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Abstract

In this paper we study quantum nondeterminism in multiparty communication. There are three (pos-
sibly) different types of nondeterminism in quantum computation: i) strong, ii) weak with classical proofs,
and iii) weak with quantum proofs. Here we focus on the first one. A strong quantum nondeterministic
protocol accepts a correct input with positive probability, and rejects an incorrect input with probability
1. In this work we relate strong quantum nondeterministic multiparty communication complexity to
the rank of the communication tensor in the Number-On-Forehead and Number-In-Hand models. In
particular, by extending the definition proposed by de Wolf to nondeterministic tensor-rank (nrank), we
show that for any boolean function f when there is no prior shared entanglement between the players, 1)
in the Number-On-Forehead model, the cost is upper-bounded by the logarithm of nrank(f); 2) in the
Number-In-Hand model, the cost is lower-bounded by the logarithm of nrank(f). Furthermore, we show
that when the number of players is o(log log n) we have that NQP * BQP for Number-On-Forehead
communication.

Keywords: communication complexity, multiparty communication, quantum computation, quantum non-
determinism, tensor rank

1 Introduction

Nondeterminism plays a fundamental role in complexity theory. For instance, the P vs NP problem asks
if nondeterministic polynomial time is strictly more powerful than deterministic polynomial time. Even
though nondeterministic models are unrealistic, they can give insights into the power and limitations of
realistic models (i.e., deterministic, random, etc.).

There are two ways of defining a nondeterministic machine, using randomness or as a proof system:
a nondeterministic machine i) accepts a correct input with positive probability, and rejects an incorrect
input with probability one; or ii) is a deterministic machine that receives besides the input, a proof or
certificate which exists if and only if the input is correct. For classical machines (i.e., machines based on
classical mechanics), these two notions of nondeterminism are equivalent. However, in the quantum setting
they can be different. In fact, these two notions give rise to (possibly) three different kinds of quantum
nondeterminism. In strong quantum nondeterminism, the quantum machine accepts a correct input with
positive probability. In weak quantum nondeterminism, the quantum machine outputs the correct answer
when supplied with a correct proof, which could be either classical or quantum.

The study of quantum nondeterminism in the context of query and communication complexities started
with de Wolf [dW00]. In particular, de Wolf [dW00, dW03] introduced the notion of nondeterministic rank
of a matrix, which was proved to completely characterize strong quantum nondeterministic communication.
In the same piece of work, it was proved that strong quantum nondeterministic protocols are exponen-
tially stronger than classical nondeterministic protocols. Similarly, Le Gall [LG06] studied weak quantum
nondeterministic communication with classical proofs and showed a quadratic separation for a total function.

Weak nondeterminism seems a more suitable definition, mainly due to the requirement of the existence
of a proof, a concept that plays fundamental roles in complexity theory. In contrast, strong nondeterminism
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lends itself to a natural mathematical description in terms of matrix rank. Moreover, strong nondeterminism
is a more powerful model capable of simulating weak nondeterminism with classical and quantum proofs.
The reverse, if weak nondeterminism is strictly a less powerful model or not is still an open problem.

The previous results by de Wolf [dW03] and Le Gall [LG06] were on the context of 2-party communica-
tion complexity, i.e., there are two players with two inputs x, y ∈ {0, 1}n each, and they want to compute
a function f(x, y). Let rank(f) be the rank of the communication matrix Mf , where Mf [x, y] = f(x, y).
A known result by [BdW01] is d 12 log rank(f)e ≤ Q(f) ≤ D(f), where D(f) is the deterministic commu-
nication complexity of f and Q(f) the quantum exact communication complexity1. It is conjectured that
D(f) = O(logc rank) for some arbitrary constant c. This is the log-rank conjecture in communication com-
plexity, one of the biggest open problems in the field. If it holds, it will imply that Q(f) and D(f) are
polynomially related. This is in stark contrast to the characterization given by de Wolf [dW03] in terms of
the nondeterministic matrix-rank, which is defined as the minimal rank of a matrix (over the complex field)
whose (x, y)-entry is non-zero if and only if f(x, y) = 1.

1.1 Contributions

In this paper, we continue with the study of strong quantum nondeterminism in the context of multiparty
protocols. Let k ≥ 2 be the number of players evaluating a function f(x1, . . . , xk) where each xi ∈ {0, 1}n.
The players take turns predefined at the beginning of the protocol. Each time a player sends a bit (or qubit
if it is a quantum protocol), he sends it to the player who follows next. The computation of the protocol ends
when the last player computes f . The communication complexity of the protocol is defined as the minimum
number of bits that need to be transmitted by the players in order to compute f(x1, . . . , xk). There are two
common ways of communication: The Number-On-Forehead model (NOF), where player i knows all inputs
except xi; and, Number-In-Hand model (NIH), where player i only knows xi. Also, any protocol naturally
defines a communication tensor Tf , where Tf [x1, . . . , xk] = f(x1, . . . , xk).

Tensors are natural generalizations of matrices. They are defined as multi-dimensional arrays while
matrices are 2-dimensional arrays. In the same way, the concept of matrix rank extends to tensor rank.
However, the nice properties of matrix rank do not hold anymore for tensors; for instance, the rank could be
different if the same tensor is defined over different fields; see the survey paper by Kolda and Bader [KB09].

We extend the concept of nondeterministic matrices to nondeterministic tensors. The nondeterministic
tensor rank, denoted nrank(f), is the minimal rank of a tensor (over the complex field) whose (x1, . . . , xk)-
entry is non-zero if and only if f(x1, . . . , xk) = 1.

Let NQNOFk and NQNIHk denote the k-party strong quantum nondeterministic communication complex-
ity without prior shared entanglement for the NOF and NIH models respectively.

Theorem 1. Let f : ({0, 1}n)k → {0, 1}, then NQNOFk (f) ≤ dlog nrank(f)e + 1, and NQNIHk (f) ≥
dlog nrank(f)e+ 1.

This theorem generalizes previous results by de Wolf [dW03]. Also, since NQNIHk is a lower bound for
exact NIH quantum communication2, denoted QNIHk , we obtain the following corollary:

Corollary 2. dlog nrank(f)e+ 1 ≤ QNIHk (f).

The proof of Theorem 1 is given in Section 3. Even though it is a generalization of the techniques of
[dW03], it requires technical insight. The proof does not generalize in an straightforward manner and it
does not yield the same characterization as in the 2-player case. For example, NQNOFk cannot be lower-
bounded in general by the tensor rank. To see this consider the k-party equality function EQ given by
EQk(x1, . . . , xk) = 1 if and only if x1 = · · · = xk. A nondeterministic tensor for EQk is superdiagonal3 with
non-zero entries in the main diagonal, and 0 anywhere else. Thus, it has 2n rank, and implies by Theorem
1 that NQNOFk (EQk) ≤ n + 1 and NQNIHk (EQk) ≥ n + 1. In particular, the communication complexity
of EQk is upper-bounded by O(n) in the NOF model. However, it is easy to show that in the NOF model
there exists a classical protocol for EQk with a cost of 2 bits4. Hence, the characterization for the 2-player

1All logarithms in this paper are base 2.
2An exact quantum protocol accepts a correct input and rejects an incorrect input with probability 1.
3An order-k tensor is superdiagonal when T [x1, . . . , xk] 6= 0 if and only if x1 = · · ·xk.
4In the blackboard model (explained in Section 2) for k ≥ 3, let the first player check if x2, . . . , xk are equal. If they are, he

sends a 1 bit to the second player, who will check if x1, x3, . . . , xk are equal. If his strings are equal and he received a 1 bit
from the first player, he sends a 1 bit to all players indicating that all strings are equal. In the message-passing model the same
protocol has a cost of O(k) bits.
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case does not extends to the multiplayer case. In contrast, the lower bound on NQNIHk (EQk) that follows
from Theorem 1 is not that loose; using the trivial protocol, where all players send their inputs, we have
that NQNIHk (EQk) = O(kn). Thus, Theorem 1 yields a tight bound for EQk whenever k = O(1). However,
whether the same phenomenon extends to all functions in the NIH model is unknown. See below in this
section for some consequences on constructing tensors with high rank.

A more interesting function is the generalized inner product GIPk(x1, . . . , xk) = (
∑k
i=1

∧n
j=1 xij) mod 2.

We know that nrank(GIPk) ≥ (k − 1)2n−1 + 1 (see Section 4 for a proof). Thus, we have the following
result.

Proposition 1. NQNIHk (GIPk) ≥ n+ dlog(k − 1)e.

In NIH, using the trivial protocol, we obtain (with Corollary 2) a bound in quantum exact communication
of n+dlog(k−1)e−1 ≤ QNIHk (GIPk) ≤ (k−1)n+1. Improving the lower bound will require new techniques
for explicit construction of linear-rank tensors with important consequences to circuit lower bounds; see for
example Raz [Raz10] and the paper by Alexeev, Forbes and Tsimerman[AFT11] for state-of-the-art tensor
constructions. In general, we are still unable to upper-bound NQNIHk (f) in terms of log nrank. This way
we have a new log-rank conjecture for strong quantum nondeterministic communication complexity.

Although the bounds given by Theorem 1 could be loose for some functions, they are good enough for
other applications. For instance, we show in Section 5 a separation between the NOF models of strong
quantum nondeterminism and bounded-error quantum communication. We do so by applying Theorem 1 to
a total function explicitly constructed for this task. This result could be considered as the quantum analog
of a separation previously proved in [DPV09, CA08, GS10] between classical nondetermistic and randomized
NOF communication.

2 Preliminaries

In this paper we assume basic knowledge of communication complexity and quantum computing. We refer
the interested reader to the books by [KN97] and [NC00] respectively. In this section we give a small review
of tensors and quantum communication.

2.1 Tensors

A tensor is a multi-dimensional array defined over some field. An order-d tensor is an element of the tensor
product of d vector spaces.

Definition 1 (Simple Tensor). Let |vi〉 ∈ V ni be an ni-dimensional vector for 1 ≤ i ≤ d on some vector
space V ni . The jthi component of |vi〉 is denoted by vi(ji) for 1 ≤ ji ≤ ni. The tensor product of {|vi〉} is the
tensor T ∈ V n1 ⊗ · · · ⊗ V nd whose (j1, . . . , jd)-entry is v1(j1) · · · vd(jd), i.e., T [j1, . . . , jd] = v1(j1) · · · vd(jd).
Then T = |v1〉 ⊗ · · · ⊗ |vd〉 and we say T is a rank-1 or simple order-d tensor. We also say that a tensor is
of high order if d ≥ 3.

From now on, we will refer to high-order tensors simply as tensors, and low-order tensor will be matrices,
vectors, and scalars as usual.

It is important to note that the set of simple tensors spans the space V n1 ⊗ · · · ⊗ V nd , and hence, there
exist tensors that are not simple. This leads to the definition of rank.

Definition 2 (Tensor Rank). The rank of a tensor is the minimum r such that T =
∑r
i=1Ai for simple

tensors Ai.

This agrees with the definition of matrix rank. The complexity of computing tensor rank was studied
by H̊astad [Ha90] who showed that it is NP -complete for any finite field, and NP -hard for the rational
numbers.

The process of arranging the elements of an order-k tensor into a matrix is known as matrization. Since
there are many ways of embedding a tensor into a matrix, in general the permutation of columns is not
important, as long as the corresponding operations remain consistent; see Kolda and Bader[KB09].

3



2.2 Strong Quantum Nondeterministic Multiparty Communication

In a multiparty communication protocol there are k ≥ 3 players trying to compute a function f . Let
f : Xk → {0, 1} be a function on k strings x = (x1, . . . , xk), where each xi ∈ X and X = {0, 1}n. There are
two common ways of communication between the players: The Number-In-Hand (NIH) and the Number-
On-Forehead (NOF) models. In NIH, player i only knows xi, and in NOF, player i knows all inputs except
xi. First we review the classical definition.

Definition 3 (Classical Nondeterministic Protocol). Let k be the number of players. In order to communi-
cate, the players take turns in an order predefined at the beginning of the protocol. Each player sends exactly
one bit to the player that follows next. The computation of the protocol ends when the last player computes
f . If f(x) = 1 then, the protocol accepts x with positive probability; if f(x) = 0, the protocol rejects x with
probability 1. The cost of the protocol is the total number of bits communicated.

Hence, the classical nondeterministic multiparty communication complexity, denoted Nk(f), is defined as
the minimum number of bits required to compute f(x). If the model is NIH or NOF, we add a superscript
NNIH
k (f) or NNOF

k (f) respectively. Note that, the definition of the multiparty protocols in this paper
(classical and quantum) are by message-passing, i.e., a player sends a bit only to the player that follows
next. This is in contrast to the more common blackboard model. In this latter model, when a player sends
a bit, he does so by broadcasting it and reaching all players immediately. Clearly, any lower bound on the
blackboard model is a lower bound for the message-passing model in this paper.

To model NOF and NIH in the quantum setting, we follow the work of Lee, Schechtman, and Shraibman
[LSS09], originally defined by Kerenidis [Ker09].

Definition 4 (Quantum Multiparty Protocol). Let k be the number of players in the protocol. Define the
Hilbert space by H1 ⊗ · · · ⊗ Hk ⊗ C, where each Hi is the Hilbert space of player i, and C is the one-qubit
channel. To communicate the players take turns predefined at the beginning of the protocol. On the turn of
player i:

1. in NIH, an arbitrary unitary that only depends on xi is applied on Hi ⊗ C, and acts as the identity
anywhere else;

2. in NOF, an arbitrary unitary that depends on all inputs except xi is applied on Hi ⊗ C, and acts as
the identity anywhere else.

The cost of the protocol is the number of rounds.

The initial state is a pure state |0〉⊗ · · · ⊗ |0〉 |0〉 without any prior entanglement. If the final state of the
protocol on input x1, . . . , xk is |ψ〉, it outputs 1 with probability p(x1, . . . , xk) = 〈ψ|Π1 |ψ〉, where Π1 is a
projection onto the |1〉 state of the channel.

We say that T is a nondeterministic communication tensor if T [x1, . . . , xk] 6= 0 if and only if f(x1, . . . , xk) =
1. Thus, T can be obtained by replacing each 1-entry in the original communication tensor by a non-zero
complex number. We also define the nondeterministic rank of f , denoted nrank(f), to be the minimum
rank over the complex field among all nondeterministic tensors for f .

Definition 5 (Strong Quantum Nondeterministic Protocol). A k-party strong quantum nondeterministic
communication protocol outputs 1 with positive probability if and only if f(x) = 1.

The k-party quantum nondeterministic communication complexity, denoted NQk(f), is the cost of an
optimum (i.e., minimal cost) k-party quantum nondeterministic communication protocol. If the model is
NIH or NOF, we add a superscript NQNIHk (f) or NQNOFk (f) respectively. From the definition it follows
that NQk is a lower bound for the exact quantum communication complexity Qk for both NOF and NIH.

The following lemma, given in Lee, Schechtman, and Shraibman [LSS09], generalizes a previous observa-
tion made by Yao [Yao93] and Kremer [Kre95] on 2-party protocols.

Lemma 3. After ` qubits of communication on input (x1, . . . , xk), the state of a quantum protocol without
prior shared entanglement can be written as∑

m∈{0,1}`

∣∣A1
m(x1)

〉 ∣∣A2
m(x2)

〉
· · ·
∣∣Akm(xk)

〉
|m`〉 ,

where m` is the `-th bit in m, and each vector |Atm(xt)〉 corresponds to the t-th player which depends on m
and the input xt. If the protocol is NOF then xt = (x1, . . . , xt−1, xt+1, . . . , xk); if it is NIH then xt = (xt).
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3 Proof of Theorem 1

3.1 Lower Bound

The arguments in this section are generalizations of a previous result by [dW03] from 2-party to k-party
communication for k ≥ 3. First we need the following technical lemma (see below for a proof).

Lemma 4. If there exist k families of vectors such that {
∣∣Ai1(xi)

〉
, . . . ,

∣∣Air(xi)〉} ⊆ Cd for all i with 1 ≤ i ≤ k
and xi ∈ {0, 1}n given that

r∑
i=1

∣∣A1
i (x1)

〉
⊗ · · · ⊗

∣∣Aki (xk)
〉

= 0 iff f(x1, . . . , xk) = 0,

then nrank(f) ≤ r.

Now we proceed to prove the lower bound as stated in Theorem 1.

Lemma 5. NQNIHk (f) ≥ dlog nrank(f)e+ 1

Proof. Consider a NIH `-qubit protocol for f . By Lemma 3 its final state is

|ψ〉 =
∑

m∈{0,1}`

∣∣A1
m(x1)

〉
· · ·
∣∣Akm(xk)

〉
|m`〉 . (1)

Assume all vectors have the same dimension d. Let S = {m ∈ {0, 1}` : m` = 1}, and consider only the part
of the state that is projected onto the 1-state of the channel,

|φ(x1, . . . , xk)〉 =
∑
m∈S

∣∣A1
m(x1)

〉
· · ·
∣∣Akm(xk)

〉
|1〉 . (2)

The vector |φ(x1, . . . , xk)〉 is 0 if and only if f(x1, . . . , xk) = 0. Thus, by Lemma 4, we have that
nrank(f) ≤ |S| = 2`−1, which implies the lower bound.

Proof of Lemma 4. Let k ≥ 3. We divide the proof in two cases, when k is odd and even.

Even k: There are k size-r families of d-dimensional vectors. We will construct two new families of vectors
denoted D and F . First, divide the k families in two groups of size k/2. Then, tensor each family in one
group together in the following way: for each family {

∣∣Ai1(xi)
〉
, . . . ,

∣∣Air(xi)〉} for 1 ≤ i ≤ k/2 construct a
new family

D =


k/2⊗
j=1

∣∣∣Aj1(xj)
〉
, . . . ,

k/2⊗
j=1

∣∣Ajr(xj)〉


=

{
|A1(y)〉 , . . . , |Ar(y)〉

}
,

where y = (x1, . . . , xk/2). Do the same to construct F for k/2 + 1 ≤ i ≤ k obtaining

F =


k⊗

j=k/2+1

∣∣∣Aj1(xj)
〉
, . . . ,

k⊗
j=k/2+1

∣∣Ajr(xj)〉


=

{
|B1(z)〉 , . . . , |Br(z)〉

}
,

where z = (xk/2+1, . . . , xk). Thus, D and F will become two size-r family of vectors, each vector with
dimension dk/2. Then apply the theorem for k = 2 from [dW03] on these two families and the lemma
follows.

Odd k: Here we can use the same approach by constructing again two new families D and F by dividing the
families in two groups of size bk/2c and dk/2e. However, although both families will have the same number
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of elements r, the dimension of the vectors will be different. In fact, the dimension of the vectors in one
family will be d′ = dbk/2c and in the other d′+ 1. So, in order to prove the theorem we will consider having
two families {|A1(y)〉 , . . . , |Ar(y)〉} ⊆ Cd′ and {|B1(z)〉 , . . . , |Br(z)〉} ⊆ Cd′+1, both with cardinality r.

Denote the entry of each vector |Ai(y)〉 , |Bi(z)〉 by Ai(y)u and Bi(z)v respectively for all (u, v) ∈
[d′] × [d′ + 1]. Note that, if f(y, z) = 0 then

∑r
i=1Ai(y)uBi(z)v = 0 for all (u, v); if f(y, z) = 1 then∑r

i=1Ai(y)uBi(z)v 6= 0 for some (u, v). This holds because each vector |Ai(y)〉 and |Bi(z)〉 are the set of
vectors |Ati(xt)〉 tensored together and separated in two families of size bk/2c and dk/2e respectively.

The following lemma was implicitly proved by de Wolf [dW03] for families of vectors with the same
dimension. However, we show that the same arguments hold even if the families have different dimensionality
(see A for a proof).

Lemma 6. Let I be an arbitrary set of real numbers of size 22n+1. Let α1, . . . , αd′ and β1, . . . , βd′+1 be
numbers from I, and define the quantities

ai(y) =

d′∑
u=1

αuAi(y)u and bi(z) =

d′+1∑
v=1

βvBi(z)v.

Also let

v(y, z) =
r∑
i=1

ai(y)bi(z) =

d′∑
u=1

d′+1∑
v=1

αuβv

(
r∑
i=1

Ai(y)uBi(z)v

)
.

There exists α1, . . . , αd′ , β1, . . . , βd′+1 ∈ I such that for every (y, z) ∈ f−1(1) we have v(y, z) 6= 0.

Therefore, by the lemma above we have that v(y, z) = 0 if and only if f(y, z) = 0. Now let |ai〉 and
|bi〉 be 2n-dimensional vectors indexed by elements from {0, 1}n, and let M =

∑r
i=1 |ai〉 〈bi|. Thus M is a

nondeterministic order-k tensor of rank r.

3.2 Upper Bound

The proof of the upper bound follows by fixing a proper matrization (separating the cases of odd and even
k) of the communication tensor, and then applying the 2-party protocol by de Wolf[dW03].

Lemma 7. NQNOFk (f) ≤ dlog nrank(f)e+ 1.

Proof. Let T be a nondeterministic tensor for f with nrank(f) = r. We divide the proof in two cases.

Even k: Fix two players, say P1 (Alice) and Pk (Bob). Also fix some matrization of T , i.e., let M be
such matrization and consider it as an operator M : Hk/2+1 ⊗ · · · ⊗ Hk → H1 ⊗ · · · ⊗ Hk/2. Thus M is

a 2kn/2 × 2kn/2-matrix that maps elements from the Hk/2+1 ⊗ · · · ⊗ Hk subspace to the H1 ⊗ · · · ⊗ Hk/2
subspace. Let also M = UΣV be the singular value decomposition of M such that U, V are 2kn/2 × 2kn/2

unitary matrices, and Σ is a 2kn/2×2kn/2 diagonal matrix containing the singular values of M in the diagonal.
The number of singular values is at most rank(M) ≤ r.

Bob computes the state
∣∣φ1···k/2〉 = c1···k/2ΣV

∣∣x1, . . . , xk/2〉 where c1···k/2 is some normalizing constant
that depends on x1, . . . , xk/2. Since only the first entries of Σ are non-zero,

∣∣φ1···k/2〉 has at most r non-zero
entries, so the state can be compressed using log r qubits5. Bob sends these qubits to Alice. Alice then
computes U

∣∣φ1···k/2〉 and measures that state. If Alice observes xk/2+1, . . . , xk then she puts a 1 on the
qubit channel, and otherwise she puts a 0. The probability of Alice putting a 1 on the channel is∣∣〈xk/2+1, . . . , xk

∣∣U ∣∣φ1···k/2〉∣∣2
= |c1...,k/2|2

∣∣〈xk/2+1, . . . , xk
∣∣UΣV

∣∣x1, . . . , xk/2〉∣∣2
= |c1...,k/2|2

∣∣〈xk/2+1, . . . , xk
∣∣M ∣∣x1, . . . , xk/2〉∣∣2

= |c1...,k/2|2 |M [x1, . . . , xk]|2

= |c1...,k/2|2 |T [x1, . . . , xk]|2 .
5A n dimensional vector can be encoded as a quantum state with logn qubits by observing that a k-qubit state is a 2k-

dimensional vector. This fact was used by Raz [Raz99] to show an exponential separation between classical and quantum
2-party communication.
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Since T [x1, . . . , xk] is non-zero if and only if f(x1, . . . , xk) = 1, this probability will be positive if and only
if f(x1, . . . , xk) = 1. Thus, this is a nondeterministic protocol with total cost log r + 1.

Odd k: To use the protocol given in the even case, we add an extra degree of freedom to T .

Lemma 8. If T is an order-k tensor with rank r then, there exists a tensor T ′ of order k + 1 with rank r
where T [x1, . . . , xk] = T ′[x1, . . . , xkxk+1] for all xk+1.

By the above lemma we have that T ′[x1, . . . , xkxk+1] = 0 if and only if f(x1, . . . , xk) = 0 for any given
xk+1. See A for a proof.

Before the protocol starts, each player knows T ′ (which has even order) and its matrization M ′. We fix
two players, P1 (Alice) and Pk (Bob), and they can now use the protocol for even k.

4 Rank Lower Bound for the Generalized Inner Product

In this section we give a lower bound on the nondeterministic rank of the Generalized Inner Product (GIP)
function.

Lemma 9. nrank(GIPk) ≥ (k − 1)2n−1 + 1.

Proof. First, we start by generalizing the concept of rows and columns for tensors. Define a fiber to be a
vector obtained by fixing every index except by one. In general, a mode-i fiber is a vector obtained by fixing
all except the ith index. Thus, a matrix column is a mode-1 fiber, and a row is a mode-2 fiber. For order-3
tensors, we have columns, rows and tubes, and so on for higher order tensors. In the same way we define a
slice to be a two-dimensional section of T obtained by fixing all but two indices.

Here we will consider a particular form of matrization. Let T ∈ Cn1×···×nk be an order-k tensor, with
ni = 2n for every i. The i-mode unfolding of T , denoted T(i), is the matrix obtained by arranging the i-mode
fibers as columns. The permutations of the columns of T(i) is not important, as long as the corresponding
operations remain consistent; see Kolda and Bader [KB09]. Define the i-rank of T as ranki(T ) = rank(T(i)).
It is trivial that ranki(T ) ≤ rank(T ) for every i; see Lathauwer, de Moore, and Vandewalle [dLdMV00].

Now we proceed with the proof. Let T be the order-k nondeterministic communication tensor for GIPk.
Let MIPn be the Boolean communication matrix for GIP2, i.e., the 2-party inner product function on n bits.
It is well known that rank(MIPn

) = 2n − 1; see Example 1.29 in Kushilevitz and Nisan[KN97]. The same
holds even if MIPn

is defined over C.
Let 1 denote the string of length n with only 1s in it, and let T ′ be the (x′3, . . . , x

′
k)-slice of T where x′i = 1

for i = 3, . . . , k. In this way T ′[x1, x2] 6= 0 whenever 〈x1| x2〉 = 1 and hence rank(T ′) = rank(MIPn) = 2n−1.

Let x(i) denote the string x with the ith bit flipped. For i = 3, . . . , k consider the (x′3, . . . , x
′(i)
k )-slice of

T denoted T ′i where x
′(i)
k is the string 1 with the ith bit flipped to 0. Then,

T ′i [x1, x2] 6= 0 whenever 〈x1| x2〉 − x1ix2i = 1. (3)

Note that the non-zero entries of T ′i for any i agrees with the non-zero entries of MIPn−1
, where MIPn−1

is
obtained by deleting the ith bits of x1 and x2 in MIPn

for all x1 and x2. Thus, rank(T ′i ) = 2n−1 − 1 for all
i = 3, . . . , k.

The 1-mode unfolding of T is obtained by fixing every index except x1. Thus

T(1) =
[
T ′ T ′3 · · · T ′k · · ·

]
,

with 2(k−1)n columns, and the right part of T(1) (after T ′k) is filled with the remaining slices of T that are
different to T ′ and each T ′i . We known that T ′ and each T ′i have (2n − 1) and 2n− − 1 linearly independent
columns respectively. Also, each of these columns are pair-wise linearly independent. To see this, just take
take any two slices T ′i and T ′j for any i 6= j, fix one column in each and compute the inner product according

to Equation 3. Thus, rank(T ) ≥ rank1(T ) ≥ 2n − 1 + (k − 2)(2n−1 − 1) = (k − 1)2n−1 + 1.

5 Some Separations for Complexity Classes

In this section we take a complexity-theoretic view of quantum multiparty communication complexity. For
this model we consider as “efficient communication” when a protocol computes a function with polylog(n)
bits [BFS86].
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Definition 6. We define the following communication complexity classes:

1. BPP cc is the class of boolean functions with a classical bounded-error protocol of cost polylog(n);
2. BQP cc is the class of boolean functions with a quantum bounded-error protocol of cost polylog(n);
3. NQP cc is the class of boolean functions with a quantum strong nondeterministic protocol of cost

polylog(n).

In the following we present two theorems that give separations between the complexity classes defined
above. First, for better understanding, we start by showing a weaker nevertheless easier to prove result, a
separation between NQP cc and BPP cc. Then we use that result to separate NQP cc from BQP cc. Although
this latter result can be proved without the need of the former, starting with the separation from BPP cc

seems easier to understand.

Theorem 10. For NOF communication we have that NQP cc * BPP cc whenever the number of players
k = o(log log n).

Proof. To prove this we exhibit a function f : Xk → {0, 1} such that NQNOFk (f) = O(log n) and Rε,k(f) =

Ω(n(1+1/k)/4/(k22
k/2

)), where Rε denotes the bounded-error NOF communication complexity with error
probability upper-bounded by ε. This will give the separation whenever k = o(log log n1/4).

In particular, we analyze the following total function. Let x1, . . . , xk ∈ X with X = {0, 1}n, then

f(x1, . . . , xk) =

{
1 if |x1 ∧ · · · ∧ xk| 6= 1
0 if |x1 ∧ · · · ∧ xk| = 1

, (4)

where ∧ denotes the bit-wise AND and |x| is the Hamming weight of x. This function was previously studied
by de Wolf [dW03] in the 2-player case.

Upper Bound: For each i let xi = xij1 . . . xijn and let Tj be an order-k tensor where Tj [x1, . . . , xk] = 1 if
x1j ∧ · · · ∧ xkj = 1 and Tj [x1, . . . , xk] = 0 otherwise. Note that for each j the tensor Tj has rank 1. Define
the order-k tensor T by

T [x1, . . . , xk] =

n∑
j=1

Tj [x1, . . . , xk]− 1.

This tensor has rank n. Also T is a nondeterministic communication tensor for f since T [x1, . . . , xk] = 0 if
and only if |x1 ∧ · · · ∧ xk| = 1. Hence, by Theorem 1 the upper bound follows.

Lower Bound: To prove the lower bound we will use, without loss of generality, the sign version of Equation
(4), i.e.,

f(x1, . . . , xk) =

{
1 if |x1 ∧ · · · ∧ xk| 6= 1
−1 if |x1 ∧ · · · ∧ xk| = 1

. (5)

We make use of a result by Lee and Shraibman [LS09]. Let µα be the approximate cylinder intersection

norm as defined in [LS09], and let d̃eg(f) be the approximate degree of a boolean function f [NS92].

Lemma 11. Let fn : {0, 1}n → {−1, 1} be a symmetric6 function, and let Ff : ({0, 1}n)k → {−1, 1} be a
function (not necessarily symmetric) defined by Ff (x1, . . . , xk) = f(x1 ∧ · · · ∧ xk). Let α > 1/(1 − 2ε) and

set c = 2e(k − 1)22
k−1

, then

R1/4,k(Ffn) = Ω(logµα(Ffn)) = Ω

(
d̃eg(fm)

2k

)
,

where n = (c/d̃eg(fm))k−1mk.

Note that Lemma 11 is a generalization of [LS09, Corollary 6.1] to symmetric functions. However, as
pointed by the authors of [LS09], this generalization is straightforward and can be easily proved by following
the proof of [LS09, Corollary 6.1], and it is therefore omitted from this paper.

Define the following Hamming weight function:

w(x) =

{
1 if |x| 6= 1
−1 if |x| = 1

.

6A function is called symmetric if it only depends on the number of 1s in the input.
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This way we can write Equation 5 as f(x1, . . . , xk) = w(x1∧· · ·∧xk). Also note that w is symmetric and we
can apply Lemma 11. Together with the characterization given by Paturi [Pat92] of the approximate degree
of symmetric functions we have that

logµα(f) = Ω

(
n(1+1/k)

k22k

)
. (6)

Theorem 12. For NOF communication we have that NQP cc * BQP cc whenever the number of players
k = o(log log n).

Proof. To prove this we rely again in Equation (5) and the fact that NQNOFk (f) = O(log n). Here we

show that Qε,k(f) = Ω(n(1+1/k)/4/(k22
k/2

)− k), where Qε denotes the bounded-error NOF communication
complexity with error probability upper-bounded by ε.

Note that to prove Theorem 10 we derived a lower bound on µα. We can use the same lower bound
to prove the separation for BQP cc. In order to do that we make use of the following two results by Lee,
Schechtman, and Shraibman [LSS09]. Let γα be the approximate quantum norm as defined in [LSS09].

Lemma 13. Let T be an order-k sign-tensor, then Qε,k(T ) = Ω(log γα(T )).

Lemma 14. For every order-k tensor T , γ(T ) ≤ µ(T ) ≤ Ckγ(T ), for some absolute constant C.

Thus, by these two lemmas above and Equation 6 we have that

log γα(f) = Ω

(
n(1+1/k)

k22k
− k
)
.

6 Concluding Remarks

In this paper we studied strong quantum nondeterministic communication complexity in multiparty proto-
cols. In particular, we showed that i) strong quantum nondeterministic NOF communication complexity is
upper-bounded by the logarithm of the rank of the nondeterministic communication tensor; ii) strong quan-
tum nondeterministic NIH communication complexity is lower-bounded by the logarithm of the rank of the
nondeterministic communication tensor. These results naturally generalizes previous work by de Wolf[dW03].
Moreover, the lower bound on NIH is also a lower bound for quantum exact NIH communication. This fact
was used to show a Ω(n+ log k) lower bound for the generalized inner product function.

We also showed that NQP cc * BPP cc and NQP cc * BQP cc when the number of players is o(log log n).
It remains as an open problem to prove the same separations with an increased number of players.

In order to prove strong lower bounds using tensor-rank in NIH, we need stronger construction techniques
for tensors. The fact that computing tensor-rank is NP -complete suggests that this could be a very difficult
task. Alternatives for finding lower bounds on tensor-rank include computing the norm of the communication
tensor, or a hardness result for approximating tensor-rank.
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A Proofs of Technical Lemmas

A.1 Proof of Lemma 6

If f(y, z) = 0 then v(y, z) = for all αu, βv. If f(y, z) 6= 0 there exists (u′, v′) such that v(y, z) 6= 0. Here
we use the same arguments given by [dW03], i.e., we show that v(y, z) = 0 happens with small probability.
In fact, having families of vectors with different dimensions does not affect the argument. Consider the
situation where all αu and βv were chosen except αu′ and βv′ . Write v(y, z) in terms of these two coefficients

v(y, z) = c0αu′βv′ + c1αu′ + c2βv′ + c3,

where c0 =
∑r
i=1Ai(y)u′Bi(z)v′ 6= 0. If we fix αu′ then, v(y, z) is a linear equation with at most one zero

for each αu′ . Therefore, we have at most 22n+1 + 22n+1 − 1 = 22n+2 − 1 ways of choosing αu′ and βv′ such
that v(y, z) = 0. Thus

Pr[v(y, z) = 0] ≤ 22n+1

(22n+1)2
<

22n+2

(22n+1)2
= 2−2n.

By the union bound

Pr[∃(y, z) ∈ f−1(1) s.t. v(y, z) = 0]

≤
∑

(y,z)∈f−1(1)

Pr[v(y, z) = 0] < 22n · 2−2n = 1.

The following is a probabilistic method argument. Since the above probability is strictly less than 1, there
exists sets {a1(y), . . . , ar(y)} and {b1(z), . . . , br(z)} such that for every (y, z) ∈ f−1(1) we have v(y, z) 6= 0.

A.2 Proof of Lemma 8

Let T =
∑r
i=1

∣∣vi1〉 · · · ∣∣vik〉 for some family of d-dimensional vectors. Define the tensor T ′ =
∑r
i=1

∣∣vi1〉 · · · ∣∣vik〉 ∣∣vik+1

〉
where each

∣∣vik+1

〉
is the all-1 vector. Thus, component-wise we have that

T [x1, . . . , xk] =

r∑
i=1

vi1(x1) · · · vik(xk),

and

T ′[x1, . . . , xkxk+1] =

r∑
i=1

vi1(x1) · · · vik(xk)vik+1(xk+1),

where vik+1(xk+1) = 1 for all i and for all inputs xk+1. Then T ′[x1, . . . , xkxk+1] =
∑r
i=1 v

i
1(x1) · · · vik(xk)

and T ′[x1, . . . , xkxk+1] = T [x1, . . . , xk] for any xk+1.
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