
On Sparser Random 3SAT Refutation Algorithms

and Feasible Interpolation∗

Iddo Tzameret†

Abstract

We formalize a combinatorial principle, called the 3XOR principle, due to Feige, Kim
and Ofek [FKO06], as a family of unsatisfiable propositional formulas for which refutations
of small size in any propositional proof system that possesses the feasible interpolation
property imply an efficient deterministic refutation algorithm for random 3SAT with n
variables and Ω(n1.4) clauses. Such small size refutations would improve the current best
(with respect to the clause density) efficient refutation algorithm, which works only for
Ω(n1.5) many clauses [FO07].

We then study the proof complexity of the above formulas in weak extensions of cut-
ting planes and resolution. Specifically, we show that there are polynomial-size refutations
of the 3XOR principle in resolution operating with disjunctions of quadratic equations
(with small integer coefficients), denoted R(quad). We show that R(quad) is weakly au-
tomatizable iff R(lin) is weakly automatizable, where R(lin) is similar to R(quad) but with
linear instead of quadratic equations (introduced in [RT08]). This reduces the question
of the existence of efficient deterministic refutation algorithms for random 3SAT with n
variables and Ω(n1.4) clauses to the question of feasible interpolation of R(quad) and to
the weak automatizability of R(lin).

1 Introduction

In the well known random 3SAT model one usually considers a distribution on formulas in
conjunctive normal form (CNF) with m clauses and three literals each, where each clause
is chosen independently with repetitions out of all possible 23 ·

(

n
3

)

clauses with n variables.
The clause density of such a 3CNF is m/n. When m is greater than cn for sufficiently large
c (that is, when the clause density is greater than c) it is known that with high probability
a random 3CNF is unsatisfiable (this fact is easily proved for c ≥ 5.2).

A refutation algorithm for random kCNFs is an algorithm that receives a kCNF (with
c sufficiently large) and outputs either “unsatisfiable” or “don’t know”; if the algorithm
answers “unsatisfiable” then the kCNF is required to be indeed unsatisfiable; moreover,
the algorithm should output “unsatisfiable” with high probability (i.e., with probability
1− o(n)).

∗Supported in part by the National Basic Research Program of China Grant 2011CBA00300,
2011CBA00301, the National Natural Science Foundation of P. R. China; Grant 61033001, 61061130540,
61073174.

†Institute for Theoretical Computer Science, The Institute for Interdisciplinary Information Sciences (IIIS),
Tsinghua University, Beijing tzameret@tsinghua.edu.cn

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 70 (2013)

Refutation algorithms for random kCNFs were investigated in Goerdt and Krivelevich
[GK01] and subsequent works by Goerdt and Lanka [GL03], Friedman, Goerdt and Krivele-
vich [FGK05], Feige and Ofek [FO07] and Feige [Fei07] (among other works). The best (with
respect to the clause density) refutation algorithm to date works for random 3CNFs with at
least Ω(n1.5) clauses [FO07]. On the other hand, Feige, Kim and Ofek [FKO06] considered
efficient non-deterministic refutation algorithms (in other words, short witnesses for unsatis-
fiability of 3CNFs that can be checked for correctness in polynomial-time). They established
the current best (again, with respect to the clause density) efficient, alas non-deterministic,
refutation procedure: they showed that with probability converging to 1 a random 3CNF
with n variables and Ω(n1.4) clauses has a polynomial-size (in n) witness. It is an open prob-
lem to devise a deterministic polynomial-time (or even a quasipolynomial-time) refutation
algorithm for random 3CNFs with n variables and Ω(n1.4) clauses.

In this work we reduce the problem of devising a deterministic refutation algorithm for
random 3CNFs with Ω(n1.4) clauses to a problem in propositional proof complexity, namely
the feasible interpolation problem. Informally, the feasible interpolation property gives a way
to transform short refutations of an unsatisfiable formula A(x, y)∧B(x, z), for x, y, z pairwise
disjoint sets of variables, into small circuits that given an input α, separate the cases where
A(α, y) is satisfiable from the cases where B(α, z) is satisfiable (feasible interpolation was
proposed in [Kra94] and developed further in [Raz95, BPR97, Kra97]). We present a family of
unsatisfiable propositional formulas denoted Υn expressing a combinatorial principle whose
short refutations in any propositional proof system that possesses the feasible interpolation
property imply an efficient deterministic refutation algorithm for random 3CNFs with Ω(n1.4)
clauses:

Theorem 1 If there exists a propositional proof system that has the interpolation property
in polynomial-size (or quasipolynomial-size) and that admits uniform polynomial-size (or
quasipolynomial-size, respectively) refutations of Υn, then there is a deterministic polynomial-
time (or quasipolynomial-time, respectively) refutation algorithm for random 3CNF formulas
with Ω(n1.4) clauses.

This implies that determinizing the Feige et al. polynomial-time non-deterministic algo-
rithm reduces to establishing the feasible interpolation property for those propositional proof
systems that admit short refutations of the corresponding formulas Υn (or to the problem
of demonstrating polynomial-size proofs of Υn in a proof system whose feasible interpolation
property is already established).

The argument is based on the following simple observation: we observe that the com-
putationally hard part of the Feige, Kim and Ofek non-deterministic refutation algorithm
(namely, the part we do not know how to efficiently compute deterministically) corresponds
to a disjoint NP-pair (formally, it is a family of such pairs). The pair of disjoint NP sets
are, first, the set of 3CNFs that have a certain combinatorial property, namely they contain
a collection of sufficiently many inconsistent even k-tuples, as defined by Feige et al., and
second, the set of 3CNFs with m clauses for which there exists an assignment that satisfies
more than m− ℓ clauses as 3XORs (for ℓ a certain function of the number of variables n).

It is worth noting that any efficient refutation algorithm (deterministic or not) corresponds
to a disjointNP-pair, via a sort of reflection principle. The reason is as follows: any refutation
algorithm is based on some property P of CNFs that can be witnessed (or better, found)

2

in polynomial-time. Thus, any refutation algorithm corresponds to a family of formulas
P (x) →¬SAT(x), expressing that if the input CNF has property P then x is unsatisfiable,
and so P (x) and SAT(x) are two disjoint NP predicates. However, the disjoint NP-pair we
work with is not of this type. That is, P (x) will not be the predicate for the full Feige, Kim
and Ofek witnesses, rather a specific (combinatorial) predicate, that is only one ingredient in
the definition of the Feige et al. witness. This saves us the trouble to formalize and prove in a
weak propositional proof system the full Feige et al. argument (such a full formalization was
done inside TC0-Frege in [MT12]). For more information on the relation between disjoint
NP-pairs and propositional proof complexity see for example [Pud03, AB04].

In the second part of this paper, we study the above suggested approach for improving
the current known refutation algorithms, by considering short refutations for Υn in seemingly
weak proof systems that extend both the cutting planes system (cf. [CCT87, Pud97]) and
Res(2) (the system Res(k) is an extension of resolution that operates with kDNFs instead
of clauses, introduced by Kraj́ıček [Kra01]). Note that the cutting planes proof system itself
has feasible interpolation [BPR97, Kra97, Pud97]. But on the other hand, it is unknown
whether Res(2) has feasible interpolation, while it is known by Atserias and Bonet [AB04]
that Res(2) has feasible interpolation iff resolution is weakly automatizable (see below on
weak automatizability).

The propositional proof system we work with is a an extension of cutting planes (with
small coefficients) operating with quadratic equations (resembling the proof system CP 2

defined by Pudlák in [Pud03]). Informally, the system is describes as follows: a family of
R(quad) refutations is defined to be a family of refutations operating with disjunctions of
quadratic equations, where each quadratic equation is of the form:

∑

i,j∈[n]

cijxixj +
∑

i∈[n]

cixi + c0 = a

such that ci, cij and a are integers written in unary representation . We have the following
(generalized) resolution rule:

From two disjunctions of quadratic equations
∨

i Li ∨ L = a and
∨

j Lj ∨ L′ = b derive:

∨

i

Li ∨
∨

j

Lj ∨ (L− L′ = a− b).

We also need to add axioms that will force our variables to be 0, 1 (see Section 5.1).
We show the following:

Theorem 2 R(quad) admits polynomial-size refutations of the 3XOR principle Υn.

This means that proving that R(quad) has the feasible interpolation (in polynomial-size
or quasi-polynomial-size) would entail a deterministic (polynomial-time or quasipolynomial-
time, respectively) refutation algorithm for random 3CNFs with Ω(n1.4) clauses.

Further, note that [MT12] proved the 3XOR principle in TC0-Frege, which we might
conjecture to be a stronger proof system than R(quad). Thus, Theorem 2 gives a possibly
tighter logical characterization of the 3XOR principle than [MT12]. On the other hand,
[MT12] gave a polynomial-size proof for the correctness of the full Feige at al. witnesses (and
not only the 3XOR principle).

3

To describe our next result we recall the concept of automatizability which is central
to proof-search algorithms. Given any propositional proof system, an important question
is whether one can find efficiently proofs in the system (regardless of their sizes). For this
purpose the concept of automatizability was introduced by Bonet et al. [BPR00]: we say
that a refutation system P (equivalently, a proof-system) is automatizable if there exists a
polynomial-time algorithm that on input (τ, 1m), where τ is an unsatisfiable formula and
1m is a string of m ones, the algorithm outputs a P-refutation of τ of size at most m in
case such a refutation exists. Following Atserias and Bonet [AB04], we say that a refutation
system P is weakly automatizable if there exists an automatizable refutation system P ′ that
polynomially simulates P. Note that if P is not automatizable, it does not imply that P ′ is not
automatizable. Hence, from the perspective of proof-search algorithms, weak automatizability
is a more natural notion than automatizability (see [Pud03] on this).

In [RT08], the system R(lin) was introduced which is similar to R(quad) above, except
that all equations are linear instead of quadratic. Using similar arguments to Pudlák [Pud03],
we show the following:

Theorem 3 R(quad) is weakly automatizable iff R(lin) is weakly automatizable.

Since weak automatizability of a proof system implies also that the proof system has feasible
interpolation, we obtain the following reduction:

Corollary 4 If R(lin) is weakly automatizable then there is a deterministic refutation algo-
rithm for random 3CNFs with Ω(n1.4) clauses.

1.0.1 Discussion

The key point of this work is the reduction from constructing an efficient refutation algorithm
for the clause density Ω(n0.4) to proving upper bounds in weak enough propositional proof
systems for the 3XOR principle. On the one hand, this might be construed as hinting on a
new way to improve current refutation algorithms. Note that even establishing a quasipoly-
nomial interpolation for proof systems that admit short proofs of the 3XOR principle would
be very interesting since the best known refutation algorithm for Ω(n1.4) clauses works in
time 2O(n0.2 log n) [FKO06]. However, it is probably safer to consider this reduction as empha-
sizing the important consequences that establishing the feasible interpolation property for
Res(2) and its (weak) extensions would have. For more recent work on the algorithmic im-
plications of establishing feasible interpolation and automatizability for related propositional
proof systems see [AM12, HP11].

The rationale behind choosing the R(quad) refutation system is that it seems to be a
possibly weak propositional proof system that, loosely speaking, can both count and com-
pose mappings, as we now explain. The cutting planes proof system can count to a certain
extent; however, it is unknown whether cutting planes has short refutations of the Tseitin
graph formulas [Tse68] (which are a kind of counting contradictions). By extending cutting
planes (with small coefficients) to allow disjunctions of linear equations (instead of a single
inequality), we obtain the system R(lin) (this is similar to R(quad) but with linear instead
of quadratic equations). It was shown in [RT08] that even when we allow disjunctions of

4

only constant many generalized1 linear equations in every proof-line, R(lin) has short refuta-
tions of the Tseitin formulas; this shows that using (fairly restricted) disjunctions of linear
equations allows to improve the counting abilities of cutting planes.

The reason we need to use quadratic instead of linear equations is to be able to compose
maps. As observed by Pudlák [Pud03], the reason why the k-Clique and (k − 1)-Coloring
contradictions do not have short cutting planes refutations is that cutting planes cannot
compose two mappings, which then makes it impossible to perform a routine reduction from
the k-Clique and (k−1)-Coloring contradiction to the pigeonhole principle contradiction (and
the latter contradiction does admit short cutting planes refutations). This is why Pudlák
introduced in [Pud03] the system CP 2 which is cutting planes operating with quadratic
equations. The system R(quad) we work with is an extension of CP 2 (when the latter is
restricted to small coefficients).

2 Preliminaries

Let F be a 3CNF with n variables X = {x1, . . . , xn} and m clauses. We denote {1, . . . , n}
by [n]. The truth value of a formula G under the Boolean assignment A is written G(A). An
assignment A satisfies as a 3XOR the clause ℓ1 ∨ ℓ2 ∨ ℓ3 if (ℓ1 ⊕ ℓ2 ⊕ ℓ3)(A) = 1 (where ⊕
denotes the XOR operation, and the ℓi’s are literals, namely variables or their negation).

2.1 Disjoint NP-pairs and feasible interpolation of propositional proofs

In this section we review the notion of a disjoint NP-pair and its relation to propositional
proofs and the feasible interpolation property.

A disjoint NP-pair is simply a pair of languages in NP that are disjoint. Let L,N be
a disjoint NP-pair such that R(x, y) is the corresponding relation for L and Q(x, z) is the
corresponding relation for N ; namely, R(x, y) and Q(x, z) are polynomial-time relations such
that x ∈ L iff ∃y, |y| = poly(|x|)∧R(x, y) = true and x ∈ N iff ∃z, |z| = poly(|x|)∧Q(x, z) =
true. Then, for every n ∈ N, there exists an unsatisfiable CNF formula in three mutually
disjoint sets of variables x, y, z:

Fn := A(x, y) ∧B(x, z), (1)

where A(x, y) and B(x, z) are the CNF formulas expressing that R(x, y) and Q(x, z) are true
for x of length n, respectively.

More formally, A(x, y) is a CNF in the variables x = (x1, . . . , xn) and y = (y1, . . . , yℓ),
that is true iff R(x, y) is true, and B(x, z) is a CNF in the variables x and z = (z1, . . . , zm),
that is true iff Q(x, z) is true (for some ℓ,m that are polynomial in n). Since both polynomial-
time relations R(x, y) and Q(x, z) can be converted into a family of polynomial-size Boolean
circuits, and thus can be written as a family of polynomial-size CNF formulas (by adding
extension variables, that we may assume are incorporated in the certificates y and z), both
the formulas A(x, y) and B(x, z) can be written as polynomial-size CNF formulas.

Note that because y and z are disjoint sets of variables and A(x, y)∧B(x, z) is unsatisfiable,
it must be that given any x ∈ {0, 1}n, either A(x, y) or B(x, z) is unsatisfiable (or both).

1A generalized equation is an equation L ∈ S, for S ⊂ Z; which can be considered 2 on page 3 also as the
disjunction

∨
s∈S

L = s.

5

Feasible Interpolation. We use standard notation and notions from the theory of proposi-
tional proof complexity (see [BP98, Seg07, CK02, Kra95] for surveys and introductions to the
field). In particular, we sometimes mix between refutations (that is, proofs of unsatisfiability
of a formula) and proofs (that is, a proof of the negation of an unsatisfiable formula, which
must be a tautology). From the perspective of proof complexity refutations of contradictions
and proofs of tautologies are mostly the same.

A propositional proof system P is said to have the interpolation property in size f(n) if
the existence of a P-refutation of A(x, y) ∧B(x, z) as in (1) of size s implies the existence of
(usually a Boolean) circuit C(x) of size f(s), called the interpolant of A(x, y) ∧B(x, z), such
that

C(α) = 1 =⇒ A(α, y) is unsatisfiable; and
C(α) = 0 =⇒ B(α, z) is unsatisfiable.

(2)

In other words, if only A(α, y) is unsatisfiable then C(α) = 1 and if only B(α, z) is unsatisfi-
able then C(α) = 0, and if both A(α, y) and B(α, z) are unsatisfiable then C(α) can output
either 0 or 1. When a proof system P has the interpolation property in size poly(n) we say
that P has the feasible interpolation property, or simply that P has feasible interpolation.

Note that L (as defined above) is precisely the set of those assignments α for which A(α, y)
is satisfiable, and N is precisely the set of those assignments α for which B(α, z) is satisfiable,
and L and N are disjoint by assumption, and so C(x) separates L from N ; namely, it outputs
different values for those elements in L and those elements in N .

If the P -refutations of the formula Fn are uniform, in the sense that there is a polynomial-
time algorithm that can construct the refutations of Fn given n in unary representation, then
the circuit C above is uniform and so there is a polynomial-time algorithm that behaves as
in (2).

It is already known that quite a few propositional proof systems posses the feasible in-
terpolation property. Such systems include for instance resolution [BPR97, Pud97, Kra97],
cutting planes [IPU94, BPR97, Pud97, HC99] and the polynomial calculus [CEI96]. On the
other hand it is known (conditioned on hardness assumptions from complexity theory) that
several other proof systems do not have the feasible interpolation property; these include
threshold logic (namely, TC0-Frege) [BPR00] and bounded depth Frege [BDG+99]

3 The 3XOR principle

The following definitions and proposition is due to Feige et al. [FKO06].

Definition 1 (Inconsistent even k-tuple) An even k-tuple is a tuple of k many 3-clauses
in which every variable appears even times. An inconsistent even k-tuple is an even k-tuple
in which the total number of negative literals is odd.

Note that for any even k-tuple, k must be an even number (since by assumption the total
number of variables occurrences 3k is even). The following is the combinatorial principle,
due to Feige et al. [FKO06] that we consider in this work:

The 3XOR principle: Let K be a 3CNF over the variables X. Let S be t inconsistent
even k-tuples from K, such that every clause from K appears in at most d inconsistent even

6

k-tuples in S. Then for any Boolean assignment to the variables X the number of clauses in
K that are unsatisfied by the assignment as 3XOR is at least ⌈t/d⌉.

The correctness of the 3XOR principle follows directly from the following claim:

Proposition 5 ([FKO06]) For any inconsistent even k-tuple (over the variables X) and
any Boolean assignment A to X, there must be a clause in the k-tuple that is unsatisfied as
3XOR.

Proof: Assume by a way of contradiction that for some assignment A every clause from the
k-tuple is satisfied as a 3XOR. Remember that k must be even. Thus, if we sum modulo 2
all the literals in the k-tuple via clauses, then since k is even we get that the sum equals 0
modulo 2.

On the other hand, if we count via literals then summing modulo 2 all literals ℓi(A) in
the k-tuple, we get 1 (modulo 2), for the following reason. First, we sum all variables xi that
have odd number of negative occurrences. Because xi appears an even number of times in
the k-tuple, the number of positive occurrences of xi is also odd. So in total all occurrences
of xi(A) and ¬xi(A) contribute 1 to our sum (modulo 2). There must be an odd number of
such variables xi in our k-tuple because the k-tuple is inconsistent. Thus this sums up to 1
(modulo 2). Then we add to this sum those variables that have an even number of negative
occurrences (and hence also an even number of positive occurrences); but they cancel out
when summing their values under A modulo 2, and so they contribute 0 to the total sum.
Hence, we get 1 as the total sum. This contradicts the counting in the previous paragraph
which turned out 0.

Note that the 3XOR principle stems directly from the Proposition 5 and the fact that
every clause in K appears in at most d even k-tuples in S.

4 From short proofs to refutation algorithms

In this section we demonstrate that polynomial-size proofs of (an encoding of the) 3XOR
principle in a proof system that has the feasible interpolation property yield deterministic
polynomial-time refutation algorithms for random 3CNF formulas with Ω(n1.4) clauses.

4.1 The witness for unsatisfiability

Feige, Kim and Ofek nondeterministic refutation algorithm [FKO06] is based on the existence
of a polynomial-size witness of unsatisfiability for most 3CNF formulas with sufficiently large
clause to variable ratio. The witness has several parts, but as already observed in [FKO06],
apart from the t inconsistent even k-tuples (Definition 1), all the other parts of the witness
are known to be computable in polynomial-time. In what follows we define the witnesses for
unsatisfiability.

Let K be a 3CNF with n variables x1, . . . , xn and m clauses. The imbalance of a variable
xi is the absolute value of the difference between the number of its positive occurrences and
the number of its negative occurrences. The imbalance of K is the sum over the imbalances
of all variables, denoted I(K). We define M(K) to be an n × n rational matrix such that
Mij equals 1

2 times the number of clauses in K where xi and xj appear with different signs

7

minus 1
2 times the number of clauses where they appear with the same sign. In other words,

for each clause in K in which xi and xj appear with the same sign we add 1
2 and for each

clause in K in which xi and xj appear with different signs we subtract 1
2 . Let λ be a rational

approximation of the biggest eigenvalue of M(K). (It is enough to use polynomially small
rational approximations; this was already noted in [FKO06]; see also [MT12] for a detailed
treatment of rational approximations in this context.)

Definition 2 (FKO witness) Given a 3CNF K, the FKO witness for the unsatisfiability
of K is defined to be the following collection:

1. the imbalance I(K);

2. the matrix M(K) and the (polynomially small) rational approximation λ of its largest
eigenvalue;

3. a collection S consisting of t < n2 inconsistent even k-tuples such that every clause in
K appears in at most d many even k-tuples;

4. the inequality t > d·(I(K)+λn)
2 + o(1) must hold.

(The notation o(1) above stands for a specific rational number b/nc, for c a constant and b a
positive integer.)

We have the following:

Theorem 6 ([FKO06]) For a random 3CNF K with n variables and Ω(n1.4) clauses, with
probability converging to 1 as n tends to infinity there exist natural numbers k = O(n0.2), t =
Ω(n1.4) (where t < n2) and d = O(k) = O(n0.2), such that K has a witness for unsatisfiability
as in Definition 2.

It can be shown that given a 3CNF K and the parameter k, we can compute in polynomial
time the values of t and d, for which the theorem holds.

Inspecting the argument in [FKO06], one can see that it is sufficient to replace part 3 in
the witness with a witness for the following:

3’. No assignment can satisfy more than m− ⌈t/d⌉ clauses in K as 3XORs.

Therefore, since I(K), M(K) and λ are all polynomial-time computable (see [FKO06]
for this), in order to determinize the non-deterministic refutation algorithm of [FKO06] it is
sufficient to provide an algorithm that almost surely determines (correctly) that part 3’ above
holds. In other words, in order to construct an efficient refutation algorithm for random
3CNFs (with Ω(n1.4) clauses) it is sufficient to have a deterministic algorithm A that on
every input 3CNF answers either “condition 3’ is correct” or “don’t know”, such that
A is never wrong (i.e., if it says “condition 3’ is correct” then condition 3’ holds) and
with probability 1 − o(n) over the input 3CNFs most inputs A answers “condition 3’ is

correct”. Note that we do not need to actually find the Feige et al. witness nor do we need
to decide if it exists or not. The relation between unsatisfiability and bounding the number
of clauses that can be satisfied as 3XOR in a 3CNF was introduced by Feige in [Fei02] (and
used in [FO07] as well as in [FKO06]).

8

4.2 The disjoint NP-pair corresponding to the 3XOR principle

For every choice of t, d and k functions of n (that are polynomially in n computable; we
assume also that t(n) ≤ n2), we define the corresponding 3XOR principle disjoint NP-pair
as the pair (L,N), where:

L := {x
∣

∣ x is a 3CNF with n variables and m clauses for which

there exists t(n) inconsistent even k(n)-tuples, and

every clause of x appears in at most d(n) k(n)-tuples},

N :=
{

x
∣

∣ x is a 3CNF with n variables and m clauses for which

there exists an assignment that satisfies at least

m− (I(x) + λn)/2 clauses as 3XOR
}

,

where I(x) in the definition of N is the imbalance of x and λ is the (polynomially small)
rational approximation of the largest eigenvalue of M(x) as described in Section 4.1.

Formally, for every choice of t, k, d as functions of n there is a different corresponding
disjoint NP-pair. However, for the sake convenience we do not specify explicitly the chosen
t, k, d in the notation L,N as it will be clear from the context which t, k, d we use. It is easy
to verify that both L and N are indeed NP sets for every choice of t < n2, d, k,m, and that,
by the 3XOR Principle, L ∩N = ∅.

Using the same notation as in Section 2.1, we denote by R(x, y) and Q(x, z) the
polynomial-time relations for L and N , respectively. Further, for every n ∈ N, there ex-
ists an unsatisfiable CNF formula in three mutually disjoint sets of variables x, y, z:

Υn := A(x, y) ∧B(x, z), (3)

where A(x, y) and B(x, z) are the CNF formulas expressing that R(x, y) and Q(x, z) are true
for x of length n, respectively.

Corollary 7 If there exists a propositional proof system that possesses the feasible interpo-
lation property and that admits uniform polynomial-size refutations of Υn, then there is a
deterministic polynomial-time refutation algorithm for random 3CNF formulas with Ω(n1.4)
clauses.

Note: For the consequence in the corollary to hold it is enough to assume that there are
polynomial-size refutations of Υn where the parameters are set as follows: k = O(n0.2),
t = Ω(n1.4) (and also t < n2), d = O(k) = O(n0.2); however, for the short proofs in the next
section we only need to assume that t is polynomial in n.

Proof: By assumption, and by the definition of the feasible interpolation property, for every
choice of functions t, d, k of n (that are also polynomially in n computable) there exists a
deterministic polynomial-time interpolant algorithm A that on input a 3CNF K, if A(K) = 1
then K 6∈ L and if A(K) = 0 then K 6∈ N .

The desired refutation algorithm then works as follows: it receives the 3CNF K and for
all polynomially many choices of t < n2, d, k it runs A(K). If for one of these runs A(K) = 0

9

then we know that K 6∈ N , and we answer “unsatisfiable”. Otherwise, we answer “don’t
know”.

The correctness of this algorithm stems from the following two points:
(i) If we answered “unsatisfiable”, K is indeed unsatisfiable, since K 6∈ N , and by Section
4.1 this means that K is unsatisfiable.

(ii) For almost all 3CNFs we will answer “unsatisfiable” because almost all of them will
have an FKO witness (by Theorem 6), which means that K ∈ L for some choice of t < n2, d, k
and hence the interpolant algorithm A must output 0 in at least one of these cases (because
A(K) = 1 means that K 6∈ L).

5 Propositional formula encoding the 3XOR principle

In this section we define the propositional refutation system in which we are going to demon-
strate polynomial-size refutations of the 3XOR principle. We then give an explicit encoding
of the 3XOR principle as an unsatisfiable set of disjunctions of linear equations.

5.1 The propositional refutation systems R(lin) and R(quad)

The refutation system in which we shall prove the unsatisfiability of the 3XOR principle is
denoted R(quad). It is an extension of the refutation system R(lin) introduced in [RT08].
The system R(lin) operates with disjunctions of linear equations with integer coefficients and
R(quad) operates with disjunctions of quadratic equations with integer coefficients, where
in both cases the coefficients are written in unary representation. We also add axioms that
force all variables to be 0, 1. First we define the refutation system R(lin).

The size of a linear equation a1x1+ ...+anxn+an+1 = a0 is defined to be
∑n+1

i=0 |ai|, that
is, the sum of the bit sizes of all ai written in unary notation. The size of a disjunction of
linear equations is the total size of all linear equations in it. The size of a quadratic equation
and of a disjunction of quadratic equations is defined in a similar manner (now counting the
size of the constant coefficients, the coefficients of the linear terms and the coefficients of the
quadratic terms). The empty disjunction is unsatisfiable and stands for the truth value false.

Notation: For L a linear or quadratic sum and S ⊆ Z, we write L ∈ S, to denote the
disjunction

∨

s∈S L = s. We call L ∈ S a generalized linear (or quadratic) equation.

Definition 3 (R(lin)) Let K := {K1, . . . ,Km} be a collection of disjunctions of linear equa-
tions in the variables x1, . . . , xn. An R(lin)-proof from K of a disjunction of linear equations
D is a finite sequence π = (D1, ..., Dℓ) of disjunctions of linear equations, such that Dℓ = D
and for every i ∈ [ℓ] one of the following holds:

1. Di = Kj, for some j ∈ [m];

2. Di is a Boolean axiom xt ∈ {0, 1}, for some t ∈ [n];

3. Di was deduced by one of the following R(lin)-inference rules, using Dj , Dk for some
j, k < i:

10

Resolution Let A,B be two, possibly empty, disjunctions of linear equations and let
L1, L2 be two linear equations. From A∨L1 and B ∨L2 derive A∨B ∨ (L1 −L2).

Weakening From a possibly empty disjunction of linear equations A derive A ∨ L ,
where L is an arbitrary linear equation over the variables x1, . . . , xn.

Simplification From A∨ (0 = k) derive A, where A is a possibly empty disjunction
of linear equations and k 6= 0.

An R(lin) refutation of a collection of disjunctions of linear equations K is a proof of the
empty disjunction from K. The size of an R(lin) proof π is the total size of all the disjunctions
of linear equations in π (where coefficients are written in unary representation).

Definition 4 (R(quad)) The system R(quad) is similar to R(lin) except that proof-lines can
be disjunctions of quadratic equations with integer coefficients

∑

i,j cijxixj +
∑

i cixi + c = S
instead of linear equations; and the Boolean axioms are now defined for all i, j ∈ [n], as
follows:

xi ∈ {0, 1}, xi + xj − xixj ∈ {0, 1}, xi − xixj ∈ {0, 1} .

The size of an R(quad) refutation is the total size of all the proof-lines in it.

Both R(lin) and R(quad) can be proved to be sound and complete (for their respective
languages, namely, disjunctions of linear and quadratic equations, respectively) refutation
systems.

5.2 The formula

We now describe the formula Υn encoding the 3XOR principle (the formula depends also on
the parameters t,m and k, but we shall suppress these subscripts). The formula will have
the correct form for application of the feasible interpolation property, namely it will be an
unsatisfiable set of formulas consisting of two groups: the first will be the formulas in the
X,Y variables only and the second will be the formulas in the X,Z variables only. We also
have variables that encode a product of two variables, namely, (extension) variables for which
a certain formula in one of the groups forces them to behave like products of two variables
from X,Y , Z. Since we cannot use the Y variables in the second part of the formula and we
cannot use the Z variables in the first part of the formula, we can encode only products of
variables from X,Y and from X,Z, but not products of a Y variable with a Z variable.

It will be convenient sometimes to denote by xi+n the literal ¬xi, when it is assumed we
use the n variables x1, ..., xn in the 3CNF encoded by X.

Variables and their meaning. The variables X correspond to the input 3CNF with n
variables. The variables Y correspond to the collections of t many inconsistent even k-tuples.
The Z = {z1, ..., zn} variables stand for a Boolean assignment for the n variables of the 3CNF.
(Note that we use the variables xi for the variables in the 3CNF and the variables xij for the
variables in our encoding of the 3CNF.)

The input 3CNF X is encoded as a 3m × 2n table X, where each block of three rows
corresponds to a clause and columns from 1 to n correspond to positive literal occurrences
and columns n + 1 to 2n correspond to negative literal occurrence. Formally, let 1 ≤ i =

11

3 · l + r ≤ 3m, where r ∈ {0, 1, 2}, l ∈ [n], and let j ∈ [2n]. Then xij = 1 means that the rth
literal in the lth clause in the input 3CNF is:

xj if j ≤ n, and ¬xj−n, if j > n.

The collection of t inconsistent k even tuples is encoded as t tables, each table is encoded

by the variables Y
(s)

, for s ∈ [t]. Each Y
(s)

represents a table of dimension k × m, where

y
(s)
jl = 1 iff the jth member in the sth k-tuple is the lth clause (meaning the lth clause in the

input 3CNF encoded by X).

Group I of formulas (containing only X,Y):

1. Every row in X contains exactly one 1:

2n
∑

j=1

xij = 1, for every i ∈ [3m].

2. Every row in Y
(s)

contains exactly one 1:

m
∑

j=1

y
(s)
ij = 1, for all s ∈ [t], i ∈ [k].

3. Every column in Y
(s)

contains at most one 1:

k
∑

i=1

y
(s)
ij ∈ {0, 1}, for all s ∈ [t], j ∈ [m].

4. For any j ∈ [k], r ∈ [m], s ∈ [t], ℓ ∈ [3m], i ∈ [2n], we introduce the new single formal

variable Jy(s)jr ·xℓiK which will stand for the product of two other formal variables y
(s)
jr ·xℓi .

For this we shall have the following axioms:

y
(s)
jr − Jy(s)jr · xℓiK ∈ {0, 1} and xℓ − Jy(s)jr · xℓiK ∈ {0, 1}

and
y
(s)
jr + xℓi − Jy(s)jr · xℓiK ∈ {0, 1}

As an abbreviation (not a formal variable) we define the following:

Q
(s)
ijh :=

m
∑

r=1

Jy(s)jr · x(3(r−1)+h)iK , for all i = [2n] and h ∈ {0, 1, 2} and s ∈ [t],

which expresses that xi occurs as the hth literal in the jth clause of Y
(s)

.

12

5. We express that all the Y
(s)

’s are even k-tuples (that is, that every variable xi appears
even times) by:

∑

r∈[k],h=0,1,2

Q
(s)
irh +Q

(s)
(i+n)rh ∈ {0, 2, 4, ..., k}, for all i ∈ [n], s ∈ [t].

We can assume that k is even, since for every even k-tuple k must be even.

6. Similarly, we encode that the Y
(s)

’s are inconsistent (that is, the number of negative
literals in them is odd) by:

∑

r∈[k],h=0,1,2
i∈[n]

Q
(s)
(i+n)rh ∈ {0, 3, 5, ..., k − 1}.

7. Every clause i ∈ [m] appears in at most d even k-tuples Y
(1)

, ..., Y
(t)
. We put:

∑

j∈[k],s∈[t]

y
(s)
ji ∈ {0, 1, ..., d}, for every i ∈ [m].

This finishes the encoding of the t inconsistent even k-tuples.

Group II of formulas (containing only X,Z): We now turn to the formulas expressing
that there are assignments Z that satisfy more than m− ⌈t/d⌉ clauses in X as 3XORs. For
every j ∈ [3m], i ∈ [2n], ℓ ∈ [n], let Jxji · zℓK be a new formal variable that stands for the
product xji · zℓ. As in part 4 of the formula above, we include the axioms that force Jxji · zℓK
to stand for xji · zℓ.

Let us use the following abbreviation:

Uj :=
∑

h=0,1,2

(

n
∑

i=1

q
x(3(j−1)+h)i · zi

y
+

n
∑

i=1

(

x(3(j−1)+h)(i+n) −
q
x(3(j−1)+h)(i+n) · zi

y)
)

.

Then, Uj ∈ {1, 3} states that the jth clause in X is satisfied as 3XOR by Z. Note that
x(3(j−1)+h)(i+n) −

q
x(3(j−1)+h)(i+n) · zi

y
is a linear term that expresses the quadratic term

x(3(j−1)+h)(i+n) · (1− zi).

8. Let uj be a new formal variable expressing that the jth clause in X is satisfied as 3XOR
by Z. Hence, Uj ∈ {1, 3} iff uj = 1, and we encode it as:

Uj ∈ {0, 2} ∨ (uj = 1) and Uj ∈ {1, 3} ∨ (uj = 0),

9. There are assignments Z that satisfy more than m− ⌈t/d⌉ clauses in X as 3XORs:

m
∑

j=1

uj ∈ {m− ⌈t/d⌉+ 1, ...,m}.

The set of formulas described in this section has no 0, 1 solution by virtue of the 3XOR
principle itself (Section 4.1).

13

6 Short refutations for the 3XOR principle

In this section we demonstrate polynomial-size (in n) R(quad) refutations of the 3XOR
principle as encoded by disjunctions of linear equations in the previous section. We sometimes
give only a high level description of the derivations. We use the terminology and abbreviations
in Section 5. We also use freely the ability of R(lin) (and hence R(quad)) to count. For a
detailed treatment of efficient counting arguments inside R(lin) see [RT08].

Step 1: Working in R(quad), we first show that our axioms prove that Z cannot satisfy as

3XOR all clauses of Y
(s)

, for any s ∈ [t].
Recall from Section 5 the abbreviation

Q
(s)
ijh :=

m
∑

r=1

Jy(s)jr · x(3(r−1)+h)iK , for all i = [2n] and h ∈ {0, 1, 2} and s ∈ [t],

which stands for the statement that xi occurs as the hth literal in the jth clause of Y
(s)

(and
where xi for i > n stands for the literal ¬xi−n). Let us use the abbreviation:

Pjhs :=
n
∑

i=1

Q
(s)
ijh · zi +

n
∑

i=1

Q
(s)
(i+n)jh · (1− zi).

Then, Pjhs is a quadratic sum that stands for the statement that the hth literal in clause j

in Y
(s)

is true under Z. Thus,

Pj0s + Pj1s + Pj2s ∈ {1, 3}, for all j ∈ [k] (4)

expresses that all the clauses in Y
(s)

are satisfied as 3XOR under Z.

Our goal now is to refute (4), based on our axioms. Informally, this refutation is done

by counting: first count by clauses in Y
(s)

, namely, add all left hand sides of (4) together
reaching an even number (in the right hand side) by virtue of k being even (recall we can
assume that k is even). Then, count by literals, namely sum all values of literals in Y (s)

under the assignment Z, which we can prove is odd from our axioms. We now describe this
refutation more formally.

Since k is even, counting by clauses in Y
(s)

, namely, adding the left hand sides of (4) gives
us easily the following (with a polynomial-size R(quad) proof):

k
∑

j=1

Pj0s + Pj1s + Pj2s ∈ {0, 2, 4, ..., 3k}. (5)

Now we need to count by literals in Y
(s)

. We can abbreviate the number of occurrences in

Y
(s)

of the literal xi, for i ∈ [2n], s ∈ [t], by:

Ti :=
∑

j∈[k]
h=0,1,2

Q
(s)
ijh .

14

Let us abbreviate by Si the contribution of the literals xi and ¬xi to the total sum (5). Thus

Si :=
∑

j∈[k]
h=0,1,2

Q
(s)
ijh · zi +

∑

j∈[k]
h=0,1,2

Q
(s)
(i+n)jh · (1− zi).

It is possible to prove the following:

Ti ∈ {0, 2, 4, ..., k} ∨ Si ∈ {1, 3, 5, ..., k − 1} (6)

which states that if the number of occurrences in Y
(s)

of the literal xi is odd then (since by
our axioms stating that every variable occurs even times, the number of occurrences of the
literal ¬xi must also be odd) the contribution of xi and ¬xi to the total sum (5) is also odd
(because either zi = 0 or zi = 1).

By the axioms saying that the number of negative literals is odd (axiom 6) we get that:

n
∑

i=1

Ti+n ∈ {1, 3, 5, ..., k · n− 1}. (7)

And from the axioms stating that each variable occurs even times in Y
(s)

we have:

Ti + Ti+n ∈ {0, 2, 4, ..., k}, for all i ∈ [n]. (8)

From (8) we obtain
∑2n

i=1 Ti ∈ {0, 2, 4, ..., k · n}, and from this and (7) we obtain

n
∑

i=1

Ti ∈ {1, 3, 5, ..., k · n− 1}. (9)

Note that (6) can be interpreted as saying that if Ti is odd then so does Si. Accordingly, one
can use (6) to substitute all T1, ..., Tn in (9) with S1, ..., Sn, respectively. We thus get that
the total sum in the left hand side of (5) is in {1, 3, 5, ...}, and we obtain a contradiction with
(5).

From a refutation of the collection of disjunctions (4), for any s ∈ [t], we can actually get
the negation of this collection, that is:

∨

j∈[k]

(Pj0s + Pj1s + Pj2s) ∈ {0, 2}. (10)

This stems from the following: it is already true in resolution that if we have a size γ resolution
refutation of A1, ..., Al, then assuming the axioms A1 ∨ B1, ..., Al ∨ Bl, we can have a size
O(γ · d) resolution derivation of B1 ∨ ... ∨ Bl, given that the total size of the Bi’s is d. To
see this, take the resolution refutation of A1, ..., Al and OR every line in this refutation with
B1∨...∨Bl (note that the resulting new axioms are actually derivable from the axioms Ai∨Bi

via Weakening). Now, to get (10) from (4), we do the same, putting Pj0s+Pj1s+Pj2s ∈ {1, 3}
instead of Aj and Pj0s + Pj1s + Pj2s ∈ {0, 2} instead of Bj , for all j ∈ [k], noting that:

(Pj0s + Pj1s + Pj2s ∈ {1, 3}) ∨ (Pj0s + Pj1s + Pj2s ∈ {0, 2}), for all j ∈ [k]. (11)

15

Step 2: The next step in our R(quad) refutation is showing how to obtain the final contra-
diction, given the collection of formulas (10), for all s ∈ [t]. This is again by counting: we
know that for every truth assignment Z, each Y (1), ..., Y (t) must contribute at least one clause
from X that is unsatisfiable as 3XOR under Z. We can view this as a mapping g : [t] → [m]
from Y (1), ..., Y (t) to the m clauses in X, such that g(i) = j means that Y (i) contributes
the clause j in X that is unsatisfiable under Z as 3XOR. The mapping g is not 1-to-1, but
d-to-1, because every clause of X can appear at most d times in Y (1), ..., Y (s). Our R(quad)
refutation proceeds as follows.

By assumption we have
∑m

i=1 ui ∈ {m − ⌈t/d⌉ + 1, ...,m}, meaning that the number of
clauses in X that are satisfied as 3XOR under the assignment Z is at least m − ⌈t/d⌉ + 1.
Also, by the axioms in our formula, for all i ∈ [m] we can prove that ui = 1 implies that
Ui ∈ {1, 3}; namely that the number of true literals in the ith clause of X is 1 or 3.

For any s ∈ [t], we can think of Y
(s)

as a mapping f (s) : [k] → [m] that maps the k clauses

in Y
(s)

to the clauses in X. Then, y
(s)
ij = 1 means that f (s)(i) = j. Thus, ui · y

(s)
ji = 1 means

that the jth clause in Y
(s)

is the ith clause in X and that the ith clause in X is satisfiable
as 3XOR under Z.

Now, it is possible to show that for any s ∈ [t], i ∈ [m] and j ∈ [k], there is a proof of the
following line:

(

ui · y
(s)
ji = 0

)

∨ (Pj0s + Pj1s + Pj2s ∈ {1, 3}) (12)

which states that if the ith clause in X is satisfied as 3XOR under the assignment Z and

the jth clause in Y
(s)

maps to the ith clause in X, then the jth clause in Y
(s)

is satisfied as
3XOR under Z.

Informally, the proof of (12) is explained as follows: the term Pj0s + Pj1s + Pj2s can be

seen as the addition, denoted S, of all inner products of the jth row of Y
(s)

with the columns
of X (for each h = 0, 1, 2 we can consider the column of X restricted to the h · i rows only

(i ∈ [m]), and so a row of Y
(s)

which is of length m can have an inner product with such a

column of length m in X). Because we assume that y
(s)
ij = 1, only the ith coordinate in the

jth row of Y
(s)

is 1 (and all the other entries in this row are 0, by our axioms). Thus, S
equals in fact a single column from X; and this single column is precisely Ui.

From (12) and (10) we can derive, for any s ∈ [t] and any i ∈ [m]:

∨

j∈[k],i∈[m]

(

y
(s)
ji · (1− ui) = 1

)

, (13)

stating that for some j ∈ [k], i ∈ [m], the jth clause in Y
(s)

is the ith clause in X and the ith
clause in X is not satisfied as 3XOR under Z.

Now, from (13) and axioms 7 in the 3XOR principle formulas, stating that g : [t] → [m]
is d-to-1, we can obtain that the number of ui’s that are true is no more than m−⌈t/d⌉, that
is,
∑

i∈[m] ui ∈ {0, ...,m− ⌈t/d⌉}, contradicting the axiom
∑m

j=1 uj ∈ {m− ⌈t/d⌉+ 1, ...,m}.
The formal proofs of this in R(quad) is shown in the following lemma:

Lemma 8 There are polynomial-size R(quad) refutations of (13) and the axioms in parts 7
and 9 in the 3XOR principle.

16

Proof: First sum all axioms (7) to obtain:

∑

j∈[k],s∈[t]
r∈[m]

y
(s)
jr ∈ {0, 1, ..., d ·m}. (14)

From (13) we can obtain:

∑

j∈[k],r∈[m]

y
(s)
jr · (1− ui) ∈ {1, 2, ..., k ·m}, for every s ∈ [t].

And by summing this for all s ∈ [t] and i ∈ [m], we get:

∑

i∈[m]

∑

j∈[k],r∈[m]
s∈[t]

y
(s)
jr · (1− ui) =

∑

i∈[m]

(1− ui) ·
∑

j∈[k],r∈[m]
s∈[t]

y
(s)
jr

∈ {t ·m, t ·m+ 1, ..., t · k ·m2}. (15)

From the axiom in part (9) in the 3XOR principle
∑m

j=1 uj ∈ {m− ⌈t/d⌉+ 1, ...,m} we can
obtain easily

∑

i∈[m]

(1− ui) ∈ {0, 1, ..., ⌈t/d⌉ − 1}.

From this and (14) we get, via Lemma 9 proved below, the following:

∑

i∈[m]

(1− ui) ·
∑

j∈[k],s∈[t]
r∈[m]

y
(s)
jr ∈ {0, 1, ..., d ·m · (⌈t/d⌉ − 1)} .

Since d · m · (⌈t/d⌉ − 1) < d · m · ⌈t/d⌉ ≤ m · t, we obtain a contradiction with (15), which
finishes the refutation.

It remains to prove Lemma 9, which was used in the above proof:

Lemma 9 Let
∑

i∈I xi ∈ {0, 1, ..., n} and
∑

j∈J yj ∈ {0, 1, ...,m} be disjunctions of linear
equations, both of size at most s. Given these two disjunctions we can prove in R(quad) with
a polynomial-size in s proof, the following:

∑

i∈I

xi ·
∑

j∈J

yj ∈ {0, 1, ...,m · n}. (16)

Proof: We can reason in a case-by-case manner as follows (see [RT08] on how to carry out
informal case-analysis reasoning inside R(lin)): assume that

∑

j∈J yj = a, for a ∈ {0, 1, ...,m}.
We wish to show that x1 ·

∑

j∈J yj = ax1. If x1 = 0 then x1 ·
∑

j∈J yj = 0 = ax1. Otherwise,
x1 = 1. Then, x1 ·

∑

j∈J yj =
∑

j∈J yj = a = ax1. Since we have the axiom (x1 = 0)∨(x1 = 1)
we conclude that x1 ·

∑

j∈J yj = ax1. In a similar way we can derive for all i ∈ I:

xi ·
∑

j∈J

yj = axi. (17)

17

And by adding (17) for all i ∈ I we obtain:

∑

i∈I

xi ·
∑

j∈J

yj = a ·
∑

i∈I

xi.

Now using the axiom
∑

i∈I xi ∈ {0, 1, ..., n}, we get

∑

i∈I

xi ·
∑

j∈J

yj ∈ {0, a, 2a, ..., n · a}. (18)

Recall that (18) was obtained under the assumption that
∑

j∈J yj = a. This means that if
we have the axiom

∑

j∈J yj ∈ {0, 1, ...,m}, we can obtain:

∑

i∈I

xi ·
∑

j∈J

yj ∈ {b · c | b ∈ {0, 1, .., n} and c ∈ {0, 1, ...,m}} = {0, 1, ..., n ·m}.

Note that the proof of Lemma 9 would also work if instead of the sums
∑

i∈I xi or
∑

j∈J yj
we have

∑

i∈I bixi or
∑

j∈J cjyj , for integers bi, cj .

7 Reduction to weak automatizability of R(lin)

Here we show that R(lin) is weakly automatizable if and only if R(quad) is weakly automa-
tizable.

To show that R(lin) is weakly automatizable iff R(quad) is weakly automatizable we use
a similar idea to Pudlák [Pud03]. Namely, we show that the canonical pair of R(quad) is
polynomially reducible to the canonical pair of R(lin).

Definition 5 ([Raz94]) The canonical pair of a refutation system P is the disjoint NP-
pair, whose first NP language consists of all pairs (τ, 1m) where τ is an unsatisfiable formula
that has a P-refutation of size at most m, and whose second NP language is the set of pairs
(µ, 1m) where µ is a satisfiable formula and m is some natural number.

We say that a canonical pair (A,B) of a refutation system P ′ is polynomially reducible
to the canonical pair (A′, B′) of another refutation system P if there is a polynomial-time
computable function f such that for all x it holds that x ∈ A ⇐⇒ f(x) ∈ A′ and x ∈
B ⇐⇒ f(x) ∈ B′. A simple corollary of the above definitions is the following:

Proposition 10 ([Pud03]) If the canonical pair of P ′ is polynomially reducible to the
canonical pair of P then P ′ is weakly automatizable if P is weakly automatizable.

In view of this proposition, and since R(quad) clearly polynomially simulates R(lin) (as
an extension of it), it remains to show the following:

Proposition 11 The canonical pair of R(quad) is polynomially reducible to the canonical
pair of R(lin).

18

Proof:(Sketch) Similar to [Pud03], the idea is to encode a product of any two variables xi ·xj
as a new single formal variable xij . Thus, the reduction sends all pairs (τ, 1m) to the pair
(τ ′, 1poly(m)), where τ ′ is obtained from τ by adding the axioms that force all new variables
xij to encode the product xi · xj , as shown in Section 5.

Corollary 12 R(quad) is weakly automatizable iff R(lin) is weakly automatizable.

Since R(quad) admits polynomial-size refutations of the 3XOR principle, and since weak
automatizability entails feasible interpolation, we get a reduction of the problem of deter-
minizing Feige et al. non-deterministic refutation algorithm to the problem of establishing
weak automatizability of R(lin):

Corollary 13 If R(lin) is weakly automatizable then there is a deterministic refutation al-
gorithm for random 3CNFs with Ω(n1.4) clauses.

8 Conclusions

We reduced the algorithmic problem of constructing a deterministic refutation algorithm for
random 3CNFs with n variables and Ω(n1.4) clauses to the (nondeterministic) problem of
proving the existence of a short proof of a certain tautology in somewhat weak proof systems,
and also to the problem of establishing weak automatizability of R(lin).

We do not believe that there are polynomial-size refutations of the 3XOR principle in
cutting planes or R(lin), since, loosely speaking, it is impossible in these proof systems to
compose two mappings, an ability that seems to be inevitable for any proof system that can
refute efficiently the 3XOR principle.

It should also be noted that it might be possible to use similar arguments to Atserias and
Bonet [AB04] to show that R(quad) has feasible interpolation iff R(lin) is weakly automatiz-
able.

Finally, it might be possible that the 3XOR principle is already efficiently provable in
an apparently weaker proof system than R(quad), namely a proof system that operates
with proof-lines that are disjunctions of constant many generalized quadratic equations (note
that we did not assume any bound on the number of disjunctions in an R(quad) proof-line).
This would reduce the problem of determinizing Feige et al. non-deterministic algorithm to
the weak automatizability of the proof system R0(lin) introduced in [RT08], for which it is
already known that the feasible interpolation holds by [RT08] (though weak automatizability
is unknown for it).

Acknowledgments

I wish to thank Jan Kraj́ıček for useful comments related to this work and Neil Thapen for
a useful related discussion.

19

References

[AB04] A. Atserias and Maria Luisa Bonet. On the automatizability of resolution and
related propositional proof systems. Information and Computation, 189:182–201,
2004. 1, 1, 8

[AM12] Albert Atserias and Elitza Maneva. Mean-payoff games and propositional proofs.
In International Conference on Automata, Languages and Programming, volume
6198 of Lecture Notes in Computer Science, pages 102–113. Springer Berlin /
Heidelberg, 2012. 1.0.1

[BDG+99] Maria Luisa Bonet, Carlos Domingo, Ricard Gavaldà, Alexis Maciel, and Toniann
Pitassi. Non-automatizability of bounded-depth Frege proofs. In Fourteenth An-
nual IEEE Conference on Computational Complexity (Atlanta, GA, 1999), pages
15–23. IEEE Computer Soc., Los Alamitos, CA, 1999. 2.1

[BP98] Paul Beame and Toniann Pitassi. Propositional proof complexity: past, present,
and future. Bull. Eur. Assoc. Theor. Comput. Sci. EATCS, (65):66–89, 1998. 2.1

[BPR97] Maria Luisa Bonet, Toniann Pitassi, and Ran Raz. Lower bounds for cutting
planes proofs with small coefficients. The Journal of Symbolic Logic, 62(3):708–
728, 1997. 1, 1, 2.1

[BPR00] Maria Luisa Bonet, Toniann Pitassi, and Ran Raz. On interpolation and autom-
atization for Frege systems. SIAM J. Comput., 29(6):1939–1967, 2000. 1, 2.1

[CCT87] W. Cook, C. R. Coullard, and G. Turan. On the complexity of cutting plane
proofs. Discrete Applied Mathematics, 18:25–38, 1987. 1

[CEI96] Matthew Clegg, Jeffery Edmonds, and Russell Impagliazzo. Using the Groebner
basis algorithm to find proofs of unsatisfiability. In Proceedings of the 28th Annual
ACM Symposium on the Theory of Computing (Philadelphia, PA, 1996), pages
174–183, New York, 1996. ACM. 2.1

[CK02] Peter Clote and Evangelos Kranakis. Boolean functions and computation models.
Texts in Theoretical Computer Science. An EATCS Series. Springer-Verlag, Berlin,
2002. 2.1

[Fei02] Uriel Feige. Relations between average case complexity and approximation com-
plexity. In STOC, pages 534–543, 2002. 4.1

[Fei07] Uriel Feige. Refuting smoothed 3CNF formulas. In Proceedings of the IEEE 48th
Annual Symposium on Foundations of Computer Science, pages 407–417. IEEE
Computer Society, 2007. 1

[FGK05] Joel Friedman, Andreas Goerdt, and Michael Krivelevich. Recognizing more un-
satisfiable random k-SAT instances efficiently. SIAM J. Comput., 35(2):408–430,
2005. 1

20

[FKO06] Uriel Feige, Jeong Han Kim, and Eran Ofek. Witnesses for non-satisfiability of
dense random 3CNF formulas. In Proceedings of the IEEE 47th Annual Sympo-
sium on Foundations of Computer Science, 2006. (document), 1, 1.0.1, 3, 3, 5,
4.1, 6, 4.1

[FO07] Uriel Feige and Eran Ofek. Easily refutable subformulas of large random 3CNF
formulas. Theory of Computing, 3(1):25–43, 2007. (document), 1, 4.1

[GK01] A. Goerdt and M. Krivelevich. Efficient recognition of random unsatisfiable k-SAT
instances by spectral methods. In Annual Symposium on Theoretical Aspects of
Computer Science, pages 294–304, 2001. 1

[GL03] Andreas Goerdt and André Lanka. Recognizing more random unsatisfiable 3-SAT
instances efficiently. Electronic Notes in Discrete Mathematics, 16:21–46, 2003. 1

[HC99] Armin Haken and Stephen Cook. An exponential lower bound for the size of
monotone real circuits. Journal of Computer and System Sciences, 58:326–335,
1999. 2.1

[HP11] Lei Huang and Toniann Pitassi. Automatizability and simple stochastic games.
In ICALP (1), pages 605–617, 2011. 1.0.1

[IPU94] Russel Impagliazzo, Toniann Pitassi, and Alasdair Urquhart. Upper and lower
bounds for tree-like cutting planes proofs. In Ninth Annual Symposium on Logic
in Computer Science, pages 220–228. IEEE Comput. Soc. Press, 1994. 2.1

[Kra94] Jan Kraj́ıček. Lower bounds to the size of constant-depth propositional proofs.
The Journal of Symbolic Logic, 59(1):73–86, 1994. 1

[Kra95] Jan Kraj́ıček. Bounded arithmetic, propositional logic, and complexity theory,
volume 60 of Encyclopedia of Mathematics and its Applications. Cambridge Uni-
versity Press, Cambridge, 1995. 2.1

[Kra97] Jan Kraj́ıček. Interpolation theorems, lower bounds for proof systems, and
independence results for bounded arithmetic. The Journal of Symbolic Logic,
62(2):457–486, 1997. 1, 1, 2.1

[Kra01] Jan Kraj́ıček. On the weak pigeonhole principle. Fund. Math., 170(1-2):123–140,
2001. 1

[MT12] Sebastian Müller and Iddo Tzameret. Short propositional refutations for dense
random 3CNF formulas. In Proceedings of the 27th Annual ACM/IEEE Sympo-
sium on Logic In Computer Science (LICS), 2012. 1, 1, 4.1

[Pud97] Pavel Pudlák. Lower bounds for resolution and cutting plane proofs and monotone
computations. The Journal of Symbolic Logic, 62(3):981–998, Sept. 1997. 1, 2.1

[Pud03] Pavel Pudlák. On reducibility and symmetry of disjoint NP pairs. Theoret. Com-
put. Sci., 295:323–339, 2003. 1, 1, 1.0.1, 7, 10, 7

21

[Raz94] Alexander A. Razborov. On provably disjoint np-pairs. Electronic Colloquium on
Computational Complexity (ECCC), 1(6), 1994. 5

[Raz95] Alexander A. Razborov. Unprovability of lower bounds on circuit size in certain
fragments of bounded arithmetic. Izv. Ross. Akad. Nauk Ser. Mat., 59(1):201–224,
1995. 1

[RT08] Ran Raz and Iddo Tzameret. Resolution over linear equations and multilinear
proofs. Ann. Pure Appl. Logic, 155(3):194–224, 2008. (document), 1, 1.0.1, 5.1,
6, 6, 8

[Seg07] Nathan Segerlind. The complexity of propositional proofs. Bull. Symbolic Logic,
13(4):417–481, 2007. 2.1

[Tse68] Grigori Tseitin. On the complexity of derivations in propositional calculus. Studies
in constructive mathematics and mathematical logic Part II. Consultants Bureau,
New-York-London, 1968. 1.0.1

22

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

