are few known natural complete problems for AM (technically,
for its promise version, prAM; we don’t know if AM, a semantic class, has any complete prob-
lems. See Sec. 2.3 for the definition of prAM.). To this author’s knowledge there is only one
approximation problem previously known to be prAM-complete: Mossel and Umans [MU02] give a
prAM-completeness result for approximating the VC dimension of set systems. This striking result
does not fall within the framework of CSP games given above.

1.2 Our results

In this paper we present a PCP characterization of prAM. We consider ‘stochastic’ 2-CSPs ψ(r, z),
where r is a collection of Boolean variables and z a collection of variables over an alphabet Σ. Let
Valψ(r, z) be the fraction of constraints of ψ satisfied by (r, z). In Section 4 we prove:

Theorem 1. There is a finite alphabet Σ and a constant ε > 0, such that it is prAM-complete to
distinguish between the following two sets of 2-CSPs:

ΠY ES = {ψ : for all r there exists z such that Valψ(r, z) = 1};

ΠNO = {ψ : with probability 1− exp(−Ω(|r|)) over random r, Maxz[Valψ(r, z)] < 1− ε}.

In particular, this implies that ε/2-approximating the value of the 2-round game associated
with ψ(r, z) (where the first player plays randomly) is AM-hard.

AM is a class for which we feel such a PCP characterization might be especially important.
There is compelling evidence that AM = NP, or at least that significant derandomization of AM
is possible (see [SU07] for an overview of this line of research). One approach to to try and
derandomize AM is to directly attack the ‘easiest’ AM-hard problems, and a problem like the one
provided by Theorem 1 seems like a plausible candidate.

How might such an attack proceed? We make a concrete suggestion in the form of two ‘Ran-
domized Oracle Hypotheses’. In what follows ψ(r, z) is a 2-CSP over ` Boolean variables (r) and
m variables (z) over a finite alphabet Σ.

Hypothesis A (Randomized Optimization Hypothesis for P/poly). Fix any δ > 0. For
every 2-CSP ψ(r, z), there exists a circuit Cψ(r) : {0, 1}` → Σm of size O(poly(|ψ|)), such that with
probability at least 1/poly(`) over a random r ∈ {0, 1}`, we have

Valψ(r, Cψ(r)) ≥ Maxz[Valψ(r, z)]− δ.
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In a nutshell, this hypothesis suggests that it is easy to approximately-optimize over z for a
random choice of r, if we allow our optimizer to depend nonuniformly on the 2-CSP ψ. (Such
nonuniformity is clearly necessary, in light of the PCP Theorem for NP.) This hypothesis, if true,
would yield a collapse result for AM. In Section 5 we prove the following claim by a straightforward
application of Theorem 1:

Claim 2. Hypothesis A implies AM = MA.

A strengthened hypothesis could have the stronger implication that AM = NP. Consider the
following:

Hypothesis B (Randomized Optimization Hypothesis for NC0). For any δ > 0, there is an
integer t = t(δ) > 0 such that the following holds. For every 2-CSP ψ(r, z), there exists a function
Fψ(r) : {0, 1}` → Σm, where each output coordinate of Fψ depends on at most t bits of r, and such
that with probability at least 1− δ over r,

Valψ(r, Fψ(r)) ≥ Maxz[Valψ(r, z)]− δ.

In Section 5 we prove:

Claim 3. Hypothesis B implies AM = NP.

Given the potential consequences of these hypotheses, what chance do they have of being true?
Unfortunately, it seems that each is unlikely. In Section 6 we prove two results, each to the effect
that, if NP decision problems are hard on average for exponential-size circuits, then both hypotheses
fail in a strong way. We state these results next. A language L is called p(n)-hard for size s(n) if
for every circuit C of size s(n), Prx∈{0,1}n [C(x) = L(x)] ≤ p(n).

Theorem 4. Suppose there exists a γ1 > 0 and an L ∈ NP∩ coNP that is (1− 1/ poly(n))-hard for
size 2γ1n. Then there exists c, γ2, θ > 0 and a polynomial-time constructible family {ψn(r, w)}n>0

of 2-CSPs (with |r| = cn, |w| = d(n) = O(poly(n))), such that:
(4.i) for all r, there exists a w such that Valψn(r, w) = 1;
(4.ii) for all n, if C : {0, 1}cn → {0, 1}d(n) is a circuit of size at most 2γ2n, then

Pr
r

[Valψn(r, C(r)) > 1− θ] ≤ exp{−Ω(n)}.

Theorem 5. There is an ε0 > 0 such that the following holds. Suppose there exists a γ1 > 0
and an L ∈ NP that is (1/2 + ε0)-hard for size 2γ1n. Then there exists a c > 0, a polynomial-
time constructible family {ψn(r, w)}n>0 of 2-CSPs (with |r| = cn, |w| = d(n) = O(poly(n))), and
γ2, θ > 0, such that:

(5.i) With probability ≥ 1− exp{−Ω(n)} over r, there exists w with Valψn(r, w) = 1;

(5.ii) If C : {0, 1}c(n) → {0, 1}d(n) is any circuit of size at most 2γ2n, then

Pr
r

[Valψn(r, C(r)) > 1− θ] ≤ exp{−Ω(n)}.
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We note that the hypothesis in Theorem 5 is implied by the hypothesis that there exists a
balanced function L ∈ NP that is (1−1/ poly(n))-hard for some size s(n) = 2Ω(n); this follows from
a result of O’Donnell [O’D02] (see also Healy et al. [HVV06], where the needed form of O’Donnell’s
result is made explicit and proved in a stronger form).

Theorems 4 and 5 both say that if NP (or NP ∩ coNP) has sufficiently hard problems, then
this hardness can be ‘concentrated’ into a kind of ‘inapproximability-on-average’ result for an
optimization problem associated with a single, uniform family of (stochastic) CSPs. Note that the
two results offer a tradeoff: Theorem 5 gives a slightly weaker conclusion from a presumably likelier
hardness assumption. The assumptions in the above results are strong but, we feel, plausible. But
at the very least, these results suggest that the approach we suggested to showing new upper-bounds
on the power of AM must be modified to have a reasonable chance of succeeding.

We feel, however, that the Random Optimization Hypotheses are worthy of study in their own
right, even if they turn out to be false; we pose some concrete questions about them at the end of the
paper. We also feel that Theorems 4 and 5 are interesting for the study of average-case hardness in
NP, and that the CSP families they produce might have further applications in complexity theory.

1.3 Our methods

All of our three main results–Theorems 1, 4, and 5–are essentially hardness results for computational
tasks associated with 2-CSPs. In each case the reduction with which we prove our result uses a
powerful type of PCP known as Probabilistically Checkable Proofs of Proximity (PCPPs). PCPPs
were introduced independently by Ben-Sasson et al. [BSGH+06] and by Dinur and Reingold [DR06],
and the PCPPs we use were developed by Dinur [Din07] (in [DR06, Din07] PCPPs are referred to
as ‘Assignment Testers’). In Section 3, we derive a variant form of PCPPs (Lemma 9) that is more
useful for our purposes.

Lemma 9 gives a general reduction (similar to past uses of PCPPs, e.g., in [Din07]) in which
we start with a two-argument circuit Q(r, w) and efficiently produce a 2-CSP ψ(r, z). The basic
hope for our reduction is as follows: first, for any r, if the restricted circuit Q(r, ·) is satisfiable (i.e.,
there exists w such that Q(r, w) = 1), then the restricted 2-CSP ψ(r, ·) should be satisfiable as well.
Second, if Q(r, ·) is unsatisfiable, then any assignment to ψ(r, ·) should violate an Ω(1)-fraction
of the constraints in ψ. Unfortunately, this second requirement is too strong and cannot be met.
What we can guarantee is that if r is ‘far’ in Hamming distance from any r′ for which Q(r′, ·) is
satisfiable, then for any z, (r, z) violates an Ω(1)-fraction of constraints of ψ.

How does this reduction help us prove the prAM-hardness result in Theorem 1? Any instance
x of a promise problem Π = (ΠY ES ,ΠNO) defines a predicate Q(r, w) computed by a poly-size
circuit. If x ∈ ΠY ES then for all r, Q(r, ·) is satisfiable; while if x ∈ ΠNO then for a 2/3 fraction
of r, Q(r, ·) is unsatisfiable. In order to apply our reduction, we need a stronger condition in the
second case: a random choice of r should be far from any r′ for which Q(r′, ·) is satisfiable. In other
words, we need an extremely low error probability in our underlying Arthur-Merlin protocol. This
cannot be achieved by straightforward parallel repetition, but it is provided by a theorem of Bellare
et al. [BGG93] which gives a randomness-efficient soundness-amplification for AM. Interestingly,
Mossel and Umans [MU02] also used such amplification for their AM-hardness-of-approximation
result on VC dimension, but for rather different reasons (unrelated to PCPs).

Our prAM-hardness proof is, we feel, more straightforward than the existing proofs of the
analogous results for PSPACE and the Polynomial Hierarchy, modulo our use of sophisticated tools
(PCPPs and efficient soundness-amplification) which we apply in a ‘black-box’ fashion. Of course
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we do not rule out that our result could be also proved more directly by adapting ideas from the
earlier papers (which use some of the same property-testing ideas that have gone into constructions
of PCPPs). But we feel that PCPPs in particular, which have already found applications in PCP
construction, coding theory, and property testing (see [BSHLM08] for an overview), are a versatile
tool which could be of more widespread use in complexity theory. In a very recent example of their
utility, Williams [Wil] applied PCPPs to the study of circuit lower bounds.

Next we discuss our methods in Theorems 4 and 5. Our transformation in Lemma 9 from the
circuit Q to the 2-CSP ψ has a further useful property: we can reduce the problem of finding
satisfying assignments to Q(r, ·), to the problem of finding nearly-optimal assignments to ψ(r, ·).
Roughly speaking, we show the following. Suppose there is an algorithm P (r) producing an assign-
ment z, such that with some probability p over r, (r, P (r)) satisfies ‘almost all’ of the constraints
of ψ; then there is a second algorithm P̃ (r) such that Q(r, P̃ (r)) = 1 with probability p′ ≥ 2−ε|r|p
(where ε > 0 can be chosen arbitrarily small). This property of the reduction is somewhat more
novel, although the techniques we use (involving error-correcting codes) still follow previous works.

To apply our reduction, we use the hardness assumptions in Theorems 4 and 5 to produce
predicates Q(r, w) such that Q(r, ·) is satisfiable with high probability, while any ‘small’ witness-
producing circuit C fails to solve the search problem associated with Q: that is, Q(r, C(r)) = 0
with high probability. Because of the exponential loss factor 2−ε|r| in our reduction, we need the
search problem associated with Q to be extremely hard: we need every ‘small’ circuit C to succeed
with probability at most exp{−Ω(|r|)} over r in achieving Q(r, C(r)) = 1.

To produce such extremely hard search problems from a more ‘mild’ hardness assumption, we
use existing hardness-amplification techniques. In particular, we use the well-known Impagliazzo-
Wigderson generator [IW97]. This generator, on input parameter n, takes a seed r of length
O(n), and produces n ‘pseudorandom’ outputs g1, . . . , gn each of length n. The generator has the
property that if language L is mildly hard for sufficiently small (but exponential-size) circuits, then
any sufficiently smaller circuit has success probability ≤ exp{−Ω(n)} in correctly guessing the n-
bit string (L(g1), . . . , L(gn)). Then, if our hard language L is in NP ∩ coNP (as in Theorem 4),
defining our predicate Q is straightforward: we let Q(r, w) = 1 iff w contains ‘proofs’ for the n
values (L(g1), . . . , L(gn)).

If our hard language is merely in NP (as in Theorem 5), we need to work harder. In this case,
we let Q(r, w) = 1 iff w contains proofs that L(gi) = 1, for a ‘sufficient number’ of the strings gi.
The idea is that if a small circuit C(r) could with some noticeable probability guess such proofs
for ‘almost all’ the indices i for which L(gi) = 1, then C could be modified to correctly guess
(L(g1), . . . , L(gn)) with noticeable probability, contrary to the properties of the generator. Making
this idea work involves showing that the set size |{i ∈ [n] : L(gi) = 1}| is highly concentrated around
its expectation. For this we rely on a recently proved concentration result called the Strong Chernoff
Bound for Expander Walks [WX05, WX08, Hea08]. This result is perfectly suited to analyze the
Impagliazzo-Wigderson generator (which is partly defined in terms of walks on expander graphs).

The precise form of our assumptions in Theorems 4 and 5 are dictated by the hardness-
amplification tools currently available. In particular, sufficiently strong hardness-amplification is
only available if we make a hardness assumption against nonuniform, exponential-sized circuits.
We believe versions of Theorems 4 and 5 should be possible for a uniform hardness assumption; re-
cently Impagliazzo et al. [IJKW08] made partial progress towards the hardness-amplification tools
needed.
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2 Preliminaries

2.1 Basic definitions

We presume familiarity with basic notions in complexity theory, in particular familiarity with the
classes P,NP, and AM. We define promise classes and the promise class prAM in Section 2.3.

For a language L ⊆ {0, 1}∗, we use L(x) to denote the characteristic function of L. We use |x|
to denote the length of a string x over some (possibly non-Boolean) alphabet Σ. d(x, y) denotes
the Hamming distance between strings x, y ∈ Σn, and d(x, S) is the generalized Hamming distance
between x ∈ Σn and a set S ⊆ Σn. If d(x, S) ≤ c we say x is c-close to S, otherwise x is c-far from
S. Similarly, for α ∈ [0, 1], if d(x, S) ≤ αn we say x is α-close in relative distance to S, otherwise
x is α-far in relative distance from S.

H(t) : [0, 1]→ [0, 1] denotes the binary entropy function, H(t) = −t log t− (1− t) log(1− t) for
t ∈ (0, 1) and H(0) = H(1) = 0. We let Vn,k denote the discrete volume of the Hamming sphere of
radius k in {0, 1}n; that is,

Vn,k :=
∑

0≤i≤k

(
n

i

)
,

and we use the known bound Vn,αn ≤ 2H(α)n (valid for α ∈ [0, 1/2]).
When we speak of circuits, unless otherwise mentioned we mean deterministic Boolean circuits

of fanin-two, and we measure circuit size (denoted |C| for circuit C) as the number of gates. For
functions p(n) ∈ [0, 1], s(n) ≥ 0 we say that a language L is p(n)-hard for size s(n) if for every
Boolean circuit C of size ≤ s(n), Prx∈{0,1}n [C(x) = L(x)] ≤ p(n). We extend this definition to
general functions: we say that a function F : {0, 1}n → {0, 1}m is p(n)-hard for size s(n) if for
every m-output Boolean circuit C of size ≤ s(n), Prx∈{0,1}n [C(x) = F (x)] ≤ p(n).

2.2 CSPs, PCPPs, and codes

Fix an integer k ≥ 1. A k-local Constraint Satisfaction Problem, or k-CSP, over finite alphabet Σ is
a collection ψ(x) = ψ1(x), . . . ψm(x) of Boolean-valued functions on the input x = (x1, . . . xn) ∈ Σn,
where each ψj depends only on some k variables of x and is specified by a k-tuple Ij ⊆ [n] and a
truth-table on these k variables. Define Valψ(x), the value of ψ on x, as the fraction of constraints
ψj that are satisfied by x (i.e. such that ψj(x) = 1).

Next we define PCPPs. Fix a circuit C(x) on n Boolean input variables, a finite alphabet Σ,
and a parameter β > 0. We say that a k-CSP ψ is a PCPP for C over Σ with security β if:

1. ψ is defined on variable set (x, z), where x are the Boolean input variables to C and z are
auxiliary ‘proof’ variables taking values in Σ;

2. For any x ∈ {0, 1}n, if C(x) = 1 then there exists a setting of z such that V alψ(x, z) = 1;

3. For all x ∈ {0, 1}n and z, Valψ(x, z) ≤ 1− β · d(x,C−1(1))
n .

The proof size of ψ is the number of variables in z.
The following positive result on PCPPs is due to Dinur.

Theorem 6. [Din07, Cor. 9.3] There is a constant-size alphabet Σ0, a constant β > 0, and a
polynomial-time algorithm that, given a circuit Q(x) of size t, produces a 2-CSP ψQ(x, z) that is a
PCPP for Q over Σ0 with security β. Moreover, the proof size of ψ is O(poly(t)).
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Following the techniques of earlier papers working with PCPPs, we will use PCPPs in conjunc-
tion with efficient error-correcting codes. A (binary) code is an injective map E : {0, 1}N → {0, 1}N ′

where N ′ ≥ N . We also use E to denote the image of the map, i.e., we consider E ⊆ {0, 1}N ′ . The
minimum distance of the code is the minimum over distinct u, v ∈ E of d(u, v). An algorithm D
decodes E from an η fraction of errors if, given any string u at relative distance at most η from
some u′ ∈ E, A(u) outputs u′. Note that for such decoding to be possible, the minimum distance
must be greater than 2ηN ′.

We will use the following well-known fact:

Theorem 7. There is a polynomial-time computable code E for all input lengths N with output
length N ′ = O(N), and an η > 0, such that E can be polynomial-time decoded from an η fraction
of errors.

Many such constructions are known; recently Goldwasser et al. [GGH+08] gave a construction in
which the decoder algorithm can be implemented in AC0, i.e., with constant-depth, polynomial-size
Boolean circuits.

2.3 Promise problems and prAM

A promise problem is a pair Π = (ΠY ES ,ΠNO) of disjoint subsets of {0, 1}∗ (the ‘yes’ and ‘no’
instances, respectively). For a function s(n) ∈ [0, 1], we say that (ΠY ES ,ΠNO) ∈ prAM1,s(n) if there
exists a polynomial-time randomized algorithm M(x, r, w), with |r|, |w| = O(poly(n)) such that:

1. (Completeness) If x ∈ ΠY ES , then with probability 1 over the random string r, there exists
a w = w(r) such that M(x, r, w) = 1;

2. (Soundness) If x ∈ ΠNO and |x| = n, then the probability over the random string r that there
exists a w such that M(x, r, w) = 1, is at most s(n).

The algorithm M defines an ‘Arthur-Merlin protocol’: we consider that a polynomially bounded
verifier Arthur chooses a random ‘challenge’ r for the computationally unbounded Merlin, who sees
r and gives a response w which Arthur accepts or rejects..

We define prAM = prAM1,1/3. A promise problem Π1 = (ΠY ES ,ΠNO) is prAM-hard if for
all Π′ = (Π′Y ES ,Π

′
NO) in prAM, there exists a polynomial-time computable reduction R(x), such

that, if x ∈ Π′Y ES , then R(x) ∈ ΠY ES , while if x ∈ Π′NO, then R(x) ∈ ΠNO. We say that Π is
prAM-complete if Π is in prAM and is prAM-hard.

It is not hard to see that for any Π ∈ prAM, the soundness parameter 1/3 in the protocol can be
made exponentially small in n, by parallel repetition of the original protocol. However, we require
soundness-amplification that is more efficient in its use of randomness. This is provided by a result
of Bellare et al. [BGG93]. They state their theorem for AM, not for prAM, but the proof carries
over without changes to the promise setting and we state it for this setting.

Theorem 8. [BGG93] Let Π = (ΠY ES ,ΠNO) ∈ prAM, where M(x, r, w) is a polynomial-time
predicate defining an Arthur-Merlin protocol for Π. Let n = |x|, and fix a polynomial m(n). Then
there exists an Arthur-Merlin protocol for Π defined by a polynomial-time predicate M ′(x, r′, w′),
with |w′| ≤ O(poly(n)), |r| ≤ |r′| ≤ O(|r|+m(n)), and with soundness 2−m(n).

The randomness-efficiency in the above result has been improved in more recent work (see [MU02]
for a discussion), but we do not need or use these improvements.
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2.4 AM-k-CSPs

By an AM-k-CSP we mean a k-CSP ψ(r, z), where r are Boolean and z may be non-Boolean. We
call r the ‘Arthur-variables’ and z the ‘Merlin-variables’. Informally speaking, we are interested in
the game in which the r are first set uniformly by Arthur, and then Merlin sets z to try to maximize
the fraction of constraints of ψ satisfied by (r, z).

For any fixed k ≥ 1, soundness parameter s = s(|r|) ∈ [0, 1], alphabet Σ, and fixed ε ∈ (0, 1],
we define the promise problem Gap− AM− k− CSP1,1−ε,s(|r|) = (ΠAM−CSP,Y ES ,ΠAM−CSP,NO) as
follows. Both ‘yes’ and ‘no’ instances are AM-k-CSPs over Σ. If ψ(r, z) ∈ ΠAM−CSP,Y ES , we are
promised that for all choices of r, there exists a z such that Valψ(r, z) = 1. If ψ(r, z) ∈ ΠAM−CSP,NO,
we are promised that only for at most an s(|r|) fraction of strings r does there exist a z with
Valψ(r, z) > 1− ε.

3 An Augmented PCPP

As a tool for proving Theorems 1, 4, and 5, we prove the following ‘augmented’ version of the
PCPP Theorem (Theorem 6), which we derive from Theorem 6. We remark that the proof of our
prAM-completeness result (Theorem 1) uses only condition (9.i) of the Lemma below; this first part
of the Lemma is quite similar to previous uses of PCPPs. Also, our use of error-correcting codes
will only be important for establishing condition (9.ii).

Lemma 9. There is a finite alphabet Σ0 such that the following holds. For any ε > 0 there is
a ν > 0 and a polynomial-time algorithm A that takes as input a Boolean circuit C = C(r, w).
A outputs a 2-CSP ψ(r, z), where |z| = O(poly(|C|)) and the variables of z are over Σ0. Letting
` = |r|, ψ has the following properties:

(9.i) For all r, if there is a w such that C(r, w) = 1, then there is a z such that Valψ(r, z) = 1.
On the other hand, if r is α`-far from any r′ for which C(r′, ·) is satisfiable, then for all z,
Valψ(r, z) < 1− Ω(α).

(9.ii) Suppose P (r) is any (possibly randomized) procedure such that with probability at least p = p(`)
over a uniform r ∈ {0, 1}` and any randomness in P , P (r) outputs a z such that Valψ(r, z) >
1− ν.

Then there exists a deterministic procedure P̃ (r), such that with probability at least p(`) · 2−ε`
over uniform r, P̃ (r) outputs a w such that C(r, w) = 1. Moreover, P̃ (r) is computable by
a nonuniform, poly(|C|)-sized circuit that makes a single oracle call to P on the same input
length (with P ’s randomness fixed nonuniformly).

Proof. Let N := |w|. We can assume, by padding w if necessary, that N ≥ `. Let E : {0, 1}N →
{0, 1}N ′ be the error-correcting code given by Theorem 7 (with N ′ = O(N)), applied to inputs of
length N .

Let b = b(`) := dN ′` e. Define a predicate Q(r1, r2, . . . , rb, u), with |ri| = |r| = ` for i ≤ b and
|u| = N ′, by the following rule: Q(r1, r2, . . . rb, u) = 1 iff r1 = r2 = . . . ,= rb, u = E(w) for some w,
and C(r1, w) = 1. Clearly we can efficiently construct a circuit of size O(poly(|C|)) computing Q.
Note that by our setting of b, there are more variables in the blocks rj than in u.

Let ψ0 = ψQ((r1, . . . , rb, u), Z) be the PCPP 2-CSP for Q over alphabet Σ0 given by Theorem 6,
efficiently constructible and of size O(poly(|C|)). We take ψ0 and make two changes. First, we
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substitute the variables of r for the corresponding variables of each vector ri. Second, we allow the
variables of u to range over all of Σ0 (we may assume {0, 1} ⊆ Σ0), and modify each constraint to
reject in the case where one or more of its u-variables are set to a non-Boolean value.

We denote the resulting 2-CSP by ψ(r, u, Z). We claim that this efficiently constructible 2-CSP
satisfies the conditions of Lemma 9’s statement, with z := (u, Z) and Σ0 as in Theorem 6. Our
setting of ν > 0 will be determined later.

First, we show that condition (9.i) is satisfied. Consider any r ∈ {0, 1}`. Suppose that there
exists w ∈ {0, 1}N such that C(r, w) = 1. Then Q(r, r, . . . , r, E(w)) = 1. Using the completeness
property of PCPPs, there exists a Z such that Valψ((r, E(w)), Z) = 1. On the other hand, say
r is α`-far from any r′ for which C(r′, ·) is satisfiable. Given any u ∈ ΣN ′

0 , let us choose some
string u′ ∈ {0, 1}N ′ which agrees with u on any variable where u is Boolean. We observe that
(r, r, . . . , r, u′) is α/2-far in relative distance from Q−1(1). By the soundness property of PCPPs,
for any choice of Z, Valψ((r, u′), Z) < 1− αβ

2 , where β > 0 is the constant from Theorem 6. Also,
by the way we defined ψ, Valψ((r, u), Z) ≤ Valψ((r, u′), Z). We have verified condition (9.i).

Now we turn to condition (9.ii). Let P (r) be as described in (9.ii). Note that by averaging,
we may fix (nonuniformly) some value of the randomness used by P while preserving the lower-
bound p(`) on its success probability over the choice of r; we do so and consider P a deterministic
algorithm from now on. We set ν := ηβγ/4, where η is the constant in Theorem 7, β is the constant
in Theorem 6, and γ ∈ (0, 1) is a small constant to be announced.

Let P ′(r) be the procedure that, on input r, computes z = P (r) = (u, Z) and runs the
polynomial-time decoder for E on u, yielding a string w ∈ {0, 1}N . Let P ′ output w.

We analyze the behavior of P ′. Let z = (u, Z) be any output of P (r) such that Valψ(r, z) > 1−ν.
By the soundness property of PCPPs, the string (r, r, . . . , r, u) must be ν

β = ηγ
4 -close in relative

distance to some string (r1, . . . , rb, u
′) for which Q(r1, . . . , rb, u

′) = 1 (and thus r1 = . . . = rb and
u′ ∈ E). Since |u′| = N ′ ≤ b(`) · |r| ≤ 2N ′, we find that d(r, r1) < γ` and d(u, u′) < ηN ′. The latter
inequality implies that when P ′ applies the polynomial-time decoder to u, it correctly recovers
w = E−1(u′). Since Q(r1, . . . , rb, u

′) = 1, we have C(r1, w) = 1.
To analyze P̃ , say that a string r ∈ {0, 1}n is good if P ′(r) outputs a w such that there exists

an r′ at distance at most γ` from r, such that C(r′, w) = 1. Our analysis of P ′, combined with
our original assumption about the success probability of P , shows that at least a p(`) fraction of
strings r are good.

Now we define the procedure P̃ (r): P̃ (r) first chooses a vector v ∈ {0, 1}l uniformly from the
set of all strings of Hamming weight at most γl, then outputs P ′(r+ v). Note that, if r is selected
uniformly, r+ v is also uniform and, after conditioning on its value, r is uniformly distributed over
all strings at distance at most γ` from r + v. Thus, conditioning on r + v being good, we have
at least a 1/V`,γ` ≥ 2−H(γ)` chance that C(r, P ′(r + v)) = 1. So the overall success probability of
P̃ (r) is at least p(`) · 2−H(γ)`. Since H(γ)→ 0 as γ → 0, we may choose γ > 0 so that the success
probability is at least p(`) · 2−ε`.

P ′ is clearly a polynomial-time algorithm making one call to P , while P̃ simply makes one call
to P ′ after its random sampling and bitwise addition mod 2. The choice of v can be nonuniformly
fixed in a way that does not decrease the success probability, so P̃ can be implemented with the
resources claimed. Thus we have verified condition (9.ii), completing the proof of the Lemma.
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4 PCP Characterization of prAM

In this section we prove Theorem 1, which we restate in the terminology of Section 2.4:

Theorem 1 (restated). There is a finite alphabet Σ and a constant ε > 0, such that
Gap− AM− 2− CSP1,1−ε,exp{−Ω(|r|)} is prAM-complete.

Proof. First, we claim that for any s(|r|) = o(1) and ε > 0, Gap− AM− 2− CSP1,1−ε,s(|r|) =
(ΠAM−CSP,Y ES ,ΠAM−CSP,NO) is in prAM. The protocol is as follows: given a 2-CSP ψ(r, z), Arthur
picks r uniformly and Merlin responds with a setting of z. Arthur accepts iff Valψ(r, z) = 1. If
ψ ∈ ΠAM−CSP,Y ES , then clearly Arthur accepts with probability 1 when Merlin responds optimally.
If ψ ∈ ΠAM−CSP,NO, then Arthur accepts with probability at most s(|r|), which is greater than
2/3 for large enough |r|. (For instances with |r| below this threshold, Arthur can simply request
certificates z(r) for every setting of r and verify that each satisfies Valψ(r, z(r)) = 1.)

Thus our main task is to show that the promise problem is prAM-hard, for appropriate choice of
parameters. Let Π = (ΠY ES ,ΠNO) ∈ prAM, and let M1(x, r1, w1) be a polynomial-time-computable
predicate defining an Arthur-Merlin protocol for Π. We use parameters n = |x|, `1(n) = |r|; by
definition of prAM we have `1(n) = O(poly(n)) and |w1| = O(poly(n)). By padding r1 if necessary
we may assume `1(n) ≥ n. Apply Theorem 8 to M1, with the setting m(n) := `1(n). Thus we get
a new Arthur-Merlin protocol M2(x, r2, w2) for Π, with |r2| = `2(n) ∈ [n, . . . ,D · `1(n)] (for some
fixed D > 0), |w2| = O(poly(n)), and with soundness 2−`1(n).

Given an input x ∈ ΠY ES ∪ ΠNO, we construct a poly(n)-sized circuit C(r2, w2) = Cx(r2, w2)
that accepts iff M2(x, r2, w2) = 1. To this circuit we apply the algorithm A of Lemma 9 (with a
setting of ε > 0 to be announced), yielding a 2-CSP ψ = ψ(r2, z) which we make the output of our
reduction.

We show the correctness of the reduction. First, suppose that x ∈ ΠY ES . Then for each choice
of r2, there exists a w2 such that M2(x, r2, w2) = 1. By condition (9.i) of Lemma 9, there exists z
such that Valψ(r2, z) = 1. Thus ψ ∈ ΠAM−CSP,Y ES .

Now suppose that x ∈ ΠNO. Then by the soundness property of M2, the number of strings r2

for which M2(x, r2, ·) is satisfiable is at most 2−`1(n) · 2`2(n) ≤ 2(1− 1
D

)`2(n). Thus the number of r2

for which there exists an r′ at distance ≤ α`2(n) from r2, such that M2(x, r′, ·) is satisfiable, is at
most

V`2(n),α`2(n) · 2(1− 1
D

)`2(n) ≤ 2(H(α)+1− 1
D

)`2(n).

Choosing α > 0 such that H(α) < 1
D , we find that with probability ≥ 1− exp{−Ω(`2(n))} over a

uniform choice of r2, r2 is α`2(n)-far from any r′ such that C(r′, ·) is satisfiable. For such r2 and
for any z, condition (9.i) of Lemma 9 tells us that Valψ(r2, z) < 1− Ω(α).

Thus if we fix ε > 0 as an appropriately small constant and choose an appropriate s(|r2|) =
exp{−Ω(|r2|)}, we have ψ ∈ ΠAM−CSP,NO. This completes the proof of correctness for our reduc-
tion.

5 Randomized Optimization Hypotheses Imply Collapse of AM

What significance might Theorem 1, our ‘PCP characterization of AM’, have for the project of
trying to prove new upper bounds on the power of this class? In the Introduction we gave two
hypotheses inspired by Theorem 1. Each of these hypotheses, if true, would have major implications
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for the study of AM; this is the content of Claims 2 and 3 from the Introduction, which we prove
next.

Proof of Claim 2. Let L ∈ AM; then (L,L) ∈ prAM. Given an instance x, let Arthur run the reduc-
tion in Theorem 1 on input x, producing a 2-CSP ψ(r, z). Let Merlin send Arthur a polynomial-sized
circuit C : {0, 1}` → {0, 1}m, with δ := ε (here ε is from Theorem 1). Then Arthur runs C on a
sufficiently large (O(poly(n))) number of random choices of r, accepting only if he finds an r such
that Valψ(r, C(r)) ≥ 1− ε.

First suppose x ∈ L; then by the completeness property of our reduction, for all r there exists
a z for which Valψ(r, z) = 1. If Merlin sends the circuit Cψ assumed to exist by Hypothesis A,
then with at least 1/poly(|`|) probability over r, Valψ(r, C(r)) ≥ 1 − ε. So if Arthur samples a
sufficiently large (polynomial) number of strings r, Arthur will accept with probability > 2/3.

Next suppose x /∈ L; then our reduction guarantees that for all but an exponentially small
fraction of strings r, for all z Valψ(r, z) < 1− ε. So Arthur’s acceptance probability is negligible no
matter what circuit Merlin sends. Thus we have an MA protocol for L.

Proof of Claim 3. We apply Hypothesis B with δ := ε/3, yielding a value t = t(δ). Let L ∈ AM be
given, and let Arthur run the reduction from Theorem 1 on input x, yielding an instance ψ(r, z).
Let Merlin send a description of a function F (r), where each output of F depends on at most t bits
of r (note F can be described in polynomial size). Arthur performs explicit variable-substitutions
z = F (r) in ψ and uses linearity of expectation to exactly compute Er[Valψ(r, F (r))].

If x ∈ L and Merlin sends Fψ as given by Hypothesis B, this expectation is at least (1− δ)2 >
1 − 2ε/3. On the other hand, if x /∈ L then, regardless of the function sent, this expectation is
at most (1 − ε) + exp{−Ω(|r|)}. Thus for |r| large enough we can distinguish the two cases. (If
|r| is below a fixed threshold, Arthur can instead request that Merlin send optimal values z(r) for
each r.) Arthur’s computations are deterministic and polynomial-time, so the above defines an NP
protocol for L.

Note that Claim 3 would hold even if we weakened Hypothesis B, allowing each coordinate
of F (r) to depend on t(δ, n) = Oδ(log n) coordinates. We state Hypothesis B in a stronger form
because, although we believe it is false, we don’t know how to disprove it unconditionally even in
the form given.

6 Evidence Against the Randomized Optimization Hypotheses

Next we use Lemma 9, in conjunction with known results about amplification of hardness, to prove
Theorems 4 and 5. That is, under various complexity-theoretic assumptions, we exhibit families
of 2-CSPs ψ(r, z) for which it is hard on average to approximately optimize over z, for randomly
chosen r. As mentioned earlier, the conclusions of both Theorems are easily seen to falsify both
of our Randomized Optimization Hypotheses, and we consider this evidence that these hypotheses
are probably false.

First, amplification of hardness in NP∩ coNP from (1− 1/poly(n))-hardness to 2/3-hardness is
made possible by the following result of Impagliazzo [Imp95, essentially Thm. 2]:

Theorem 10. [Imp95] Suppose that there exists a language L, a function s(n), and a c > 0, such
that L is (1 − 1

nc )-hard for size s(n). Then for any c′ > 0, there exists another language L′ such
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that L′ is (1
2 +O( 1

nc′
))-hard for size s(n)

nO(1) . Moreover, L′ is polynomial-time truth-table reducible to
L.

Lemma 11. Suppose that there exists a language L ∈ NP ∩ coNP and γ, c > 0 such that L is
(1− 1

nc )-hard for size 2γn. Then there exists another language L′ ∈ NP ∩ coNP and a γ′ > 0 such

that L′ is 2/3-hard for size 2γ
′n (for sufficiently large n).

Proof. Apply Theorem 10, with s(n) := 2γn and with any c′ > 0 and γ′ ∈ (0, γ), and use the fact
that NP ∩ coNP is closed under polynomial-time reducibilities, i.e., PNP∩coNP = NP ∩ coNP.

Next, the Impagliazzo-Wigderson pseudorandom generator [IW97] allows us to amplify ‘mod-
erate’ hardness of the type produced by Lemma 11 into ‘extreme’ hardness, albeit of a function
problem rather than a decision problem (in [IW97] additional techniques are used to produce ex-
tremely hard decision problems, but we do not follow this path). The next definition follows [IW97]
(and previous works). Given a language L, an integer c ≥ 1, a parameter k = k(n), and a function
G(r) : {0, 1}cn → {0, 1}k×n (called a ‘generator’ function), define Lk ◦G : {0, 1}cn → {0, 1}k by

(Lk ◦G)(r) := (L(G1(r)), L(G2(r)), . . . , L(Gk(r))) ,

where the string G(r) is divided into k blocks G1(r), . . . , Gk(r), each of length n. The basic idea is
that if G(r) is appropriately ‘pseudorandom’, then the collection G1(r), . . . , Gk(r) should behave
in important respects like a truly independent collection of random strings. In particular, if it is
somewhat hard to compute L(x) for a random x, it should be very hard to compute (Lk ◦ G)(r)
correctly when k is large.

The following result (a restatement of [IW97, Thm. 2.12]) gives the main hardness-amplification
property of the generator defined in that paper, which we denote GIW .

Theorem 12. [IW97] For any γ > 0, there are γ′, c > 0, and a polynomial-time computable
GIW : {0, 1}cn → {0, 1}n×n, such that: if L is 2/3-hard for size 2γn, then (Ln ◦GIW )(r) is
2−γ

′n-hard for size 2γ
′n.

(Recall our definition of average-case hardness for general functions from Section 2.1.)

Proof of Theorem 4. We begin by applying Lemma 11 to our language L ∈ NP ∩ coNP, yielding a
language L′ ∈ NP ∩ coNP that is 2/3-hard for circuits of size 2γ0n for some γ0 > 0. Then we apply
Theorem 12 to L′; we derive a γ′ > 0, such that ((L′)n ◦GIW )(r) is 2−γ

′n-hard for size 2γ
′n.

Since L′ ∈ NP ∩ coNP, there exists a polynomial-time witness predicate M(x,w), producing
outputs from {0, 1, ?}, satisfying:

1. for all (x,w),M(x,w) ∈ {L′(x), ?};

2. for all x, there exists a w such that M(x,w) = L′(x);

3. |w| = O(poly(n)).

Let t(n) = |w|. We reformat M if necessary to ensure that the first bit of w consists of a ‘claim’
bit, call it wcl, such that for any (x,w) with M(x,w) = L′(x), we have wcl = L′(x). Next we
define M ′(x,w), which outputs 1 if M(x,w) ∈ {0, 1}, 0 otherwise. M ′ is also polynomial-time
computable.

12



Define a predicateQ(r, w1, . . . , wn) : {0, 1}cn×{0, 1}n×t(n) → {0, 1} as follows: Q(r, w1, . . . , wn) =
1 iff for all i ∈ [n], M ′(GIW,i(r), wi) = 1. Q is polynomial-time computable since GIW and M ′

are, so let Qn be a O(poly(n))-sized circuit for Q on input parameter n. Clearly Qn is efficiently
constructible.

We claim that Q defines a hard-on-average search problem. To see this, suppose C(r) :
{0, 1}cn → {0, 1}n×t(n) is any circuit of size at most 2γ

′n which has some p(n) probability over
r of outputting a collection w1, . . . , wn for which Q(r, w1, . . . , wn) = 1. Then we may construct
a circuit C ′(r){0, 1}cn → {0, 1}n that simply restricts the output of C(r) to the ‘claim’ bits of
the strings w1, . . . , wn that C produces. Observe that C ′(r) has a p(n) chance (over r) of cor-
rectly outputting ((L′)n ◦ GIW )(r). Moreover, C ′(r) also has size bounded by 2γ

′n. We conclude
p(n) ≤ 2−γ

′n.
We invoke Lemma 9 with ε := γ′/(2c), yielding a poly-time algorithm A (and an associated

ν > 0). We apply this A to Qn, yielding a 2-CSP ψn(r, z) (here |z| = d(n) = O(poly(n))). We
claim that the 2-CSP family {ψn(r, z)}n>0 satisfies the conditions of Theorem 4.

To see this, first note that for all r, M ′(r, ·) is satisfiable; so, there exists w1, . . . , wn such that
Qn(r, w1, . . . , wn) = 1. Thus by condition (9.i) of Lemma 9, there exists z such that Valψn(r, z) = 1.
So condition (4.i) is satisfied.

To establish condition (4.ii), let γ2 := ε and θ := ν. Suppose C(r′) : {0, 1}cn → {0, 1}|w′|
is a circuit of size at most 2γ2n, such that with some probability q(n), Valψn(r′, C(r′)) > 1 − θ.
By condition (9.ii) of Lemma 9, there exists a circuit C̃(r) : {0, 1}cn → {0, 1}n×t(n), such that
with probability at least q(n) · 2−ε(cn) over r, Qn(r, C̃(r)) = 1. Moreover, C̃ is of size at most
|C|+O(poly(n)), which for large enough n is less than 2γ

′n. By our previous analysis we find that
q(n) · 2−ε(cn) ≤ 2−γ

′n, i.e., q(n) ≤ 2(εc−γ′)n = 2−γ
′n/2 = exp{−Ω(n)}. We have proved condition

(4.ii), for our settings of γ2, θ.

Next we turn to prove Theorem 5. For this, we need a more detailed analysis of the generator
GIW . Besides the hardness-amplification property summarized in Theorem 12, GIW has another
useful property: with very high probability over r, the fraction of the strings GIW,1(r), . . . , GIW,n(r)
which are in L is close to |L ∩ {0, 1}n|/2n, that is, close to the fraction we’d expect if these strings
were drawn independently and uniformly. To prove this fact (not proved or used in [IW97]), we
first describe the generator in more detail.

The input r to GIW consists of two parts, r = (ra, rb). GIW (ra, rb) is defined blockwise for
i ∈ [n] as

GIW,i(ra, rb) = Ki(ra) +K ′i(rb),

with Ki : {0, 1}|ra| → {0, 1}n, K ′i : {0, 1}|rb| → {0, 1}n, and with + denoting bitwise addition mod
2. The definition of K ′i is not important to us; let us describe the functions Ki. The string ra
defines a random walk of length n (counting the starting vertex) on an explicit expander graph Gn
with vertex set {0, 1}n. Gn is 16-regular with normalized second eigenvalue λn at most some fixed
λ < 1. vi = Ki(ra) represents the i-th vertex visited in this walk. v1 is a uniform element, and
each subsequent step vi+1 is a uniform choice from among the neighbors of vi. (Note that this can
be achieved with |ra| = O(n) random bits as claimed.)

We will use the following powerful result, called the Strong Chernoff Bound for Expander Walks,
proved by Healy [Hea08].

Theorem 13. [Hea08] Let G = (V,E) be a d-regular graph with second eigenvalue λ, let m > 0,
and let f1, . . . , fm : V → [0, 1] have expectations µ1, . . . , µm (over a uniform choice of v ∈ V ).
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Taking a random walk v1, . . . , vm on G with uniform starting-point, we have for all ε > 0,

Pr

∣∣∣∣∣∣
∑
i≤m

fi(vi)−
∑
i≤m

µi

∣∣∣∣∣∣ ≥ εm
 ≤ 2e−

ε2(1−λ)m
4 .

A more general claim was made earlier by Wigderson and Xiao [WX05], but the proof contained
an error, as pointed out in [WX08]. (A valid proof of the Theorem above, with different constants,
can still be extracted from [WX05].)

For any r ∈ {0, 1}cn, let ](r) := |{i ∈ [n] : L(GIW,i(r)) = 1}|. Theorem 13 implies the following
concentration bound for the generator GIW :

Lemma 14. Let L be an arbitrary language. Let cn = |L ∩ {0, 1}n|/2n. Then for any fixed δ > 0,

Pr
r

[|](r)− cn · n| ≥ δn] ≤ exp{−Ω(n)}.

Proof. Recall that r = (ra, rb). We show that the above inequality is true after conditioning on any
value of rb; this will prove the Lemma. Let (v′1, . . . , v

′
n) = (K ′1(rb), . . . ,K

′
n(rb)). Then for i ∈ [n],

GIW,i(r) ∈ L iff Ki(ra) + v′i ∈ L, or equivalently Ki(ra) ∈ Ln + v′i (where Ln := L ∩ {0, 1} and
Ln + v′i = {x+ vi : x ∈ Ln}).

Define fi : {0, 1}n → {0, 1} to be the characteristic function of Ln + v′i. Clearly µi = cn for all
i. The result now follows by a direct application of Theorem 13, using the fact that Gn has second
eigenvalue bounded away from 1.

Proof of Theorem 5. Our choice of ε0, determined later, will be no larger than 1/6, so by Theo-
rem 12, our hypothesis implies there is a γ′ > 0, a c > 0, and a polynomial-time GIW : {0, 1}cn →
{0, 1}n×n, such that: for any circuit C : {0, 1}n → {0, 1}n of size at most 2γ

′n,

Pr
r

[C(r) = (Ln ◦GIW )(r)] ≤ 2−γ
′n.

Let M(x,w) be a polynomial-time verifier for L: x ∈ L iff there exists w such that M(x,w) = 1.
Let t(n) = |w| = O(poly(n)).

Let ](r) be as defined after Theorem 13. If C : {0, 1}cn → {0, 1}t(n)×n is a circuit producing n
strings w1, . . . , wn, each of length t(n), define

]C(r) := |{i ∈ [n] : M(GIW,i(r), wi) = 1}|.

Claim 15. There exists γ′′ > 0 such that the following holds. If C(r) : {0, 1}cn → {0, 1}t(n)×n is a
circuit of size at most 2γ

′′n, then

Pr
r

[](r) < ]C(r) + γ′′n] < 2−γ
′′n.

Proof (of Claim 15). Let α > 0. Say C(r) : {0, 1}cn → {0, 1}t(n)×n is a circuit of size at most
2αn, such that Prr[](r) < ]C(r) + αn] ≥ 2−αn. Consider the following randomized procedure that
attempts to compute (Ln ◦GIW )(r):

• Let C(r) = (w1, . . . , wn) ∈ {0, 1}t(n)×n. Let I ⊆ [n] be the indices i for whichM(GIW,i(r), wi) =
1. Pick a random subset J of [n], uniformly from the set of all subsets of size less than αn
(including the empty set). Output the characteristic vector of I ∪ J .
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We analyze this procedure. Suppose r is any input for which ](r) < ]C(r) + αn. Note that by
definition of M , we always have I ⊆ {i ∈ [n] : L(GIW,i(r)) = 1}. Then there exists a J ⊆ [n] \ S,
of size less than αn, such that I ∪ J = {i ∈ [n] : L(GIW,i(r)) = 1}. Thus conditioned on this event,
the procedure succeeds with probability at least 1

Vn,αn
≥ 2−H(α)n. So the overall success probability

is at least 2−αn · 2−H(α)n = 2−(α+H(α))n.
Let us nonuniformly fix a setting J that maximizes the procedure’s success probability, and use

this choice to run the procedure. The result is a (nonuniform) circuit of size 2αn + O(poly(n)),
with success probability ≥ 2−(α+H(α))n. For α sufficiently small this contradicts the hardness of
(Ln ◦GIW ), proving the claim.

Now we set ε0 := min(1/6, γ′′/4). Fix any circuit C : {0, 1}cn → {0, 1}t(n)×n of size at most
2γ
′′n. We use Lemma 14 applied to δ := ε0, and the previous Claim, to find that, with probability
≥ 1− exp{−Ω(n)} over r, we have the simultaneous inequalities (cn + ε0)n > ](r) > (cn− ε0)n and
](r) ≥ ]C(r) + γ′′n. Call a string r with this property C-typical.

What is cn? We claim it must lie in [1/2 − ε0, 1/2 + ε0]. For otherwise, a size-1 circuit could
guess L(x) with probability greater than 1/2 + ε0 by guessing the majority value on length n,
contrary to our hardness assumption about L. Thus for a C-typical r, ]C(r) ≤ (1/2 + ε0)n−γ′′n <
(1/2− 3γ′′/4)n and also ](r) ≥ (1/2− ε0)n− ε0n ≥ (1/2− γ′′/2)n.

Defining η as some rational number in the interval (1/2− 3γ′′/4, 1/2−γ′′/2), define a predicate
Q(r, w1, . . . , wn) : {0, 1}cn × {0, 1}n×t(n) → {0, 1} as follows: Q(r, w1, . . . , wn) = 1 iff for at least
an η fraction of indices i we have M(GIW,i(r), wi) = 1. Q is itself polynomial-time computable,
computed by some uniform family {Qn}n>0 of poly-size circuits. We have the key property that
for a C-typical r, there exist w1, . . . , wn such that Q(r, w1, . . . , wn) = 1, yet Q(r, C(r)) = 0.

Invoke Lemma 9 with ε := γ′′/(2c), yielding an algorithm A (and an associated ν > 0). Then
we claim {A(Qn)}n>0 = {ψn(r, z)}n>0 is the desired family of 2-CSPs (here |r| = cn, |z| = d(n) =
O(poly(n))). First we verify condition (5.i). Consider any r for which there exists a w1, . . . , wn
such that Qn(r, w1, . . . , wn) = 1. By condition (9.i) of Lemma 9, we find that in this case there
exists z such that Valψn(r, z) = 1. Since all but an exp{−Ω(n)} fraction of r have this property,
condition (5.i) is satisfied.

To establish condition (5.ii), fix γ2 as any value in (0, γ′′) and let θ := ν. Suppose C(r) :
{0, 1}cn → {0, 1}d(n) is a circuit of size at most 2γ2n, such that with some probability q(n),
Valψn(r, C(r)) > 1 − θ. By condition (9.ii) of Lemma 9, there exists a circuit C̃(r) : {0, 1}cn →
{0, 1}n×t(n), such that with probability at least q(n) · 2−ε(cn) over r, Qn(r, C̃(r)) = 1. Note that
such an r fails to be C̃-typical. Moreover, C̃ is of size at most |C| + O(poly(n)), which for large
enough n is less than 2γ

′′n.
So, by our previous analysis we find that q(n) ·2−εcn ≤ 2−γ

′′n, i.e., q(n) ≤ 2(εc−γ′′)n = 2−γ
′′n/2 =

exp{−Ω(n)}. We have proved condition (5.ii). This completes the proof of Theorem 5.

Finally, we note that versions of Theorems 4 and 5 can be proved, in which both the hypotheses
and conclusions apply, not to general circuits, but to the class of TC0 circuits (i.e., constant-depth
Boolean circuits with majority gates), or any circuit class containing TC0. This is because all
the reductions involved can be carried out in TC0. (For a discussion of why the Impagliazzo and
Impagliazzo-Wigderson constructions amplify hardness in TC0, see Agrawal [Agr01]; the difficulties
in amplifying hardness in lower classes like AC0 were explored by Shaltiel and Viola [SV08].)
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7 Questions for Further Research

• Does our approximation problem remain prAM-complete if each variable in the CSP ψ(r, z) is
restricted to appear in only a constant number of constraints? (The ‘expander-replacement’
technique [PY91, Pap94] allows us to restrict the occurrences of z-variables in our prAM-
completeness proof; it is the ‘stochastic’ r-variables which pose a challenge.) Alternatively,
can one perhaps show that under this restriction the problem lies in NP?

• Can we unconditionally disprove Hypothesis B? Given the sharp limitations of NC0 circuits
this might be possible.

• Can PCP ideas be used to give new upper bounds on the class AM?

• Find more applications of PCPPs in complexity theory.
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