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Abstract

Given a set of items and a collection of players, each with a nonnegative monotone valuation
set function over the items, the welfare maximization problem requires that every item be
allocated to exactly one player, and one wishes to maximize the sum of values obtained by
the players, as computed by applying the respective valuation function to the bundle of items
allocated to the player. This problem in its full generality is NP-hard, and moreover, at least as
hard to approximate as set packing. Better approximation guarantees are known for restricted
classes of valuation functions.

In this work we introduce a new parameter, the supermodular degree of a valuation function,
which is a measure for the extent to which the function exhibits supermodular behavior. We
design an approximation algorithm for the welfare maximization problem whose approximation
guarantee is linear in the supermodular degree of the underlying valuation functions.

1 Introduction

The welfare maximization problem (also known as “combinatorial auction”) is the following. There
is a set of players and a set of indivisible items. Each player has its own (monotone non-decreasing)
valuation for any subset of items. The goal is to distribute the items to the players while maxi-
mizing social welfare - the sum of values of all players, by their personal valuations. The welfare
maximization problem is NP-hard to approximate with any reasonable guarantee. For this reason
past research considered restrictions on the class of set functions that may serve as valuation func-
tions for the players. Lehmann, Lehmann and Nisan [15] considered complement free functions,
which essentially means that a value of a set of items cannot exceed the sum of values of its parts.
They presented a hierarchy of classes of complement free functions, and established constant factor
approximations for the welfare maximization problem in some cases.1 Subsequent work established
constant factor approximation for all classes of complement free functions. This made it clear
that the poor approximation guarantees for the general case must come from complementarities

ACM, 2013. This is the authors version of the work. It is posted here by permission of ACM for your personal
use. Not for redistribution. The definitive version was published in proceedings of the 4th conference on Innovations
in Theoretical Computer Science, http://doi.acm.org/10.1145/2422436.2422466.

1There was earlier work with related results that used different terminology. For example, Fisher, Nemhauser
and Wolsey [10] studied “the m-box problem” which is essentially the welfare maximization problem with monotone
submodular valuation functions. Among their results there was a greedy approximation algorithm for a generalized
version of this problem with approximation guarantee 1/2.
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(sets whose value is larger than that of the sum of their parts). Recently, Abraham, Babaioff,
Dughmi and Roughgarden [1] considered a restricted class of set functions strictly based on com-
plementarities (in particular, no set is valued less than the sum of its parts). Among other results,
they presented an algorithm with an approximation guarantee that is linear in a certain parameter
related to the extent of these complementarities.

In the current work, similarly to [1], we express the approximation guarantees as a function
of some parameter associated with the underlying set functions. The smaller this parameter is,
the better the approximation guarantee. However, we depart from the practice of considering
restricted classes of set functions – our parametrization can be applied to any set function. It is
most advantageous (in the sense that our approximation guarantees are not bad whereas previous
work does not apply to these set functions) when the set functions are basically submodular (offer
decreasing marginal value, which is the discrete analog of convexity), but exhibit a limited amount
of complementarities. As a simple example of how such functions may arise, consider shopping
for shoes. Each additional pair of shoes may have decreasing marginal value, but within a pair of
shoes, the left and right shoe are together worth more than the sum of values of each shoe on its
own.

Specifically, we introduce two new (as far as we know) complexity measures of set functions.
One is the dependency degree. Roughly speaking, this is the maximum number of items that
may influence the marginal value of any item with respect to any possible subset of other items.
The other is the supermodular degree. Roughly speaking, this is the dependency degree, taking
into account only items that may increase the marginal value of an item. That is, “negative
dependencies” do not increase the latter complexity measure. In particular, submodular functions
might have arbitrary dependency degree, but their supermodular degree is 0. This measure can
also be seen, in a sense, as the “degree of complementarity”. We design two greedy approximation
algorithms for the welfare maximization problem, each with approximation guarantee linear in the
maximum of one of these measures over the set functions of the players.

2 Preliminaries

We firstly define formally the welfare maximization problem:

Definition 2.1 An instance I(P,M, v) of the welfare maximization problem is the following:

• P is a set of n players 1, . . . , n.

• M is a set of m items j1, . . . , jm.

• v is a vector of n valuation functions (set functions) v1, . . . , vn, where vp : 2M → R
+ is the

valuation function associated with the player p ∈ P .2 For any p ∈ P , vp is restricted to be
monotone non-decreasing and with value 0 for the empty set (and hence also non-negative).

A feasible solution to I is a mapping SOL : M → P , allocating each of the items to exactly one
player. This mapping induces for each player p ∈ P a set SOLp of the items mapped to her. The
utility/value of a player p ∈ P is defined as vp(SOLp). Our aim is to maximize the social welfare

v(SOL)
def
=
∑

p∈P

vp(SOLp).

2We use R
+ to indicate the set of all non-negative real numbers (that is, 0 is included).
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2.1 Types of set functions without complementarities

We recall previously studied types of set functions without complementarities (see for example [15,
8]). Let S be a set and let f : 2S → R

+ be a set function.

Definition 2.2 We say that f is submodular if for any S′′ ⊆ S′ ⊆ S and x ∈ S \ S′, f(x | S′) ≤
f(x | S′′).

Definition 2.3 We say that f is fractionally subadditive if for every subset S′ ⊆ S, subsets Ti ⊆ S′

and every coefficients 0 < αi ≤ 1 such that for any x ∈ S′,
∑

i:x∈Ti
αi ≥ 1, it holds that f(S′) ≤

∑

i αif(Ti).

Definition 2.4 We say that f is subadditive or complement free if for every S1, S2 ⊆ S, f(S1∪S2) ≤
f(S1) + f(S2).

2.2 Measuring dependencies

In this section we introduce complexity measures capturing dependencies of items in a groundset
of a set function. For convenience, we treat the set functions as valuation functions of players
of an instance of the welfare maximization problem (for notations only). Let M be a set, let
vp : 2

M → R
+ be a valuation function of player p ∈ P and let j ∈M . We firstly recall the following

definition (see for example [15]):

Definition 2.5 Let p ∈ P and let j ∈M . The marginal valuation function vp,j : 2
M\{j} → R

+ is a
function mapping each subset S ⊆M \ {j} to the marginal value of j given S:

vp,j(S)
def
= vp(S ∪ {j})− vp(S) .

We denote the marginal value vp,j(S) also by vp(j | S). For S
′ = {j1, . . . , j|S′|} ⊆M and S ⊆M \S′

we also use either of the notations vp(j1, . . . , j|S′| | S) or vp(S
′ | S) to indicate vp(S ∪ S′)− vp(S).

Definition 2.6 The dependency set of j by vp is the set of all items j′ in M such that there exists
S ⊆ M \ {j} such that vp(j | S) 6= vp(j | S \ {j

′}). For each such j′, we say that j depends on j′

by p and denote it by j →p j
′, or by j

S
→p j

′ if we want to explicitly mention the set S. We denote
the dependency set of j by vp by Depp(j). p or vp may be omitted in any of the above, when it is
clear from the context.

The relation ‘→’ is symmetric (see Appendix A), so we may also use the terminology “are
dependent” and the notation ‘↔’.

Definition 2.7 The supermodular dependency set of j by vp is the set of all items j′ in M such
that there exists S ⊆M \ {j} such that vp(j | S) > vp(j | S \ {j

′}). Terminology and notations are
the same as in Definition 2.6, but with the word “supermodular/ly” or with ‘+’ as a superscript.
Note that the relation ‘→+’ is also symmetric (see Appendix A).

Definition 2.8 The dependency degree of vp is defined as DD(vp)
def
= maxj∈M |Depp(j)|. The su-

permodular dependency degree (or simply, the supermodular degree) of vp is defined as DD+(vp)
def
=

maxj∈M |Dep+p (j)|. The (supermodular) dependency degree of an instance of the welfare maximiza-
tion problem is the maximum (supermodular) dependency degree among all valuation functions of
the instance.
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Note that any submodular set function has supermodular degree 0. Note also that DD+(f) ≤
DD(f) for any set function f .

We also use the following definition:

Definition 2.9 Let f be a set function. The (supermodular) dependency graph of f is the following.
There is a vertex for each item and an undirected edge for each pair of (supermodularly) dependent
items.

2.3 Representing set functions

In the welfare maximization problem, the domain of the valuation functions is exponential in the
number of items. We recall two possible approaches to cope with this. The first is using an explicit
representation model (specifically, we recall a hypergraph representation; see [5], [4], [1]) and the
second is using oracles, representing set functions by supporting queries with respect to them (see
for example [3]).

2.3.1 A hypergraph representation

Every set function f can be represented in a unique way as a hypergraph in which the vertices
are the items, vertices and hyperedges have weights associated with them, and the value f(S) of
a subset S of items equals the sum of all weights in the subgraph induced by the corresponding
vertices. We observe that two items share a hyperedge in the hypergraph representation if and only
if they are dependent, and that sharing a hyperedge of positive weight is a necessary condition but
not sufficient for being supermodularly dependent.3

A succinct representation Let f : 2S → R
+ be a set function and let s

def
= |S|. In general, a

succinct representation of f is any representation that takes space polynomial in s. For example,
the hypergraph representation is succinct for any set function with dependency degree bounded by
log s (and, of course, for some other set functions, as well).

2.3.2 Queries oracles

We recall the definitions of value and demand queries oracle for an underlying set function. Let
f : 2S → R

+ be a set function.

Definition 2.10 Value queries are the following:
Input: A subset S′ ⊆ S.
Output: f(S′).

Definition 2.11 Demand queries are the following:
Input: A cost function c : S → R

+.
Output: A subset S′ ⊆ S maximizing f(S′)−

∑

j∈S′ c(j).

3For example, consider the set function f that has value 0 on the empty set and 1 elsewhere. In its hypergraph
representation every odd set of items forms a hyperedge of weight 1 and every even set of items forms a hyperedge
of weight −1. Every two items share a positive hyperedge, but no two items are supermodularly dependent, since f
is submodular.
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Note that demand queries are strictly stronger than value queries (see [3]).

Definition 2.12 Queries oracle for a type of queries for a given set function can answer queries of
the respective type with respect to the given set function.

The notion of an oracle serves as an abstraction for a subroutine that computes an answer to
the respective type of queries for a given set function. When we say that an algorithm uses a
certain type of oracle, the running time of the algorithm is computed as if each query takes unit
time to answer, regardless of the true running time of the underlying subroutine. This abstraction
is most justified if for the underlying set function, answers to the respective query can indeed be
computed efficiently. We remark that given a succinct hypergraph representation for a set function,
one can efficiently answer value queries, whereas answering demand queries might be NP-hard (see
for example Theorem 2.4). We also remark that given a succinct hypergraph representation, one
can construct the corresponding dependency graph and supermodular dependency graph.

2.4 Preliminary observations

2.4.1 APX -hardness of the welfare maximization problem

Proposition 2.1 The welfare maximization problem is APX -hard even if there are only three
players who all have the same valuation function f , with DD+(f) = 0 and DD(f) = 3.

Proof: It is known that the question of whether a 3-regular graph can be legally 3-colored is
NP-hard, and that it is APX -hard to maximize the number of legally colored edges [16]. Given
a 3-regular graph G, consider a set function f that has G as its hypergraph representation, with
all vertices having value 3 and all edges having value −1. Associating a color with each player, the
allocation that maximizes welfare is the one that minimizes the number of monochromatic edges.
The proposition follows. �

2.4.2 Hardness of welfare maximization as a function of the dependency degree

Recall that the maximum weighted k-set packing problem is the following:

Definition 2.13 Let G = (V,E,w) be a weighted k-uniform hypergraph (i.e. every hyperedge
contains exactly k vertices) with set of vertices V , set of undirected edges E and edge weights
function w. The maximum weighted k-set packing problem is to find a set of disjoint edges of
maximum weight.

This problem is known to be NP-hard for any k > 2 and is hard for approximation with guarantee
Ω( ln k

k
), even in the unweighted case, by a result of Hazan, Safra and Schwartz [14]. The best

approximation guarantee known for it currently (as far as we know) is (k + 1)/2, by an algorithm
of Berman [2]. We show the following:

Proposition 2.2 There exists an approximation preserving reduction of the maximum weighted
k-set packing problem to the welfare maximization problem with dependency degree at most k − 1.

Proof: The reduction is Reduction 2.1.

It is easy to verify that any feasible solution for ISP (the input of Reduction 2.1) has a corre-
sponding feasible solution for I (the output of Reduction 2.1), with the same value, and vice versa,
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Reduction 2.1 k-set packing to welfare maximization with dependency degree at most k − 1

Input: An instance ISP (V,E,w) of the maximum weighted k-set packing problem, with V =
{v1, . . . , v|V |)} .
Output: An instance I(P,M, v) of the welfare maximization problem with dependency degree at
most k − 1.

1: For each vertex vi ∈ V , create an item i ∈M .
2: For each hyper-edge e = {ve1 , . . . , vek} ∈ E, create a player pe ∈ P with vp(S) = w(e) for any

S such that {e1, . . . , ek} ⊆ S and vp(S) = 0 otherwise.

as desired. �

2.4.3 An exact algorithm for dependency degree at most 1

Proposition 2.3 The welfare maximization problem with dependency degree at most 1 admits an
exact polynomial time algorithm.

The main idea is to use symmetry of the dependency relation in order to reduce an instance of the
welfare maximization problem to an instance of maximum weighted matching. The full reduction
appears in Appendix C.

2.4.4 Demand queries and the dependency degree

Theorem 2.4 Given a hypergraph representation of any set function with dependency degree at
most 2, demand queries may be answered in polynomial time (in the size of the hypergraph repre-
sentation). Given a hypergraph representation of a set function with dependency degree at least 3,
demand queries are generally APX -hard to answer (with respect to the size of the hypergraph rep-
resentation).

Proof: Let f be a set function. If DD(f) ≤ 2, then each item depends on at most two other items.
The dependency graph of f is of maximum degree 2 and hence its connected components are either
isolated vertices, isolated paths or isolated cycles. On each such component, demand queries may
be answered using dynamic programming.

To show hardness for set functions f with DD(f) ≥ 3, we reduce from the problem of maximum
independent set in 3-regular graphs. f is represented by the following hypergraph representation.
Give each vertex value 3 and each edge value −1. The value of the answer to a demand query
in which the cost of each vertex is 2 is equal to the size of the maximum independent set (it
is worth taking a vertex only if it does not contribute an edge to the induced subgraph). Due to
APX -hardness of maximum independent set in 3-regular graphs, it is APX -hard to answer demand
queries, as well. �

2.5 Our main results

We view the notion of the supermodular degree and the study of its basic properties as an important
contribution of our work. This notion is applicable to any set function, and its relevance to the
welfare maximization problem is demonstrated by the following theorem.
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Theorem 2.5 The welfare maximization problem with supermodular degree at most d admits a
polynomial time greedy 1

d+2 -approximation algorithm. This algorithm requires for each valuation
function a value queries oracle and a supermodular dependency graph.

For the dependency degree we have a slightly better approximation guarantee, which is relevant
only when the dependency degree and the supermodular degree are equal:

Theorem 2.6 The welfare maximization problem with dependency degree at most d admits a greedy
1

d+1 approximation algorithm. Its running time is polynomial in the number of players and items and

in 2d. This algorithm requires for each valuation function a value queries oracle and a dependency
graph.

Proposition 2.2 implies that an improvement of our results by a multiplicative factor of more
than roughly 2 would improve the current approximation guarantee for weighted k-set packing.
Additionally, by a hardness result of Blumrosen and Nisan [3] of Ω(logm/m) for algorithms requir-
ing only value queries oracle4, our bounds are tight up to a multiplicative factor of O(logm), in
the sense that general set functions have dependency degree (and supermodular degree) at most
m− 1.

2.6 Related work

The supermodular degree is a complexity measure for set functions, that ranges from 0 (for sub-
modular set functions) to m − 1 (where m is the number of items). Our main result is a greedy
algorithm for the welfare maximization problem whose approximation guarantee increases linearly
with the supermodular degree of the underlying set functions. Such a linear increase is to be
expected, given the known reduction from set packing to the welfare maximization problem with
single minded bidders, combined with the difficulty of approximating set packing ([14]). As far as
we know, the notion of supermodular degree has not appeared in previous work. However, other
related notions did appear, and in this section we discuss some of them.

Perhaps the simplest complexity measure for a set function is its support size, namely, the
number of items that it depends on. This measure ranges from 1 to m. Moreover, simple greedy
algorithms approximate the welfare maximization problem with guarantee equal to this measure,
and known hardness results for the case of single minded bidders apply here as well. Hence the
results that one can prove for the complexity measures of support size and supermodular degree
are of a similar nature. However, as the supermodular degree of a function is not greater than its
support size, and moreover, it is often much smaller (the gap being most dramatic for submodular
functions), we view our results for supermodular degree as significantly more informative than the
corresponding results for support size.

Lehmann, Lehmann and Nisan [15] proposed a hierarchy of classes of set functions based on
notions of complement-freeness, and initiated a study of the complexity of the welfare maximization
problem for these classes. For the lower classes (linear functions, and functions enjoying the gross
substitutes property) the welfare maximization problem can be solved in polynomial time. For

4Our algorithms require also dependency graph / supermodular dependency graph. However, in the instance used
by [3], it is trivial to construct both, since all the items supermodularly depend on each other (for infinitely many
values of m). Alternatively, since the approximation hardness is Ω(logm/m), we may simply modify the valuations
functions so that every two items are supermodularly dependent, by adding a positive hyperedge that contains all
items. Details omitted.
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submodular functions, a constant approximation guarantee is possible and value queries suffice
for this [15, 18] (and somewhat better constants are achievable using demand queries [9]). For
XOS (later referred to as fractionally subadditive in [8]) and subadditive set functions there are
approximation algorithms with constant approximation guarantees [6, 17, 8], but they require
demand queries (value queries do not suffice [6]). The algorithm given in [15] for submodular
functions is greedy, and the greedy algorithm in the current paper can be viewed as an extension
of the greedy algorithm of [15] to a setting that is not submodular. The classification of [15] does
not distinguish between different classes of functions that are not subadditive, and hence unlike
our supermodular degree measure, is applicable only to some classes of set functions, but not to set
functions in general. Set functions not lying in the classification of [15] may have any supermodular
degree between 1 and m and our algorithms for maximizing welfare distinguish among them in the
approximation guarantees that they provide. Lehmann, Lehmann and Nisan [15] do suggest a way
of extending their classification to additional functions, as follows. A function f can be called
c-submodular, if for every (possibly empty) sets S and T and item x, the marginal value of x with
respect to S ∪ T is at most c times larger that the marginal value of x with respect to S. (For
submodular functions c = 1.) It is shown in [15] that the welfare maximization problem can be
approximated with guarantee of c+ 1 when the set functions are c-submodular. We note however
that even functions on two items need not be c-submodular for any finite c (if one of the items has
value 0 by itself but positive marginal value together with the other item).

Submodular functions play a central role in the definition of the supermodular degree. However,
other classes within the hierarchy of [15] have no special significance in this respect. The super-
modular degree does not distinguish between linear functions and arbitrary submodular functions
– they both have supermodular degree 0. Functions in the [15] hierarchy which are not submodular
may have arbitrarily large supermodular degree.5

Conitzer, Sandholm and Santi [5] introduce the representation of set functions via hypergraphs
with positive and negative hyperedges (presented in Section 2.3. See also the work of Chevaleyre,
Endriss, Estivie and Maudet [4], who defined independently a similar concept). They showed that
even if each hyperedge has at most two vertices, the welfare maximization problem is NP-hard.
They did not consider approximation algorithms. Abraham, Babaioff, Dughmi and Roughgar-
den [1] consider supermodular functions which have no negative hyperedges in their hypergraph
representation. Among other results, they give an algorithm approximating the welfare maximiza-
tion problem within a value equal to the maximum cardinality of any hyperedge (which may be
smaller than the supermodular degree). They prove that obtaining similar approximation guar-
antees in the presence of negative hyperedges is NP-hard. This serves as an explanation of why
their model forbids negative hyperedges. Our results are to some extent in disagreement with this
conclusion of [1]. Given a hypergraph representation of a set function with a given supermodular
degree, adding negative hyperedges cannot increase the supermodular degree (in fact, it may cause
the supermodular degree to decrease) and hence will not hurt our bounds on the approximation
guarantees. This discrepancy between our results and those of [1] is explained by our requirement
that set functions are nondecreasing, whereas the hardness of approximation results presented in [1]
used set functions that are sometimes decreasing.

5For example, partition the set of items into two disjoint sets, A and B. Let fA be a linear function that gives
value 1 to each item in A and 0 to each item in B. Let fB be a linear function that gives value 1 to each item in B
and 0 to each item in A. Let f be defined as f(S) = max[fA(S), fB(S)]. This is an XOS function (according to the
classification of [15]), but its supermodular degree is max[|A|, |B|]− 1.
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3 Approximation guarantee linear in supermodular degree

In this section we prove Theorem 2.5. Our result may be seen as an extension of a work of Lehmann,
Lehmann and Nisan [15], who presented a greedy 2-approximation algorithm for submodular set
functions.

3.1 The algorithm

The algorithm is greedy. In a given iteration, for every player p and item j, let D+
p (j) denote the

set of items not yet allocated that have supermodular dependency with j with respect to vp. The
algorithm computes the player p and item j for which the marginal value for p (given the items
that p already has) of the set j ∪ D+

p (j) is maximized, and allocates j ∪ D+
p (j) to p. For a full

description of the algorithm, see Algorithm 3.1.

Algorithm 3.1 Greedily Approximate Welfare Maximization with Guarantee Linear in Supermod-
ular Degree

Input:

• An instance I(P,M, v) of the welfare maximization problem.

• A value queries oracle and a supermodular dependency graph for each of the valuation func-
tions.

Output: A solution with approximation guarantee 1
d+2 , where d is the supermodular degree of

I.

1: Unallocated←M , Approx← ∅
2: while Unallocated 6= ∅ do
3: MaxMarginalUtility ← −1
4: for all j ∈ Unallocated, p ∈ P do
5: if vp(j,Dep+p (j) ∩ Unallocated | {j′ ∈ M | (j′ 7→ p) ∈ Approx}) > MaxMarginalUtility

then
6: MaxMarginalUtility ← vp(j,Dep+p (j) ∩ Unallocated | {j′ ∈M | (j′ 7→ p) ∈ Approx})
7: BestAllocation← ({j} ∪ (Dep+p (j) ∩ Unallocated) 7→ p)
8: WinningP layer ← p, AllocatedItem← j
9: end if

10: end for
11: Approx← Approx ∪BestAllocation
12: Unallocated← Unallocated \ (AllocatedItem ∪Dep+WinningP layer(AllocatedItem))
13: end while

We show Algorithm 3.1 has approximation guarantee 1/(d+2), using a hybrid argument. This
will prove Theorem 2.5.

Proof: [of Theorem 2.5] Let OPT be an optimal solution with value opt and let APPROX be the
output of Algorithm 3.1 with value approx. For iteration i of the loop at line 2 of Algorithm 3.1,
let APPROXi be the allocations made at the first i iterations, let OPTi be the allocations made
by OPT for the items that have not yet been allocated and let HY BRIDi = APPROXi ∪ OPTi
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be a hybrid solution. Let HY BRIDp
i and OPT p

i be the items allocated in HY BRIDi and OPTi

(respectively) to player p ∈ P . Note that HY BRID0 = OPT and HY BRIDt = APPROX, where
t is the total number of iterations. We prove the following lemma:

Lemma 3.1 Let i be an iteration of the loop at line 2 of Algorithm 3.1 and let p∗ be the player to
whom items are allocated at iteration i. Then,

(d+ 2)(vp∗(APPROXp∗

i )− vp∗(APPROXp∗

i−1))

≥
n
∑

p=1

(

vp(OPT p
i−1 | APPROXp

i−1)− vp(OPT p
i | APPROXp

i )
)

.

That is, the value lost by any iteration is bounded by d + 2 times the value gained by the same
iteration.

Proof: Let x = vp∗(APPROXp∗

i )− vp∗(APPROXp∗

i−1). Roughly speaking, we prove that:

1. For an item allocated to some p′ 6= p∗ in OPT , the loss to the value of p′ for not getting the
item is at most x.

2. Having received items in the current iteration, the loss in marginal value of future items given
to p∗ is at most x.

The first “contributes” to the “damage” up to (d+1) ·x, since at most d+1 items are allocated at
each iteration. The second “contributes” up to another x, and for any other player HY BRIDi−1 =
HY BRIDi. We prove the lemma formally. Let j1, . . . jd′ be the items allocated at iteration i and
let P ′ be the set of players p′ 6= p∗ such that at least one of the items j1, . . . , jd′ is allocated to p′

in OPTi−1. Let p
′ ∈ P ′ and let ĵ1, . . . , ĵd′′ ∈ {j1, . . . , jd′} be all the items of j1, . . . , jd′ , allocated to
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p′ by OPTi−1. Then,

vp′
(

OPT p′

i−1

∣

∣

∣
APPROXp′

i−1

)

− vp′
(

OPT p′

i

∣

∣

∣
APPROXp′

i

)

= vp′
(

{ĵ1, . . . ĵd′′}
∣

∣

∣OPT p′

i ∪APPROXp′

i−1

)

=
d′′
∑

k=1

vp′

(

ĵk

∣

∣

∣

∣

∣

d′′
⋃

k′=k+1

{ĵk′} ∪OPT p′

i ∪APPROXp′

i−1

)

≤ d′′ ·
d′′

max
k=1

vp′

(

ĵk

∣

∣

∣

∣

∣

d′′
⋃

k′=k+1

{ĵk′} ∪OPT p′

i ∪APPROXp′

i−1

)

≤ d′′ ·
d′′

max
k=1

vp′

(

ĵk

∣

∣

∣

∣

∣

((

d′′
⋃

k′=k+1

{ĵk′} ∪OPT p′

i

)

∩Dep+p′(ĵk)

)

∪APPROXp′

i−1

)

≤ d′′ ·
d′′

max
k=1

vp′

(

ĵk ∪

((

d′′
⋃

k′=k+1

{ĵk′} ∪OPT p′

i

)

∩Dep+p′(ĵk)

)∣

∣

∣

∣

∣

APPROXp′

i−1

)

≤ d′′ ·
d′′

max
k=1

vp′



ĵk ∪



Dep+p′(ĵk) \
⋃

p∈P

APPROXp
i−1





∣

∣

∣

∣

∣

∣

APPROXp′

i−1





≤ d′′ · vp∗
(

j1, . . . , jd′
∣

∣

∣APPROXp∗

i−1

)

= d′′ ·
(

vp∗
(

APPROXp∗

i

)

− vp∗
(

APPROXp∗

i−1

))

where, the first equality follows by definitions and by observing that for any player p 6= p∗,
APPROXp

i−1 = APPROXp
i ; the second by definitions. The first inequality is trivial; the second

follows by Definition 2.7; the third and fourth by monotonicity; the fifth by line 5 of Algorithm 3.1.
The last equality follows by definitions. Since there are only d′ ≤ d+ 1 items allocated, and since
for any player p /∈ P ′ ∪ {p∗}, HY BRIDp

i = HY BRIDp
i−1, we get,

(d+ 1)(vp∗(APPROXp∗

i )− vp∗(APPROXp∗

i−1))

≥
∑

p∈P\{p∗}

(vp(OPT p
i−1 | APPROXp

i−1)− vp(OPT p
i | APPROXp

i )) . (1)

For player p∗, we have by monotonicity vp∗(HY BRIDp∗
i ) ≥ vp∗(HY BRIDp∗

i−1). Hence,

vp∗(OPT p∗

i−1 | APPROXp∗

i−1)+vp∗(APPROXp∗

i−1) ≤ vp∗(OPT p∗

i | APPROXp∗

i )+vp∗(APPROXp∗

i )

and then,

vp∗(OPT p∗

i−1 | APPROXp∗

i−1)−vp∗(OPT p∗

i | APPROXp∗

i ) ≤ vp∗(APPROXp∗

i )−vp∗(APPROXp∗

i−1) .

This and (1) prove Lemma 3.1. �

We use Lemma 3.1 to complete the proof of Theorem 2.5. Let xi be the profit of Algorithm 3.1

11



at iteration i. Then,

opt =
n
∑

p=1

vp(OPT p
0 | APPROXp

0 )

=

n
∑

p=1

(vp(OPT p
0 | APPROXp

0 )− vp(OPT p
t | APPROXp

t ))

=
n
∑

p=1

t−1
∑

i=0

(

vp(OPT p
i | APPROXp

i )− vp(OPT p
i+1 | APPROXp

i+1)
)

≤ (d+ 2) ·
t
∑

i=1

xi = (d+ 2) · approx

This proves Theorem 2.5. �

3.2 A tight example

The following example shows Algorithm 3.1 may return a solution with value arbitrarily close to
1

d+2 , which matches the upper bound we proved in Theorem 2.5.

Example 3.2 Let I(P,M, v) be an instance of the welfare maximization problem with players P =
{1, 2}, items M = {j, j1, . . . , jd, j

′} and valuation functions v1 as in the hypergraph representation
shown in Figure 1 below and v2(S) = |S \ {j′}|, for any S ⊆ M . It is easy to observe the optimal
solution gives all the items except j′ to player 2 and j′ to player 1. The value of this solution is
d + 2. On the other hand, Algorithm 3.1 gives all the items except j′ to player 1, and gives j′ to
an arbitrary player. This solution has value of only 1 + d · ε, which tends to 1 as ε decreases.

Figure 1: Valuation function of player 1

4 Approximation guarantee linear in dependency degree

We discuss two possible alternatives for proving Theorem 2.6. One is adapting Algorithm 3.1, as
we briefly discuss in this section and the other is presented in Appendix B. We sketch a possible

12



adaptation of Algorithm 3.1. Recall that Algorithm 3.1 does the following in each iteration: for each
player and item, it calculates the marginal value of the item and all its unallocated supermodular
dependencies with respect to the allocated items of the player. A player and items with maximum
value are selected. The modification here is twofold. Firstly, for each player and item, one considers
not only the subset of all unallocated dependencies of the item, but any possible subset of unallocated
dependencies. Secondly, one does not consider the marginal value of an item together with its
dependencies with respect to the previously allocated items, but only of the item, with respect to
the subset of dependencies under consideration and the previously allocated items, together. It can
be shown that the “damage” for any player, caused by an allocation of a single item to another
player, is bounded by the “profit” of the iteration “damaging” it, and also (unlike the case of
supermodular dependency) that the player getting the allocation has no “damage” at all in future
iterations.

The other alternative, fully presented in Appendix B, is designing a different greedy algorithm.
This algorithm has the somewhat surprising property that when considering which items to add
to a player, it completely ignores the items that the player already has (despite the fact that these
items determine the marginal values for new items).
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A Symmetry of dependency relations

Lemma A.1 (Symmetry) Let p ∈ P and let j1, j2 ∈ M be such that j1 →p j2. Then j2 →p j1.
In other words, the relation ‘→p’ is symmetric.

Note that the same is true for the relation →+ and that the proof is exactly the same.

Proof: Let S be such that j1
S
→ j2. We show that

j2
S \ {j2} ∪ {j1}−−−−−−−−→ j1 .

From Definition 2.5, on one hand,

v({j1} ∪ S) = v(j1 | S) + v(j2 | S \ {j2}) + v(S \ {j2}) ,

and on the other hand,

v({j1} ∪ S) = v(j2 | S \ {j2} ∪ {j1}) + v(j1 | S \ {j2}) + v(S \ {j2}) .
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By subtracting v(S \ {j2}), we get:

v(j1 | S) + v(j2 | S \ {j2}) = v(j2 | S \ {j2} ∪ {j1}) + v(j1 | S \ {j2}) .

Since j1
S
→ j2 means v(j1 | S) 6= v(j1 | S \ {j2}), we get v(j2 | S \ {j2}) 6= v(j2 | S \ {j2} ∪ {j1}).

The latter is exactly the definition of j2
S \ {j2} ∪ {j1}−−−−−−−−→ j1, as desired. �

B A greedy 1
d+1-approximation algorithm for dependency degree

at most d

In this appendix we prove Theorem 2.6.

B.1 The algorithm

The algorithm is Algorithm B.1.

Algorithm B.1 Greedily Approximate Welfare Maximization with Guarantee Linear in Depen-
dency Degree

Input:

• An instance I(P,M, v) of the welfare maximization problem.

• A value queries oracle and a dependency graph for each of the valuation functions.

Output: A solution with approximation guarantee 1
d+1 , where d is the dependency degree of I.

1: Unallocated←M , Approx← ∅
2: while Unallocated 6= ∅ do
3: MaxMarginalUtility ← −1
4: for all j ∈ Unallocated, p ∈ P , S′ ⊆ (Depp(j) ∩ Unallocated) do
5: if vp(j | S′) > MaxMarginalUtility then
6: MaxMarginalUtility ← vp(j | S

′)
7: BestAllocation← ({j} ∪ S′ 7→ p)
8: WinningP layer ← p, AllocatedItem← j, AllocatedOptimalDependencies← S′

9: end if
10: end for
11: Approx← Approx ∪BestAllocation
12: Unallocated← Unallocated \ (AllocatedItem ∪AllocatedOptimalDependencies)
13: Unallocated ← Unallocated \ DepWinningP layer(AllocatedItem) {Discard also unallocated

dependencies of j}
14: end while

Intuitively, Algorithm B.1 promises at each iteration that the most possibly contributing item
will have its full contribution in the approximated solution. Thus, any mislocated item in an
optimal solution cannot “damage” it in more than the benefit of the iteration “damaging” it. We
conclude the approximation guarantee by observing no more than d+1 items are allocated at each
iteration.
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Few remarks are in place.

Remark B.1 Algorithm B.1 does not look at all at the value of already allocated items (neither at
new inspected items relatively to them nor at the whole sub-allocation). Note that an approach look-
ing only at the marginal value with respect to already allocated items without looking on “forward”
dependencies does not work.6

Remark B.2 Algorithm B.1 discards unallocated dependencies (at line 13). This is to ensure
any selected item will have its inspected marginal value. In other words, we ensure that the only
dependencies of an item at the rest of the solution (i.e. the unallocated part) will be its optimal
dependencies, as inspected at lines 4-10. Of course, because of monotonicity, we may add the
“discarded” items to any player we wish (for example to the player we allocated to the rest or each
item to its best possibility, in any order). The tight example we will show is tight also for any of
these possibilities.

Proof: [of Theorem 2.6] Let OPT be an optimal solution with value opt and let APPROX be
an output of Algorithm B.1 with value approx. Let t be the number of iterations of the “while”
loop at line 2 of the run created APPROX. We layer opt and approx by writing both of them by
iterations of Algorithm B.1.

opt =
t
∑

i=1

d+1
∑

k=1

vpopt(i,k)(ji,k | OPTpopt(i,k) \
i−1
⋃

i′=1

d+1
⋃

k′=1

{ji′,k′} \
k
⋃

k′=1

{ji,k′})

approx =
t
∑

i=1

d+1
∑

k=1

vpapp(i)(ji,k | APPROXpapp(i) \
i−1
⋃

i′=1

d+1
⋃

k′=1

{ji′,k′} \
k
⋃

k′=1

{ji,k′})

where:

• ji,k is the kth item allocated at iteration i, where ji,1 is the final item assigned at line 7 of
this iteration, and the rest are ordered arbitrarily.

• popt(i, k) is the player to whom the kth item of iteration i is allocated in OPT .

• papp(i) is the player to whom all the items of iteration i are allocated in APPROX (all items
of any iteration of Algorithm B.1 are allocated to the same player).

Note that for simplicity, equations are written assuming exactly d + 1 items are allocated at each
iteration. The proof is correct also without this assumption.

Let i ∈ [1..t] and let Unallocatedi be the items of Unallocated at line 4 of Algorithm B.1 at

iteration i. Then, since M =
n
⋃

p=1
(OPTp) =

n
⋃

p=1
(APPROXp), we have:

Unallocatedi =
n
⋃

p=1

(

OPTp \
i−1
⋃

i′=1

d+1
⋃

k′=1

{ji′,k′}

)

=
n
⋃

p=1

(

APPROXp \
i−1
⋃

i′=1

d+1
⋃

k′=1

{ji′,k′}

)

6For example, we may have two items and two players, where the first player has set function f(S) = |S| and the
second has set function giving ∞ to both items together and 0 otherwise. An algorithm that looks only “backward”
will allocate both items to player 1 and gain value 2 where an optimal solution has value ∞.
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Therefore, for all i ∈ [1..t], k ∈ [1..d+ 1],

n
⋃

p=1

(

OPTp \
i−1
⋃

i′=1

d+1
⋃

k′=1

{ji′,k′} \
k
⋃

k′=1

{ji,k′}

)

⊆ Unallocatedi .

Then, by lines 4-10 and 13 of Algorithm B.1, for all i ∈ [1..t], k ∈ [1..d + 1], vpapp(i)(ji,1 |

APPROXpapp(i) \
i−1
⋃

i′=1

d+1
⋃

k′=1

{ji′,k′}\{ji,1}) ≥ vpopt(i,k)(ji,k | OPTpopt(i,k) \
i−1
⋃

i′=1

d+1
⋃

k′=1

{ji′,k′}\
k
⋃

k′=1

{ji,k′}) .

Therefore and by invoking (2) and (2) together with monotonicity,

(d+ 1) · approx =

(d+ 1) ·
t
∑

i=1

d+1
∑

k

vpapp(i)(ji,k | APPROXpapp(i) \
i−1
⋃

i′=1

d+1
⋃

k′=1

{ji′,k′} \
k
⋃

k′=1

{ji,k′})

≥ (d+ 1) ·
t
∑

i=1

vpapp(i)(ji,1 | APPROXpapp(i) \
i−1
⋃

i′=1

d+1
⋃

k′=1

{ji′,k′} \ {ji,1})

≥
t
∑

i=1

d+1
∑

k

vpopt(i,k)(ji,k | OPTpopt(i,k) \
i−1
⋃

i′=1

d+1
⋃

k′=1

{ji′,k′} \
k
⋃

k′=1

{ji,k′})

= opt

It is easy to see the running time of Algorithm B.1 is polynomial in |M |, |P | and 2c. This proves
Theorem 2.6. �

B.1.1 An example justifying “discarding” items

We demonstrate the necessity of “discarding unused dependencies” as in line 13 of Algorithm B.1.
Note that another approach is to look also on already allocated items, as described in Section 4.

Example B.1 Let |P | = 2. Let the set functions be as follows: The valuation function of player 1
will be as in the hypergraph representation in Figure 2. The valuation function of player 2 will be
v2(S) = |S|.

Intuitively, the idea is to cause Algorithm B.1 to “ruin” a marginal value of an already allocated
item, when trying to gain a maximal marginal value for another item. The middle edge with value
−1 does so, without breaking monotonicity.

We analyze the approximation guarantee for this instance for Algorithm B.1 with line 13 omitted
(i.e. without “discarding unused dependencies”). On the first iteration the algorithm allocates either
j1 or j2 to player 1 with their optimal dependencies. Assume without loss of generality it is j1. The
optimal dependencies of j1 are j1,1, . . . , j1,d−1 and the marginal value of j1 with these dependencies
is 1 + (d − 1) · ε. On the second iteration, the algorithm allocates j2 to player 1, together with its
optimal dependencies (that has not been allocated yet) j2,1, . . . , j2,d−1. The marginal value of j2
with respect to these dependencies is also 1 + (d − 1) · ε. But now, the marginal value of j1 with
respect to the rest of the items allocated to player 1 (which had not been allocated yet when it was
allocated) is only (d− 1) · ε. The algorithm terminates after the second iteration with social welfare
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Figure 2: Valuation function of player 1

1 + 2(d − 1) · ε. On the other hand, allocating all the items to player 2 results in a social welfare
of 2d. For small enough ε the approximation guarantee is arbitrarily close to 1/2d which is much
worse than the approximation guarantee of 1/(d+ 1) of Algorithm B.1.

Note that Algorithm B.1 (the unmodified version) does much better for this instance. It also
chooses firstly j1 (without loss of generality) with its optimal dependencies, but then does not in-
spect anymore any of its dependencies, including j2. Therefore, assuming ε is small, it allocates
j2,1, . . . , j2,d−1 to player 2 and gains for them a value of d − 1 in addition to the marginal value
it indeed gained for j1. Thus, the approximated solution’s total value Algorithm B.1 gains for this
input is 1 + (d − 1) · ε + (d − 1) = d + (d − 1) · ε, which expresses an approximation guarantee of
slightly more than 1

2 . Note that allocating j2 to any of the players will do no harm (and allocating
it to player 2 will even slightly help); just reinspecting it does the harm.

B.2 A tight example

We now show the analysis of Algorithm B.1 is tight.

Example B.2 Let |P | = 2 and let |M | = m′ · (d + 1) for some m′ ∈ N. We set an arbitrary
ordering on the items and define m′ subsets of items S1, . . . Sm′ ; the first set will be the first d+ 1
items, the second one will be the next d + 1 items and so on. Let v be the following set functions
for any S ⊆M :

• v1(S) =
∑

i∈[1..m′],
Si⊆S

(1 + ε)

(meaning, (1 + ε) times the number of subsets Si that are subsets of S).

• v2(S) = |S|.

It is easy to see the marginal value of any item is maximized, when it is given to player 1 with all
its dependencies. Moreover, since at this way only whole subsets are allocated, this is the situation
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at any iteration of Algorithm B.1. Therefore, algorithm B.1 allocates all the items to player 1 and
gains total value of m′ ·(1+ε). In contrast, the optimal solution is to allocate all the items to player
2 and to gain total value of m. Thus, the approximation guarantee for this instance is close as we
with to m/m′ = 1/(d+ 1), and the analysis of Theorem 2.6 is indeed tight.

C An exact algorithm for dependency degree at most 1

In this appendix, we present a full reduction (Reduction C.1) of the welfare maximization problem
with dependency degree at most 1 to the maximum weighted matching problem.

Reduction C.1

Input: An instance I(P,M, v) of the welfare maximization problem.
Output: An instance IM (V,E,w) of the maximum weighted matching problem, with set of vertices
V , set of undirected edges E and edge weights function w, such that each item j ∈M is represented
by a corresponding vertex vj ∈ V .
Reduction: For each item j, we have a vertex uj . For each player p, we have the following. For
each item j with Depp(j) = ∅, we have an auxiliary vertex upj and an edge (uj , u

p
j ) with weight

vp({j}), representing the possibility of allocating j to p. For each pair of items j, j′, such that
j ↔p j′, we have a single auxiliary vertex upj,j′ and three edges: (uj , u

p
j,j′) with weight vp({j}),

representing the possibility of allocating j to p without allocating j′ to p; (uj′ , u
p
j,j′) with weight

vp({j
′}), representing the possibility of allocating j′ to p without allocating j to p; (uj , uj′) with

weight vp({j, j
′}), representing the possibility of allocating both j and j′ to p. Note that both j

and j′ have no other dependencies, since the dependency degree is at most 1 and by Lemma A.1.
Note also that multiedges may be resolved, by choosing, without loss of generality, one edge with
maximum weight for each pair of vertices.

The following observation is straightforward:

Observation C.1

• Reduction C.1 is polynomial time computable.

• Every feasible solution for IM induces a feasible solution for I with the same value, that may
be computed in polynomial time.

• Every feasible solution for I, induces a feasible solution for IM with at least the same value.

Therefore, we may use Reduction C.1 together with any exact polynomial time maximum weighted
matching algorithm (see for example [7, 11, 12, 13]) to derive an exact polynomial time algorithm
for the welfare maximization problem with dependency degree at most 1.

Remark C.1 Note that Reduction C.1 does not work for c > 1. This is since we may have a
player p with items j1, j2, j3, such that j1 ↔ j2 ↔ j3 (i.e. a “chain”). At this case, j1, j2 and j3
may be allocated together to p, although this allocation does not induce a feasible matching.
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