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Abstract

This paper provides the first general technique for proving information lower bounds on
two-party unbounded-rounds communication problems. We show that the discrepancy lower
bound, which applies to randomized communication complexity, also applies to information
complexity. More precisely, if the discrepancy of a two-party function f with respect to a
distribution µ is Discµf , then any two party randomized protocol computing f must reveal at
least Ω(log(1/Discµf)) bits of information to the participants. As a corollary, we obtain that
any two-party protocol for computing a random function on {0, 1}n × {0, 1}n must reveal Ω(n)
bits of information to the participants. The proof develops a new simulation result that may be
of an independent interest.

∗Princeton University and the University of Toronto, mbraverm@cs.princeton.edu. Partially supported by an
NSERC Discovery Grant and an Alfred P. Sloan Fellowship.
†Princeton University, oweinste@cs.princeton.edu.

 

ISSN 1433-8092 

Electronic Colloquium on Computational Complexity, Report No. 164 (2011)



1 Introduction

The main objective of this paper is to expand the available techniques for proving information
complexity lower bounds for communication problems. Let f : X × Y → {0, 1} be a function, and
µ be a distribution on X × Y. Informally, the information complexity of f is the least amount of
information the Alice and Bob need to exchange on average to compute f(x, y) using a randomized
communication protocol if initially x is given to Alice, y is given to Bob, and (x, y) ∼ µ. Note that
information here is measured in the Shannon’s sense, and the amount of information may be much
smaller than the number of bits exchanged. Thus the randomized communication complexity of f
is an upper bound on its information complexity, but may not be a lower bound.

Information complexity has first been introduced in the context of direct sum theorems for
randomized communication complexity [CSWY01, BYJKS04, BBCR10]. These techniques are also
being used in the related direction of direct product theorems [KSDW04, LSS08, Jai10, Kla10].
The direct sum line of work [HJMR07, JSR08, BBCR10, BR11, Bra11] has eventually led to a tight
connection (=equality) between amortized communication complexity and information complexity.
Thus proving lower bounds on the communication complexity of k copies of f for a growing k is
equivalent to proving lower bounds on the information complexity of f . In particular if f satisfies
IC(f) = Ω(CC(f)), i.e. that its information cost is asymptotically equal to its communication
complexity, then a strong direct sum theorem holds for f . In addition to the intrinsic interest of
understanding the amount of information exchange that needs to be involved in computing f , direct
sum theorems motivate the development of techniques for proving lower bounds on the information
complexity of functions.

Another important motivation for seeking lower bounds on the information complexity of func-
tions stems from understanding the limits of security in two-party computation. In a celebrated
results Ben-Or et al. [BOGW88] (see also [AL11]) showed how a multi-party computation (with
three or more parties) may be carried out in a way that reveals no information to the participants
except for the computation’s output. The protocol relies heavily on the use of random bits that are
shared between some, but not all, parties. Such a resource can clearly not exist in the two-party
setting. While it can be shown that a perfect information security is unattainable by two-party
protocols [CK89, BYCKO93], quantitatively it is not clear just how much information must the
parties “leak” to each other to compute f . The quantitative answer depends on the model in which
the leakage occurs, and whether quantum computation is allowed [Kla04]. Information complexity
answers this question in the strongest possible sense for classical protocols: the parties are allowed
to use private randomness to help them “hide” their information, and the information revealed is
measured on average. Thus an information complexity lower bound of I on a problem implies that
the average (as opposed to worst-case) amount of information revealed to the parties is I.

As mentioned above, the information complexity is always lower bounded by the communica-
tion complexity of f . The converse is unknown to be true. Moreover, lower bound techniques for
communication complexity do not readily translate into lower bound techniques for information
complexity. The key difference is that a low-information protocol is not limited in the amount of
communication it uses, and thus rectangle-based communication bounds do not readily convert into
information lower bound. No general technique has been known to yield sharp information com-
plexity lower bounds. A linear lower bound on the communication complexity of the disjointness
function has been shown in [Raz92]. An information-theoretic proof of this lower bound [BYJKS04]
can be adapted to prove a linear information lower bound on disjointness [Bra11]. One general
technique for obtaining (weak) information complexity lower bounds was introduced in [Bra11],
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where it has been shown that any function that has I bits of information complexity, has commu-
nication complexity bounded by 2O(I). This immediately implies that the information complexity
of a function f is at least the log of its communication complexity (IC(f) ≥ Ω(log(CC(f)))). In
fact, this result easily follows from the stronger result we prove in this paper (Theorem 3.1).

1.1 Our results

In this paper we prove that the discrepancy method – a general communication complexity lower
bound technique – generalizes to information complexity. The discrepancy of f with respect to a
distribution µ on inputs, denoted Discµ(f), measures how “unbalanced” can f get on any rectangle,
where the balancedness is measured with respect to µ:

Discµ(f) = max
R is a rectangle

∣∣∣∣Pr
µ

[f(x, y) = 0 ∧ (x, y) ∈ R]− Pr
µ

[f(x, y) = 1 ∧ (x, y) ∈ R]

∣∣∣∣. (1)

A well-known lower bound (see e.g [KN97]) asserts that the distributional communication complex-
ity of f , when required to predict f with advantage ε over a random guess (with respect to µ), is
bounded from below by Ω(log 1/Discµ(f)):

Dµ
1/2−ε(f) ≥ log(2ε/Discµ(f)).

Note that the lower bound holds even if we are merely trying to get an advantage of ε =
√
Discµ(f)

over random guessing in computing f . We prove that the information complexity of computing f
with probability 9/10 with respect to µ is also bounded from below by Ω(log(1/Discµ(f))).

Theorem 1.1. Let f : X×Y → {0, 1} be a Boolean function and let µ be any probability distribution
on X × Y. Then

ICµ(f, 1/10) ≥ Ω(log(1/Discµ(f))).

Remark 1.2. The choice of 9/10 is somewhat arbitrary. For randomized worst-case protocols,
we may replace the success probability with 1/2 + δ for a constant δ, since repeating the protocol
constantly many times would yield the aforementioned success rate, while the information cost of
the repeated protocol differs only by a constant factor from the original one. In particular, using
prior-free information cost [Bra11] this implies IC (f, 1/2− δ) ≥ Ωδ(log(1/Discµ(f))).

In particular, Theorem 1.1 implies a linear lower bound on the information complexity of the
inner product function IP (x, y) =

∑n
i=1 xiyi mod 2, and on a random boolean function fr :

{0, 1}n × {0, 1}n → {0, 1}, expanding the (limited) list of functions for which good information-
complexity lower bounds are known:

Corollary 1.3. The information complexity ICuniform(IP, 1/10) of IP (x, y) is Ω(n). The informa-
tion complexity ICuniform(fr, 1/10) of a random function fr is Ω(n), except with probability 2−O(n).

The key technical idea in the proof of the theorem is a new simulation procedure that allows us
to convert any protocol that has information cost I into a (two-round) protocol that has communi-
cation complexity O(I) and succeeds with probability > 1/2 + 2−O(I), yielding a 2−O(I) advantage
over random guessing. Combined with the discrepancy lower bound for communication complexity,
this proves Theorem 1.1.
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1.2 Comparison and connections to prior results

The most relevant prior work is an article by Lee, Shraibman, and Špalek [LSS08]. Improving
on an earlier work of Shaltiel [Sha03], Lee et al. show a direct product theorem for discrepancy,
proving that the discrepancy of f⊗k — the k-wise XOR of a function f with itself — behaves as
Disc(f)Ω(k). This implies in particular that the communication complexity of f⊗k scales at least
as Ω(k · logDisc(f)). Using the fact that the limit as k → ∞ of the amortized communication
complexity of f is equal to the information cost of f [BR10], the result of Lee et al. “almost”
implies the bound of Theorem 1.1. Unfortunately, the amortized communication complexity in
the sense of [BR10] is the amortized cost of k copies of f , where each copy is allowed to err with
some probability (say 1/10). Generally speaking, this task is much easier than computing the XOR
(which requires all copies to be evaluated correctly with high probability. This specific problem
can be addressed, but the reduction in [BR10] is not strong enough to be able to replace repetition
with XOR in this context. Thus the lower bound that follows from Lee et al. applies to a more
difficult problem, and does not imply the information complexity lower bound.

Our result can be viewed as a weak compression result for protocols, where a protocol for
computing f that conveys I bits of information is converted into a protocol that uses O(I) bits of
communication and giving an advantage of 2−O(I) in computing f . This strengthens the result in
[Bra11] where a compression to 2O(I) bits of communication has been shown. We still do not know
whether compression to a protocol that uses O(I) bits of communication and succeeds with high
probability (as opposed to getting a small advantage over random) is possible.

2 Preliminaries

In an effort to make this paper as self-contained as possible, we provide some background on
information theory and communication complexity, which is essential to proving our results. For
further details and a more thorough treatment of these subjects see [BR10] and references therein.

Notation. We reserve capital letters for random variables and distributions, calligraphic letters
for sets, and small letters for elements of sets. Throughout this paper, we often use the notation |b
to denote conditioning on the event B = b. Thus A|b is shorthand for A|B = b.

We use the standard notion of statistical/total variation distance between two distributions.

Definition 2.1. Let D and F be two random variables taking values in a set S. Their statistical

distance is |D − F | def= maxT ⊆S(|Pr[D ∈ T ]− Pr[F ∈ T ]|) = 1
2

∑
s∈S |Pr[D = s]− Pr[F = s]|

2.1 Information Theory

Definition 2.2. The entropy of a random variable X is H(X)
def
=
∑

x Pr[X = x] log(1/Pr[X = x]).
The conditional entropy H(X|Y ) is defined to be Ey∈RY [H(X|Y = y)].

Definition 2.3 (Mutual Information). The mutual information between two random variables
A,B, denoted I(A;B) is defined to be the quantity H(A) − H(A|B) = H(B) − H(B|A). The
conditional mutual information I(A;B|C) is H(A|C)−H(A|BC).
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We also use the notion of divergence (also known as Kullback-Leibler distance or relative en-
tropy), which is a different way to measure the distance between two distributions:

Definition 2.4 (Divergence). The informational divergence between two distributions is

D (A||B)
def
=
∑
x

A(x) log(A(x)/B(x)).

Proposition 2.5. Let A,B,C be random variables in the same probability space. For every a in
the support of A and c in the support of C, let Ba denote B|A = a and Bac denote B|A = a,C = c.
Then I(A;B|C) = Ea,c∈RA,C [D (Bac||Bc)].

2.2 Communication Complexity

Let X ,Y denote the set of possible inputs to the two players, who we name A and B. We view a
private coins protocol for computing a function f : X ×Y → ZK as a rooted tree with the following
structure:

• Each non-leaf node is owned by A or by B.

• Each non-leaf node owned by a particular player has a set of children that are owned by the
other player. Each of these children is labeled by a binary string, in such a way that this
coding is prefix free: no child has a label that is a prefix of another child.

• Every node is associated with a function mapping X to distributions on children of the node
and a function mapping Y to distributions on children of the node.

• The leaves of the protocol are labeled by output values.

A public coin protocol is a distribution on private coins protocols, run by first using shared
randomness to sample an index r and then running the corresponding private coin protocol πr.
Every private coin protocol is thus a public coin protocol. The protocol is called deterministic if
all distributions labeling the nodes have support size 1.

Definition 2.6. The communication cost (or communication complexity) of a public coin protocol
π, denoted CC(π), is the maximum number of bits that can be transmitted in any run of the
protocol.

Definition 2.7. The number of rounds of a public coin protocol is the maximum depth of the
protocol tree πr over all choices of the public randomness.

Given a protocol π, π(x, y) denotes the concatenation of the public randomness with all the
messages that are sent during the execution of π. We call this the transcript of the protocol.
When referring to the random variable denoting the transcript, rather than a specific transcript,
we will use the notation Π(x, y) — or simply Π when x and y are clear from the context, thus
π(x, y) ∈R Π(x, y). When x and y are random variables themselves, we will denote the transcript
by Π(X,Y ), or just Π.

Definition 2.8 (Communication Complexity notation). For a function f : X × Y → ZK , a distri-
bution µ supported on X×Y, and a parameter ε > 0, Dµ

ε (f) denotes the communication complexity
of the cheapest deterministic protocol computing f on inputs sampled according to µ with error ε.
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Definition 2.9 (Combinatorial Rectangle). A Rectangle in X × Y is a subset R ⊆ X × Y which
satisfies

(x1, y1) ∈ R and (x2, y2) ∈ R =⇒ (x1, y2) ∈ R

2.3 Information + Communication: The information cost of a protocol

The following quantity, which is implicit in [BYJKS04] and was explicitly defined in [BBCR10], is
the central notion of this paper.

Definition 2.10. The information cost of a protocol π over inputs drawn from a distribution µ on
X × Y, is given by:

ICµ(π) := I(Π;X|Y ) + I(Π;Y |X).

Intuitively, Definition 2.10 captures what the two parties learn about each other’s inputs from the
execution transcript of the protocol π. The first term captures what the second player learns about
X from Π – the mutual information between the input X and the transcript Π given the input Y .
Similarly, the second term captures what the first player learns about Y from Π.

Note that the information of a protocol π depends on the prior distribution µ, as the mutual
information between the transcript Π and the inputs depends on the prior distribution on the
inputs. To give an extreme example, if µ is a singleton distribution, i.e. one with µ({(x, y)}) = 1
for some (x, y) ∈ X × Y, then ICµ(π) = 0 for all possible π, as no protocol can reveal anything
to the players about the inputs that the do not already know a-priori. Similarly, ICµ(π) = 0 if
X = Y and µ is supported on the diagonal {(x, x) : x ∈ X}. As expected, one can show that the

communication cost CC(π) of π is an upper bound on its information cost over any distribution µ:

Lemma 2.11. [BR10] For any distribution µ, ICµ(π) ≤ CC(π).

On the other hand, as noted in the introduction, the converse need not hold.

As one might expect, the information cost of a function f with respect to µ and error ρ is the
least amount of information that needs to be revealed by a protocol computing f with error ≤ ρ:

ICµ(f, ρ) := inf
π: Pµ[π(x,y)6=f(x,y)]≤ρ

ICµ(π).

The (prior-free) information cost was defined in [Bra11] as the minimum amount of information
that a worst-case error-ρ randomized protocol can reveal against all possible prior distributions.

IC (f, ρ) := inf
π is a protocol with P[π(x, y) 6= f(x, y)] ≤ ρ for all (x, y)

max
µ

ICµ(π).

This information cost matches the amortized randomized communication complexity of f [Bra11].
It is clear that lower bounds on ICµ(f, ρ) for any distribution µ also apply to IC (f, ρ).

3 Proof of Theorem 1.1

To establish the correctness of Theorem 1.1, we prove the following theorem, which is the central
result of this paper:

Theorem 3.1. Suppose that ICµ(f, 1/10) = Iµ. Then there exist a protocol π′ such that
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• CC(π′) = O(Iµ).

• P(x,y)∼µ[π′(x, y) = f(x, y)] ≥ 1/2 + 2−O(Iµ)

We first show how Theorem 1.1 follows from Theorem 3.1:

Proof of Theorem 1.1. Let f, µ be as in theorem 1.1, and let ICµ(f, 1/10) = Iµ. By theorem
3.1, there exists a protocol π′ computing f with error probability 1/2− 2−O(Iµ) using O(Iµ) bits of
communication. Applying the discrepancy lower bound for communication complexity we obtain

O(Iµ) ≥ Dµ

1/2−2−O(Iµ)(f) ≥ log(2 · 2O(Iµ)/Discµ(f)) (2)

which after rearranging gives Iµ ≥ Ω(log(1/Discµ(f))), as desired.

We now turn to prove Theorem 3.1. The main step is the following sampling lemma.

Lemma 3.2. Let µ be any distribution over a universe U and let I ≥ 0 be a parameter that is
known to both A and B. Further, let νA and νB be two distributions over U such that D (µ||νA) ≤
I and D (µ||νB) ≤ I. The players are each given a pair of real functions (pA, qA), (pB, qB),
pA, qA, pB, qB : U → [0, 1] such that for all x ∈ U , µ(x) = pA(x) · pB(x), νA(x) = pA(x) · qA(x), and
νB(x) = pB(x) · qB(x). Then there is a (two round) sampling protocol Π1 = Π1(pA, pB, qA, qB, I)
which has the following properties:

1. at the end of the protocol, the players either declare that the protocol “fails”, or output xA ∈ U
and xB ∈ U , respectively (“success”);

2. let S be the event that the players output “success”. Then S ⇒ xA = xB, and
0.9 · 2−50(I+1) ≤ Pr[S] ≤ 2−50(I+1).

3. if µ1 is the distribution of xA conditioned on S, then |µ− µ1| < 2/9.

Furthermore, Π1 can be “compressed” to a protocol Π2 such that CC(Π2) = 211I + 1, whereas
|Π1−Π2| ≤ 2−59I (by an abuse of notation, here we identify Πi with the random variable representing
its output).

We will use the following technical fact about the information divergence of distributions.

Claim 3.3. [Claim 5.1 in [Bra11]] Suppose that D (µ||ν) ≤ I. Let ε be any parameter. Then

µ
{
x : 2(I+1)/ε · ν(x) < µ(x)

}
< ε.

For completeness, we repeat the short proof in the appendix.

Proof of Lemma 3.2 . Throughout the execution of Π1, Alice and Bob interpret their shared
random tape as a source of points (xi, αi, βi) uniformly distributed in U × [0, 250(I+1)]× [0, 250(I+1)].
Alice and Bob consider the first T = |U| · 2100(I+1) · 60I such points. Their goal will be to discover
the first index τ such that ατ ≤ pA(xτ ) and βτ ≤ pB(xτ ) (where they wish to find it using a
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minimal amount of communication, even if they are most likely to fail). First, we note that the
probability that an index t satisfies αt ≤ pA(xt) and βt ≤ pB(xt) is exactly 1/|U|250(I+1)250(I+1) =
1/|U|2100(I+1). Hence the probability that τ > T (i.e. that xτ is not among the T points considered)
is bounded by (

1− 1/|U|2100(I+1)
)T

< e−T/|U|2
100(I+1)

= e−60I < 2−60I (3)

Denote by A the following set of indices A := {i ≤ T : αi ≤ pA(xi) and βi ≤ 250(I+1) · qA(xi)},
the set of potential candidates for τ from A’s viewpoint. Similarly, denote B := {i ≤ T : αi ≤
250(I+1) · qB(xi) and βi ≤ pB(xi)}.

The protocol Π1 is very simple. Alice takes her bet on the first element a ∈ A and sends it
to Bob. Bob outputs a only if (it just so happens that) βτ ≤ pB(a). The details are given in Figure 1.

Information-cost sampling protocol Π1

1. Alice computes the set A. Bob computes the set B.

2. If A = ∅, the protocol fails, otherwise Alice finds the first element a ∈ A, and sends a to
Bob.

3. Bob checks if a ∈ B. If not, the protocol fails.

4. Alice and Bob output a (“success”).

Figure 1: The sampling protocol Π1 from Lemma 3.2

We turn to analyze Π1. Denote the set of “Good” elements by

G def
= {x : 250(I+1) · νA(x) ≥ µ(x) and 250(I+1) · νB(x) ≥ µ(x)}}.

Then by Claim 3.3, µ(G) ≥ 48/50 = 24/25. The following claim asserts that if it succeeds, the
output of Π1 has the “correct” distribution on elements in G.

Claim 3.4. Assume A is nonempty. Then for any xi ∈ U , the probability that Π1 outputs xi is at
most µ(xi) · 2−50(I+1). If xi ∈ G, then this probability is exactly µ(xi) · 2−50(I+1).

Proof. Note that if A is nonempty, then for any xi ∈ U , the probability that xi is the first element
in A (i.e, a = xi) is pA(xi)qA(xi) = νA(xi). By construction, the probability that βi ≤ pB(a) is
min{pB(xi)/(2

50(I+1)qA(xi)), 1}, and thus

Pr[Π1 outputs xi] ≤ pA(xi)qA(xi) ·
pB(xi)

250(I+1)qA(xi)
= µ(xi) · 2−50(I+1).

On the other hand, if xi ∈ G, then we know that pB(xi)/qA(xi) = µ(xi)/νA(xi) ≤ 250(I+1), and
so the probability that βi ≤ pB(a) is exactly pB(xi)/(2

50(I+1)qA(xi)). Since Pr[Π1 outputs xi] =
Pr[a = xi] Pr[βi ≤ pB(a)] (assuming A is nonempty), we conclude that:

xi ∈ G =⇒ Pr[Π1 outputs xi] = pA(xi)qA(xi) ·
pB(xi)

250(I+1)qA(xi)
= µ(xi) · 2−50(I+1).
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We are now ready to estimate the success probability of the protocol.

Proposition 3.5. Let S denote the event that A 6= 0 and a ∈ B (i.e, that the protocol succeeds).
Then

0.9 · 2−50(I+1) ≤ Pr[S] ≤ 2−50(I+1).

Proof. Using Claim 3.4, we have that

Pr[S] ≤ P[a ∈ B | A 6= ∅] =
∑
i∈U

Pr[a = xi] Pr[βi ≤ pB(a)] ≤
∑
i∈U

µ(xi) · 2−50(I+1) = 2−50(I+1) (4)

For the lower bound, we have

Pr[S] ≥ Pr[βi ≤ pB(a) | A 6= ∅] · Pr[A 6= ∅] ≥

≥ (1− 2−60I)

(∑
i∈U

Pr[a = xi] Pr[βi ≤ pB(a)]

)
≥

≥ (1− 2−60I)

(∑
i∈G

Pr[a = xi] Pr[βi ≤ pB(a)]

)
=

= (1− 2−60I)

(
2−50(I+1)

∑
i∈G

µ(xi)

)
= (1− 2−60I)

(
2−50(I+1)µ(G)

)
≥

≥ 24

25
(1− 2−60I)2−50(I+1) ≥ 0.9 · 2−50(I+1) (5)

where the equality follows again from claim 3.4. This proves the second claim of Lemma 3.2.

The following claim asserts that if S occurs, then the distribution of a is indeed close to µ.

Claim 3.6. Let µ1 be the distribution of a|S. Then |µ1 − µ| ≤ 2/9.

Proof. The claim follows directly from proposition 3.5. We defer the proof to the appendix.

We turn to the “Furthermore” part of of Lemma 3.2. The protocol Π1 satisfies the premises of
the lemma, except it has a high communication cost. This is due to the fact that Alice explicitly
sends a to Bob. To reduce the communication, Alice will instead send O(I) random hash values
of a, and Bob will add corresponding consistency constraints to his set of candidates. The final
protocol Π2 is given in Figure 2.

Let E denote the event that in step 3 of the protocol, Bob finds an element xi 6= a (that
is, the probability that the protocol outputs “success” but xA 6= xB). We upper bound the
probability of E . Given a ∈ A and xi ∈ B such that a 6= xi, the probability (over possible
choices of the hash functions) that hj(a) = hj(xi) for j = 1..d is 2−d ≤ 2−211I . For any t,
P[t ∈ B] ≤ 1

|U|
∑

xi∈U pB(xi)qB(xi) · 250(I+1) = 1
|U|
∑

xi∈U νB(xi) · 250(I+1) = 250(I+1)/|U|. Thus, by
a union bound we have
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Information-cost sampling protocol Π2

1. Alice computes the set A. Bob computes the set B.

2. If A = ∅, the protocol fails. Otherwise, Alice finds the first element a ∈ A and sets
xA = a. She then computes d = d211Ie random hash values h1(a), . . . , hd(a), where the
hash functions are evaluated using public randomness.

3. Alice sends the values {hj(a)}1≤j≤d to Bob.

4. Bob finds the first index τ such that there is a b ∈ B for which hj(b) = hj(a) for j = 1..d
(if such an τ exists). Bob outputs xB = xτ . If there is no such index, the protocol fails.

5. Bob outputs xB (“success”).

6. Alice outputs xA.

Figure 2: The sampling protocol Π2 from Lemma 3.2

P[E ] ≤ P[∃xi ∈ B s.t xi 6= a ∧ hj(a) = hj(xi) ∀ j = 1, . . . , d] ≤
≤ T · 250(I+1) · 2−d/|U| = 2150(I+1) · 60I · 2−211I � 2−60I . (6)

By a slight abuse of notation, let Π2 be the distribution of Π2’s output. Similarly, denote by
Π1 the distribution of the output of protocol Π1. Note that if E does not occur, then the outcome
of the execution of Π2 is identical to the outcome of Π1. Since P[E ] ≤ 2−60I , we have

|Π2 −Π1| = Pr[E ] · |[Π2|E ]− [Π1|E ]| ≤ 2 · 2−60I � 2−59I

which finishes the proof of the lemma.

Using the above lemma, we are now ready to prove our main theorem.

Proof of Theorem 3.1 . Let π be a protocol that realizes the value Iµ := ICµ(f, 1/10). In other
words, π has an error rate of at most 1/10 and information cost of at most Iµ with respect to µ.
Denote by πxy the random variable that represents that transcript π given the inputs (x, y), and
by πx (resp. πy) the protocol conditioned on only the input x (resp. y). We denote by πXY the
transcripts where (X,Y ) are also a pair of random variables. By Claim 3.3, we know that

Iµ = I(X;πXY |Y ) + I(Y ;πXY |X) = E(x,y)∼µ[D (πxy||πx) + D (πxy||πy)]. (7)

Let us now run the sampling algorithm Π1 from Lemma 3.2, with the distribution µ taken to
be πxy, the distributions νA and νB taken to be πx and πy respectively, and I taken to be 20Iµ.

At each node v of the protocol tree that is owned by player X let p0(v) and p1(v) = 1− p0(v)
denote the probabilities that the next bit sent by X is 0 and 1, respectively. For nodes owned by
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player Y , let q0(v) and q1(v) = 1− q0(v) denote the probabilities that the next bit sent by Y is 0
and 1, respectively, as estimated by player X given the input x. For each leaf ` let pX(`) be the
product of all the values of pb(v) from the nodes that are owned by X along the path from the root
to `; let qX(`) be the product of all the values of qb(v) from the nodes that are owned by Y along
the path from the root to `. The values pY (`) and qY (`) are defined similarly. For each ` we have
P[πxy = `] = pX(`) · pY (`), P[πx = `] = pX(`) · qX(`), and P[πy = `] = pY (`) · qY (`). Thus we can
apply Lemma 3.2 so as to obtain the following protocol π′ for computing f :

• If Π1 fails, we return a random unbiased coin flip.

• If Π1 succeeds, we return the final bit of the transcript sample T . Denote this bit by Tout.

To prove the correctness of the protocol, let Z denote the event that both D (πxy||πx) ≤ 20Iµ
and D (πxy||πy) ≤ 20Iµ. By (7) and Markov inequality, Pr[Z] ≥ 19/20 (where the probability
is taken with respect to µ). Denote by δ the probability that Π1 succeeds. By the assertions of
Lemma 3.2, δ ≥ 0.9 · 2−50(I+1). Furthermore, if Π1 succeeds, then we have |T − πxy| ≤ 2/9, which
in particular implies that that P[Tout = πout] ≥ 7/9. Finally, P[πout = f(x, y)] ≥ 9/10, since π has
error at most 1/10 with respect to µ. Now, let W denote the indicator variable whose value is 1 iff
π′(x, y) = f(x, y). Putting together the above,

E[W | Z] = (1− δ) · 1

2
+ δ ·

(
7

9
− 1

10

)
>

1

2
+ δ · 1

6
>

1

2
+

1

8
· 2−50(I+1). (8)

On the other hand, note that by lemma 3.2 the probability that Π1 succeeds is at most 2−50(I+1)

(no matter how large D (πxy||πx) and D (πxy||πy) are!), and so E[W | ¬Z] ≥ (1− 2−50(I+1))/2.
Hence we conclude that

E[W] = E[W | Z] ·P[Z] + E[W | ¬Z] ·P[¬Z] ≥
(

1

2
+

1

8
· 2−50(I+1)

)
· 19

20
+
(

1− 2−50(I+1)
)
· 1

2
· 1

20

≥ 1

2
+

1

12
· 2−50(I+1) >

1

2
+

1

12
· 2−1000(Iµ+1). (9)

Finally, Lemma 3.2 asserts that |Π1−Π2| < 2−59I . Thus if we replace Π1 by Π2 in the execution
of protocol π′, the success probability decreases by at most 2−59I � 1

12 · 2
−50(I+1). Furthermore,

the amount of communication used by π′ is now

211I = 4220Iµ = O(Iµ).

Hence we conclude that with this modification, π′ has the following properties:

• CC(π′) = 4220 · Iµ;

• P(x,y)∼µ[π′(x, y) = f(x, y)] ≥ 1/2 + 2−1000(Iµ+1)−4;

which completes the proof.
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Remark 3.7. Using similar techniques, it was recently shown in [Bra11] that any function f
whose information complexity is I has communication cost at most 2O(I) 1, thus implying that
IC(f) ≥ Ω(log(CC(f))). We note that this result can be easily derived (up to constant factors)
from Theorem 3.1. Indeed, applying the “compressed” protocol 2O(I) log(1/ε) independent times
and taking a majority vote guarantees an error of at most ε (By a standard Chernoff bound2), with
communication O(I) · 2O(I) = 2O(I). Thus, our result is strictly stronger than the former one.
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A Proof of Claim 3.3 (from [Bra11])

Proof. Recall that D (µ||ν) =
∑

x∈U µ(x) log µ(x)
ν(x) . Denote by N = {x : µ(x) < ν(x)} – the terms

that contribute a negative amount to D (µ||ν). First we observe that for all 0 < x < 1, x log x > −1,
and thus ∑

x∈N
µ(x) log

µ(x)

ν(x)
=
∑
x∈N

ν(x) · µ(x)

ν(x)
log

µ(x)

ν(x)
≥
∑
x∈N

ν(x) · (−1) > −1.

Denote by L =
{
x : 2(I+1)/ε · ν(x) < µ(x)

}
; we need to show that µ(L) < ε. For each x ∈ L we

have log µ(x)
ν(x) > (I + 1)/ε. Thus

I ≥ D (µ||ν) ≥
∑
x∈L

µ(x) log
µ(x)

ν(x)
+
∑
x∈N

µ(x) log
µ(x)

ν(x)
> µ(L) · (I + 1)/ε− 1,

implying µ(L) < ε.
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B Proof of Claim 3.6

Proof. For any xi ∈ U ,

µ1(xi) = Pr(a = xi | S) ≤ µ(xi)2
−50(I+1)

Pr[S]
≤ µ(xi)

0.9
= (1 + 1/9)µ(xi) (10)

where the last inequality follows from Proposition 3.5. Hence,

|µ1 − µ| = 2

( ∑
xi:µ1(xi)≥µ(xi)

µ1(xi)− µ(xi)

)
≤ 2

( ∑
xi:µ1(xi)≥µ(xi)

(1 + 1/9)µ(xi)− µ(xi)

)
≤ 2/9 (11)

This proves claim (3) of the lemma.
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