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Abstract

We consider multivariate pseudo-linear functions over finite fields of char-
acteristic two. A pseudo-linear polynomial is a sum of guarded linear-terms,
where a guarded linear-term is a product of one or more linear-guards and a
single linear term, and each linear-guard is again a linear term but raised to the
power 2m-1, where 2m is the field size. Pseudo-linear functions over GF(2m)
are given by pseudo-linear polynomials defined over GF2.

Let f1, f2, ..., fk be k pseudo-linear functions in n variables, and let f be
another pseudo-linear function in the n variables. We show that if f is a
function of the given k functions, then it must be a pseudo-linear function of
the given k functions. This generalizes the straightforward claim for just linear
functions. We also prove a more general theorem where the k functions can
in addition take further arguments, and prove that if f can be represented as
an iterated composition of these k functions, then it can be represented as a
probabilistic pseudo-linear iterated composition of these functions.

These theorems have implications for automatic proving of universally-
composable security theorems for ideal and real functionalities composed of
if-then-else programs and data objects from additive group of GF(2m). It
follows that deciding if a simulator exists for such restricted languages is in
computational time independent of m.
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1 Introduction

Before we define pseudo-linear functions, we mention that pseudo-linear functions
originate as functions computed by if-then-else or branching programs involving data
objects from the additive group of fields of characteristic two. The conditionals are
built from equality constraints of linear expressions, and closed under negation and
conjunction.

So, consider a finite field Fq, where q = 2m. Then m-bit (bit-wise) exclusive-OR
just corresponds to addition in this field. Further, an equality constraint of the form
l1(~x) = l2(~x) can then be written as

1 + (l1(~x) + l2(~x))q−1

which evaluates to 1 if l1(~x) = l2(~x), and evaluates to zero otherwise. Similarly,
l1(~x) = 0 and l2(~x) = 0 can be written as

(1 + l1(~x)q−1) · (1 + l2(~x)q−1)

As a final example, an expression “if (l1(~x) = 0 and l2(~x) = 0) then l3(~x) else l4(~x)”
can be written as

(1 + l1(~x)q−1) · (1 + l2(~x)q−1) · (l3(~x) + l4(~x)) + l4(~x)

A pseudo-linear multivariate polynomial defined over sub-field F2 is then a
polynomial which is a sum of guarded linear-terms [Dij75]; a guarded linear-term is
a polynomial which is the product of a linear (over F2) polynomial and zero or more
linear-guards; a linear-guard is a linear (over F2) polynomial raised to the power q-1.
Since, in this paper we will only be dealing with pseudo-linear polynomials defined
over F2, from now on we will implicitly assume that. A pseudo-linear polynomial
in n variables and defined over F2, however does yield a function from (Fq)

n to
Fq, which we call a pseudo-linear function. Thus, even though the polynomial
is defined over F2, the underlying field will be Fq, and hence the algebra of the
polynomials is modulo (xq

i = xi) (for i ranging from 1 to n). In formal terms, the
objects in consideration are in F2[x1, ..., xn]/(xq

1 + x1, ..., x
q
n + xn). They are also

further restricted by the fact that all expressions in the guards are linear instead
of affine, but we will later see how to introduce constant additive terms from Fq

(Appendix A).

We observe that pseudo-linear polynomials are closed under pseudo-linear trans-
formations, i.e. given a pseudo-linear polynomial, raising it to the power q-1, and
multiplying it by another pseudo-linear polynomial yields just another pseudo-linear
polynomial. This follows (by induction) from the observation that

(f1(~x)q−1l1(~x) + f2(~x))q−1 = f1(~x)q−1(l1(~x) + f2(~x))q−1 + (1 + f1(~x)q−1) · f2(~x)q−1

where f1 and f2 are arbitrary pseudo-linear functions. The observation itself follows
by considering the two cases where f1(~x) is zero or not.

More importantly, the if-then-else programs mentioned above compute exactly
the pseudo-linear functions. A more detailed description of such programs and how
they relate to pseudo-linear functions can be found in Appendix C.
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Above, we saw how a multivariate polynomial p(~x) yields a function from F
n
q

to Fq. More generally, if we are given n polynomials f1(~z) to fn(~z) (where ~z are k
formal variables), then p(f1(~z), ..., fn(~z)) yields a function from F

k
q to Fq, which we

say is a pseudo-linear function of f1, ..., fn.

While for linear multivariate functions a completeness theorem which states that
if a linear function f of n variables is a function of k other linear functions (in the
same n variables), then f must be a linear function of the k linear functions, is
well known and rather easy to prove, a similar completeness result for pseudo-linear
functions is novel and not so easy to prove.

Thus, the main result of this paper is a theorem which states that if a pseudo-
linear multivariate function f of n variables is a function of k pseudo-linear functions
f1, f1, ..., fk (in the same n variables), then f must be a pseudo-linear function of
f1, f2, ..., fk. Note that it is given that f itself is a pseudo-linear function in the
original n variables.

This theorem has consequences for bounding the time complexity of a search
algorithm which seeks to find an arbitrary program (if any) which simulates an if-
then-else program using given (multiple) if-then-else programs. Our theorem shows
that one can restrict the search for the arbitrary program to pseudo-linear func-
tions, hence reducing the time complexity from being dependent on the field size
to just being dependent on the program sizes. For cryptographic applications, this
means that an algorithmic search for a simulator in proving a protocol secure in
the universally composable model [Can01] is independent of the security parameter,
as the security parameter is usually related to the field size. Since the program
sizes in cryptographic protocols are usually small, this can lead to efficient theorem
proving as we discuss later. There are additional issues involved, as the various
functionalities, the adversary and the simulator have access to random coins, and
the simulation need only be computationally indistinguishable. These issues are
discussed in Appendix C. Although, there have been many pieces of work in formal
methods for cryptographic protocols [AR00, CH06, MW04, DDMR07], this to the
best of our knowledge is a novel approach to theorem proving of security protocols.

To model the fact that the Simulator can iteratively compose various calls to
the different functions in the ideal functionality, we prove a more general theorem
involving arbitrary iterations of k functions f1(~z, ~y), f2(~z, ~y), ..., fk(~z, ~y), where ~y are
arguments which the Simulator can supply. We prove that if f is a pseudo-linear
function of ~z, and can be computed by a sub-exponential (in m) length iterated
composition of the given k functions, then it can be computed by a probabilis-
tic iterated pseudo-linear composition of the given k functions. Note that in this
case, we are only able to prove that a randomized pseudo-linear simulator exists.
Deciding whether an efficient deterministic pseudo-linear simulator of the given k
functions exists remains an open problem. Also note the technical restriction of a
sub-exponential length iterated composition which is required to rule out determin-
istic brute force searches, which a computationally bounded simulator is not allowed
anyway. Finally, we remark that our completeness results require sufficiently large
fields (as a function of the number of variables in f), but given that most UC proofs
only seek proofs of simulatability which do not depend on the security parameters,
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our completeness theorem covers all such UC proofs.

The difficulty in proving the completeness theorem stems from the fact that
pseudo-linear polynomials can have individual degrees (i.e. of individual variables)
exceeding q-1, and hence it may be subject to reduction modulo xq = x. Similar
problems occur in local testing of low degree polynomials [JPRZ04, KR04], and
we would like to point out that pseudo-linear functions are intimately related to
Generalized Reed-Muller Codes [KLP68]. Thus, for example it is not immediately
clear what constitutes a basis for pseudo-linear polynomials. We first show a basis
for pseudo-linear polynomials, and then show a necessary and sufficient condition
involving the basis for a pseudo-linear function of ~x to be a pseudo-linear function
of other pseudo-linear functions of ~x. A detailed example illustrating these issues
and the proof idea can be found in Appendix B.1.

We remark that our theorem does not yet address stateful or persistent-state
functions, but we expect to prove similar results for stateful functions in the near
future. We also expect to extend our results to other groups and cryptographic
constructs with proper axiomatization.

We would also like to mention that the class of pseudo-linear functions do not
form an ideal in Fq[~x], and hence the vast field of Gröbner basis is not applicable.

The rest of the paper is organized as follows. Section 2 describes and proves
a basis for pseudo-linear functions. Section 3 proves an interpolation theorem for
pseudo-linear function. Section 4 proves the Completeness theorem for pseudo-
linear functions. Section 5 defines iterated composition of pseudo-linear functions
and proves the Completeness theorem for iterated pseudo-linear functions.

2 A Basis for Pseudo-Linear Functions

In this section we fix a field Fq of size q = 2m.

Let L stand for all linear expressions (including zero) in n variables, say x1, x2, ..., xn

(the unordered collection will be referred to as X). We define the set of elementary
pseudo-linear (epselin) polynomials to be all polynomials of the form

∏

l∈J

(1 + l(~x)q−1) ·
∏

l∈L\J
l(~x)q−1 · p(~x)

where p(~x) is in L, and J is any subset of L such that it is closed under addition, i.e.
J is a subspace of L. We also include the zero polynomial amongst the elementary
pseudo-linear polynomials. Note that if L\J included a linearly-dependent term of
J , then the above polynomial reduces to zero in Fq.

Generalizing (and specializing) the earlier definition of a guard, we will refer to
expressions of the form

∏

l∈J

(1 + l(~x)q−1) ·
∏

l∈L\J
l(~x)q−1

as guards.
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For the next definition, we will require that the n variables be ordered by their
indices. Thus x1 is considered to be of lesser index then x2, and so on. This also
induces a lexicographic ordering on all equal-sized subsets of the n variables X.

An elementary pseudo-linear polynomial with the above notation will be called
a reduced elementary pseudo-linear (repselin) polynomial if it satisfies the
following:

1. Let r be the rank of J (r ≤ min(n, |J |)).

2. Let R be the lexicographically greatest set of r variables occuring in J which
can be expressed in terms of smaller indexed variables (or just zero) when
J is set to zero. This for example, can be accomplished by considering a
row-echelon normal form of J .

3. None of the variables in R occur in p(~x).

To justify this definition, we note that if an elementary pseudo-linear polynomial
is not reduced, then it is equivalent to a reduced one.

One implication of the above definition is that if p(~x) is non-zero then it itself can-
not be in J . Recall, J is closed under addition, by definition of epselin-polynomials.
Let r be the rank of J . Let J̄ be the r sized subset of J which forms a basis of J ,
and which define the variables R by the row-echelon normal form of J . Thus, all
l(~x) in J must have at least one variable from R. Thus, p(~x) cannot be in J .

Finally, we define a repselin-polynomial to be a basic pseudo-linear poly-
nomial if the linear term p(~x) is just a variable from X. Note that since the basic
polynomial is repselin, from item (3) above it follows that this variable is not from
R.

Next we argue that any pseudo-linear polynomial can be expressed as a (xor-)
sum of basic pseudo-linear polynomials. For this, we just need to show that any
pseudo-linear polynomial of the form

∏

l∈L\J
l(~x)q−1 · p(~x)

where J is a subset of L, can be expressed as sum of epselin-polynomials. This
follows easily by induction on the size of J , and by noting that pseudo-linear poly-
nomials with guards

∏

l∈L\J
l(~x)q−1 ·

∏

l∈J

(1 + l(~x)q−1)

such that L\J includes a linearly dependent expression of J are identically zero.

We will now show that the basic pseudo-linear polynomials actually form a basis
for pseudo-linear polynomials. Before that we need some more notation.

Let Q(X) be the set of all basic pseudo-linear polynomials in variables X. Fur-
ther, let G(X) be the set of all guards amongst these polynomials Q(X). Let
|G(X)| = t. The guards can then be named w.l.o.g. g1, g2, ...,gt. Recall, for
each guard gi, there is associated a subset of variables X, namely R, that do not
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occur in any linear terms p(~x). We refer to all linear combinations of X\R as P i(X),
including the linear term zero. Let |P i(X)| = si + 1. (Note, (si + 1) is two to the
power size of the subset of variables associated with gi.) The linear terms in P i(X)
can be named pj

i (~x), j ranging from 0 to si (not to be confused with exponent).
W.l.o.g., zero will always be p0

i (~x).

Thus, any pseudo-linear function φ(~x) can be represented as a sum (over F2) of
polynomials from Q(X), i.e.,

φ(~x) =
∑

i∈T

gi(~x) · pj(φ,i)
i (~x)

where T is a subset of [1..t], and each p
j(φ,i)
i (~x) ∈ P i(X). In fact, we do not even

need to take a subset T of [1..t]; all zero terms just imply that j(φ, i) = 0, by our
notation above that p0

i (~x) is always taken to be zero. Thus the above representation
of φ(~x) is totally defined by the map j(φ, ·).

While we state and prove the following theorem only for large fields, as only for
such fields are the basic pseudo-linear polynomials a basis, a slightly more compli-
cated characterization can be given for smaller fields.

Lemma 1 (Basis) For Fields of size q > 2n, the basic pseudo-linear polynomials
in n variables form a basis for pseudo-linear polynomials in n variables.

Proof:

We have already shown above that any pseudo-linear polynomial can be rep-
resented as a sum of basic pseudo-linear polynomials, in fact defined by the map
j(φ, ·) above. So, here we focus on showing that any pseudo-linear function φ(~x)
has a unique such representation.

So, for the sake of contradiction, suppose the everywhere zero function 0 has
a non-zero representation, and let that be represented by the map j(0, i). Now

consider any ī where j(0, ī) 6= 0, and lets call p
j(0,i)
i (~x) by just p(x) (6= 0). In other

words, this representation of 0 has the term

gī · p(~x)

Let,

gī =
∏

l∈L\J
l(~x)q−1 ·

∏

l∈J

(1 + l(~x)q−1)

for some subspace J ⊆ L. Let the rank of J be r. Let R be the lexicographically
greatest set of r variables occuring in J which can be expressed in terms of smaller
indexed variables when J is set to zero. Recall, by definition, none of the variables
in R occur in p(~x).

Claim: With the set of equations J set to zero, we can solve for all linear expressions
in L\J to be non-zero, and hence also set p(~x) to non-zero.

This would first of all imply that all guards other than gi(~x) evaluate to zero:
if the guard ga(~x) is given by subset Ja ⊆ L (Ja 6= J), then if J\Ja is non-empty,
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we get that L\Ja has an l(~x) from J which makes l(x)q−1 zero, and if Ja\J is
non-empty, we get that Ja has an l(~x) from L\J which makes (1 + l(~x)q−1) zero.

Further, the guard gī(~x) will be non-zero, and hence gī(~x)p(~x) would be non-
zero, and consequently the given representation j(0, i) leads to a non-zero function,
a contradiction, which would prove the lemma.

Now, to prove the above claim, recall that J is closed under addition, and p(~x)
is in L\J . Let r be the rank of J . Consider a basis J̄ of a complementary subspace
of J . If our underlying field is of size at least 2n−r, we can set J to zero, and each
li(~x) of J̄ (i ∈ [1..n− r]) to ei, where the ei (i ∈ [1..n− r]) are linearly independent
over F2. Thus, all linear expressions in L\J evaluate to non-zero values, as any l in
L\J is a non-trivial linear combination of J̄ plus an l′ from J . �

Note on small fields. In smaller fields some of the basic pseudo-linear polyno-
mials, which are non-trivial functions in large fields, turn out to be identically zero.
Thus the basis is smaller, but more complicated to characterize.

Lemma 2 (Homomorphism) For any pseudo-linear functions φ1(~x) and φ2(~x),
and for all i ∈ [1..t],

p
j(φ1+φ2,i)
i = p

j(φ1,i)
i + p

j(φ2,i)
i

Proof: Follows from the fact that the basic pseudo-linear polynomials form a basis
for pseudo-linear polynomials. �

3 Interpolation Property for Pseudo-Linear Functions

Before we prove the main theorem, we need a few more definitions and related
lemmas.

Let f1, f2, ..., fk be k pseudo-linear functions in n variables X, over a field Fq

(q = 2m). Collectively, we will refer to these polynomials as F .

For any pseudo-linear polynomial f(~x) in X, let its representation in terms of the
basis be given by j(f, ·). Since each of the polynomials from F , i.e. f1(~x), f2(~x), ...., fk(~x)
is pseudo-linear, it be represented by j(fs, ·) (s ∈ [1..k]). Further, each linear com-
bination of F is represented similarly.

We say that two guards ga(~x) and gb(~x) are F -equivalent if for every linear
combination φ of functions from F , it is the case that j(φ, a) = 0 iff j(φ, b) = 0. In
this case, we write a ∼=F b, which is an equivalence relation.

Lemma 3 If a and b are F -equivalent then if for some subset S ⊆ [1..k], the linear

combination
∑

s∈S p
j(fs,a)
a is identically zero , then so is

∑

s∈S p
j(fs,b)
b .

The lemma follows by Lemma (2). Thus, if k′ is the rank of p
j(fs,a)
a (s ∈ [1..k]), then

it is also the rank of p
j(fs,b)
b . In fact, we can take the exact same k′ indices from

(s ∈ [1..k]), w.l.o.g. [1..k′], to represent the basis for the k linear expressions, for
both a and b.
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Let L(F ) denote the set of all linear combinations of functions in F .

For any function f(~x), and any set F of pseudo-linear functions in X, we say that
f(~x) has the F -interpolatable property if it satisfies the following two conditions:

(i) ∀i ∈ [1..t] : ∃φ? ∈ L(F ) : j(f, i) = j(φ?, i) , and

(ii) For every a, b ∈ [1..t] such that a and b are F -equivalent, w.l.o.g. by Lemma (3),

let the first k′ functions out of (k functions) p
j(fs,a)
a (out of p

j(fs,b)
b ), represent

their basis (resp. for b). Then, if the φ? in (i) is given by
∑

ca
sp

j(fs,a)
a and

∑

cb
sp

j(fs,b)
b , respectively for a and b, then for all s ∈ [1..k′], ca

s = cb
s.

Lemma 4 If f is a pseudo-linear function in X, and f satisfies the F -interpolatable
property, for some set F of pseudo-linear polynomials in X, then f is a pseudo-linear
function of F .

Proof: Indeed, consider T̂ = [1..t] / ∼=F , where t is the number of guards, i.e.
|G(X)|. We pick the smallest elements from [1..t] to represent each equivalence class
in T̂ . Define a function h(~x) to be the following:

h(~x) =
∑

u∈T̂

∏

φ∈L(F ):j(φ,u)6=0

φ(~x)q−1 ·
∏

φ∈L(F ):j(φ,u)=0

(1 + φ(~x)q−1) · φu(~x) (1)

where for each u, φu is some function φ? satisfying the F -interpolatable property
(i) above.

Now by definition, h(~x) is pseudo-linear in F . We now show that h=f , i.e. for
all ~x ∈ (Fq)

n, h(~x) = f(~x). Fix any ~x∗ in (Fq)
n. Let J ⊆ L, such that all linear

functions in J evaluate to zero at ~x∗, and all linear functions in L\J evaluate to non-
zero quantities at ~x∗. Clearly, J is closed under addition, and hence J corresponds
to a guard gi. In other words, gi(~x

∗) = 1, and for all other i′ ∈ [1..t]: gi′(~x
∗) = 0.

Thus, f(~x∗) = p
j(f,i)
i (~x∗), and similarly, for all φ ∈ L(F ), φ(~x∗) = p

j(φ,i)
i (~x∗). By

definition of i (i.e. gi corresponding to J above, and hence p
j(φ,i)
i ∈ L\J), it follows

that φ(~x∗) is zero iff j(φ, i) = 0.

Now, in equation (1), we show that the only u for which the “guards” evaluate
to be non-zero (i.e. one), is the one corresponding to the equivalence class of i in T̂
(say, ui). In fact, for i (and its F -equivalent ui) the “guards” indeed evaluate to 1.
For all other i′, if the “guards” evaluate to one, then by definition of F -equivalence,
those i′ are F -equivalent to i.

Thus, h(~x∗) = φui
(~x∗), and since φui

is pseudo-linear in X,

φui
(~x∗) = p

j(φui
,i)

i (~x∗) =
∑

s

cui

s p
j(fs,i)
i (~x∗) =

∑

s

ci
sp

j(fs,i)
i (~x∗) = p

j(φi,i)
i (~x∗).

Thus, h(~x∗) = p
j(f,i)
i (~x∗), which is same as f(~x∗). �
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4 The Completeness Theorem for Pseudo-Linear Func-

tions

While the main completeness theorem below is stated and proven for only large
finite fields, it holds for all finite fields of characteristic two.

Theorem 5 Let f1, f2, ..., fk be k pseudo-linear functions in n variables X, over a
field Fq (q = 2m), such that q > 2n. Collectively, we will refer to these polynomials
as F . Let f be another pseudo-linear function in X. Then, if f is a function of F ,
then f is a pseudo-linear function of F .

Proof: We show that if f is not a pseudo-linear function of F , which by Lemma (4)
means that it does not satisfy at least one of F -interpolatable properties (i) or (ii),
then f is not a function of F .

Since f(~x) is a pseudo-linear polynomial in X, let its representation in terms of
the basis be given by j(f, ·). Since each of the polynomials from F , i.e. f1(~x), f2(~x),....,
fk(~x) is pseudo-linear, it can also be represented by j(fs, ·) (s ∈ [1..k]). Further,
each linear combination of F is represented similarly.

So, first consider the case where f does not satisfy (i). In other words, for some
i ∈ [1..t], for no linear combination φ of F (including zero) is j(f, i) equal to j(φ, i).

Thus, by Lemma (2), p
j(f,i)
i is linearly independent of all p

j(fs,i)
i (s ∈ [1..k]). Let

J ⊆ L correspond to the guard gi. Thus, p
j(f,i)
i and all p

j(fs,i)
i (for s ∈ [1..k])

are linearly independent of J . Let r be the rank of J , and k′ ≤ k be the rank of

p
j(fs,i)
i collectively. Since p

j(f,i)
i is linearly independent of all p

j(fs,i)
i , we have that

r + k′ + 1 ≤ n. Now, the subspace corresponding to J set to zero has dimension
n − r, and hence has qn−r points. However, we are interested in points where all
expressions in L\J evaluate to non-zero values, which would guarantee that gi = 1,
and all other guards are zero. Recall the subspace P i(X) generated by all variables
not in the set R corresponding to guard gi. Now, L\J is a union of cosets of (n− r)
dimensional space Pi(X) shifted by subspace J . Consider a basis B for P i(X),

comprising of p
j(f,i)
i , a k′-ranked basis of p

j(fs,i)
i , and n − r − 1 − k′ other linearly

independent expressions B′.
Assume the field Fq is of size at least 2n+1, and hence has n + 1 linearly inde-

pendent (over F2) elements ei. Thus, for every injective map setting B to these ei,
there is a distinct solution to J being zero, and all of L\J evaluating to non-zero
values. Thus, there are at least

(n+1
n−r

)

(n− r)! such points in (Fq)
n.

So, we fix p
j(fs,i)
i to es (s ∈ [1..k′]; assume w.l.o.g. that the first k′ formed the

basis), and similarly fix the B′ expressions to ek′+1 to en−r−1. This still leaves at

least (n + 1− (n− r− 1)) choices for p
j(f,i)
i . Thus, we have the situation that there

are two points in (Fq)
n where f evaluates to different values, whereas F has the

same value, and hence f cannot be a function of F .

Now, consider the case where f does satisfy condition (i), but condition (ii) is

violated. In other words, for each i ∈ [1..t], p
j(f,i)
i is same as some p

j(φ?,i)
i , but there

exist a and b in [1..t] which are F -equivalent, but the φ?’s linear representation
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coefficients cs differ for a and b. Again, we will demonstrate two points where F
evaluate to the same value, but f evaluates to different values.

Again, let’s assume that the underlying field is large enough to have at least k′

linearly independent (over F2) elements, say ei.

Now we have two sets, Ja corresponding to guard ga, and Jb, corresponding to
guard gb. However, there is an easy solution for setting Ja to zero, and setting

p
j(fs,a)
a (s ∈ [1..k′]) to es. Similarly, there is a solution for setting Jb to zero and

setting p
j(fs,a)
a (s ∈ [1..k′]) to es. Thus, in both cases all fs (s ∈ [1..k]) evaluate to

the same value, but f being a different linear combination in the two cases, evaluates
to different values. �

5 Iterated Composition of Pseudo-Linear Functions

In this section, we consider pseudo-linear functions which can take arguments, mod-
eling oracles which are pseudo-linear functions of secret values and arguments. Thus,
for instance it may be required to find if there exists a simulator which given ac-
cess to functionalities which are pseudo-linear functions of secret parameters X and
arguments supplied by simulator/adversary, can compute a given a pseudo-linear
function.

This generalizes the problem from the previous sections, where the simulator
could not pass any arguments to the given functions. For simplicity, we will deal
here with functions which only take a single argument, and thus all the functions
can be written as fi(~x, y), each pseudo-linear in ~x and y.

So, given a collection of k pseudo-linear functions F (X, y), we now define an
iterated composition of F . Let Fq be the underlying field as before. An iterated
composition σ of F is a length t sequence of pairs (t an arbitrary number), the first
component of the s-th (s ∈ [1..t]) pair of σ being a function φs from F , and the
second component an arbitrary function γs of s− 1 arguments (over Fq).

Given an iterated composition σ of F , one can associate a function fσ of X with
it as follows by induction. For σ of length one, fσ is just φ1(~x, γ1()), recalling that
φ1 ∈ F . For σ of length t,

fσ(~x) = φt(~x, γt(f
σ|1(~x), fσ|2(~x), ..., fσ|t−1(~x)))

where σ|j is the prefix of σ of length j.

Since, functions in n variables over Fq are just polynomials in n variables, there
is a finite bound on t, after which no iterated composition of F can produce a new
function of the n variables. The collection of all functions that can be obtained
by iterated composition of F will be referred to as terms(F ). If we restrict γs

to be pseudo-linear functions of their s− 1 arguments, we will refer to the iterated
composition as pseudo-linear iterated composition of F , and the corresponding
collection of functions associated with such sequences as pseudo-linear iterated terms
or pl-terms(F ). Note that in this case γ1 is just zero.

Note that an arbitrary program can only compute a function of the terms,

9



whereas an arbitrary pseudo-linear program can only compute a pseudo-linear func-
tion of the pseudo-linear terms. We would like to show that if a function f of
terms(F ) is a pseudo-linear function of X, then it is a pseudo-linear function of pl-
terms(F ). However, as we demonstrate in Appendix B.2, this is not true in general,
and a slight extension is required to the pl-terms, so as to enable probabilistic func-
tions. An iterated composition will be called an extended pseudo-linear iterated
composition of F if γs is either a pseudo-linear function or a constant function c(~x)
evaluating to an element c in Fq. For each such c, the corresponding collection of
functions associated with such sequences will be called extended-pl-terms(F, c).

We will also need to refine the definition of terms(F ), by restricting to terms
obtained within some T iterated compositions, for some positive integer T . Thus,
termsT (F ) will stand for the collection of functions obtained by iterated composi-
tions of F of length less than T . In particular we will be interested in T which is
bounded by polynomials in log q and/or n, the number of variables in X.

Similar to Section 3, we first state an interpolatable property which is a sufficient
condition for a pseudo-linear function of X to be a pseudo-linear function of pl-
terms(F ).

Recall the functions in F now have an additional argument y. As before, L(G),
for any set of functions G will denote the set of all linear combinations (over F2)
of functions from G. Below we define the class I i(F ) of pseudo-linear functions in
X, for i an arbitrary natural number. In fact, since the inductive definition will
sometimes use functions in both X and y, we will just define this class as pseudo-
linear functions in X and y, though for different y, they would evaluate to the
same value. In other words, for an arbitrary guard ga(~x), which corresponds to
a subset J ⊆ L(X) (J is closed under addition), there are many super-guards
when viewed as a function of X and y, namely with subsets J ′ ⊆ L(X, y) (J ′ closed
under addition) such that J ⊆ J ′ and (L(X)\J) ⊆ (L(X, y)\J ′). Thus, for all these
super-guards, a pseudo-linear function φ(X) will have the same j(φ, ·) value (see
Section 2).

However, and more importantly, with y set to some linear expression l(~x) ∈
Pa(X) (including zero), exactly one of these (super-)guards has the property that
J ′

y|l(~x) = J (Note the subscript y|l(~x) means l(~x) is substituted for every occurrence

of y in J ′). This particular J ′ is given by

J ′ = L(J, {y + l(~x)})

In this case we say that this super-guard of gs is consistent with y + l(~x) = 0. The
super-guard corresponding to J ′ = J will be called the degenerate super-guard
of ga(~x).

Now we define the pseudo-linear function which is the composition of fs and h,
i.e. fs ◦ h, where fs is a pseudo-linear function in X and y, and h is a pseudo-linear
function in X, by defining its components in the basis for pseudo-linear functions.
For any guard gi(~x) (of functions in X), let gI(~x, y) be the unique (super-) guard,

mentioned in the previous paragraph, which is consistent with y set to p
j(h,i)
i (note

the map j here is for guards corresponding to X, and in general it will be clear from
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context whether we are referring to map j for guards corresponding to X or X, y).
Then, define

p
j(fs◦h,I)
I (~x, y) = p

j(fs,I)
I (~x, p

j(h,i)
i (~x, y))

Further, for all I ′ which are super-guards of i, we set p
j(fs◦h,I′)
I′ to be the same value

(as fs ◦ h is only a function of X). Note that since each p is just a linear function,
this implies that each component of fs ◦h is a linear function of X (and hence X, y).
In particular, (fs ◦ h)(~x) = fs(~x, h(~x)).

Define Compose(F (X, y),H(X)), where F (X, y) are a set of pseudo-linear func-
tions in X, y and H(X) is a set of pseudo-linear functions in X, to be the set of all
functions fs ◦ h, where fs ∈ F (X, y) and h ∈ H(X).

For each pseudo-linear function fs of X and y, we also need to define a pseudo-
linear function (in X called degenerate(fs), which for each guard ga(~x), defines
the corresponding p function using its degenerate super-guard. Thus,

p
j(degenerate(fs),a)
a (~x) = p

j(fs,I)
I (~x, 0),

where I is the degenerate super-guard of ga.

Now, we are ready to define the iterated pseudo-linear functions. Define

I0(F ) = L(Compose(F,degenerate(F )))

Ii+1(F ) = L(Ii(F ) ∪Compose(F,I i(F ))), for i ≥ 0.

Since, these functions are just polynomials over finite fields (in fact defined over
F2), the above iteration reaches a fix-point at an i bounded by a function only of n.
We will denote the fix-point by just I(F ).

Now, we generalize the definitions of F -equivalence and F -interpolatable from
Section 3. Two guards ga(~x) and gb(~x) are said to be F ∗-equivalent if for every φ(~x)
in I(F ), it is the case that j(φ, a) = 0 iff j(φ, b) = 0.

The definition of F ∗-interpolatable property is same as the F -interpolatable
property except that L(F ) is replaced by I(F ).

Instead of the closure I(F ), it will also be useful to define the following set of
functions

C =
⋃

i

Compose(F,I i(F )) ∪Compose(F,degenerate(F )),

and it is easy to see that I(F ) is just the linear closure of C.

Lemma 6 If f is a pseudo-linear function of n variables X over a field Fq, and f
satisfies the F ∗-interpolatable property, for some set F of pseudo-linear polynomials
in X, y, then f can be defined as a pseudo-linear probabilistic function of extended-
pl-terms(F (X, y),Seed), where the probability is over Seed chosen uniformly from
Fq, and for each ~x the probability of this definition of f being correct is at least
1− 2n/q.
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Proof: The proof is similar to the proof of Lemma 4, but there is a small difference
due to the probabilistic nature of this lemma.

Consider T̂ = [1..t] / ∼=F , where t is the number of guards, i.e. |G(X)|. We pick
the smallest element from [1..t] to represent each equivalence class in T̂ . Define a
function h(~x) to be the following:

h(~x) =
∑

u∈T̂

∏

φ∈L(F ):j(φ,u)6=0

φ(~x)q−1 ·
∏

φ∈L(F ):j(φ,u)=0

(1 + φ(~x)q−1) · φu(~x) (2)

where for each u, φu is some function φ? ∈ C satisfying the F ∗-interpolatable prop-
erty (i).

Now by definition, h(~x) is pseudo-linear in C. Now, the proof that h=f , i.e.
for all ~x ∈ (Fq)

n, h(~x) = f(~x), is identical to the proof in Lemma 4. However, h
is pseudo-linear only on C, whereas we need to show a function pseudo-linear in
extended-pl-terms(F (X, y),Seed).

Observe that for any fs, exactly one of the following cases hold, for all y linearly
independent of ~x:

Case 1: fs(~x, y) = degenerate(fs)(~x)

Case 2: fs(~x, y) = degenerate(fs)(~x) + y

Now define a function ĥ(~x, c) to be same as h, except every occurrence of degenerate(fs)(~x)
is replaced by either of the following:

{

fs(~x, c) in Case 1

fs(~x, c) + c in Case 2

(recall, fs is a function of X and y, whereas degenerate(fs) is a function of only X).
Then, it is easy to see that ĥ(~x, c) is in extended-pl-terms(F, c). We next show
that for every ~x, with c chosen uniformly from Fq, probability that ĥ(~x, c) = h(~x) is
at least 1− 2n/q. For each ~x, one and only one guard gs is satisfied. the probability
that for this guard, c = l(~x), for some l(~x) ∈ Ps(X) is at most 1/q. Hence, by union
bound, over all possible l(~x), the probability that c equals any l(~x) is at most 2n/q,
as |X| = n. These are the only cases in which degenerate(fs)(~x) may differ from
fs(~x, c) or fs(~x, c) + c, as the case may be. �

Theorem 7 (Main) Let f1, f2, ..., fk be k pseudo-linear functions in n variables
X and an additional variable y, over a field Fq such that q > 22n. Collectively,
we will refer to these polynomials as F (X, y). Let T be a positive integer less than
2n(<

√
q). Let f be another pseudo-linear function in X. Then, if f is a function

of termsT (F (X, y)), then f can be defined as a pseudo-linear probabilistic function
of extended-pl-terms(F (X, y), Seed), where the probability is over Seed chosen
uniformly from Fq, and for each ~x the probability of this definition of f being correct
is at least 1− 1/

√
q.
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Proof:

For the sake of leading to a contradiction, suppose that f is not a pseudo-linear
probabilistic function of extended-pl-terms(F (X, y), Seed). Then by Lemma 6,
f does not satisfy the F ∗-interpolatable property. Hence, as in Theorem 5, we have
two cases. Before we go into the analysis of the two cases, we recall a few relevant
definitions, and state some useful properties.

Recall from Section 2, that Q(X) is the set of all basic pseudo-linear polynomials
in variables X, and, G(X) is the set of all guards amongst these polynomials Q(X).
Further, |G(X)| = t. Also, recall for each guard gs its corresponding set R from its
repselin representation, and the corresponding subspace Ps(X).

Also, recall the super-guards gI(~x, y) corresponding to guards gi(~x). Thus, if
J corresponded to gi, then some J ′ such that J ⊆ J ′ ⊆ L(X, y), corresponds to
super-guard gI . Further, (L(X)\J) ⊆ (L(X, y)\J ′). Hence, if some y + l(~x) is in
J ′, we can w.l.o.g take as the corresponding R′ (of gI) to be R∪ {y}. Thus, in such
cases pI(~x, y) are just linear expressions in X\R. If on the other hand, for no l(~x) it
is the case that y+ l(~x) is in J ′, then R′ = R, and pI(~x, y) will be a linear expression
in (X\R) ∪ {y}.

Now we are ready to analyze the two cases.

Case 1: First, consider the case where f does not satisfy property (1) of F ∗-
interpolatable.

Then, it is the case that there exists an s ∈ [1..t], such that for every linear

polynomial φ in I(F, S), j(f, s) 6= j(φ, s). Thus, by Lemma 2, p
j(f,s)
s is linearly

independent of all p
j(φ,s)
s , with φ ∈ C.

Let J ⊆ L correspond to the guard gs. Thus, p
j(f,s)
s , as well as all p

j(φ,s)
s

(φ ∈ C) are linearly independent of J (see the paragraph after definition of repselin

polynomials). Let r be the rank of J , and k′ be the rank of p
j(φ,s)
s collectively. Thus,

r+k′ +1 ≤ n. Consider a basis B of Ps(X) consisting of p
j(f,s)
s , a basis B′′ of p

j(φ,s)
s ,

and another linearly independent set B′ of expressions in X\R (of rank n−r−k′−1).

Our aim is to demonstrate two different settings of X to values in Fq, such that
f(~x) has different values, while all of termsT (F (X, y)) have the same value at the
two settings. Now, fix a particular length T iterated composition σ of F . We will
now show that each of γt(f

σ|1(~x), fσ|2(~x), ..., fσ|t−1(~x)), t ∈ [1..T ], as well as fσ|t(~x)

is a function of only B′′, and is independent of p
j(f,s)
s , and also independent of B′

defined above. Thus in choosing the two different settings for X, we can first set the
basis B′′ to some value, which will fix the γ(...) values, and then we can set the B′
and p

j(f,s)
s to two different values, while assuring that all consistency requirements

are met.

For the base case, γ1() is clearly not a function of p
j(f,s)
s , or B′. Now, for the

induction step, consider fσ|t−1(~x). which is given by

φt−1(~x, γt−1(f
σ|1(~x), fσ|2(~x), ..., fσ|t−1(~x))).

where φt−1 is in F . Now, by induction the γt−1(...) expression is not a function of

p
j(f,s)
s or B′.
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Now, it is possible that γt−1(...) is equal to some p
j(φ∗,s)
s (~x) (φ∗ ∈ C), in which

case φt−1(~x, γt−1(...)) would just equal p
j(φt−1,I)
I (~x, y), for I corresponding to the

unique super-guard gI(~x, y) which is consistent with y + p
j(φ∗,s)
s (~x) = 0. But,

p
j(φt−1,I)
I is either p

j(φ∗∗,s)
s (~x) (φ∗∗ ∈ C) or such an expression plus y, by definition

of C and definition of p
j(fs◦h,I)
I (~x, y). In either case, it is a function of only p

j(φ,s)
s (~x)

(φ ∈ C) by induction.

If γt−1(...) is not equal to any p
j(φ∗,s)
s (~x) (φ∗ ∈ C), we will show that we can

choose ~x so as to assure that γt−1(...) is not equal to any linear expression in B′
(and p

j(f,s)
s ) either, as t < T < 2n <

√
q. In this case φt−1(~x, γt−1(...)) returns

p
j(φt−1,I)
I (~x, y), where I corresponds to the degenerate super-guard of gs given by

J ′ = J . However, such p
j(φt−1,I)
I (~x, y) is again either p

j(φ∗∗,s)
s (~x) (φ∗∗ ∈ C) or such

an expression plus y, since C includes Compose(F , degenerate(F )).

Now, we demonstrate the two different settings of X to values in Fq. We first
choose k′ linearly independent (over F2) values in Fq and set the basis B′′ to these

values, so that all expressions p
j(φ,s)
s (φ ∈ C) are non-zero. As explained above, the

values γt(...) are then fixed, and let this set of values along with zero be collectively
called Γ. Next, we inductively assign values to the basis B′(of size n − r − k′ − 1)
as follows. Let this basis be given by l1(~x), ..., ln−r−k′−1(~x). For l1(~x), we pick any
value in Fq which is not equal to any value in L(B′′) + Γ, where the sum of two sets
is defined naturally. For, the induction step, we choose for li(~x) a value in Fq which
is not equal to any value in L(B′′ ∪ {l1(~x), ..., li−1(~x)}) + Γ.

Since pj
s(f, s)(~x) is linearly independent of B′′ (as well as B′), we choose a value

for it which is not equal to any value in L(B′′∪{l1(~x), ..., ln−r−k′−1(~x)}) + Γ. Further
we have at least two choices for it, given that Fq ≥ 2 + 2n−1−r × (T + 1). This also

proves our claim that Γ is never equal to any linear expression in B′ ∪ {pj(f,s)
s }.

Further no linear combination of B′ and B′′ will be zero. Then, we can choose the R
variables corresponding to the guard gs, which by definition of R are given in terms
of the variables already chosen, so that the guard gs is true in both cases.

Case 2: Now consider the case where condition (i) holds, but condition (ii) of the
F ∗-interpolatable property fails to hold for f . In other words, for each i ∈ [1..t],

p
j(f,i)
i is same as some p

j(φ∗,j)
i ((for φ∗ ∈ C), but there exist a and b in [1..t] which

are F ∗-equivalent, but the φ∗’s linear representation coefficients cs differ for a and
b. Again, we will demonstrate two points where termsT (F (X, y)) evaluate to the
same value, but f evaluates to different values.

We have two sets, Ja corresponding to guard ga, and Jb, corresponding to guard

gb. Let k′ ≤ n be the rank of p
j(φ,a)
a (φ ∈ C). Let ra be the rank of Ja, and rb be the

rank of Jb. thus, ra+k′ ≤ n, and rb+k′ ≤ n. Let the R sets corresponding to guards
ga and gb be called Ra and Rb respectively. Let B′a be a basis for X\Ra excluding
L(B′′), and similarly B′b be a basis for X\Rb excluding L(B′′). We set the basis

B′′ of p
j(φ,a)
a to linearly independent over GF2 values e1 to ek′ . We set the basis of

p
j(φ,b)
b also to the same values, recalling that the two bases, one for a and the other

for b, can be chosen to have the same indices. Thus, all functions in C will have the
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same value when guards ga or gb are true. As in case 1, it follows that we can assure
that by choosing B′a and B′b appropriately, each of γt(f

σ|1(~x), fσ|2(~x), ..., fσ|t−1(~x)),
t ∈ [1..T ], as well as fσ|t(~x) is only a function of B′′, and hence have the same values
when guards ga or gb are true. However, since f has different linear combinations of
B′′ at these two guards, it evaluates to different values. Further values for variables
in Ra and Rb can be chosen so that guards ga and gb are indeed true. �
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A Allowing a Few Constants

Let E be a set of linearly independent (over F2) elements of a field Fq. Now, we
redefine pseudo-linear polynomials where each linear term is as before defined over
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F2, but can in addition have an addend from E. The same rule also applies to all
the linear terms in the guards. Then, we can prove the following theorem.

Theorem 8 Let f1, f2, ..., fk be k pseudo-linear functions in n variables X, over
a field Fq (q = 2m), such that q > 2n+|E|. Collectively, we will refer to these
polynomials as F . Let f be another pseudo-linear function in X. Then, if f is a
function of F , then f is a pseudo-linear function of F .

Proof is similar to that of Theorem 5, in that we treat E as formal independent
variables, and then in the proof of Theorem 5, we set these formal variables to E

where we set the k′ basis elements of p
j(fs,i)
i to es.

A similar version holds for the iterated composition Theorem 7.

B Example

B.1 Pseudo-linear functions

We will consider some simple examples to get a flavor of the problem. Suppose we
are given two input functions f1 and f2 defined as follows:

f1(x1, x2) = x1 + x2

f2(x1, x2) =

{

0 if x1 = 0 or x2 = 0
x1 + x2 otherwise

}

= xq−1
2 x1 + xq−1

1 x2

We ask if it is possible to extract just x1 given f1(x1, x2) and f2(x1, x2). That is,
can we express f(x1, x2) = x1, in terms of f1 and f2 alone? To do so, we construct
the following truth table:

x1 x2 x1 + x2 f1 f2 f

Row 1 0 0 0 0 0 0

Row 2 x1 0 x1 0 x1 x1

Row 3 0 x2 x2 0 x2 0

Row 4 x1 x1 0 0 0 x1

Row 5 x1 x2 x1 + x2 x1 + x2 x1 + x2 x1

In the table above we list all linear combinations of the atoms, in this case
just x1, x2 and x1 + x2. Each row corresponds to different combinations of cases
where each linear combination can be zero or non-zero. Any non-zero entry under
a column means that the particular linear combination is non-zero. Simplifications
are performed when some of the linear expressions are zero - e.g. Row 4, where
we write x1 under the column x2 since x1 + x2 = 0 ⇒ x2 = x1. It turns out that
any pseudo-linear expression projects to a linear expression in any particular row -
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thus each such function can be given by a column of linear expressions, e.g. f1, f2

and f above. In this particular table for f1, f2 and f we can come up with several
evidences that f is not a function of f1, f2. Consider Row 4: both f1 and f2 are
0, whereas f is x1. Therefore, in accordance with the structure of the row, if we
vary x1, keeping it non-zero and x2 = x1, we get two pairs (x′, x′) and (x′′, x′′) with
x′ 6= x′′ such that f1(x

′, x′) = f1(x
′′, x′′) = 0 and f2(x

′, x′) = f2(x
′′, x′′) = 0, but

f(x′, x′) = x′ 6= x′′ = f(x′′, x′′). Hence f cannot be a function of f1, f2. We can
construct a counterexample using Row 5 as well: vary x1 keeping x1 + x2 constant
and keeping x1, x2, x1 + x2 all non-zero - e.g. in GF(23) : (x′

1, x
′
2) = (001, 010) and

(x′′
1 , x

′′
2) = (101, 110). The common evidence in both rows is that f is not a linear

combination of f1, f2.

However, this is not the only type of evidence. Consider the following f ′(x1, x2):

f ′(x1, x2) =

{

x1 if x2 = 0
0 otherwise

}

= (1 + xq−1
2 )x1

Now the table looks like:

x1 x2 x1 + x2 f1 f2 f ′

Row 1 0 0 0 0 0 0

Row 2 x1 0 x1 0 x1 x1

Row 3 0 x2 x2 0 x2 0

Row 4 x1 x1 0 0 0 0

Row 5 x1 x2 x1 + x2 x1 + x2 x1 + x2 0

Now in each row, f ′ is a linear combination of f1, f2 (including the 0-combination).
However, there is a problem with Rows 2 and 3. The problem surfaces when we try
to write f ′ as a combination of f1, f2:

x1 x2 x1 + x2 f1 f2 f ′

Row 1 0 0 0 0 0 0

Row 2 x1 0 x1 0 f2 (= x1) f2 (= x1)

Row 3 0 x2 x2 0 f2 (= x2) 0

Row 4 x1 x1 0 0 0 0

Row 5 x1 x2 x1 + x2 f1 (= x1 + x2) f1 (= x1 + x2) 0

The following pairs can be seen to be counter-examples in GF(22): (x′
1, x

′
2) =

(01, 00), (x′′
1 , x′′

2) = (00, 01). For these pairs we have: f1(x
′
1, x

′
2) = 00 = f1(x

′′
1 , x

′′
2),

f2(x
′
1, x

′
2) = 01 = f2(x

′′
1 , x

′′
2), but f ′(x′

1, x
′
2) = 01 6= 00 = f ′(x′′

1, x
′′
2). This counter-

example has been generated by looking at Rows 2 and 3: one of the technical chal-
lenges we solve is to systematically come up with counter-examples when arbitrary
number of atoms and functions are involved.
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Finally, consider the function f ′′:

f ′′(x1, x2) =







x1 if x2 = 0
x2 if x1 = 0 and x2 6= 0
0 otherwise







= (1 + xq−1
2 )x1 + (1 + xq−1

1 )x2

Now the table looks like:

x1 x2 x1 + x2 f1 f2 f ′′

Row 1 0 0 0 0 0 0

Row 2 x1 0 x1 0 x1 x1

Row 3 0 x2 x2 0 x2 x2

Row 4 x1 x1 0 0 0 0

Row 5 x1 x2 x1 + x2 x1 + x2 x1 + x2 0

Writing f ′′ as a combination of f1, f2:

x1 x2 x1 + x2 f1 f2 f ′′

Row 1 0 0 0 0 0 0

Row 2 x1 0 x1 0 f2 (= x1) f2 (= x1)

Row 3 0 x2 x2 0 f2 (= x2) f2 (= x2)

Row 4 x1 x1 0 0 0 0

Row 5 x1 x2 x1 + x2 f1 (= x1 + x2) f1 (= x1 + x2) 0

When we “collapse” the table to just the functions we have:

f1 f2 f1 + f2 f ′′

Row 1 0 0 0 0

Row 2 0 f2 f2 f2

Row 3 f1 f1 0 0

Now we claim that f ′′ is a function of f1 and f2 alone. In fact this can be verified
easily:

f ′′ = f1 + f2

In this particular case we observe that f ′′ is pseudo-linear in f1, f2. We actually
prove the general result that if the target function is a function of the input functions,
then it is a pseudo-linear function of the input functions.

B.2 Iterated pseudo-linear functions

Consider the input function f1(x1, y) and the target function f(x1) defined as fol-
lows:
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f1(x1, y) =

{

x1 if y = x1

0 otherwise

}

= (1 + (x1 + y)q−1)x1

f(x1) = x1

It is easy to see that the iterated compositions of f1(x1, y) is just the single
function 0, which outputs 0 on any input. However, it is possible to compute f(x1)
by calling f1(x1, y) as the following algorithm demonstrates:

Algorithm Simulate ff1()

repeat for all non-zero elements y in Fq

t← f1(x1, y)

if (t
?
= y)

return t

y ← next y

end repeat block

return 0

In this example, we observe that the complexity of the algorithm is O(q).

Now consider the following input and target functions:

f ′
1(x1, y) =

{

0 if y = 0 or y = x1

x1 otherwise

}

= yq−1(x1 + y)q−1x1

f ′(x1) = x1

Here also the iterated compositions of f ′
1(x1, y) is just the single function 0. Also,

it is possible to compute f(x1) (with high probability) by calling f ′
1(x1, y) as the

following algorithm demonstrates:

Algorithm Simulate f′
f ′
1()

choose y randomly from Fq

t← f1(x1, y)

return t

In this example, we observe that the complexity of the algorithm is O(1), but
it works with probability 1 − O(1/q): the probability of y being different from 0
and x1. For this particular example, it is also possible to come up with an efficient
deterministic algorithm - but systematically coming up with efficient deterministic
algorithms in all cases where it’s possible, seems to be a hard problem. We do show
how to systematically come up with randomized efficient algorithms in all the cases
where it is possible to do so.
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C Proof automation in the UC model

Formally, a proof of security in the UC model boils down to the following: as input,
we are given a set of parties and two sets of algorithms:

1. Ideal Functionality: Set of algorithms F = {F1, F2, · · · }

2. Real Protocol: Set of algorithms P = {Π1,Π2, · · · }.

We say that P realizes F if it is possible to construct an algorithm S, called a
simulator, that invokes the functions in F , such that the following holds:
For any sequence of calls to algorithms in P , S can come up with a sequence of calls
such that the “effect” is “same”.

The reader can think of “effect” and “same” as feasibly observable properties.
An example “effect” can be an output quantity at the end and “same” could be
identical value or close enough probability distribution. The standard model of
protocol execution, captured in [Can01], consists of a set of distributed algorithms
representing the parties running the protocol, plus an algorithm representing the
adversary. The adversary controls a subset of the parties, which in general may be
chosen adaptively throughout the execution. In addition, the adversary has some
control over the scheduling of message delivery. The parties and adversary interact
on a given set of inputs and each party eventually generates local output. The
concatenation of the local outputs of the adversary and all parties is called the
global output. In the ideal process for evaluating some function f all parties ideally
hand their inputs to an incorruptible trusted party, who computes the function
values and hands them to the parties as specified. Here the adversary is limited to
interacting with the trusted party in the name of the corrupted parties or in a pre-
specified manner, defined in the ideal functionalities. Protocol P securely evaluates
a function f if for any adversary A (that interacts with the protocol) there exists an
ideal-process adversary S such that, for any set of inputs to the parties, the global
output of running P with A is indistinguishable from the global output of the ideal
process for f with adversary S.

In this section we describe one important language for which we are able to
develop a decision procedure, in particular one whose run-time is independent of
size of the data types. The ideal functionality is allowed to have just one subroutine
Fin for inputs from adversary and one for outputs to the adversary Fout; rest of
the subroutines can receive/send with the adversary, generate new random numbers
and perform xor operations. There are two kinds of variables allowed: ephemeral
variables which are not retained outside current subroutine and persistent variables
which are retained. The real protocol is a monolithic routine with inputs at the
beginning, send / receive / assignments / random number generation / guarded
xor operations after that and outputs at the end. While fairly constrained, this
language still allows us to model non-trivial cryptographic protocols like secure
message transmission using one-time pad, and more complicated functionalities with
protocols defined in hybrid models [Can01].

Definition 9 (Nested Guarded Expressions) Nested Guarded Expressions are
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(guarded xor) AE ::= x1 | x2 | · · · atomic variables

XE ::= AE | AE ⊕ XE xor expression

BE ::= (XE == XE) | BE ∧ BE | ¬BE boolean expression

CE ::= if BE then XE conditional expression

GE ::= CE | CE ⊕ GE guarded expression

(actions) a ::= send x send a term x

x := rcv receive term into variable x

〈x1, x2, · · · 〉 := in inputs from the environment

out 〈x1, x2, · · · 〉 outputs to the environment

x := gen generate random number

x := GE guarded expression

(program) P ::= a; single action

Pa; sequence of actions

(ideal functionality) F ::= Pin, Pout, {P1, P2, · · · } input, output and other subroutines

(real protocol) Π ::= P one program

Table 1: Language definition for the system in consideration.

inductively defined as follows:

• Guarded Expressions over atoms are Nested Guarded Expressions

• Guarded Expressions over Nested Guarded Expressions are Nested Guarded
Expressions.

Theorem 10 Nested Guarded Expressions are pseudo-linear polynomials in just the
atoms.

Proof: In the base case, the guards are derived according to the following rules ([P ]
denotes the field polynomial corresponding to expression P ) :

[x] = x, for atom x

[XE1 ⊕XE2] = [XE1] + [XE2]

[XE1 == XE2] = [XE1 + XE2]
q−1

[BE1 ∧BE2] = [BE1][BE2]

[¬BE] = 1 + [BE]

[if (BE) then XE] = [BE][XE]

[CE1 ⊕ CE2] = [CE1] + [CE2]

It is easy to see that expressions of type GE constructed as above are pseudo-
linear in the atoms. For the inductive case, xor-ing two pseudo-linear expressions
again is a pseudo-linear expression. The only non-trivial case is the construction
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of conditional expressions from pseudo-linear expressions. We have to prove the
following: Any pseudo-linear polynomial raised to the power q−1 is a sum of guard
expressions. Given this the induction is straightforward.

To prove this recall that PLs can be expressed as sum of epselin terms
∏

l∈L/J l(~x)q−1·
∏

l∈J(1 + l(~x)q−1) · p(~x). Observe that the product of any two distinct epselin

guards
∏

l∈L/J1
l(~x)q−1 ·∏l∈J1

(1+ l(~x)q−1) and
∏

l∈L/J2
l(~x)q−1 ·∏l∈J2

(1+ l(~x)q−1)
is 0.

Therefore, we can write down any pseudo-linear polynomial as:

GE = (EPS1 + EPS2 + · · · ) = (G1.L1 + G2.L2 + · · · ),

where the EPSi’s are epselin terms, the Gi’s are guards and the Li’s are the
corresponding linear expressions (after gathering all the linear terms with the same
Gi together). Now, for any substitution of the atoms ~x, at most one of the Gi’s is
equal to 1 and the rest of the Gi’s are 0. This lets us write:

(G1.L1 + G2.L2 + · · · )q−1 = λ~x.























0 if all the Gi(~x)’s are 0

L1(~x)q−1 if G1(~x) = 1

L2(~x)q−1 if G2(~x) = 1

· · ·

Hence this is exactly equal to the polynomial (G1.L
q−1
1 + G2.L

q−1
2 + · · · ) which is a

sum of guard expressions in the atoms. �

The central implication of Theorem 10 is that the protocol and the functionalities
compute pseudo-linear polynomials in the atoms, which are the environment inputs
and the messages received from the adversary as well as the generated random num-
bers. Thus the semantics of the language are functions computing pseudo-linear
polynomials in the atoms. The completeness theorem (Theorem 7) gives us the in-
tuition (not still a proof - since random numbers and persistent states are involved)
that if the protocol is simulatable using the functionalities, then it is sufficient to
consider only pseudo-linear combinations of the functionality outputs and terms
sent by the adversary, with slight variations due to the additional intricacies. If no
such combination exists, there is no simulation possible. The decision procedure
and rigorous proofs are part of our forthcoming work.
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