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Abstract. In this paper we study quantum nondeterminism in multi-
party communication. There are three (possibly) different types of non-
determinism in quantum computation: i) strong, ii) weak with classical
proofs, and iii) weak with quantum proofs. Here we focus on the first
one. A strong quantum nondeterministic protocol accepts a correct input
with positive probability, and rejects an incorrect input with probability
1. In this work we relate strong quantum nondeterministic multiparty
communication complexity to the rank of the communication tensor in
the Number-On-Forehead and Number-In-Hand models. In particular,
by extending the definition proposed by de Wolf to nondeterministic

tensor-rank (nrank), we show that for any boolean function f , 1) in the
Number-On-Forehead model, the cost is upper-bounded by the logarithm
of nrank(f); 2) in the Number-In-Hand model, the cost is lower-bounded
by the logarithm of nrank(f). This naturally generalizes previous results
in the field and relates for the first time the concept of (high-order) ten-
sor rank to quantum communication. Furthermore, we show that strong
quantum nondeterminism can be exponentially stronger than classical
multiparty nondeterministic communication. We do so by applying our
results to the matrix multiplication problem.

Keywords: multiparty communication, quantum nondeterminism, ten-
sor rank, exponential separation, matrix multiplication

1 Introduction

Background Nondeterminism plays a fundamental role in complexity theory.
For instance, the P vs NP problem asks if nondeterministic time is strictly
more powerful than deterministic time. Even though nondeterministic models
are unrealistic, they can give insights into the power and limitations of realistic
models (i.e., deterministic, random, etc.).

There are two ways of defining a nondeterministic machine, using random-
ness or as a proof system: a nondeterministic machine i) accepts a correct input
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with positive probability, and rejects an incorrect input with probability one; or
ii) is a deterministic machine that receives besides the input, a proof or certifi-
cate which exists if and only if the input is correct. For classical machines (i.e.,
machines based on classical mechanics), these two notions of nondeterminism are
equivalent. However, in the quantum setting they can be different. In fact, these
two notions give rise to (possibly) three different kinds of quantum nondetermin-
ism. In strong quantum nondeterminism, the quantum machine accepts a correct
input with positive probability. In weak quantum nondeterminism, the quantum
machine outputs the correct answer when supplied with a correct proof, which
could be either classical or quantum.

The study of quantum nondeterminism in the context of query and commu-
nication complexities started with de Wolf [16]. In particular, de Wolf [16] intro-
duced the notion of nondeterministic rank of a matrix, which was later proved to
completely characterize strong quantum nondeterministic communication [17].
In the same piece of work, it was proved that strong quantum nondeterministic
protocols are exponentially stronger than classical nondeterministic protocols.
In the same spirit, Le Gall [9] studied weak quantum nondeterministic com-
munication with classical proofs and showed a quadratic separation for a total
function.

Weak nondeterminism seems a more suitable definition, mainly due to the
requirement of the existence of a proof, a concept that plays fundamental roles
in complexity theory. In contrast, strong nondeterminism lends itself to a natu-
ral mathematical description in terms of matrix rank. Moreover, strong nonde-
terminism is a more powerful model capable of simulating weak nondetermin-
ism with classical and quantum proofs. The reverse, if weak nondeterminism is
strictly a less powerful model or not is still an open problem.

The previous results by de Wolf [17] and Le Gall [9] were on the context of
2-party communication complexity, i.e., there are two players with two inputs
x and y each, and they want to compute a function f(x, y). Let rank(f) be
the rank of the communication matrix Mf , where Mf [x, y] = f(x, y). A known
result is 1

2 log rank(f) ≤ Q(f) ≤ D(f) [2], where D(f) is the deterministic
communication complexity of f and Q(f) the quantum exact communication
complexity4. It is conjectured that D(f) = O(logc rank) for some arbitrary
constant c. This is the log-rank conjecture in communication complexity, one
the biggest open problems in the field. If it holds, implies that Q(f) and D(f)
are polynomially related. This is in contrast to the characterization given by de
Wolf [17] in terms of the nondeterministic matrix-rank, which is defined as the
minimal rank of a matrix (over the complex field) whose (x, y)-entry is non-zero
if and only if f(x, y) = 1.

Contributions In this paper, we continue with the study of strong quantum
nondeterminism in the context of multiparty protocols. Let k ≥ 3 be the num-
ber of players evaluating a function f(x1, . . . , xk). The players take turns pre-
defined at the beginning of the protocol. Each time a player sends a bit (or

4 All logarithms in this paper are base 2.



qubit if it is a quantum protocol), he sends it to the player who follows next.
The communication complexity of the protocol is defined as the minimum num-
ber of bits that need to be transmitted by the players in order to compute
f(x1, . . . , xk). There are two common ways of communication: The Number-On-
Forehead model (NOF), where player i knows all inputs except xi; and, Number-
In-Hand model (NIH), where player i only knows xi. Also, any protocol naturally
defines a communication tensor Tf , where Tf [x1, . . . , xk] = f(x1, . . . , xk).

Tensors are natural generalizations of matrices. They are defined as multi-
dimensional arrays while matrices are 2-dimensional arrays. In the same way,
the concept of matrix rank extends to tensor rank. However, the nice properties
of matrix rank do not hold anymore for tensors; for instance, the rank could be
different if the same tensor is defined over different fields [6].

We extend the concept of nondeterministic matrices to nondeterministic ten-
sors. The nondeterministic tensor rank, denoted nrank(f), is the minimal rank
of a tensor (over the complex field) whose (x1, . . . , xk)-entry is non-zero if and
only if f(x1, . . . , xk) = 1.

Let NQNOF
k and NQNIH

k denote the k-party strong quantum nondetermin-
istic communication complexity for the NOF and NIH models respectively.

Theorem 1. Let f : ({0, 1}n)k → {0, 1}, then NQNOF
k (f) ≤ ⌈lognrank(f)⌉+

1, and NQNIH
k (f) ≥ ⌈lognrank(f)⌉+ 1.

This theorem generalizes the previous result by de Wolf, as it can be seen
that by letting k = 2 we obtain exactly [17, Lemma 3.2]. Also, since NQNIH

k

is a lower bound for exact NIH quantum communication5, denoted QNIH
k , we

obtain the following corollary:

Corollary 2. ⌈lognrank(f)⌉+ 1 ≤ QNIH
k (f).

One of the first direct consequences of Theorem 1 is on the equality function.
The k-party equality function EQk(x1, . . . , xk) = 1 if and only if x1 = · · · =
xk. A nondeterministic tensor for EQk is superdiagonal with non-zero entries
in the main diagonal, and 0 anywhere else. Thus, it has 2n rank, and implies
NQNOF

k (EQk) ≤ n + 1 and NQNIH
k (EQk) ≥ n + 1. However, note that the

communication complexity of EQk is upper-bounded byO(n) in the NOF model,
however this could be a very loose bound. In general, NQNOF

k cannot be lower-
bounded by lognrank. To see this, it is easy to show that in the NOF model
there exists a classical protocol for EQk with a cost of 2 bits6. In contrast, the
lower bound on NQNIH

k (EQk) is not that loose; using the trivial protocol, where
all players send their inputs, we have that NQNIH

k (EQk) = O(kn).

5 An exact quantum protocol accepts a correct input and rejects an incorrect input
with probability 1.

6 Let the first player check if x2, . . . , xk are equal. If they are, he sends a 1 bit to the
second player, who will check if x1, x3, . . . , xk are equal. If his strings are equal and
he received a 1 bit from the first player, he sends a 1 bit to all players indicating
that all strings are equal [7, Example 6.3].



A more interesting function is the generalized inner product defined formally
as GIPk(x1, . . . , xk) = (

∑k
i=1

∧n
j=1 xij) mod 2. We know that (2n − 1)k/2 ≤

nrank(GIPk) (see Appendix A for a proof), and thus, NQNIH
k (GIPk) ≥ n +

⌈log(k/2)⌉ + 1. In NIH, using the trivial protocol where each player send their
inputs, we obtain (with Corollary 2) a bound in quantum exact communication
of ⌈log(k/2)⌉+n+1 ≤ QNIH

k (GIPk) ≤ (k−1)n+1. Improving the lower bound
will require new techniques for explicit construction of linear-rank tensors, with
important consequences to circuit lower bounds [15] (see for example the paper
by Alexeev, Forbes, and Tsimerman [1] for state-of-the-art tensor constructions).
In general, we are still unable to upper-bound NQNIH

k (f) in terms of lognrank.
Although the bounds given by Theorem 1 could be loose for some functions,

they are good enough for other applications. For instance, we show in Section
4 a separation between the NOF models of strong quantum nondeterminism
and classical nondeterminism. We do so by applying Theorem 1 to the matrix
multiplication problem. This separation is super-polynomial when k = o(log n),
and exponential when k = O(1). To our knowledge, this is the first exponential
quantum-classical separation for a total function in any multiparty communica-
tion model7.

2 Preliminaries

In this paper we assume basic knowledge of communication complexity and
quantum computing. We refer the interested reader to the books by Kushilevitz
and Nisan [7] and Nielsen and Chuang [12] respectively. In this section we give
a small review of tensors and quantum communication.

2.1 Tensors

A tensor is a multi-dimensional array defined over some field. An order-d tensor
is an element of the tensor product of d vector spaces.

Definition 3 (Simple Tensor). Let |vi〉 ∈ V ni be an ni-dimensional vector
for 1 ≤ i ≤ d on some vector space V ni . The jthi component of |vi〉 is de-
noted by vi(ji) for 1 ≤ ji ≤ ni. The tensor product of {|vi〉} is the tensor T ∈
V n1 ⊗ · · · ⊗ V nd whose (j1, . . . , jd)-entry is v1(j1) · · · vd(jd), i.e., T [j1, . . . , jd] =
v1(j1) · · · vd(jd). Then T = |v1〉 ⊗ · · · ⊗ |vd〉 and we say T is a rank-1 or simple
order-d tensor. We also say that a tensor is of high order if its order is three or
higher.

From now on, we will refer to high-order tensors simply as tensors, and low-
order tensor will be matrices, vectors, and scalars as usual.

7 A previous separation, super-polynomial when k = o(
√

log n/ log log n) and expo-
nential when k = O(1), was found by Gavinsky and Pudlák [3] for a relational
communication problem in the simultaneous message passing model.



It is important to note that the set of simple tensors span the space V n1 ⊗
· · · ⊗ V nd , and hence, there exists tensors that are not simple. This leads to the
definition of rank.

Definition 4 (Tensor Rank). The rank of a tensor T is the minimum r such
that T =

∑r
i=1 Ai for simple tensors Ai.

This agrees with the definition of matrix rank. The complexity of computing
tensor rank was studied by H̊astad [4] who showed that it is NP-complete for
any finite field, and NP-hard for the rational numbers.

The process of arranging the elements of an order-k tensor into a matrix is
known as matrization. Since there are many ways of embedding a tensor into a
matrix, in general the permutation of columns is not important, as long as the
corresponding operations remain consistent [6].

2.2 Strong Quantum Nondeterministic Multiparty Communication

In a multiparty communication protocol there are k ≥ 3 players trying to
compute a function f . Let f : Xk → {0, 1} be a function on k strings x =
(x1, . . . , xk), where each xi ∈ X and X = {0, 1}n. There are two common ways
of communication between the players: The Number-In-Hand (NIH) and the
Number-On-Forehead (NOF) models. In NIH, player i only knows xi, and in
NOF, player i knows all inputs except xi. First we review the classical defintion.

Definition 5 (Classical nondeterministic multiparty protocol). Let k be
the number of players. Besides the input x, the protocol receives a proof or certifi-
cate c ∈ {0, 1}+. The players take turns in an order predefined at the beginning
of the protocol. To communicate, a player sends exactly one bit to the player that
follows next. The computation of the protocol ends when the last player computes
f . If f(x) = 1 then, there exists a c that makes the protocol accept the input,
i.e., the last player outputs 1. If f(x) = 0 then, the protocol rejects the input for
all c, i.e., the last player outputs 0. The cost of the protocol is the length of c
plus the total number of bits communicated.

Hence, the classical nondeterministic multiparty communication complexity,
denoted Nk(f), is defined as the minimum number of bits required to compute
f(x). If the model is NIH or NOF, we add a superscript NNIH

k (f) or NNOF
k (f)

respectively. Note that, the definition of the multiparty protocols in this paper
(classical and quantum) are all unicast, i.e., a player sends a bit only to the player
that follows next. This is in contrast to the more common blackboard model. In
this latter model, when a player sends a bit, he does so by broadcasting it and
reaching all players inmediately. Clearly, any lower bound on the blackboard
model is a lower bound for the unicast model.

To model NOF and NIH in the quantum setting, we follow the work of Lee,
Schechtman, and Shraibman [10], as originally defined by Kerenidis [5].

Definition 6 (Quantum multiparty protocol). Let k be the number of play-
ers in the protocol. Define the Hilbert space by H1⊗· · ·⊗Hk ⊗C, where each Hi



is the Hilbert space of player i, and C is the one qubit channel. To communicate
the players take turns predefined at the beginning of the protocol. On the turn of
player i:

1. in NIH, an arbitrary unitary that only depends on xi is applied on Hi ⊗ C,
and acts as the identity anywhere else;

2. in NOF, an arbitrary unitary independent of xi is applied on Hi ⊗ C, and
acts as the identity anywhere else.

The cost of the protocol is the number of rounds.

If there is no entanglement, the initial state is a pure state |0〉 ⊗ · · · ⊗ |0〉|0〉.
In general, the initial state could be anything that is independent of the input
with no prior entanglement. If the final state of the protocol on input x1, . . . , xk
is |ψ〉, it outputs 1 with probability p(x1, . . . , xk) = 〈ψ|Π1|ψ〉, where Π1 is a
projection onto the |1〉 state of the channel.

We say that T is a nondeterministic communication tensor if T [x1, . . . , xk] 6=
0 if and only if f(x1, . . . , xk) = 1. Thus, T can be obtained by replacing each
1-entry in the original communication tensor by a non-zero complex number.
We also define the nondeterministic rank of f , denoted nrank(f), to be the
minimum rank over the complex field among all nondeterministic tensors for f .

Definition 7 (Strong Quantum Nondeterministic Protocol). A k-party
strong quantum nondeterministic communication protocol outputs 1 with positive
probability if and only if f(x) = 1.

The k-party quantum nondeterministic communication complexity, denoted
NQk(f), is the cost of an optimum (i.e., minimal cost) k-party quantum non-
deterministic communication protocol. If the model is NIH or NOF, we add a
superscriptNQNIH

k (f) or NQNOF
k (f) respectively. From the definition it follows

that NQk is a lower bound for the exact quantum communication complexity
Qk for both NOF and NIH.

Lemma 8 (Lee, Schechtman, and Shraibman [10]). After ℓ qubits of com-
munication on input (x1, . . . , xk), the state of a quantum protocol without shared
entanglement can be written as

∑

m∈{0,1}ℓ

|A1
m(x1)〉|A2

m(x2)〉 · · · |Ak
m(xk)〉|mℓ〉,

where m is the message sent so far, mℓ is the ℓ-th bit in the message, and each
vector |At

m(xt)〉 corresponds to the t-th player which depends on m and the input
xt. If the protocol is NOF then xt = (x1, . . . , xt−1, xt+1, . . . , xk); if it is NIH then
xt = (xt).

3 Proof of Theorem 1

The arguments in this section are generalizations of a previous result by de Wolf
[17] from 2-party to k-party communication.



First we need the following technical lemma. It is a generalization of [17,
Lemma 3.2] from k = 2 to any k ≥ 3. See below for a proof.

Lemma 9. If there exists k families of vectors {|Ai
1(xi)〉, . . . , |A

i
r(xi)〉} ⊆ C

d

for all i with 2 ≤ i ≤ k and xi ∈ {0, 1}n such that

r
∑

i=1

|A1
i (x1)〉 ⊗ · · · ⊗ |Ak

i (xk)〉 = 0 if and only if f(x1, . . . , xk) = 0,

then nrank(f) ≤ r.

Now we proceed to prove the lower bound in Theorem 1.

Lemma 10. NQNIH
k (f) ≥ ⌈lognrank(f)⌉+ 1

Proof. Consider a NIH ℓ-qubit protocol for f . By Lemma 8 its final state is

|ψ〉 =
∑

m∈{0,1}ℓ

|A1
m(x1)〉 · · · |A

k
m(xk)〉|mℓ〉. (1)

Assume all vectors have the same dimension d. Let S = {m ∈ {0, 1}ℓ : mℓ = 1},
and consider only the part of the state that is projected onto the 1 state of the
channel,

|φ(x1, . . . , xk)〉 =
∑

m∈S

|A1
m(x1)〉 · · · |A

k
m(xk)〉|1〉. (2)

The vector |φ(x1, . . . , xk)〉 is 0 if and only if f(x1, . . . , xk) = 0. Thus, by
Lemma 9, we have that nrank(f) ≤ |S| = 2ℓ−1, which implies the lower bound.

⊓⊔

Proof (Lemma 9). First note that the case k=2 was proven by de Wolf [17,
Lemma 3.2]. Here we give a proof for k ≥ 3. We divide it in two cases: when k
is odd and even.

Even k: There are k size-r families of d-dimensional vectors. We will construct
two new families of vectors denoted D and F . First, divide the k families in
two groups of size k/2. Then, tensor each family in one group together in the
following way: for each family {|Ai

1(xi)〉, . . . , |A
i
r(xi)〉} for 1 ≤ i ≤ k/2 construct

a new family

D =







k/2
⊗

i=1

|Ai
1(xi)〉, . . . ,

k/2
⊗

i=1

|Ai
r(xi)〉







=

{

|A1(y)〉, . . . , |Ar(y)〉

}

,

where y = (x1, . . . , xk/2). Do the same to construct F for k/2 + 1 ≤ i ≤ k
obtaining

F =







k
⊗

i=k/2+1

|Ai
1(xi)〉, . . . ,

k
⊗

i=k/2+1

|Ai
r(xi)〉







=

{

|B1(z)〉, . . . , |Br(z)〉

}

,



where z = (xk/2+1, . . . , xk). Thus, D and F will become two size-r family of
vectors, each vector with dimension dk/2. Then apply the theorem for k = 2 on
these two families and the lemma follows.

Odd k: Here we can use the same approach by constructing again two new
families D and F by dividing the families in two groups of size ⌊k/2⌋ and ⌈k/2⌉.
However, although both families will have the same size r, the dimension of
the vectors will be different. In fact, the dimension of the vectors in one family
will be d′ = d⌊k/2⌋ and in the other d′ + 1. So, in order to prove the theorem
we will consider having two size-r families {|A1(y)〉, . . . , |Ar(y)〉} ⊆ Cd′

and
{|B1(z)〉, . . . , |Br(z)〉} ⊆ Cd′+1.

Denote the entry of each vector |Ai(y)〉, |Bi(z)〉 by Ai(y)u and Bi(z)v respec-
tively for all (u, v) ∈ [d′]× [d′ + 1].

Note that, if f(y, z) = 0 then
∑r

i=1Ai(y)uBi(z)v = 0 for all (u, v); if
f(y, z) = 1 then

∑r
i=1Ai(y)uBi(z)v 6= 0 for some (u, v). This holds because

each vector |Ai(y)〉 and |Bi(z)〉 are the set of vectors |At
i(x

t)〉 tensored together
and separated in two families of size ⌊k/2⌋ and ⌈k/2⌉ respectively.

The following lemma was implicitly proved by de Wolf [17] for families of
vectors with the same dimension. However, we show that the same arguments
hold even if the families have different dimensionality (see Appendix B).

Lemma 11. Let I be an arbitrary set of real numbers of size 22n+1, and let
α1, . . . , αd′ and β1, . . . , βd′+1 be numbers from I. Define the quantities

ai(y) =

d′

∑

u=1

αuAi(y)u and bi(z) =

d′+1
∑

v=1

βvBi(z)v.

Also let

v(y, z) =

r
∑

i=1

ai(y)bi(z) =

d′

∑

u=1

d′+1
∑

v=1

αuβv

(

r
∑

i=1

Ai(y)uBi(z)v

)

.

There exists α1, . . . , αd′ , β1, . . . , βd′+1 ∈ I such that for every (y, z) ∈ f−1(1) we
have v(y, z) 6= 0.

Therefore, by the lemma above we have that v(y, z) = 0 if and only if
f(y, z) = 0. Now let |ai〉 and |bi〉 be 2n-dimensional vectors indexed by ele-
ments from {0, 1}n, and let M =

∑r
i=1 |ai〉〈bi|. Thus M is an order-k tensor

with rank r. ⊓⊔

Lemma 12. NQNOF
k (f) ≤ ⌈lognrank(f)⌉+ 1.

The proof of Lemma 12 follows by fixing a proper matrization (separating
the cases of odd and even k) of the communication tensor, and then applying
the 2-party protocol by de Wolf [17] (see Appendix B).



4 A Quantum-Classical Super-polynomial Separation

In this section, we show that there exists a function with a super-polynomial gap
between classical and quantum NOF models of quantum strong nondeterminism.

Theorem 13. There is a super-polynomial gap between NNOF
k and NQNOF

k

when k = o(logn), and exponential when k = O(1).

In particular, we analyze the following total function: Let X1 = · · · = Xk =
{0, 1}n×n be the set of all n× n boolean matrices. Also let xi ∈ Xi be a n× n
boolean matrix, and denote by xixj the multiplication of matrices xi and xj
over the binary field. Define

F (x1, . . . , xk) = (x1x2 · · ·xk)11,

i.e., F (x1, . . . , xk) is the entry in the first row and first column in x1 · · ·xk.
This matrix multiplication function was studied by Raz [14], who showed

a Ω(n/2k) lower bound in the blackboard model of NOF bounded-error com-
munication. However, this lower bound also holds for the classical blackboard
nondeterministic NOF communication denoted NNOF

k (F ). The reason is that
the proof by Raz is based on an upper bound for discrepancy. Since NNOF

k (f) =
Ω(1/Disc(f)) for any f where Disc(f) is the discrepancy [11], we immediately
obtain the following corollary:

Corollary 14. NNOF
k (F ) = Ω(n/2k).

The condition on the number of players in Theorem 13 comes from this
lower bound. Improving it will require new techniques for classical multiparty
communication.

Since any lower bound in the blackboard model also holds in the unicast
model, we can use Corollary 14 to prove a separation for the unicast models in
this paper. The following lemma implies the theorem.

Lemma 15. NQNOF
k (F ) = O(k logn).

Proof. By Theorem 1 we just need to give a tensor with rank at most O(nk).
Denote each entry of the matrix xi by xi[p, q], i.e., the (p, q)-entry of xi. Also,
all the operations in this proof are assumed to be over the binary field.

Let
T [x1, . . . , xk] = (x1 · · ·xk)11,

which is just the function F plugged into T .
First, note that the multiplication is between n × n matrices. Hence, the

maximum rank of the product is at most n. Therefore, we can write each entry
of T as

T [x1, . . . , xk] =









n
∑

j1=1

xj11



 · · ·





n
∑

jk=1

xjkk









11

=

n
∑

j1,...,jk=1

(xj11 · · ·xjkk )11. (3)



The notation xji can be interpreted as the jth term in the rank decomposition
of matrix xi. Now fix j1, . . . , jk, and by the definition of matrix multiplication
we get that

(xj11 · · ·xjkk )11 =

n
∑

i1,...,ik−1=1

xj11 [1, i1]x
j2
2 [i1, i2] · · ·x

jk
k [ik−1, 1]. (4)

Equations (3) and (4) have nk and nk−1 terms. Putting them both together, we
have that T [x1, . . . , xk] have n

2k−1 summands. This already have O(nk) terms;
however, we need to make sure that each term in the summation defines a rank-1
tensor.

For each m ∈ {1, . . . , nk} define

Tm[x1, . . . , xk] = xj11 [1, i1]x
j2
2 [i1, i2] · · ·x

jk
k [ik−1, 1], (5)

for some j1, . . . , jk, i1, . . . , xk−1 that directly corresponds tom (fix some bijection
between m and j1, . . . , jk, i1, . . . , xk−1). Then, let y1, . . . , yn×n ∈ {0, 1}n×n be
an enumeration of all n×n boolean matrices. For instance, y1 is the all-0 matrix,
and yn×n is the all-1 matrix. Define vectors

|v1〉 =
(

yj11 [1, i1], . . . , y
j1
2n×n [1, i1]

)

and |vk〉 =
(

yjk1 [ik−1, 1], . . . , y
jk
2n×n [ik−1, 1]

)

;

and for r = 2, . . . , k − 1 define

|vr〉 =
(

yj11 [ir−1, r], . . . , y
jk
2n×n [ir−1, r]

)

.

Note that each vector has 2n×n components, and are indexed by the set of n×n
boolean matrices. If we pick k matrices yi1 , . . . , yik , we get that

Tm[yi1 , . . . , yik ] = yj1i1 [1, i1] . . . , y
jk
i1
[ik−1, 1]. (6)

This way, Tm = |v1〉 ⊗ |v2〉 ⊗ · · · ⊗ |vk〉 for all m. Thus, Tm has rank 1, and

T =
∑n2k−1

m=1 Tm.
To see that Tm is indeed a rank-1 tensor, assume that rank(Tm) > 1. Then (6)

has at least one extra summand. That extra summand can only come from (4) or
(3). It cannot be from (4) because that is the definition of matrix multiplication.
If it were from (3), it would violate the assumption that each matrix xi has rank
at most n, thus, yielding a contradiction. ⊓⊔

5 Concluding Remarks

In this paper we studied strong quantum nondeterministic communication com-
plexity in multiparty protocols. In particular, we showed that i) strong quantum
nondeterministic NOF communication complexity is upper-bounded by the log-
arithm of the rank of the nondeterministic communication tensor; ii) strong



quantum nondeterministic NIH communication complexity is lower-bounded by
the logarithm of the rank of the nondeterministic communication tensor. These
results naturally generalizes previous work by de Wolf [17]. Moreover, the lower
bound on NIH is also a lower bound for quantum exact NIH communication.
This fact was used to show a Ω(n+ log k) lower bound for the generalized inner
product function.

We also showed an exponential separation between quantum strong nonde-
terministic communication and classical nondeterministic communication in the
NOF model. To our knowledge, this is the first separation for a total function
in any multiparty model. It remains as an open problem, a separation (of any
kind) between other multiparty models, e.g., bounded-error, NIH, etc.

In order to prove strong lower bounds using tensor-rank in NIH, we need
stronger construction techniques for tensors. The fact that computing tensor-
rank isNP-complete suggests that this could be a very difficult task. Alternatives
for finding lower bounds on tensor-rank include computing the norm of the
communication tensor, or a hardness result for approximating tensor-rank.
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A Rank Lower Bound on GIPk

Lemma 16. nrank(GIPk) ≥ (2n − 1)k/2.

Proof. First, we start by generalizing the concept of rows and columns for ten-
sors. Define a fiber to be a vector obtained by fixing every index except by one.
Thus, a matrix column is a mode-1 fiber, and a row is a mode-2 fiber. For order-3
tensors, we have columns, rows and tubes, and so on for higher order tensors.
In general, a mode-i fiber is a vector obtained by fixing every but except the ith

index. In the same way we define a slice to be a two-dimensional section of T
obtained by fixing all but two indices.

Here we will consider a particular form of matrization. Let T ∈ Cn1×···×nk

be an order-k tensor, with ni = 2n for every i. The i-mode unfolding of T , de-
noted T(i), is the matrix obtained by arranging the i-mode fibers as columns.
The permutations of the columns of T(i) is not important, as long as the corre-
sponding operations remain consistent [6]. Define the i-rank of T as ranki(T ) =
rank(T(i)). It is trivial that ranki(T ) ≤ rank(T ) for every i [8].

Now we proceed with the proof. Let T be the order-k communication tensor
for GIPk. Let MIPn

be the communication matrix for GIP2, i.e., the 2-party
inner product function on n bits. It is well known that rank(MIPn

) = 2n − 1
(cf. [7, Example 1.29]).

Fix the x′3, . . . , x
′
k inputs to be the all-1 strings and consider the (x′3, . . . , x

′
k)-

slice of T denoted Tx′

3...x
′

k
. Then rank(Tx′

3...x
′

k
) = rank(MIPn

) = 2n−1, because
by fixing x3, . . . , xk to all 1s, the entries of T become 〈x1|x2〉 for all x1, x2 ∈
{0, 1}n.

Let x(i) denote the string x with the ith bit flipped. For i = 3, . . . , k consider
the slice T

x′

3...x
′

k−1x
′(i)
k

of T . Then

T
x′

3...x
′

k−1x
′(i)
k

[x1, x2] = 〈x1|x2〉 − x1ix2i,



where the non-zero entries agrees with the non-zero entries ofMIPn−1 by deleting
the ith bits of x1 and x2. Thus, rank(Tx′

3...x
′

k−1x
′(i)
k

) = (2n − 1)/2.

The 1-mode unfolding of T is obtained by fixing every index except x1. Thus

T(1) =
[

Tx′

3...x
′

k
T
x′

3...x
′(3)
k

· · · T
x′

3...x
′(k)
k

· · ·
]

,

with 2(k−1)n columns. We known that Tx′

3...x
′

k
and T

x′

3...x
′(i)
k

for each i = 3, . . . , k

have (2n − 1) and (2n − 1)/2 linearly independent columns respectively. Also,
each of these columns are pair-wise linearly independent. Thus, rank1(T ) ≥
(2n − 1)k/2, which implies rank(T ) ≥ (2n − 1)k/2. ⊓⊔

B Proofs of Technical Lemmas

B.1 Proof of Lemma 11

If f(y, z) = 0 then v(y, z) = for all αu, βv. If f(y, z) 6= 0 there exists (u′, v′) such
that v(y, z) 6= 0. Here we use the same arguments given by de Wolf [17], i.e., we
show that v(y, z) = 0 happens with small probability. In fact, having families
of vectors with different dimensions does not affect the argument. Consider the
situation where all αu and βv were chosen except αu′ and βv′ . Write v(y, z) in
terms of these two coefficients

v(y, z) = c0αu′βv′ + c1αu′ + c2βv′ + c3,

where c0 =
∑r

i=1 Ai(y)u′Bi(z)v′ 6= 0. If we fix αu′ then, v(y, z) is a linear
equation with at most one solution (zero). Therefore, we have at most 22n+1 · 1
ways of choosing αu′ and βv′ such that v(y, z) = 0. Thus

Pr[v(y, z) = 0] ≤
22n+1

(22n+1)2
<

22n+2

(22n+1)2
= 2−2n.

By the union bound

Pr[∃(y, z) ∈ f−1(1) s.t. v(y, z) = 0] ≤
∑

(x,y)∈f−1(1)

Pr[v(y, z) = 0] < 22n·2−2n = 1.

The following is a probabilistic method argument. Since the above probability is
strictly less than 1, there exists with positive probability sets {a1(y), . . . , ar(y)}
and {b1(z), . . . , br(z)} such that for every (x, y) ∈ f−1(1) we have v(y, z) 6= 0.

B.2 Proof of Lemma 12

Let T be a nondeterministic tensor for f with nrank(f) = r. We divide the
proof in two cases.

Even k: Fix two players, say P1 (Alice) and Pk (Bob). Also fix some matrization
of T , i.e., letM be such matrization and consider it as an operatorM : Hk/2+1⊗



· · · ⊗ Hk → H1 ⊗ · · · ⊗ Hk/2. Thus M is a 2kn/2 × 2kn/2-matrix that maps
elements from the Hk/2+1 ⊗ · · · ⊗Hk subspace to the H1 ⊗ · · · ⊗Hk/2 subspace.
Let also M = UΣV be the singular value decomposition of M such that U, V
are 2kn/2 × 2kn/2 unitary matrices, and Σ is a 2kn/2 × 2kn/2 diagonal matrix
containing the singular values of M in the diagonal. The number of singular
values is at most rank(M) ≤ r.

Bob computes the state |φ1···k/2〉 = c1···k/2ΣV |x1, . . . , xk/2〉 where c1···k/2 is
some normalizing constant that depends on x1, . . . , xk/2. Since only the first en-
tries of Σ are non-zero, |φ1···k/2〉 has at most r non-zero entries, so the state can
be compressed using log r qubits8. Bob send these qubits to Alice. Alice then
computes U |φ1···k/2〉 and measure that state. If Alice observes xk/2+1, . . . , xk
then she puts a 1 on the qubit channel, and otherwise she puts a 0. The proba-
bility of Alice putting a 1 on the channel is
∣

∣〈xk/2+1, . . . , xk|U |φ1···k/2〉
∣

∣

2
= |c1...,k/2|

2
∣

∣〈xk/2+1, . . . , xk|UΣV |x1, . . . , xk/2〉
∣

∣

2

= |c1...,k/2|
2
∣

∣〈xk/2+1, . . . , xk|M |x1, . . . , xk/2〉
∣

∣

2

= |c1...,k/2|
2 |M [x1, . . . , xk]|

2

= |c1...,k/2|
2 |T [x1, . . . , xk]|

2
.

Since T [x1, . . . , xk] is non-zero if and only if f(x1, . . . , xk) = 1, this probability
will be positive if and only if f(x1, . . . , xk) = 1. Thus, this is a nondeterministic
protocol with total cost log r + 1.

Odd k: To use the protocol given in the even case, we add an extra degree of
freedom to T .

Lemma 17. If T is an order-k tensor with rank r then, there exists a tensor T ′

of order k+1 with rank r where T [x1, . . . , xk] = T ′[x1, . . . , xkxk+1] for all xk+1.

By the above lemma we have that T ′[x1, . . . , xkxk+1] = 0 if and only if
f(x1, . . . , xk) = 0 for any given xk+1. See Subsection B.3 for a proof.

Before the protocol starts, each player knows T ′ (which has even order) and
its matrization M ′. We fix two players, P1 (Alice) and Pk (Bob), and they can
now use the protocol for even k.

B.3 Proof of Lemma 17

Let T =
∑r

i=1 |v
i
1〉 · · · |v

i
k〉 for some family of d-dimensional vectors. Define T ′ =

∑r
i=1 |v

i
1〉 · · · |v

i
k〉|v

i
k+1〉 where each |vik+1〉 is the all-1 vector. Thus, component-

wise we have that

T [x1, . . . , xk] =

r
∑

i=1

vi1(x1) · · · v
i
k(xk),

8 A n dimensional vector can be encoded as a quantum state with log n qubits by
observing that a k-qubit state is a 2k-dimensional vector. This fact was used by Raz
to show an exponential separation between classical and quantum 2-party commu-
nication [13].



and

T ′[x1, . . . , xkxk+1] =

r
∑

i=1

vi1(x1) · · · v
i
k(xk)v

i
k+1(xk+1),

where vik+1(xk+1) = 1 for all i and for all inputs xk+1. Then T
′[x1, . . . , xkxk+1] =

∑r
i=1 v

i
1(x1) · · · v

i
k(xk) and T

′[x1, . . . , xkxk+1] = T [x1, . . . , xk] for any xk+1.
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