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Abstract

We show Ω(n2) lower bounds on the total space used in resolution
refutations of random k-CNFs over n variables, and of the graph pigeon-
hole principle and the bit pigeonhole principle for n holes. This answers
the long-standing open problem of whether there are families of k-CNF
formulas of size O(n) requiring total space Ω(n2) in resolution, and gives
the first truly quadratic lower bounds on total space. The results follow
from a more general theorem showing that, for formulas satisfying certain
conditions, in every resolution refutation there is a memory configuration
containing many clauses of large width.

1 Introduction

The most common questions in propositional proof complexity concern the size
of proofs – as is well-known, NP=coNP if and only if there is a proof system
in which every tautology has a polynomial size proof [11]. There is a natural
analogy between the size of a proof and the size of a circuit, or the time taken
by a Turing machine. Developing this analogy, [1, 10, 13] introduced a notion
of the space used by a propositional proof, similar to the notion of space for
Turing machines. Since then, space has been investigated in depth in proof
complexity, especially for the resolution proof system [1,2,4–7,12,13,16–18] and
more recently for polynomial calculus [9, 14,15].

Resolution is a well-studied system for refuting formulas in conjunctive nor-
mal form (CNFs). Each line in a resolution refutation is a clause, that is, a
disjunction of literals, and resolution has only one rule: from two clauses A ∨ x
and B ∨ ¬x we may infer the clause A ∨B. A CNF is unsatisfiable if and only
if the empty clause can be derived from it using this rule.

Intuitively, the space required by a refutation is the amount of information
we need to keep simultaneously in memory as we work through the proof and
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convince ourselves that the original CNF is unsatisfiable. This was made formal
for resolution in [13] as follows. A memory configuration, or just configuration, is
a set of clauses. We assume that a resolution refutation of ϕ is given in the form
of a sequence M1, . . . ,Mt of configurations, where M1 is empty, Mt contains the
empty clause, and each Mi+1 is derived from Mi in one of the following three
ways:

Axiom download: Mi+1 = Mi ∪ {C} where C is a clause from ϕ

Erasure: Mi+1 ⊆Mi

Inference: Mi+1 = Mi ∪ {D} where D follows from two clauses in Mi by the
resolution rule.

This model is inspired by the definition of space complexity for Turing machines,
where a machine is given a read-only input tape from which it can download
parts of the input to the working memory as needed.

Following [1, 13] the clause space used by the refutation is the maximum
number of clauses in any configuration Mi in the sequence. The total space used
is the maximum over i of the total number of symbols needed to write down Mi.
In other words, it is the total number of instances of variables occurring in Mi

(we ignore punctuation and logical connectives).1

Clause space and its relation with proof size are by now well-studied [2,5–7,
17]. But much less is known about total space, despite it capturing more closely
the intuitive idea of the memory required by a refutation.

As well as being of theoretical interest, total space is also directly relevant
for SAT solving. Memory use is a major problem for SAT solvers and a current
goal of research is to understand the resources of time and space in resolution
proofs, how they are connected to each other and how they can be optimized
in the design of new SAT solvers. Here we are interested in the real amount of
memory (bit size) needed while verifying the refutation, so total space is a more
useful measure than clause space.

Every unsatisfiable CNF ϕ over n variables can be refuted in resolution in
clause space n + 1, which is the pebbling number of the brute-force treelike
resolution refutation of ϕ [13]. Since every clause in the refutation has width at
most n, this gives an upper bound of n(n+ 1) on the total space of refuting ϕ
(where the width of a clause is the number of literals in it).

The only previously known lower bounds for total space, other than those
following trivially from lower bounds on clause space, are from [1]. There it
is shown that the pigeon hole principle PHPn, which is defined over O(n2)
variables, can be refuted in Θ(n2) total space. The proof relies on a formulation
of PHPn as a CNF with only wide clauses. A similar result is shown for the
complete tree contradiction CTn, a CNF of exponential size defined by excluding
all possible assignments to n variables.

1In [1] this is called variable space, but we follow [5–7, 16, 17] in calling it total space to
distinguish it from a different measure in which different occurrences of the same variable are
not counted.
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Improving these results for resolution has been a long-standing open prob-
lem, posed in many works in proof complexity in the last ten years [1,4–7,16,17].
We are able to solve this in essentially an optimal way, showing that some stan-
dard families of constant width CNF contradictions, defined over n variables
and hence of size O(n), require Ω(n2) total space. Our main result is:

Theorem 1.1. Fix k ≥ 4 and ∆ > 1. Then there is a constant λ > 0 such that
for a random k-CNF formula ϕ with n variables and ∆n clauses, with exponen-
tially high probability every resolution refutation of ϕ requires total space λn2.

We show similar lower bounds for some other CNFs. In particular:

Theorem 1.2. Fix k ≥ 4 and ∆ > 1. Then there is a constant λ > 0 such that
for a random G chosen from the set of bipartite graphs with left-degree d going
from a set of ∆n pigeons to a set of n holes, with exponentially high probability
every resolution refutation of G-PHP requires total space λn2.

Theorem 1.3. Every resolution refutation of the bit pigeonhole principle BPHPn
requires total space n2/16.

In each case we actually prove something stronger, that every refutation of
the formula in question must pass through a configuration containing r clauses
each of width at least r, where r = Ω(n).

The random formulas and the instances of G-PHP in Theorems 1.1 and 1.2
are k-CNFs with O(n) variables, so in both cases our lower bound matches
the quadratic upper bound on total space, up to a constant factor. The bit
pigeonhole principle BPHPn is a (log n)-CNF with (n+1) log n variables, so our
lower bound is only Ω(m2/(logm)2) in terms of the number m of variables (but
the proof is much simpler than for the other two principles).

In the next section we prove a general theorem (Theorem 2.4) from which
our results follow. We define the notion of an r-free family of assignments, and
show that if a CNF has such a family then every resolution refutation of it has
a configuration containing r/2 clauses each of width at least r/2.

In Section 3 we give two easy applications of this. One is the total space
lower bound for BPHPn. The other is that from any constant-width CNF F
requiring large width to refute, we can construct a constant-width CNF F [⊕],
the “xorification of F”, which requires large total space to refute (Theorem 3.2).
In particular, this gives us a lower bound for certain Tseitin formulas.

Section 4 is the only really technical part of the paper. We develop the main
tools we will need for random k-CNFs and G-PHP. These are certain families
of substructures of bipartite graphs which we call r-covering families. We show
that in a random bipartite graph such a family exists with high probability.

In Section 5 and 6 we use this to prove our total space lower bounds for
random k-CNFs and G-PHP.

In Section 7 we discuss semantic resolution [1]. We show that resolution
can require much more total space than semantic resolution. We prove that if
a CNF has an r-free family then it requires large total space in a weak version
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of semantic resolution, in which we can derive a new clause if it is implied by
some set of d clauses in memory, where d is fixed (Theorem 7.1). We prove that
every r-semiwide CNF requires large semantic total space (Theorem 7.3).

Almost all of our total space lower bounds are closely based on constructions
used to prove lower bounds on monomial space in the system PCR (polynomial
calculus resolution). The notions of an r-free family and an r-covering family,
and their applications to random k-CNFs and G-PHP, are inspired by [9]. The
lower bound for the bit pigeonhole principle is modelled on [15] and the lower
bound for xorifications on [14].

A natural question is whether these lower bounds can be extended to stronger
proof systems such as bounded depth Frege, where very little is known about
space, or PCR. For unrestricted Frege systems a linear upper bound (in the size
of the CNF being refuted) on total space was shown in [1].

Finally, all of our lower bounds are for formulas which are already known
to be hard for resolution, in that they have no subexponential size refutations.
It is open whether there is a family of CNFs which have short refutations but
which still require quadratic, or at least superlinear, total space. By a result
of [8], if a CNF has a resolution refutation of size S then it also has a refutation
in which every clause has width at most O(

√
n logS). Hence we cannot hope

to use our arguments, which show large space by finding many clauses of large
width.

2 Main theorem

Definition 2.1. A piecewise assignment α to a set of variables X is a set of
non-empty partial assignments to X with pairwise disjoint domains.

We will sometimes call the elements of α the pieces of α. A piecewise as-
signment gives rise to a partial assignment

⋃
α to X together with a partition

of the domain of
⋃
α. We could have defined a piecewise assignment in this way

instead, as a pair of a partial assignment and a partition of its domain.
For piecewise assignments α, β we will write α v β to mean that every piece

of α appears in β. We will write ‖α‖ to mean the number of pieces in α. Note
that these are formally exactly the same as α ⊆ β and |α|, using the definition
of α and β as sets. In other situations we will often use α to mean the partial
assignment

⋃
α, for example writing α(ϕ) for the evaluation of ϕ under

⋃
α

and dom(α) for the domain of
⋃
α.

Lemma 2.2. Let α, β be piecewise assignments with α v β. Let Y ⊆ dom(β).
Then there exists a piecewise assignment β′ with α v β′ v β such that Y ⊆
dom(β′) and ‖β′‖ ≤ ‖α‖+ |Y |.

Definition 2.3. A non-empty family H of piecewise assignments is r-free for
a CNF ϕ if it has the following properties.

(Consistency) No α ∈ H falsifies any clause from ϕ.
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(Retraction) If α ∈ H, β is a piecewise assignment and β v α then β ∈ H.

(Extension) If α ∈ H and ‖α‖ < r, then for every variable x /∈ dom(α) there
exist β0, β1 ∈ H with α v β0, β1 such that β0(x) = 0 and β1(x) = 1.

Theorem 2.4. Let ϕ be an unsatisfiable CNF formula. If there is a family
of piecewise assignments which is r-free for ϕ, then any resolution refutation
of ϕ must pass through a memory configuration containing at least r/2 clauses
each of width at least r/2. In particular, the refutation requires total space at
least r2/4.

Proof. Suppose that ϕ is an unsatisfiable formula and thatH is a family of piece-
wise assignments which is r-free for ϕ. Let Π = (M1, . . . ,Ms) be a resolution
refutation of ϕ, given as a sequence of memory configurations.

Let S be the set of all clauses which are falsified by some member of H.
There is at least one clause in Π ∩ S with width strictly less than r/2, namely
the empty clause. Let Mt be the first configuration in Π in which a clause of
width strictly less than r/2 occurs in Mt ∩ S and let C be such a clause. Let
α ∈ H falsify C. By Lemma 2.2 we may assume that ‖α‖ < r/2. Our goal now
is to show that there is some i < t such that |Mi ∩ S| ≥ r/2. Since for every
i < t every clause in Mi ∩ S has width at least r/2, this will give the theorem.

Suppose for a contradiction that |Mi ∩ S| < r/2 for each i < t. We will
inductively construct a sequence of piecewise assignments β1, . . . , βt in H such
that for each i ≤ t we have that α v βi and that βi satisfies every clause in
Mi ∩ S. This will give a contradiction when we reach βt, since α falsifies the
clause C ∈Mt ∩ S.

The first configuration M1 is empty, so we can put β1 = α. Supposing that
1 ≤ i < t and that we already have a suitable βi, we distinguish three cases.

Axiom download: Mi+1 = Mi ∪ {D} where D is a clause from ϕ. By the
consistency property of H, D is not in S and we can simply put βi+1 = βi.

Erasure: Mi+1 ⊆Mi. We put βi+1 = βi.

Inference: Mi+1 = Mi ∪ {D ∨ E} where D ∨ E follows by resolution on some
variable x from two clauses D ∨ x and E ∨ ¬x in Mi. Using Lemma 2.2, since
‖α‖ < r/2 and |Mi ∩ S| < r/2 we may assume that ‖βi‖ ≤ ‖α‖+ |Mi ∩ S| < r.

If D∨E contains a variable outside dom(βi), then by the extension property
we can extend βi to some βi+1 ∈ H which satisfies D ∨ E, as required.

Suppose that all variables in D ∨ E are set by βi. If x ∈ dom(βi) let
βi+1 = βi, and otherwise let βi+1 ∈ H be any extension of βi which assigns a
value to x. Then βi+1 sets all variables in both D ∨ x and E ∨ ¬x. It cannot
falsify either clause, since that would imply that that clause is in S and thus
is already satisfied by βi. Therefore it must satisfy both clauses and thus also
satisfy D ∨ E.

Informally, we can think of each element C of S as identified with a minimal
assignment αC in H which falsifies it. Then S contains the empty assignment
and, by the extension property of H, has a rich structure. In particular, if a
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clause C in Π ∩ S has width less than r and was derived by resolution on a
variable outside dom(αC), then both parents of C in Π are in S. The proof
of Theorem 2.4 then uses an idea from [1], taking the first clause C in S with
small width and applying the usual clause space lower-bound argument to the
substructure of S which derives C.

3 Two simple applications

Let n = 2k for k ∈ N. The formula BPHPn, the bit pigeonhole principle on n
holes, is an unsatisfiable CNF with variables {xuj : u ∈ [n + 1], j ∈ [k]}. It
asserts that for all distinct u, v ∈ [n + 1], the length-k binary strings xu1 . . . x

u
k

and xv1 . . . x
v
k are distinct. We think of each element of [n + 1] as a pigeon and

of the string xu1 . . . x
u
k as the address, in binary, of the hole in [n] that pigeon u

is mapped to. Understood in this way, BPHPn asserts that there is an injective
mapping of n + 1 pigeons into n holes. Formally the principle consists of the
clauses

k∨
j=1

(xuj 6= hj) ∨
k∨
j=1

(xvj 6= hj)

for each u, v ∈ [n+ 1] with u < v and each binary string h1 . . . hk ∈ {0, 1}k.

Theorem 3.1. Any resolution refutation of BPHPn passes through a configu-
ration containing n/4 clauses of width at least n/4.

Proof. By Theorem 2.4 it is enough to exhibit a family of piecewise assignments
which is n/2-free.

For any partial matching f of pigeons into holes, let αf be the piecewise
assignment that, for each pigeon u in dom(f), assigns to the variables xu1 . . . x

u
k

the binary string corresponding to the hole f(u). The pieces of αf correspond
to the sets of variables {xu1 , . . . , xuk} belonging to each pigeon. Let H be the
family of all piecewise assignments arising in this way.

Clearly H is non-empty and has the consistency and retraction properties.
For the extension property, suppose we are given αf ∈ H and a variable xuj , with

‖αf‖ < n/2 and xuj /∈ dom(αf ). Then | ran(f)| < n/2 = 2k−1 and u /∈ dom(f),

and it is sufficient to find two holes h1 . . . hk and h′1 . . . h
′
k in {0, 1}k \ ran(f)

with hj = 0 and h′j = 1. But there are exactly 2k−1 holes h with hj = 0, so
there must be at least one such hole outside ran(f). A similar argument works
for h′.

As a second application, we show that a CNF requiring large total space in
resolution can be constructed from any CNF which requires large width. This
is closely modelled on a similar result in [14] for monomial space in PCR.

Let ϕ be a CNF over a set of variables X. Let X ′ be a new set of variables
containing a disjoint pair {x1, x2} of variables for each x ∈ X. Following [14],
for each clause C in ϕ, let C[⊕] be the formula over X ′ obtained by replacing
each occurrence of xi in C with the expression (x1

i ⊕ x2
i ) and then converting
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the result back into conjunctive normal form. Let ϕ[⊕] be the conjunction of
all the CNFs C[⊕].

The width of a resolution refutation is the maximum width of any clause in
it. The refution width of a CNF ϕ in resolution is the minimal width of any
refutation of ϕ.

Theorem 3.2. Let ϕ be a CNF and let w the minimal refutation width of ϕ in
resolution. Then any resolution refutation of ϕ[⊕] passes through a configuration
containing w/2 clauses of width at least w/2.

Proof. Using the characterization of width in resolution by Atserias and Dal-
mau [2], we know that there is a w-winning strategy for the Duplicator in the
Spoiler-Duplicator game on ϕ. That is, there is a nonempty family K of partial
truth assignments such that:

1. if f ∈ K then f does not falsify any clause from ϕ

2. if f ∈ K and g ⊆ f , then g ∈ F

3. if f ∈ K, |dom(f)| < w and x is any variable, then there is some g ∈ K
such that f ⊆ g and x ∈ dom(g).

We will use K to build an w-free family H of piecewise assignments for ϕ[⊕].
The result then follows by our main theorem.

Consider an assignment f ∈ K. For each variable x ∈ dom(f), let α0
x be

the partial assignment (x1, x2) 7→ (0, f(x)) and let α1
x be the partial assignment

(x1, x2) 7→ (1, f(x) ⊕ 1), so that for b = 0, 1 we have αbx(x1) ⊕ αbx(x2) = f(x)
and for i = 1, 2 at least one of the partial assignments α0

x, α
1
x sets xi to 0 and at

least one sets xi to 1. For any map δ : dom(f)→ {0, 1} let αδf be the piecewise

assignment {αδ(x)
x : x ∈ dom(f)}. Notice that for each clause C in ϕ, αδf falsifies

C[⊕] if and only if f falsifies C.
Let H contain the piecewise assignment αδf for each f ∈ K and each pos-

sible map δ : dom(f) → {0, 1}. Consistency and retraction for H follow from
properties 1 and 2 of K. For the extension property, suppose α ∈ H and xi

is a variable in X ′ such that ‖α‖ < r and xi /∈ dom(α). Then α must arise
from some f ∈ K, with |f | < r and x /∈ dom(f). By property 3 of K, there
is an extension g ⊇ f in K with x ∈ dom(g). By the construction of H there
exist piecewise assignments β0 and β1 arising from g and extending α such that
β0(xi) = 0 and β1(xi) = 1.

In particular this result is interesting when ϕ is a Tseitin formula over some
graph G. In this case ϕ[⊕] can be seen as a Tseitin formula over the graph G′

formed by replacing each edge in G with a double edge.
We recall briefly what a Tseitin formula is. Let G = (V,E) be a connected

graph of degree d over n vertices. For each edge e ∈ E define a variable xe.
Fix an odd-weight function σ : V → {0, 1}, that is, a function σ such that∑
v∈V σ(v) ≡ 1 (mod 2). For each v ∈ V define PARITYv as a CNF expressing∑

e3v
xe ≡ σ(v) (mod 2).
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The Tseitin formula T (G, σ) is then the conjunction
∧
v∈V PARITYv. It is well

known that refutation width of T (G, σ) is at least the connectivity expansion
of G (see for example [1]).

Corollary 3.3. Let G = (V,E) be a 3-regular expander graph over n vertices.
Let G′ be G with each edge replaced with a double edge. Then for any odd
weight function σ : V → {0, 1} the total space needed to refute T (G′, σ) is at
least Ω(n2).

Here T (G′, σ) is a 6-CNF. This corollary is a partial answer to the question
posed in open problem 2 of [1] about the space needed to refute T (G, σ) when G
is a 3-regular expander graph.

4 Bipartite expanders and 2-matchings

The goal of this section is to define certain families of substructures of bipartite
graphs, which we call r-covering families, and to show that in a random bipartite
graph such a family exists with high probability. See Definitions 4.10 and 4.11
and Corollary 4.14 at the end of the section. We will need such families in our
lower bounds for random formulas and for the graph pigeonhole principle. The
constructions in this section are adapted from [9], which in turn is based on [4].
Our main innovation is Lemma 4.8.

We first introduce some notation. Let G = (U ∪ V,E) be a bipartite graph.
For a node a in G we will write N(a) for the set of neighbours of a, and for a
set of nodes A in G we will write N(A) for

⋃
a∈AN(a).

For sets A ⊆ U and B ⊆ V , a 2-matching σ of A into B is a subset of the
edge relation E such that each element of A has as neighbours under σ exactly
two elements of B, and no two elements of A share a neighbour under σ. We
will sometimes use functional notation for 2-matchings, as follows: for a ∈ A we
will write σ(a) for the pair of neighbours of a; for X ⊆ A we will write σ(X) for
the set of all neighbours of X; we will write dom(σ) for A and ran(σ) for σ(A).
A fork in G is a 2-matching with a domain of size one.

Definition 4.1. Let G = (U ∪ V,E) be a bipartite graph. For γ > 1, we say
that G is an (s, γ)-expander if

∀A ⊆ U, |A| ≤ s→ |N(A)| ≥ γ|A|.

We will usually be interested in (s, 2 + ε)-expanders, for some ε > 0. On
subgraphs of such graphs we can apply the following corollary of Hall’s Theorem,
proved in [1].

Lemma 4.2. Let G = (U ∪ V,E) be a bipartite graph. If |N(A)| ≥ 2|A| for
every set A ⊆ U , then there is a 2-matching of U into V .

For the rest of this section (until Theorem 4.13), fix integers d and s and a
real number ε > 0. Let G = (U ∪V,E) be a fixed bipartite graph of left-degree d
which is an (s, 2 + ε)-expander.
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Definition 4.3. Given two sets A ⊆ U and B ⊆ V , we say that (A,B) has the
double-matching property if for every C ⊆ U \ A, if |A| + |C| ≤ s then there
exists a 2-matching of C into V \B.

We have the following useful lemma, which applies the expansion property
of G to bound the size of a minimal witness C that the double-matching property
fails.

Lemma 4.4. Let A ⊆ U and B ⊆ V be such that (A,B) does not have the
double-matching property. Then there is a set C ⊆ U \ A with |C| < 1

ε |B| such
that there is no 2-matching of C into V \B.

Proof. Let C ⊆ U \ A be minimal such that |C| ≤ s − |A| and there is no
2-matching of C into V \ B. Then for every D ( C, there is a 2-matching
of D into V \ B, so in particular |N(D) \ B| ≥ 2|D|. Hence we must have
|N(C)\B| < 2|C|, since otherwise there would be a 2-matching of C into V \B
by Lemma 4.2. On the other hand, by expansion, since |C| ≤ s we have that
|N(C)| ≥ (2 + ε)|C|.

Combining these, we get

(2 + ε)|C| ≤ |N(C)| ≤ |N(C) \B|+ |B| < 2|C|+ |B|

and hence |C| < 1
ε |B|.

Lemma 4.5. The pair (∅, ∅) has the double-matching property.

Proof. This follows directly from Lemma 4.2, since G is a (s, 2+ε) expander.

Lemma 4.6. (Left extension.) Let A ⊆ U and B ⊆ V be such that (A,B) has

the double-matching property and d(d−1)
ε (|B|+ 2) + |A|+ 1 ≤ s. Then for each

u ∈ U \A there is a 2-matching π of u into V \B such that (A∪{u}, B ∪ π(u))
has the double-matching property.

Proof. Let Π be the set of all 2-matchings π of u into V \B. Since |A|+ 1 ≤ s
and (A,B) has the double-matching property, we know that Π is non-empty.
Suppose for a contradiction that for every π ∈ Π, the pair (A ∪ {u}, B ∪ π(u))
does not have the double-matching property. By Lemma 4.4, for every π ∈ Π
there is a set Cπ ⊆ U \ (A ∪ {u}) with |Cπ| < 1

ε |B ∪ π(u)| such that there is no
2-matching of Cπ into V \ (B ∪ π(u)).

Let C =
⋃
π∈Π Cπ. Then |C| < d(d−1)

ε (|B|+ 2), since |Π| ≤ d(d− 1). Hence,
by our assumption about the sizes of |A| and |B|, we have that |C∪{u}| ≤ s−|A|.
Furthermore C ∪ {u} ⊆ U \ A, so by the double-matching property for (A,B)
there is a 2-matching σ of C ∪ {u} into V \B.

There must be some π ∈ Π such that π(u) = σ(u). Let σ′ be σ with the
fork u 7→ π(u) removed. Then σ′ is a 2-matching of C into V \ (B ∪ π(u)), and
in particular contains a 2-matching of Cπ into V \ (B ∪π(u)), contradicting the
choice of Cπ.
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Lemma 4.7. (Left retraction.) Let A ⊆ U and B ⊆ V be such that (A,B) has
the double-matching property and 1

ε |B|+ |A| ≤ s. Suppose that u ∈ A and there
is a 2-matching π of u into B. Then (A\{u}, B \π(u)) has the double-matching
property.

Proof. Let C ⊆ (U \ A) ∪ {u} with |C| ≤ s− |A \ {u}|. We want to show that
there is a 2-matching of C into (V \B) ∪ π(u). By Lemma 4.4, it is enough to
consider only sets C with |C| < 1

ε |B \ π(u)|.
If u ∈ C, then |C \ {u}| ≤ s − |A| so by the double-matching property for

(A,B) there is a 2-matching σ of C \{u} into V \B. Hence σ∪π is a 2-matching
of C into (V \B) ∪ π(u).

If u /∈ C, then |C| ≤ s − |A| by our assumption about the sizes of |A| and
|B|, so by the double-matching property for (A,B) there is a 2-matching of C
into V \B.

Lemma 4.8. (Right extension.) Let A ⊆ U and B ⊆ V be such that (A,B) has
the double-matching property. Let v ∈ V \ B have degree e, and suppose that
d(d−1)

ε (|B|+ 2e) + |A|+ e ≤ s. Then either

1. for some u ∈ U \ A there is a 2-matching π of u into V \ B such that
v ∈ π(u) and (A ∪ {u}, B ∪ π(u)) has the double-matching property, or

2. (A,B ∪ {v}) has the double-matching property.

Proof. Let D be N(v) \ A, so that |D| ≤ e. By applying Lemma 4.6 |D| many
times, we can find a 2-matching σ of D into V \B such that (A∪D,B ∪ σ(D))
has the double-matching property. Notice that 1

ε (|B|+ |σ(D)|) + |A|+ |D| ≤ s
so that, by Lemma 4.7, the double-matching property is preserved if we remove
any number of elements from D and the corresponding forks from σ.

There are now two cases. In the first case, there is u ∈ D and a corresponding
fork π in σ such that v ∈ π(u). In this case we may remove all other elements
from D and all other forks from σ and thus satisfy condition 1 of the lemma.

In the second case, v /∈ σ(D). Then the double-matching property for (A ∪
D,B∪σ(D)) implies the double-matching property for (A∪D,B∪σ(D)∪{v}),
since no neighbours of v remain in U \(A∪D). As in the previous case, it follows
by Lemma 4.7 that (A,B ∪ {v}) has the double-matching property, satisfying
condition 2.

Lemma 4.9. (Right retraction.) Let A ⊆ U and B ⊆ V be such that (A,B)
has the double-matching property. For each v ∈ V , the pair (A,B \ {v}) has the
double-matching property.

Proof. This is trivial from the definition of the double-matching property.

We can now describe the objects we will need for our lower bounds.

Definition 4.10. A 2-structure κ in G is a pair (σ, S) where σ is a 2-matching
and S ⊆ V \ ran(σ). We think of κ as consisting of a set of forks (the forks in
σ) and a disjoint set of singletons (the elements of S).
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The size of a 2-structure κ is defined to be |κ| = |dom(σ)|+ |S|, that is, the
number of forks plus the number of singletons. Given two 2-structures κ = (σ, S)
and λ = (σ′, S′) we say that λ extends κ, written κ ⊆ λ, if σ ⊆ σ′ and S ⊆ S′.
We say that the 2-structure κ covers a node w ∈ G if w ∈ dom(σ) ∪ ran(σ) ∪ S.

Definition 4.11. A non-empty set F of 2-structures in G is called an r-covering
family if it has the following two properties.

(Retraction) If κ ∈ F and λ is a 2-structure in G with λ ⊆ κ, then λ ∈ F .

(Extension) If κ ∈ F with |κ| < r and w is any node of G, then κ can be
extended to a 2-structure in F which covers w.

Lemma 4.12. Let r = sε/6d2. Suppose that no node in V has degree more
than r. Then an r-covering family F of 2-structures exists on G.

Proof. For a 2-structure κ, let Aκ = dom(σ) and Bκ = ran(σ)∪S. We take F to
be the set of all 2-structures κ in G for which (Aκ, Bκ) has the double-matching
property and 1

ε |Bκ|+ |Aκ| ≤ s.
This family is non-empty by Lemma 4.5 and has the retraction property by

Lemmas 4.7 and 4.9. For the extension property, suppose that |κ| < r, that is,
|dom(σ)| + |S| < r. Then |Aκ| < r and |Bκ| = 2|dom(σ)| + |S| < 2r. Since G
is an (s, 2 + ε)-expander we must have ε < d, so r < s/6. Thus

d(d− 1)

ε
(|Bκ|+ 2r) + |Aκ|+ r <

4d2r

ε
+ 2r <

4s

6
+

2s

6
= s.

Hence the requirements on the sizes of Aκ and Bκ for Lemmas 4.6 and 4.8
are satisfied. Now given v ∈ V , applying Lemma 4.8 we can extend κ to a
2-structure κ′ which covers v, by either adding one more fork or one more
singleton. In either case, (Aκ′ , Bκ′) still has the double-matching property and
1
ε |Bκ′ |+ |Aκ′ | ≤ s, so we remain within F . Similarly, given u ∈ U we can apply
Lemma 4.6 to extend κ to κ′ ∈ F covering u.

We will say that a graph G is a (n, d,∆)-random bipartite graph if it is chosen
uniformly at random from the set of bipartite graphs (U ∪V,E) of left-degree d
with |U | = ∆n and |V | = n.

Theorem 4.13. Choose constants d ≥ 4, ∆ > 1 and ε ∈ (0, 1/2). Then
there is a strictly positive constant γ = γd,ε,∆ such that, for large n, if G is a
(n, d,∆)-random bipartite graph then with exponentially high probability G is a
(γn, 2 + ε)-expander.

Proof. This is standard and can be found for example in [3].

Lemma 4.14. Choose constants d ≥ 4 and ∆ > 1. There is a constant δ > 0
such that, for large n, if G is a (n, d,∆)-random bipartite graph then with expo-
nentially high probability there exists a δn-covering family of 2-structures on G.
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Proof. Fix ε ∈ (0, 1/2) arbitrarily. Let γ be the constant γd,ε,∆ from The-
orem 4.13 and let δ = γε/6d2. With exponentially high probability, G is a
(γn, 2 + ε)-expander. To show that G has a δn-covering family, by Lemma 4.12
it is enough to show that every node in V has degree at most δn. The degree is
the sum of independent Boolean random variables and has expected value ∆d,
so this is true with exponentially high probability by the Chernoff bound.

5 Random k-CNFs

A random k-CNF with n variables and clause density ∆ is a CNF picked uni-
formly at random from the set of all formulas in variables {x1, . . . , xn} which
consist of exactly ∆n clauses, with each clause containing exactly k literals, with
no variable appearing twice in a clause. As is well-known, there is a constant θk
such that if ∆ > θk then such a ϕ is unsatisfiable with high probability for
large n.

Theorem 5.1. Let k ≥ 4 and ∆ > 1. There is a constant c > 0 such that, for
large n, if ϕ is a random k-CNF with n variables and clause density ∆ then
with exponentially high probability any resolution refutation of ϕ passes through
a configuration containing cn clauses of width at least cn.

Proof. We associate with ϕ the bipartite graph G = (U ∪ V,E), where U is the
set of clauses of ϕ, V is the set {x1, . . . , xn} of variables, and an edge exists
between a clause C in U and a variable x in V if x appears in C (either posi-
tively or negatively). Then G is an (n, k,∆)-random bipartite graph. Hence by
Lemma 4.14 there is a constant δ such that with exponentially high probability
there exists a δn-covering family F of 2-structures on G. We will show how such
a family F can be used to construct a family H of piecewise assignments that
is δn-free for ϕ. The theorem follows by Theorem 2.4, with c = δ/2.

Let κ = (σ, S) be any 2-structure in F and consider the following way of
labeling the forks and singletons of κ with partial assignments.

• Let π : u 7→ {xi, xj} be a fork in κ with i < j. Label π with an assignment
to {xi, xj} chosen as follows: either set xi to satisfy the clause u and set
xj arbitrarily, or set xj to satisfy the clause u and set xi arbitrarily.

• Label each singleton xi in κ with an arbitrary assignment to xi.

Notice that, in both cases, for every variable xi covered there is at least one
possible label which sets xi 7→ 1 and one label which sets xi 7→ 0.

Let L be an assignment of such a label to every fork and singleton in κ. All
the labels in L have disjoint domains. Hence we can use L to define a piecewise
assignment α as the set of all labels chosen for the forks in κ together with
all labels chosen for the singletons of κ. Then in particular ‖α‖ = |κ| and α
satisfies every clause C covered by κ. We take H to consist of every piecewise
assignment α which arises in this way from a 2-structure κ ∈ F and a labeling L
of κ.
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We now need to show that H satisfies Definition 2.1. It is clearly non-empty.
For the retraction property, observe that given two piecewise assignments β v α,
if α ∈ H then there is some κ ∈ F such that α is a labeling of κ. We can obtain
β from α by removing some pieces from α. Let κ′ be the 2-structure obtained by
removing the corresponding forks and singletons from κ. Then β is a labeling
of κ′ and κ′ ∈ F by the retraction property for F . Hence β ∈ H.

For the consistency property, suppose for a contradiction that some α ∈ H
falsifies a clause C of ϕ. By the retraction property of H proved above, we
may assume without loss of generality that ‖α‖ ≤ k by removing any pieces
of α which do not mention a variable in C and remembering that |C| = k.
The piecewise assignment α arises as a labeling of some 2-structure κ ∈ F
which cannot cover C, since otherwise α by construction would satisfy C. Since
|κ| = ‖α‖ ≤ k < δn for large n, by the extension property for F we can extend
κ to a 2-structure κ′ in F which does cover C and thus contains some fork
π : C 7→ {xi, xj}. Then in particular the variable xi appears in C but is not in
the domain of α, contradicting the assumption that α falsifies C.

For the extension property, suppose that α ∈ H is a labeling of κ ∈ F
with |κ| < δn, and let xi be any variable not in the domain of α. Then xi
is not covered by κ. By the extension property for F , we can extend κ to a
2-structure κ′ ∈ F by adding either a fork or a singleton which covers xi, and
by the properties of our labelings we can extend α to a labeling α′ of κ′ which
sets xi to whichever value we choose.

6 The graph pigeonhole principle

Let G = (U ∪ V,E) be a bipartite graph with |U | > |V |. We think of U is a set
of pigeons and V as a set of holes. The formula G-PHP, the graph pigeonhole
principle for G, is an unsatisfiable CNF in variables {xuv : (u, v) ∈ E}. It asserts
that the variables describe a map, given by a subset of the edges of G, in which
each pigeon gets mapped to at least one hole but no hole receives two pigeons.
Formally, it is a conjunction of all clauses

1.
∨
{xuv : (u, v) ∈ E} for each u ∈ U

2. ¬xuv ∨ ¬xu′v for each distinct pair of edges (u, v) and (u′, v) in E.

We will call these clauses respectively the pigeon axioms and the hole axioms.
Notice that if G has left-degree d then G-PHP is a d-CNF. We will write Xv for
the set of variables representing the edges touching the hole v.

Theorem 6.1. Let d ≥ 4 and ∆ > 1. There is a constant c > 0 such that, for
large n, if G is a (n, d,∆)-random bipartite graph then with exponentially high
probability any resolution refutation of G-PHP passes through a configuration
containing cn clauses of width at least cn.

Proof. The proof of this result closely follows the pattern of the proof of Theo-
rem 5.1. By Lemma 4.14 there is a constant δ such that with exponentially high
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probability there exists a δn-covering family F of 2-structures on G. We will
construct from such an F a family H of piecewise assignments that is δn-free
for G-PHP. The result follows by Theorem 2.4.

Let κ = (σ, S) be any 2-structure in F and consider the following way of
labelling the forks and singletons of κ.

• Label each fork π : u 7→ {v, v′} in κ with an assignment απ to Xv ∪Xv′

chosen as follows: order the holes v, v′ arbitrarily as v1, v2. Map pigeon u
to hole v1 and set the remaining variables in Xv1 to zero. Either choose
any pigeon u′ ∈ N(v2) and map it to hole v2 (we allow u′ = u), setting
the remaining variables in Xv2 to zero, or simply set all variables in Xv2

to zero.

• Label each singleton v in κ with an assignment αv to Xv chosen as follows:
either choose any pigeon u ∈ N(v) and map it to v, setting all other
variables in Xv to zero, or simply set all variables in Xv to zero.

Notice that in both cases, for every pigeon v covered and every variable x ∈ Xv,
there is at least one label which sets x 7→ 1 and one label which sets x 7→ 0.

As in the proof of Theorem 6.1, we can label κ with a piecewise assignment
α arising from our choice L of labels for the parts of κ. Notice that ‖α‖ = |κ|,
that α does not violate any hole axiom, and that α satisfies the pigeon axiom for
each pigeon u covered by κ. We take H to consist of every piecewise assignment
α which arises in this way from any κ ∈ F and any labeling L of κ. We now
need to show that H satisfies Definition 2.1.

Clearly H is non-empty. The retraction and consistency properties follow
exactly as in Theorem 5.1, using the observation that no α ∈ H falsifies any
hole axiom. For the extension property, suppose that α ∈ H is a labeling of
some 2-structure κ ∈ F with ‖α‖ = |κ| < r, and let x be any variable not in
the domain of α. Then x must be in Xv for some hole v which is not covered
by κ. By the extension property for F , we can extend κ to a 2-structure κ′ ∈ F
by adding either a fork or a singleton which covers v. By the freedom in our
choice of labelings, there is an extension β0 of α to a labeling of κ′ which sets x
to zero, and another such extension β1 which sets x to one.

An alternative version of this theorem would be to show a total space
lower bound for G-PHP for all bipartite expanders of left-degree d with a
suitable bound on the right-degree (rather than for random graphs), applying
Lemma 4.12 directly to get the covering family of 2-structures.

7 Semantic total space

In this section we address a question raised in [1]. The space bounds in that
paper hold not only for the usual versions of the proof systems considered, but
also for semantic versions of the systems. In particular a semantic resolution
refutation of a CNF ϕ is a sequence of configurations where, at each step in the
refutation, we can either add an axiom from ϕ to the current configuration Mi,

14



or we can replace Mi with any configuration Mi+1 with the property that every
clause in Mi+1 is implied by Mi.

In [1] the authors show that, for any unsatisfiable CNF ϕ, the clause space
required to refute ϕ in resolution is no more than twice the clause space required
in semantic resolution, and ask whether the same thing is true for total space.

It follows from our lower bounds that, for total space, resolution can require
quadratically more space than semantic resolution. In particular, let ϕ be an
unsatisfiable random k-CNF with n variables and clause density ∆, where n is
large. We can refute ϕ in semantic resolution by simply writing down all the
clauses of ϕ and then deriving the empty clause in one step. This uses total
space ∆kn, the size of ϕ. But by Theorem 5.1, a resolution refutation of ϕ
typically requires total space Ω(n2).

On the other hand, the proof of Theorem 2.4 does not depend very much on
the details of the syntax of the resolution rule. The theorem generalizes easily
to give lower bounds for a weak form of semantic resolution, with the following
inference rule: from a configuration Mi we can move to a configuration Mi∪{C},
where the clause C is implied by some set of at most d clauses in Mi, for a fixed
integer d. Calling this system d-bounded semantic resolution, we have:

Theorem 7.1. Let ϕ be an unsatisfiable CNF formula and suppose d ≤ r. If
there is a family of piecewise assignments which is r-free for ϕ, then any d-
bounded semantic resolution refutation of ϕ must pass through a configuration
containing at least (r − d)/2 clauses each of width at least (r − d)/2.

Proof. The proof is the same as for Theorem 2.4, except that we replace the
bound r/2 with (r−d)/2 and use a different argument for the inference case, as
follows. Suppose Mi+1 = Mi ∪{E} where E is implied by clauses D1, . . . , Dd ∈
Mi. Since ‖α‖ < (r − d)/2 and |Mi ∩ S| < (r − d)/2 we may assume that
‖βi‖ ≤ ‖α‖+ |Mi ∩ S| < r − d.

Either D1 is satisfied by βi or it is not. If it is, let γ1 = βi. If not, then D1

cannot be in S, since βi satisfies all members of Mi ∩ S. It follows that D1 is
not falsified by βi either, and thus must contain some literal not set by βi. In
this case let γ1 ∈ H be a minimal extension of βi which satisfies this literal.

We have found γ1 ∈ H which satisfies D1 with βi v γ1 and ‖γ1‖ < r−d+ 1.
Applying the same reasoning to D2, . . . , Dd in turn, we can build a sequence of
extensions γ1 v γ2 v · · · v γd in H, finishing with γd which satisfies each of
D1, . . . , Dd and thus also satisfies E. We put βi+1 = γd.

Finally, in [1] the notion of an r-semiwide formula is defined, and it is shown
that any such formula requires clause space r in semantic resolution. We can
strengthen this, to show that such a formula also requires total space r2/4 in
semantic resolution, by a straightforward generalization of the total space lower
bounds in [1] for PHPn and CTn. For a CNF Z and a partial assignment α, we
say that α is Z-consistent if α can be extended to satisfy Z.

Definition 7.2. A CNF formula ϕ is r-semiwide if it is the conjunction of a
CNF Z and a CNF W , where Z is satisfiable, and for each Z-consistent partial
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assignment α and each clause C from W , if |α| < r then α can be extended to
a Z-consistent assignment which satisfies C.

Theorem 7.3. Let ϕ be an unsatisfiable r-semiwide formula. Then every se-
mantic resolution refutation of ϕ must pass through a configuration containing
r/2 clauses each of width at least r/2.

Proof. Let ϕ = Z ∧ W as in Definition 7.2 and let Π = (M1, . . . ,Ms) be a
refutation of ϕ. Let M∗i = {C ∈Mi : Z 6|= C}. Take the first t such that there
exists a clause C ∈M∗t of width strictly less than r/2. Fix such a clause C and
let α be the minimal partial assignment falsifying α. Then α is Z-consistent
and |dom(α)| = |C| < r/2.

It is now enough to show that |M∗i | ≥ r/2 for some i < t, since for i < t
every clause in |M∗i | has width at least r/2. So suppose for a contradiction that
|M∗i | < r/2 for all i < t. We prove by induction that for each i = 1, . . . , t there
exists some Z-consistent βi ⊇ α such that βi |= M∗i . This leads immediately to
a contradiction when i = t.

For the erasure case we trivially put βi+1 = βi. For semantic inference, that
is, Mi |= Mi+1, we let βi+1 be an extension of βi which satisfies Z. Then from the
fact that βi+1 |= M∗i ∧Z it follows that βi+1 |= Mi and hence βi+1 |= Mi+1. For
axiom download, suppose Mi+1 = Mi ∪ {D} with D a clause from W . We may
assume without loss of generality that |dom(β)| ≤ | dom(α)|+ |M∗i | < r. Hence
by r-semiwideness there is a Z-consistent βi+1 ⊇ βi such that βi+1 |= D.
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