
Parallel Repetition From Fortification

Dana Moshkovitz ∗

April 13, 2015

Abstract

The Parallel Repetition Theorem upper-bounds the value of a repeated (tensored) two
prover game G⊗k in terms of the value of the game G and the number of repetitions k.
Contrary to what one might have guessed the value of G⊗k is not val(G)k, but rather a
more complicated expression depending on properties of G. Indeed, there are numerous
works aiming to understand the value of repeated games. In this work we give a simple
transformation on games, which we call “fortification”, and show that for fortified games G,
the value of the 2-repeated game is approximately val(G)2. Our proof is extremely short and
simple. As a corollary, starting with the combinatorial PCP of Dinur that has soundness
error close to 1, we get a simple, combinatorial, construction of a PCP with soundness error
close to 0. The latter can be used for hardness of approximation as in the work of H̊astad.

∗dmoshkov@csail.mit.edu. Department of Electrical Engineering and Computer Science, MIT. This material
is based upon work supported by the National Science Foundation under Grant Number 1218547.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 2 of Report No. 54 (2014)

1 Introduction

1.1 The Parallel Repetition Theorem

In a two prover game G, a verifier picks at random a pair of questions (x, y) from a specified
set of possible questions, sends x to the first prover, and sends y to the second prover; the first
prover replies with an answer a, and the second prover replies with an answer b; the verifier,
knowing x and y, and having inspected both a and b, decides whether to accept or reject. The
value the prover strategies achieve is the probability that the verifier accepts. The value of G,
denoted val(G), is the maximum of this quantity over all prover strategies.

A k-repetition (tensor) of a game G is the game G⊗k, in which the verifier picks at random
k question pairs (x1, y1), . . . , (x1, yk); sends one prover x1, . . . , xk, and sends the other prover
y1, . . . , yk; the first prover replies with a1, . . . , ak, and the second prover replies with b1, . . . , bk;
the verifier checks that it would have accepted in all k tests.

A long line of work analyzes how val(G⊗k) depends on val(G) and k. Clearly, val(G⊗k) ≥
val(G)k, since the provers can follow the same strategy in each one of the k rounds. One might
guess that val(G⊗k) = val(G)k, but this turns out to be false [12, 9, 11]. In a breakthrough
result, Raz [19] showed that val(G⊗k) does exhibit an exponential decay with k when val(G) < 1
(below, ΣX is the set of possible answers a of the first prover, while ΣY is the set of possible
answers b of the second prover):

Theorem 1 (Raz’s Parallel Repetition Theorem [19]). There exists W : [0, 1] → [0, 1] such that
W (x) < 1 for x < 1, and

val(G⊗k) ≤ (W (val(G)))k/ log(|ΣX ||ΣY |).

Interestingly, the dependence of the exponent in |ΣX | and |ΣY | is inherent [11]. Disappoint-
ingly, the base of the exponent is quite far from val(G). In fact, in Raz’s theorem, W (val(G))
is close to 1 even when val(G) is close to 0! Many works simplified and improved the param-
eters of the Parallel Repetition Theorem for general games [14], as well as for games with a
special structure, most notably projection games [18, 8] and expanding projection games [21, 8].
Before we describe the main results of those papers, let us discuss projection games and their
importance.

Arguably, the most important application of the Parallel Repetition Theorem is soundness
amplification for projection games. In this paper it will be convenient for us to consider the
following definition of a projection game:

Definition 1.1 (Projection game). A projection game is defined by a bipartite graph G =
(X,Y,E), alphabets ΣX and ΣY and functions {πe : ΣX → ΣY }e∈E, called “projections”. In the
game, the verifier picks uniformly at random y ∈ Y , and two edges e = (x, y), e′ = (x′, y) ∈ E,
sends x to the first prover, and sends x′ to the second prover; the first prover replies with a ∈ ΣX ,
and the second prover replies with a′ ∈ ΣX ; the verifier accepts if πe(a) = πe′(a

′).

Remark 1.1. The more standard definition of projection games is as follows: the verifier picks
uniformly at random an edge (x, y) ∈ E, sends x to the first prover, and sends y to the second
prover; the first prover replies with a ∈ ΣX , and the second prover replies with b ∈ ΣY ; the
verifier accepts if πe(a) = b. Definition 1.1 is a symmetric version of this definition, and as
useful to hardness of approximation (or more). If G′ is the game in Definition 1.1, and G is
the game we defined here, then val(G)2 ≤ val(G′) ≤ val(G) (the first inequality follows from
convexity, while the second inequality follows from a probabilistic assignment).

2

The PCP Theorem, in the form that is most useful for hardness of approximation, states that
it is NP-hard, given a projection game G, to distinguish the case where val(G) = 1 from the
case where val(G) ≤ ε. The parameter ε is called the soundness error of the PCP. Since parallel
repetition of a projection game is itself a projection game, the Parallel Repetition Theorem,
when applied on the basic PCP Theorem [4, 3, 2, 1], yields a projection PCP theorem with
arbitrarily small soundness error. Projection PCP with low soundness error is the basis of most
of the best NP-hardness of approximation results we have today. In particular, it is the basis
of the hardness results in H̊astad’s seminal paper [13].

Understanding the significance of projection games, we now turn to review what is known
about their repetition. Interestingly, in the projection case val(G⊗k) does not depend on the
number of possible answers of the provers [18]. The state of the art results are as follows:

Theorem 2 (Parallel Repetition Theorem for projection games [18, 8]). For any projection
game G as in Remark1 1.1,

1. If val(G) = 1− ϵ, then val(G⊗k) ≤ (1− ϵ/2)Ω(ϵk) [18].

2. If val(G) = 1− ϵ and ϵ ≪ 1/
√
k, then val(G⊗k) ≤ 1− Ω(

√
k · ϵ) [8].

3. val(G⊗k) ≤ 2k · val(G)k/2 [8].

The first result is best when val(G) is a constant close to 1; the second result is best for val(G)
very close to 1; while the last result is best for the case of small val(G) (note that in the first
result the base of the exponent is about 1

2 rather than val(G) when val(G) is very small). The
second result is tight when it applies, as Raz [20] showed a unique game G with val(G) = 1− ϵ
for which val(G⊗k) ≥ 1 − O(

√
k · ϵ). More generally, Barak et al [5] analyze the behavior of

general unique games under parallel repetition.
For projection games on expanders, Dinur and Steurer’s proof is somewhat simpler than its

general case [8]. More than that, Raz and Rosen [21] prove a stronger result in the expander
case: if val(G) = 1− ϵ for ϵ < 1/2, then val(G⊗k) ≤ (1− ϵ)Ω(k).

We note that in all the aforementioned results, either explicitly or hiding in Ω(·), is the fact
that not all repetitions count. That is, in many of the k repetitions, the provers may win with
probability 1 conditioned on winning other rounds. This phenomenon is known to actually
occur – there are unique games with val(G⊗2) = val(G) [9].

1.2 Our Contribution

Instead of exploring the subtle behavior of general projection games under repetition, in this
work we engineer the games so they behave well under repetition. We present a simple combi-
natorial transformation on projection games, which we call “fortification”. Fortification endows
the game with extractor structure and ensures that certain sub-games of the game have (ap-
proximately) the same value as the global game. Fortification preserves a projection structure,
while increasing |X| and |ΣX | in a controlled way. We show that for fortified projection games
G, the value of the k-repeated game is, approximately, val(G)k, i.e.,

val(G)k ≤ val(G⊗k) ≤ val(G)k + err,

1Using the relation between the projection games of Definition 1.1 and the projection games of Remark 1.1
(explained in Remark 1.1), Theorem 2 yields a (weaker) parallel repetition theorem for projection games as in
Definition 1.1. It is quite possible that the techniques of Dinur and Steurer yield bounds as in Theorem 2 for
games as in Definition 1.1 too.

3

where the small additive error err can be made arbitrarily small by fortification. While we can
handle general k, our focus will be on getting the simplest proof possible so we concentrate on
the case k = 2, which allows amplification of the value via repeated squaring.

In the fortified game, rather than sending the first prover a question x and the second prover
a question x′, the verifier sends the first prover a set of correlated questions {x1, . . . , xt} ∋ x,
and it sends the second prover a set of correlated questions {x′1, . . . , x′t} ∋ x′. The provers are
asked to provide answers for all t questions they got. The verifier then uses their answers to
perform the test involving x and x′ (note that other questions among the 2t typically induce
no tests). The choice of the correlated questions is done using an extractor or a random walk
on an expander, in a manner that was inspired by ideas in combinatorial construction of error
correcting codes.

Notably, our analysis of parallel repetition is much simpler than all existing analyses. Unlike
Raz’s proof, our analysis does not require information theory, or clever choices of sub-games à
la Razborov, nor does it require a heavy use of linear algebra and Cheeger’s inequality as in the
recent analysis of Dinur and Steurer for projection games.

As a corollary, starting from a PCP Theorem with soundness error bounded away from
1 [4, 3, 2, 1], we get a PCP with arbitrarily small constant soundness error. In particular,
starting with the combinatorial PCP of Dinur, we get a combinatorial PCP with low error
whose analysis is combinatorial. The latter can be used for hardness of approximation as in the
work of H̊astad.

Our proof evolved from a previous work of the author [16] about soundness amplification for
low degree testing. As happened several times in the past in PCP, we could transform some of
the ideas from the algebraic analysis into a purely combinatorial setting.

1.3 Previous Work on Combinatorial Analysis of Parallel Repetition

Feige and Kilian [10], as well as Impagliazzo, Kabanets and Wigderson [15] already gave combi-
natorial analyses of parallel repetition. Crucially, those parallel repetition theorems were weaker
than what was known via other techniques, while our theorem is stronger than what is known
via other techniques. As in the current paper, Feige and Kilian, as well as Impagliazzo, Ka-
banets and Wigderson, first apply a transformation on the game, and then repeat the game in
parallel. The transformation differs from our fortification, and is (up to variants) as follows:
The verifier picks uniformly at random either (i) “compare”: edges with a common endpoint
e = (x, y), e′ = (x′, y) ∈ E; or (ii) “confuse”: independent edges e = (x, y), e′ = (x′, y′) ∈ E.
One prover is sent x and the other prover is sent x′. The provers reply a, a′ ∈ ΣX , respectively;
In case the two edges have a common endpoint y, the verifier checks that πe(a) = πe′(a

′). The
intuition of this transformation is that in some of the rounds the provers are compared, hence
for the verifier to accept with good probability, the provers are forced to a consistent strategy.
The confuse rounds ensure that the consistent strategy is pervasive.

Feige and Kilian [10] show that for games G transformed as we described, for any δ > 0 such
that k is a sufficiently large polynomial in 1/δ and 1/(1− val(G)), it holds that val(G⊗k) ≤ δ.
In this theorem, the decay of the value of the game with repetition is polynomial in k, rather
than exponential in k. Impagliazzo, Kabanets and Wigderson [15] prove that val(G⊗k) ≤
2−Ω(

√
k/(1−val(G))). Here the decay is exponential in

√
k instead of in k.

4

2 Preliminaries

Let Dist be a distribution over a space X. The entropy in the distribution, denoted H(Dist),
is

∑
x∈X Dist(x) log(1/Dist(x)). We say that Dist has min-entropy at least k, and denote

H∞(Dist) ≥ k, if no x ∈ X has probability higher than 2−k. If a distribution is uniform over a
set S ⊆ X (a “flat” distribution; we’ll also refer to S as an event), then it has min-entropy log |S|.
It is known that any distribution with min-entropy k can be viewed as a convex combination
{Si}i where for every i, it holds that Pr [Si] = |Si| / |X| ≥ 2−k.

A (δ, ε)-extractor is a bi-regular bipartite graph H = (X,Y,E), such that for every distribu-
tion Dist over X with min-entropy at least log(δ |X|), the distribution on Y obtained by picking
x according to Dist and picking a uniformly random neighbor y ∈ Y of x is ε-close to uniform
over Y in statistical distance.

Lemma 2.1 (Extractor construction; follows from expander random walk [22]). For any δ, ε >
0, there exist (δ, ε)-extractors G = (X,Y,E) such that |X| = O(|Y | /δ) and each vertex in
X has degree D = O(log(1/δ) · (1/ε)2). Moreover, there exist explicit constructions achieving
|X| = O(|Y | /δ) and D = D(δ, ε) = exp(poly log log(1/δ)) · (1/ε)2.

A two prover game G is defined by a set X of questions to the first prover, a set Y of questions
to the second prover, an alphabet ΣX for the answers of the first prover, and an alphabet ΣY

for the answers of the second prover. In addition, there is a distribution µ over question pairs
X × Y , and a predicate V ⊆ X × Y ×ΣX ×ΣY . The verifier picks (x, y) from µ sends x to the
first prover and y to the second prover; receives a ∈ ΣX from the first prover and b ∈ ΣY from
the second prover; then accepts or reject based on V (x, y, a, b).

One often considers the bipartite graph associated with G. This is the graph G = (X,Y,E)
on vertex sets X and Y , where the edges are the question pairs (x, y) with non-zero probability
in µ. When one refers to degrees in G, the intention is degrees in G. Typically, and by default in
this paper, µ is uniform over E, and a question pair (x, y) from µ is such that x is uniform over
X, while y is uniform over Y . The value achieved by certain prover strategies is the probability
that the verifier accepts. The value of G, denoted val(G), is the maximum of this quantity over
all prover strategies. The size of G, denoted size(G), is |X|+ |Y |+ |E|. The randomness of the
verifier is log |E|.

3 Fortification

If G′ is a sub-game of a game G obtained by picking only a subset of the possible question pairs
of the verifier, then the value of G′ can be much higher than the value of the original game G.
Fortified games G are such that certain large sub-games G′ of G have val(G′) ≈ val(G). The
largeness is with respect to the upper bound val(G⊗k) ≤ δ we wish to obtain. Note that the
requirement that every sub-game G′ of fraction δ in G has val(G′) < 1 is equivalent to saying
that val(G) < δ. Hence, it is important that we focus on a family of large sub-games, rather
than on all large sub-games.

Specifically, we focus on rectangular sub-games, defined as follows: If S is an event depending
on the question to the first prover, and T is an event depending on the question to the second
prover, then the rectangular sub-game G|S×T is the game G conditioned on the questions to the
provers satisfying S and T , respectively. That is, the verifier picks at random y ∈ Y , x, x′ ∈ X
such that (x, y), (x′, y) ∈ E, conditioned on x ∈ S, x′ ∈ T . It then performs the test as before.
We say that the rectangular game is δ-large if Pr [S],Pr [T] ≥ δ.

5

We define the fortified value of a game as follows:

Definition 3.1. The δ-fortified value of a game G, denoted valδ(G), is the maximum of val(G|S×T)
over all δ-large rectangular games G|S×T .

We say that a projection game G is δ-fortified if the underlying graph is a (δ, δ2)-extractor and
δ-large rectangular sub-games have value at most val(G) + δ. We show that every projection
game can be fortified easily. Fortification increases the size and the alphabets of the game by
factor polynomial in 1/δ. Fortification does not change the value of the game, only makes sure
that the value of large rectangular sub-games is similar to the value of the overall game.

Our fortification lemma assumes that the bipartite graph underlying the projection game is
bi-regular. Projection games on general graphs can be transformed to bi-regular using transfor-
mations of [17]. The first transformation regularizes the Y side, so each Y vertex has a small
degree:

Lemma 3.1 (Y -degree reduction [17]). For any η > 0, any projection game G can be efficiently
transformed to a new projection game G′ on a graph (X,Y,E) that is Y -regular with degree
poly(1/η), where size(G′) ≤ size(G) · poly(1/η) and val(G′) ≤ val(G) + η (the alphabets are
unchanged).

The second transformation switches between the Y and the X side. The idea is that each
assignment to a vertex y ∈ Y now contains assignments to all the neighbors of y, such that the
assignments to the neighbors agree on their projection to y:

Lemma 3.2 (Switching sides [17]). Any projection game G on a graph G = (X,Y,E) with
Y -degree D and alphabets ΣX , ΣY can be transformed into a projection game G′ on a graph
G′ = (Y,X,E) and alphabets ΣD

X , ΣX , where val(G′) = val(G).

By applying Y -degree reduction, switching sides, and Y -degree reduction again, we obtain a
projection game on a bi-regular graph that has approximately the same value as the original
game.

Having gotten bi-regularity out of the way, let us describe the fortification transformation:

Lemma 3.3 (Fortification). For any ε, δ > 0, a projection game G on a bi-regular graph G =
(X,Y,E), with alphabets ΣX , ΣY , and projections {πe}e∈E can be efficiently converted to a
game G∗ on a graph G∗ = (X∗, Y, E∗) with alphabets ΣD

X , ΣY , and projections {π∗
e}e∈E∗, such

that

1. G∗ is a (δ, δ2)-extractor.

2. D = D(δ, δ2), where D is as in Lemma 2.1.

3. The size of G∗ is linear in the size of G and poly(1/δ).

4. val(G∗) = val(G).

5. valδ(G∗) ≤ val(G) +O(δ).

Proof. Let H = (X∗, X,EH) be a (δ, δ2)-extractor. By Lemma 2.1, such can be constructed so
|X∗| is linear in |X| and poly(1/δ), and each vertex in X∗ has D = D(δ, δ2) neighbors in X.

Let E∗ contain an edge e∗ = (x∗, y) for every pair (x∗, x) ∈ EH and e = (x, y) ∈ E. An
assignment a⃗ to x∗ consists of assignments to all D neighbors of x∗ in H, and in particular some

6

a(x) to x. The projection on the edge e∗ is π∗
e∗ (⃗a) = πe(a(x)). Note that G∗ is a (δ, δ2)-extractor,

and that size(G∗) is size(G) · poly(1/δ). Consider the game G∗ associated with the graph G∗,
alphabets ΣD

X , ΣY and projections {π∗
e∗}e∗∈E∗ . In this game, the verifier picks uniformly at

random y ∈ Y and x∗, (x∗)′ ∈ X∗ such that e∗ = (x∗, y) ∈ E∗ and (e∗)′ = ((x∗)′, y) ∈ E∗. Upon
receipt of answers a⃗, (⃗a)′ ∈ ΣD

X , the verifier checks that π∗
e∗ (⃗a) = π∗

(e∗)′((⃗a)
′).

We have val(G) ≤ val(G∗), since any strategy a : X → ΣX for G induces a strategy for G∗

achieving the same value: given x∗ ∈ X∗, the answer a⃗ of the prover assigns every neighbor
x ∈ X of x∗ in H the answer a(x). Moreover, val(G∗) ≤ val(G), since every strategy in G∗

induces a randomized strategy in G achieving the same value in expectation (and hence there
exists a strategy for G achieving this value): given x ∈ X, the prover picks at random a neighbor
x∗ ∈ X∗ of x in H, and responds according to the strategy for x∗.

Let S, T ⊆ X∗, |S| , |T | ≥ δ |X∗|. We’d like to prove that val(G∗)|S×T ≤ val(G) + O(δ).
Lemma A.4 shows that conditioned on the events S and T , when picking y ∈ Y and two edges
(x∗, y), ((x∗)′, y) ∈ EH , x∗ ∈ S, (x∗)′ ∈ T – which involves picking (x, y), (x′, y) ∈ E, as well
as (x∗, x), ((x∗)′, x′) ∈ EH – we get that (x, x′, y) is O(δ)-close to (x, x′, y) picked by sampling
uniformly y ∈ Y , (x, y), (x′, y) ∈ E. Since the latter induces a uniform test in G, our claim
follows.

Fortification preserves projection, but does not preserve uniqueness. Indeed, due to the
works [19, 5], we do not expect to prove a strong parallel repetition for unique games.

We wish to emphasize that not every projection game on extractors is fortified. Indeed, if we
take any projection game on extractors and change the projections on edges touching δ fraction
of the vertices so they are trivially satisfied, we hardly change the value of the game, but we
make sure that the game is not fortified.

Fortification increases the size by a factor poly(1/δ), where we fortify against sub-games of
fraction δ. When repeating the game for k rounds, the size increases by a factor poly(1/δ)k.
However, due to fortification, val(G⊗k) decreases exponentially with k, rather than with k/2.
Hence, to reach a target val(G⊗k) previous methods required twice as many rounds k as we
do, and thus the right comparison is between size ≫ (size(G))2k for previous methods and size
≈ (size(G) poly(1/δ))k for us. Since typically size(G) is much larger than poly(1/δ) (which is
polynomial in inverse the target value), our method yields better size than before. Fortification
also raises the size of the alphabet ΣX to a power D = D(δ, δ) = poly(1/δ). This is a disad-
vantage of our method, since standard parallel repetition has alphabet size poly(1/δ) where δ
is the final value, whereas our alphabet size is exponentially worse. When parallel repetition is
applied to achieve a (small) constant soundness error (as is typically the case, since repetition
raises the size to the k), the increase in the alphabet size is inconsequential.

4 A Parallel Repetition Theorem

In this work we prove a parallel repetition theorem assuming that the underlying game is
fortified. While we could handle a large number of repetitions at once, we present a proof for
only two repetitions, since this case is exceptionally short and simple. Using repeated squaring
we can then decrease the value of the game further.

Theorem 3 (Parallel repetition). There exists a constant c ≥ 1, such that for any δ, ε > 0, if
G is δ-fortified where δ ≤ ε/(c |ΣY |), then

val(G⊗2) ≤ val(G) · (val(G) + ε) + ε.

7

Proof. Suppose on way of contradiction that there exists a strategy for the two players a :
X × X → ΣA × ΣA, b : X × X → ΣA × ΣA, that makes the verifier accept with probability
larger than val(G) · (val(G) + ε) + ε. Let (x1, y1), (x

′
1, y1) ∈ E, be the random choices of the

verifier in the first repetition, and let (x2, y2), (x
′
2, y2) ∈ E, be those of the second repetition.

Denote the replies of the provers by (a1, a2) = a(x1, x2) and (a′1, a
′
2) = a′(x′1, x

′
2).

Fix (x1, y1), (x
′
1, y1) ∈ E. Then a1, a

′
1 become functions of x2, x

′
2, respectively. For every

b ∈ ΣY , let Sb =
{
x2 ∈ X |π(x1,y1)(a1(x2)) = b

}
and Tb =

{
x′2 ∈ X |π(x′

1,y1)
(a′1(x

′
2)) = b

}
.

There are two cases:

• |Sb| < δ |X| or |Tb| < δ |X|: such b’s contribute to val(G⊗2) at most 2 |ΣY | · δ ≤ ε (for
sufficiently large c). Our assumption implies that conditioned on the players agreeing in
the first repetition, namely, π(x1,y1)(a1) = π(x′

1,y1)
(a′1), the probability p that the players

agree in the second repetition, namely, π(x2,y2)(a2) = π(x′
2,y2)

(a′2), is more than val(G)+ ε.

• |Sb| , |Tb| ≥ δ |X|: by fortification, such b’s contribute to p at most val(G)+O(δ). We pick
c so the O(δ) term is at most ε.

Overall, we get a contradiction.

Theorem 3 assumes that δ ≤ cε/ |ΣY |, where ε should be taken to be sufficiently smaller
than val(G)2. Existing constructions of projection games G have |ΣY | = poly(1/val(G)) [17].
Moreover, there is a simple transformation of Dinur and Harsha [7] based on code concatenation
that decreases |ΣY | to poly(1/val(G)) for any projection game G. Overall, this means that δ
should be taken to be polynomially small in val(G).

Lemma 4.1 (ΣY reduction [7]). For any η > 0, any projection game G with val(G) ≤ ε
and alphabet ΣY can be efficiently transformed to a new projection game G′ where size(G′) ≤
size(G) · log |ΣY | · poly(1/η), val(G′) ≤ ε+O(η) and the new |ΣY | is poly(1/η).

5 Repeated Squaring

Using our parallel repetition theorem, in this section we develop a new combinatorial soundness
amplification technique for two prover games that allows one to decrease the soundness error
of projection games from close to 1 to close to 0. The latter is required for optimal hardness of
approximation results [13].

Theorem 4 (Combinatorial PCP with low error). For any α > 0, it is NP-hard to distinguish,
given a projection game G, between the case where val(G) = 1 and the case where val(G) ≤ α.

Proof. We start with the PCP theorem of Dinur [6]. This theorem shows an efficient reduction
from an instance H of the NP-hard 3Coloring problem to a regular constraint graph G =
(V,E), an alphabet Σ for the vertices, and predicates pe ⊆ Σ × Σ on the edges e ∈ E. If H is
3-colorable, then G has an assignment f : V → Σ that satisfies all the predicates on the edges.
If H is not 3-colorable, then all assignments to G’s vertices satisfy at most 1− β fraction of the
predicates, where β > 0 is some global constant.

We can convert G into a projection game G as follows: the set of questions is E; the set
of answers ΣX consists of all satisfying assignments to the endpoints of an edge; Y = V ; and
there are edges between e = (u, v) ∈ E and each of u, v. The projection on those edges maps
an assignment (au, av) ∈ Σ × Σ to the endpoints to either au or av depending on whether the

8

endpoint is u or v. Thus, Dinur’s theorem shows that it is NP-hard to distinguish the case
that a given projection game G with sufficiently large constant alphabets |ΣX | , |ΣY | satisfies
val(G) = 1 and the case that it satisfies val(G) ≤ 1 − β′, where β′ is a constant that depends
on β.

We repeat the following process until val(G) ≤ α:

• Set δ = α/(c |ΣY |) for a sufficiently large constant c.

• Fortify G to get a δ-fortified G∗. We have size(G∗) ≤ size(G) ·poly(1/δ). The X alphabet

grows to |ΣX |poly(1/δ) and the Y alphabet remains the same.

• Consider (G∗)⊗2. By Theorem 3, the soundness error goes down to val(G)2 · (1 + ϵ) (for a
suitable constant ϵ and assuming c is large enough). The size of the game, as well as the
sizes of the alphabets, are squared.

• Set G to the new game we constructed, and repeat the process.

After k iterations, the size is size(G)2k ·(|ΣY | /α)2
O(k)

, the X alphabet is of size |ΣX |(|ΣY |/α)2O(k)

,

and the Y alphabet is of size |ΣY |2
k

. If val(G) = 1, then the value remains 1, and in any case

val(G) ≤ (1 + ϵ)k · val(G)2k . For k ≈ log((1/β′) log(1/α)), the value becomes α.

Acknowledgements

I am thankful to Ran Raz for discussions, and to Henry Yuen and an anonymous reviewer for
a careful reading of the paper. Many thanks to Ramprasad Saptharishi, Rakesh Venkat, Girish
Varma and Amey Bhangale for pointing out an important subtlety in the fortification lemma.

References

[1] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof verification and the
hardness of approximation problems. Journal of the ACM, 45(3):501–555, 1998.

[2] S. Arora and S. Safra. Probabilistic checking of proofs: a new characterization of NP.
Journal of the ACM, 45(1):70–122, 1998.

[3] L. Babai, L. Fortnow, L. A. Levin, and M. Szegedy. Checking computations in polyloga-
rithmic time. In Proc. 23rd ACM Symp. on Theory of Computing, pages 21–32, 1991.

[4] L. Babai, L. Fortnow, and C. Lund. Nondeterministic exponential time has two-prover
interactive protocols. Computational Complexity, 1:3–40, 1991.

[5] B. Barak, M. Hardt, I. Haviv, A. Rao, O. Regev, and D. Steurer. Rounding parallel
repetitions of unique games. In Proc. 49th IEEE Symp. on Foundations of Computer
Science, pages 374–383, 2008.

[6] I. Dinur. The PCP theorem by gap amplification. Journal of the ACM, 54(3):12, 2007.

[7] I. Dinur and P. Harsha. Composition of low-error 2-query PCPs using decodable PCPs.
In Proc. 50th IEEE Symp. on Foundations of Computer Science, pages 472–481, 2009.

9

[8] I. Dinur and D. Steurer. Analytical approach to parallel repetition. In Proc. 46th ACM
Symp. on Theory of Computing, 2014.

[9] U. Feige. On the success probability of the two provers in one round proof systems. In
Proc. of 6th IEEE Symposium on Structure in Complexity Theory, pages 116–123, 1991.

[10] U. Feige and J. Kilian. Two-prover protocols - low error at affordable rates. SIAM Journal
on Computing, 30(1):324–346, 2000.

[11] U. Feige and O. Verbitsky. Error reduction by parallel repetition - a negative result.
Combinatorica, 22(4):461–478, 2002.

[12] L. Fortnow, J. Rompel, and M. Sipser. Errata for on the power of multi-prover interactive
protocols. In Structure in Complexity Theory Conference, pages 318–319, 1990.

[13] J. H̊astad. Some optimal inapproximability results. Journal of the ACM, 48(4):798–859,
2001.

[14] T. Holenstein. Parallel repetition: Simplification and the no-signaling case. Theory of
Computing, 5(1):141–172, 2009.

[15] R. Impagliazzo, V. Kabanets, and A. Wigderson. New direct-product testers and 2-query
PCPs. SIAM Journal on Computing, 41(6):1722–1768, 2012.

[16] D. Moshkovitz. An approach to the sliding scale conjecture via parallel repetition for low
degree testing. Technical Report 30, ECCC, 2014.

[17] D. Moshkovitz and R. Raz. Two query PCP with sub-constant error. Journal of the ACM,
57(5), 2010.

[18] A. Rao. Parallel repetition in projection games and a concentration bound. SIAM Journal
on Computing, 40(6):1871–1891, 2011.

[19] R. Raz. A parallel repetition theorem. In SIAM Journal on Computing, volume 27, pages
763–803, 1998.

[20] R. Raz. A counterexample to strong parallel repetition. SIAM Journal on Computing,
40(3):771–777, 2011.

[21] R. Raz and R. Rosen. A strong parallel repetition theorem for projection games on ex-
panders. In IEEE Conference on Computational Complexity, pages 247–257, 2012.

[22] O. Reingold, S. P. Vadhan, and A. Wigderson. Entropy waves, the zig-zag graph product,
and new constant-degree expanders and extractors. Annals of Mathematics, 155(1):157–
187, 2002.

10

A Auxiliary Lemmas

Lemma A.1. Suppose that for every y we have 0 ≤ ay ≤ 1,
∑

y ay = 1. Additionally,
maxy |cy − 1| ≤ ε. Then,

∑
y |cyay − by| ≤

∑
y |ay − by|+ ε.

Proof. Let εy = |cy − 1|. First consider the case where maxy εy ≤ ε.∑
y

|cyay − by| =
∑
y

|ay − by ± εyay|

≤
∑
y

|ay − by|+ |εyay|

≤
∑
y

|ay − by|+ ε
∑
y

ay

≤
∑
y

|ay − by|+ ε.

Lemma A.2. Let H = (X,Y,E) be a (δ, ε)-extractor, and let S, T ⊆ X, |S| , |T | ≥ δ |X|. When
picking uniformly at random y ∈ Y and (x, y), (x′, y) ∈ E,∣∣∣∣ Pr [x ∈ S, x′ ∈ T]

Pr [x ∈ S] · Pr [x′ ∈ T]
− 1

∣∣∣∣ ≤ 3ε.

Proof.

Pr
[
x ∈ S, x′ ∈ T

]
=

1

|Y |
·
∑
y∈Y

Pr [x ∈ S|y] · Pr
[
x′ ∈ T |y

]
=

1

|Y |
·
∑
y∈Y

Pr [y|x ∈ S] · Pr [x ∈ S]

Pr [y]
· Pr [y|x

′ ∈ T] · Pr [x′ ∈ T]

Pr [y]

= Pr [x ∈ S] · Pr
[
x′ ∈ T

]
· 1

|Y |
·
∑
y∈Y

Pr [y|x ∈ S]

Pr [y]
· Pr [y|x

′ ∈ T]

Pr [y]

Let

εy =

∣∣∣∣Pr [y|x ∈ S]

Pr [y]
− 1

∣∣∣∣ .
ε′y =

∣∣∣∣Pr [y|x′ ∈ T]

Pr [y]
− 1

∣∣∣∣ .
By the extractor property,

∑
εy ≤ ε |Y | and

∑
ε′y ≤ ε |Y |. Hence,

1

|Y |
·
∑
y∈Y

Pr [y|x ∈ S]

Pr [y]
· Pr [y|x

′ ∈ T]

Pr [y]
=

1

|Y |
·
∑
y∈Y

(1± εy) ·
(
1± ε′y

)
=

1

|Y |
·
∑
y∈Y

(
1± εy ± ε′y ± εyε

′
y

)
= 1± 3ε.

11

Lemma A.3. Let H = (X,Y,E) be a (δ, εδ)-extractor. Let S, T ⊆ X, |S| , |T | ≥ δ |X|. Consider
the distribution over Y where y ∈ Y is picked uniformly conditioned on two uniformly random
neighbors x, x′ ∈ X of y in H satisfying x ∈ S, x′ ∈ T . Then, the distribution of y is O(ε)-close
to uniform.

Proof. Denote

A
.
=

Pr [x ∈ S] · Pr [x′ ∈ T]

Pr [x ∈ S, x′ ∈ T]
.

By Lemma A.2, |A− 1| ≤ 3εδ. First we bound:∑
y∈Y

∣∣∣Pr [y|x ∈ S, x′ ∈ T
]
− Pr [y|x ∈ S]

∣∣∣ =
∑
y∈Y

∣∣∣∣ Pr [x ∈ S, x′ ∈ T |y]
|Y | · Pr [x ∈ S, x′ ∈ T]

− Pr [y|x ∈ S]

∣∣∣∣
=

∑
y∈Y

∣∣∣∣Pr [x ∈ S|y] · Pr [x′ ∈ T |y]
|Y | · Pr [x ∈ S, x′ ∈ T]

− Pr [y|x ∈ S]

∣∣∣∣
=

∑
y∈Y

∣∣∣∣A · Pr [y|x ∈ S] · Pr [y|x′ ∈ T]

1/ |Y |
− Pr [y|x ∈ S]

∣∣∣∣
We wish to bound: ∑

y∈Y

Pr [y|x ∈ S]

(1/ |Y |)
·
∣∣∣∣A · Pr

[
y|x′ ∈ T

]
− 1

|Y |

∣∣∣∣
By Lemma A.1 and the extractor property,∑

y∈Y

∣∣∣∣A · Pr
[
y|x′ ∈ T

]
− 1

|Y |

∣∣∣∣ ≤ O(εδ).

We have

Pr [y|x ∈ S] =
Pr [x ∈ S|y] · Pr [y]

Pr [x ∈ S]
≤ 1

δ |Y |
Therefore, we get the bound∑

y∈Y

∣∣∣Pr [y|x ∈ S, x′ ∈ T
]
− Pr [y|x ∈ S]

∣∣∣ ≤ O(ε).

The lemma follows from the triangle inequality and using the extractor property to bound∑
y∈Y |Pr [y|x ∈ S]− 1/|Y ||.

Lemma A.4. Let H = (X∗, X,EH) be a (δ, εδ)-extractor, and let G = (X,Y,E). Let S, T ⊆
X∗, |S| , |T | ≥ δ |X∗|. Consider the distribution over Y ×X ×X where y ∈ Y , two neighbors
x, x′ ∈ X of y in G, and (x∗, x), ((x∗)′, x′) ∈ EH , are picked uniformly conditioned on x∗ ∈ S,
(x∗)′ ∈ T . Then, the distribution of y, x, x′ is O(ε)-close to uniform.

Proof. The graph G∗ = (X∗, Y, E∗) where there is an edge (x∗, y) ∈ E∗ if there are edges
(x∗, x) ∈ EH and (x, y) ∈ G, is a (δ, εδ)-extractor. By Lemma A.3 applied on G∗, we know that
y is O(ε)-close to uniform. We’ll first bound the following expression∑

x,x′,y

∣∣∣Pr [x, x′, y|x∗ ∈ S, (x∗)′ ∈ T
]
− Pr

[
x, x′|y, x∗ ∈ S

]
Pr

[
y|x∗ ∈ S, (x∗)′ ∈ T

]∣∣∣
12

=
∑
x,x′,y

Pr
[
y|x∗ ∈ S, (x∗)′ ∈ T

]
·
∣∣∣Pr [x, x′|y, x∗ ∈ S, (x∗)′ ∈ T

]
− Pr

[
x, x′|y, x∗ ∈ S

]∣∣∣
=

∑
x,x′,y

Pr
[
y|x∗ ∈ S, (x∗)′ ∈ T

]
·
∣∣∣Pr [x|y, x∗ ∈ S]Pr

[
x′|y, (x∗)′ ∈ T

]
− Pr [x|y, x∗ ∈ S]Pr

[
x′|y

]∣∣∣
=

∑
x,x′,y

Pr
[
y|x∗ ∈ S, (x∗)′ ∈ T

]
· Pr [x|y, x∗ ∈ S] ·

∣∣∣Pr [x′|y, (x∗)′ ∈ T
]
− Pr

[
x′|y

]∣∣∣
≤

∑
x,x′,y

Pr
[
y|x∗ ∈ S, (x∗)′ ∈ T

]
·
∣∣∣Pr [x′|y, (x∗)′ ∈ T

]
− Pr

[
x′|y

]∣∣∣
Let us denote εy = |Pr [y|x∗ ∈ S, (x∗)′ ∈ T]− Pr [y]|, so

∑
y εy ≤ O(ε), and we can continue

bounding as follows:

≤
∑
x,x′,y

(
Pr [y] + εy

)
·
∣∣∣Pr [x′|y, (x∗)′ ∈ T

]
− Pr

[
x′|y

]∣∣∣
≤ O(ε) +

∑
x,x′,y

Pr [y] ·
∣∣∣∣Pr [x′, y|(x∗)′ ∈ T]

Pr [y|(x∗)′ ∈ T]
− Pr [x′, y]

Pr [y]

∣∣∣∣
= O(ε) +

∑
x,x′,y

∣∣∣∣ Pr [y]

Pr [y|(x∗)′ ∈ T]
· Pr

[
y|x′

]
Pr

[
x′|(x∗)′ ∈ T

]
− Pr

[
y|x′

]
Pr

[
x′
]∣∣∣∣

≤ O(ε) +
∑
x,x′,y

∣∣∣∣ Pr [y]

Pr [y|(x∗)′ ∈ T]
· Pr

[
x′|(x∗)′ ∈ T

]
− Pr

[
x′
]∣∣∣∣

≤ O(ε)

In the last inequality we use the extractor property and Lemma A.1. To complete the proof we
bound: ∑

x,x′,y

∣∣∣Pr [x, x′|y, x∗ ∈ S
]
Pr

[
y|x∗ ∈ S, (x∗)′ ∈ T

]
− Pr

[
x, x′, y

]∣∣∣
=

∑
x,x′,y

∣∣∣Pr [x′|y]Pr [x|y, x∗ ∈ S]Pr
[
y|x∗ ∈ S, (x∗)′ ∈ T

]
− Pr

[
x′|y

]
Pr [x|y]Pr [y]

∣∣∣
=

∑
x,x′,y

Pr
[
x′|y

]
Pr [y] ·

∣∣∣∣Pr [x|y, x∗ ∈ S]
Pr [y|x∗ ∈ S, (x∗)′ ∈ T]

Pr [y]
− Pr [x|y]

∣∣∣∣
≤ O(ε)

The last inequality follows from Lemmas A.3 and A.1, plus the bound on
∑

|Pr [x′|y, (x∗)′ ∈ T]− Pr [x′|y]|.
The lemma follows from the triangle inequality.

13

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

