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Abstract

We prove a version of "Reversed Newman Theorem" in context of in-
formation complexity: every private-coin communication protocol with in-
formation complexity I and communication complexity C' can be replaced
by public-coin protocol with the same behavior so that it’s information
complexity does not exceed O (\/ﬁ) This result holds for unbounded-
round communication whereas previous results in this area dealt with
one-way protocols. As an application it gives an undirect way to prove a
best-known compression theorem in Information Complexity.

1 Introduction

Information complexity of communication protocol , denoted by IC,, (), is the
amount of information Alice and Bob reveal about their inputs while computing
7 in a assumption that input are distributed according . Information complex-
ity is useful foremost in context of a Direct-Sum problem in Communication
complexity. Let us firstly describe the substance of this problem. Fix a small
constant €. Suppose that you are given an arbitrary function f : X x) — {0, 1}
and probability distribution g on the set X x ), (here X is corresponded to
Alice and Y is corresponded to Bob). Define D¥(f) as follows:

D (f) = inf CC(),

where infimum ranges over all deterministic communication protocols m which
output 1 bit 7(x,y), such that p{(z,y)|7(z,y) # f(x,y)} < e. Imagine then,
that you task is to compute n copies of f in parallel. Consider function f" :
(X x Y)" — {0,1}" and probability distribution x™ on the set (X x V)", which
are defined as follows:

fn ((mlayl)a SERE) (xnayn)) = (f(mlayl)a B f(mnayn)) )
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‘un ((xlayl)a ey (zn;yn)) == N(xlayl) X... X N(xnayn)
Here we define D™+" (f™):

D (") = inf CC(),

where infimum ranges over all deterministic communication protocols m which
output n bits w1 (z,y),...,m(x,y) such that for every i the following holds:
(@) | mile,y) £ (@ y))i) < e )

The Direct-Sum question is the question whether nD#(f) and D" (f™)
can considerably differ or not. It is easy to prove that: nDH(f) > D™ (f™).
You can just get the optimal protocol in the sense of definition for D¥(f) and
apply it n times. Unfortunately, the opposite inequality is not that trivial.

What strategy can we design in attempt to prove the opposite inequality?
Consider the optimal protocol 7 for f™ in the sense of definition for D?’“n (f™),
so that CC(m) = D*" (f™). Using information-theoretic technique, described
in [2], you can convert 7 into the randomized protocol T computing f, which
satisfy following inequalities: IC), (1) < %(”), CC(r) < CC(m) and:

PI‘[T(I, y) # f(I, y)] <e

where probability in the last inequality is taken from distribution p and the
inner randomness of the protocol. Suppose that you are given some numerical
function ¢(I,C). Consider the following statement:

For every protocol a which computes function g over the distribution p with
error probability e there exists protocol o’ which computes g over distribution
w with error probability 2e such that CC(a’) = O (¢(ICp (), CC(a))

Figure 1.1: Comression statement for ¢

It is not hard to see that compression statement for ¢ implies following
inequality for Direct-Sum Problem:!

Dy (f) =0 <¢ <M7D?"”(f”)>) .

In order to reach this result you have just to convert 7 into the protocol with the
properties stated in compression statement for ¢ and then make it deterministic
by fixing an optimal choice of random bits.

The following theorem was proved in [1]:

Theorem 1.1. Compression statement holds for ¢(I,C) = VIClog(C).

Tt is not evident how to decrease error from 2¢ to e. Instead you may consider the
similar inequality stated for Re(f), which can be derived using mini-max argument; since
Rac(f) = Q(Re(f)) it is not a problem.



Automatically it implies that D™*" (") = Q(v/nD4.(f))(up to logarith-
mic factor). Next result, proved in [4], gives an improvement of the previous
theorem, but with some restriction:

Theorem 1.2. Compression statement holds for public-coin protocols with

¢(1,C) = I'log(C).

Unfortunately protocol 7 is reached using public coins as well as private
coins. We can try to circumvent this confuse considering the problem of simu-
lation private-coin protocol using public-coin protocols.

As marked in [4], this problem is reverse in some sense to the Newman
theorem, which states that every public-coin communication protocol can be ef-
fectively simulated by private-coin protocol(for the details look in the [6]). Note
that in the case of Communication Complexity public coins are more powerful
tool than private coins. With respect to Information Complexity it is not true.
For example, suppose that Alice receives binary string of length n and privately
flips n coins; then she sends to Bob the bit-wise XOR, of her input and coins.
Information that Bob receives about Alice’s input from the message is equal to
zero unless Alice’s coins are available to Bob; otherwise, Bob can reestablish
Alice’s input from the message.

We say that two protocols are distributional-equivalent if they are defined
on the same input space X x ) and for every (z,y) € X x ) their transcripts,
conditioned on (x,y), are same distributed. For every private-coin protocol 7
with information complexity I out task is to find public-coin protocol with in-
formation complexity close to I, which is distributional equivalent to 7. First
results in this setting were proved in [4] and [3] for the bounded-round protocols.
The following estimate, proven in [3], is tight for one-way communication:

Theorem 1.3. For every one-way private-coin communication protocol ™ and
every distribution p there exists public-coin communication protocol T which is
distributional-equivalent to w, satisfying following inequality:

IC, (1) < IC,(m) +log(IC,(m)) + O(1).

Constant in right-hand side is crucial when you try to generalize last theorem
for unbounded-round case. Our contribution is the estimate, which holds for all
protocols:

Theorem 1.4. There exists universal constant C' > 0 such that for every
private-coin protocol w there exists public-coin protocol T which is distributional-
equivalent to m such that for every distribution u the following holds:

IC, (1) < C\/IC,(m)CC(m).

This theorem gives also new, undirect way to prove compression result,
stated in theorem 1.1 ; use our result to remove private coins from the pro-
tocol and then apply theorem 1.2.

Technique, that we use to bound information complexity of the protocol after



removing private-coins, is not new. The key considiration is a fact that on each
step of the protocol total variation between Alice’s a priori distribution of the
next bit in protocol and Bob’s one can be bounded, using Pinsker’s inequality,
by the term related with information complexity of this step. It is worth noting
that proof of the theorem 1.1, which contains in [1], uses this fact to bound a
number of mistakes in simulating of an original protocol.

2 Preliminaries

We denote logarithms in base 2 by log and natural logarithms by In.

2.1 Information theory

We use standart notion of a Shannon Entropy; if X is a random variable, taking
values in the set X, then:

1
reX
Conditional entropy can be defined as follows:
HX|Y)=HX,Y)-H().

Also it can be defined as expectation value H(X|Y) = Ey—,H(X|Y = y), where
X|Y =y denote a random variable which distribution is equal to distribution
of X, condition on the event ¥ = y. Mutual information between two random
variables defined as follows:

(X :Y) = H(X) - HX|Y).
Mutual information is symmetric: I(X :Y) = I(Y : X); it follows from the well-

known fact that H(X,Y) = H(X)+ H(Y|X)=H(Y) + H(X]|Y). Conditional
mutual information is defined in the same way:

I(X:Y|Z)=H(X|Z)- HX|Y, Z).
Entropy and the mutual information satisfy the chain rule:

Proposition 2.1 (Chain Rule).

H(Xy... Xp)=H(X1)+ Y H(Xi|X1... X; 1),



Chain rule holds also for conditional entropy and conditional mutual infor-
mation.

Let P, @ denote two probability distributions on the set W. We consider
two quantities that measure dissimilarity between P and Q: total variation:

6(P,Q) :jgvpVIP{A}*Q{A}I,

and the information divergence
P(w
- 5 ro(53).
weW
We will use the following well-known inequality:
Proposition 2.2 (Pinkser’s inequality).

D(PlQ)

5(P.@) < | 2L

When « is a number we use letter H also to denote the following function:

H(a) = alog (é) +(1—a)log (ﬁ)

H(a) is equal to entropy of a random variable £ with two possible values
{w1,ws} such that Pr[¢ = w;] = a. We will use the following fact:

Fact 2.1. If a < 3, then H(a) < 2alog (1)

Proof. Tt is sufficient to show that (1 — «)log ( ) < alog( ) when o <
Consider function f(a) = alog (1) — (1 — a)log ( ) We have:

f'e) = 1n12) <1n <a(11—a)) N 2) .

It means that f grows on [0, ao] (g is a left root of equation a1 — ) = %
respectively f decrease on o, £]. Since f(0) = f(3) = 0 it means that f(a) Z
for any a € [0, 3].

1
3

);
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2.2 Communication Protocols

In order to prove our result we have to give a formal definition of private-
coin communication protocol. Let Z be the set of the possible outputs and
let 0 : {0,1}* — {A, B} U Z be the function which decides who’s turn to
communicate unless it’s time to produce output. This function determines three
sets A = {s € {0,1}*|d(s) = A}, B = {s € {0,1}*|d(s) = B}, O = {s €
{0,1}*|4(s) € Z}. Finally let p : X x A — [0,1] and ¢ : Y x B — [0, 1] be the



1. Alice receives x € X, Bob receives y € Y; they add some bits to the string
s, starting with empty string s = \;

2. If s € A, Alice uses her private randomness to produce one bit b with
probability for b to be 0 equal to p(z, s); then Alice and Bob add b to s;

3. If s € B, Bob acts similarly to Alice;

4. If s € O, Alice and Bob output d(s) and terminate.

Figure 2.2: Private-coin protocol run-time

functions which instruct Alice and Bob how to communicate. In the figure 2.2
we describe how private-coin communication protocol proceed.

We say that protocol is deterministic, if values of functions p and ¢ lie in
{0,1}. We define public-coin protocol as a random variable R taking values in
set of deterministic protocols. Concatenation of all bits Alice and Bob send to
each other is called transcript of the protocol 7; the maximum length of the
transcript in protocol 7 is called communication complexity of the protocol 7,
denoted by CC(r).

For the formal definition of communication complexity of functions and for
classic results in this area, see the book [5].

2.3 Information Complexity

Suppose that you are given a communication protocol 7 and suppose that it’s
input space X x ) is distributed according p. Transcript of the protocol m
from this point becomes a random variable which distribution depends on u
and inner randomness of the protocol. Denote this random variable by II. We
define information complexity of the protocol 7 as follows:

IC,(m) =I(X :I,R|Y) + I(Y : II, R| X).
The following fact proved in [2]
Proposition 2.3. IC,(7) < CC(n).
If 7 is public-coin, IC,(7) can be represented in a shorter form:

Proposition 2.4. If 7 is a public-coin protocol, then:
IC,(r)=H{R,Y)+ HII|R, X).
Proof. We have:

I(X :1,R|Y) = HIL, R|Y) — H(II, R|X,Y)
= H|R,Y) + HR|Y) — HI|R,X,Y) — H(R|X,Y).



H(II|R, X,Y) = 0, since II is determined by R, X,Y; H(R|Y) = H(R|X,Y) =
H(R) since R and X,Y are independent. Hence I(X :II, R|Y) = H(II|R,Y).
Similarly we proof that I(Y : II, R|X) = H(II|R, X).

D

3 Simulation for one-bit protocols

In this section we prove theorem 1.4 for one-way protocols of depth 1. It means
that Alice receives her input and sends just 1 bit to Bob, using random bits,
after what protocol terminates.

Proposition 3.1. There exists a universal constant C > 0, such that for every
one-bit private-coin protocol m there exists one-bit public-coin protocol T which
is distributional-equivalent to w, such that for every distribution u the following

holds:
IC, (1) < C\/IC, ().

Proof. Suppose that we are given private-coin protocol 7 of depth 1; it means
that there is some set X" of Alice’s inputs and there is a function p : X — [0, 1]
such that on input x € X Alice send 0 to Bob with probability p(z). Also we
are given probability distribution i on the set X which defines random variable
X.

Let B denote the Alice’s message in protocol 7. Let ) denote the distribution
of B and let P, denote the distribution of B|X = x. Tt is easy to to see that:

Q=Y u@P
zeX
We define public-coin protocol 7 as follows:
1. Alice receives value = of a random variable X;
2. Alice and Bob publicly sample R uniformly at random from [0, 1];

3. If R < p(x), then Alice sends B = 0 to Bob; otherwise, Alice sends B = 1
to Bob.

Note that 7 does not depends on p. It is clear that Alice’s message B, con-
ditioned on X = x, is distributed according to P,. Hence 7 is distributional-
equivalent to 7. Let B(x,t) denote Alice’s message in protocol 7 conditioned
on X =z and R = t. The only thing we have to do from now is to estimate
Information Complexity of 7. By proposition 2.4 we have IC, (1) = H(B|R).
By definition we have:

1
H(B|R) :/HB|R—t
0

Set I = IC,,(m). We will use the following fact:



Fact 3.1. I = E,. ,D(P,||Q).
Proof.

I=1I(X:B)=H(B)— H(B|X)

S Qilog (%)_ wz) S Pa(b)log (P:(b))

be{0,1} TeEX be{0,1}

1 1
‘M%%<§;M”3“Ok%(@@)‘é%””mzij““bg@z@)
= Z 'u(x) Z P;c (b) log (Pl (:) - Ea;(—;tD(P3$||Q)

reX be{0,1} Q( )

By Pinsker’s inequality (proposition 2.2) we have: §(P,, Q) < +/D(FP,||Q)/2.
Using this inequality and fact 3.1 we get:

By 6 (P, Q) < 1/2. (1)
Consider set €2, which is defined as follows:
Q={te0,1]]|t—Q(0) > VT}.

It is clear that Pr[R € [0,1]/9] < 2V/I. Trivially we conclude that:

/ H(B|R = t)dt < 2V1T. (2)

[0,1]/Q

WLOG we assume that X contains some special element a with the following
properties: p(a) = 0 and p(a) = Q(0). Fix t € Q. The following statement
holds:

H(B|R =t) = H (p{x|B(z,t) # B(a,1)}).

Let us show that if B(x,t) # B(a,t), then 6(P,, Q) > |t — Q(0)|. Suppose that
B(x,t) # B(a,t); by definition of 7 it implies that ¢ lies on the segment between
P,(0) and Q(0); hence 3(P,,Q) = |P.(0) — Q(0)] > [t — Q(0)|-By that and by
Markov’s inequality applied to 1 we get:

pla | Bx,t) # Bla, 1)} < pl{a[0(Pr, Q) = [t — Q(O)[}

T 1
S2E—QU)p = 2



Using an estimate from fact 2.1, we derive:

!menﬁgJH<%:%EW>a

) 29/ g s ()@

i 20t~ Q)Y VA~ Q)
Sﬁﬁﬂ/w—mw o (M7 =7

1 2
<2 / ogy(2y )dy\/f )
ly|>v2
We showed that

/me:wﬁgpﬁi (3)
Q

where D =2 [ logy( )dy (it is correct to define D this way since integral
ly|>v2
is convergent). Fixing C' =2 + D we conclude from 2 and 3:

1
IC,(7) = mR:/HBm—t
0

/‘HBmftﬁ+/HBmfﬂ
[0,11/9

< @2+ DWI=CVI,
O

Here we give an example from [3], which shows that our bound for one-bit
protocols is tight. Suppose that Alice receives 0 or 1 with the same probability
and then sends one bit to Bob, which is equal to her input with probability
% + € and differs with probability % — ¢. The proportion of those random bits,
on which Alice always sends her input to Bob, is at least 1 — 2(3 —€) = 2e.
Hence information complexity of every public-coin protocol for this task is at
least 2¢. At the same time simple calculations show that if random bits are
private, then information complexity drops to ©(e?).

4 Generalizaton for all protocols

In this section we extend the result of the previous section to all protocols.



Proof of theorem 1.4. Suppose that 7 is arbitrary private-coin communication
protocol defined in figure 2.2. Set N = CC(n) and let II = II; ... Iy denote
transcript of w. Set Iy = Il ...II;_1. Also we are given some probability
distribution g on & x ) which defines two random variables X an Y. Here we
define public-coin protocol 7:

1. Alice receives value z of random variable X, Bob receives value y of a
random variable Y’; they add some bits to the string s, starting with
empty string s = A;

2. Alice and Bob publicly sample R = (R1,...,Ry) uniformly at random
from [0, 1]7;

3. If s € A, Alice produces one bit b: if Rjs ;1 < p(z,s) then b = 0, otherwise
b = 1; after that Alice and Bob add b to s;

4. If s € B, Bob acts similarly to Alice;
5. If s € O, Alice and Bob output §(s) and terminate.

Note that 7 does not depend on u. By definition 7 is distributional-equivalent
to 7. By chain rule(proposition 2.1), applied to protocol = we have:

IC,(m) =1(X :1|Y) + I(Y : 1| X)

N
=Y I(X IRV, Tey) + (Y : T | X, Ty)
i=1

Ika

|
KMZ

Il
i

3

where I}, = I(X : 1|V, TI<) + I(Y : 13| X, II<). By proposition 2.4 we have
IC, (1) = H(II|R,Y) + H(II|R, X ). By chain rule we get:

ICM(T) = H(|R,Y)+ HIR, X)
N
= ZH(HMR, Y, k) + H(Ig R, X, Tl<y)

1=1
N
=21,
1=1
where I} = H(II,|R, Y, Tl.}.) + H(II,|R, X, TI).

Fix arbitrary k € {1,...,N}, s € {0,1}*~1. WLOG it is Alice turn to
communicate, that is §(s) = A. Hence for arbitrary € X we have

H(Hk‘|R)X = $5H<k = S) = 07

I(Y:Hk|X:ﬂC,H<k :S) =0.

10



Fix then arbitrary y € ). s and y define private-coin protocol @’ of depth 1:
according to 7’ Alice acts as though she were running protocol 7 from the point
when message story is equal to s. Similarly public-coin protocol 7 of depth
1 can be defined from protocol 7. Note that protocol 7 with respect to 7’ is
exactly the same to one that was constructed in proof of proposition 3.1. We
derive

H (Iy|Re, Y = y,Hep, = s) = IC,(7)

< CW/IC,(n")

=CVI(X Y =y, Ty = s).

After averaging over all s € {0,1}*~1 2 € X, y € Y by concavity of root we
get:
I, = H (Ig|R, Y, Tly) + H (I | R, X, 1)

< H (Iy|Ry, Y, Up) + H (I | Ry, X, T cyp)

<COVI(X LY, Hey) + 1 (Y I X, Hoy) = CV/ 1.
Using Cauchy—Schwarz inequality we conclude

IC,(T)=I1+...+1Iy

<c(Vh+...+Vy)
<CV(Ii + ...+ Iy)N = C\/IC,(m)CC().
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