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ulty of Me
hani
s and Mathemati
skozla
h�mail.ru2014Abstra
tWe prove a version of "Reversed Newman Theorem" in 
ontext of in-formation 
omplexity: every private-
oin 
ommuni
ation proto
ol with in-formation 
omplexity I and 
ommuni
ation 
omplexity C 
an be repla
edby publi
-
oin proto
ol with the same behavior so that it's information
omplexity does not ex
eed O

(

√

IC

). This result holds for unbounded-round 
ommuni
ation whereas previous results in this area dealt withone-way proto
ols. As an appli
ation it gives an undire
t way to prove abest-known 
ompression theorem in Information Complexity.1 Introdu
tionInformation 
omplexity of 
ommuni
ation proto
ol π, denoted by ICµ(π), is theamount of information Ali
e and Bob reveal about their inputs while 
omputing
π in a assumption that input are distributed a

ording µ. Information 
omplex-ity is useful foremost in 
ontext of a Dire
t-Sum problem in Communi
ation
omplexity. Let us �rstly des
ribe the substan
e of this problem. Fix a small
onstant ǫ. Suppose that you are given an arbitrary fun
tion f : X ×Y → {0, 1}and probability distribution µ on the set X × Y, (here X is 
orresponded toAli
e and Y is 
orresponded to Bob). De�ne Dµ

ǫ (f) as follows:
Dµ

ǫ (f) = inf
π

CC(π),where in�mum ranges over all deterministi
 
ommuni
ation proto
ols π whi
houtput 1 bit π(x, y), su
h that µ {(x, y) |π(x, y) 6= f(x, y)} ≤ ǫ. Imagine then,that you task is to 
ompute n 
opies of f in parallel. Consider fun
tion fn :
(X × Y)n → {0, 1}n and probability distribution µn on the set (X × Y)n, whi
hare de�ned as follows:

fn ((x1, y1), . . . , (xn, yn)) = (f(x1, y1), . . . , f(xn, yn)) ,1
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µn ((x1, y1), . . . , (xn, yn)) = µ(x1, y1)× . . .× µ(xn, yn).Here we de�ne Dn,µn

ǫ (fn):
Dn,µn

ǫ (fn) = inf
π

CC(π),where in�mum ranges over all deterministi
 
ommuni
ation proto
ols π whi
houtput n bits π1(x, y), . . . , πn(x, y) su
h that for every i the following holds:
µn{(x, y) |πi(x, y) 6= (fn(x, y))i} ≤ ǫ.The Dire
t-Sum question is the question whether nDµ

ǫ (f) and Dn,µn

ǫ (fn)
an 
onsiderably di�er or not. It is easy to prove that: nDµ
ǫ (f) ≥ Dn,µn

ǫ (fn).You 
an just get the optimal proto
ol in the sense of de�nition for Dµ
ǫ (f) andapply it n times. Unfortunately, the opposite inequality is not that trivial.What strategy 
an we design in attempt to prove the opposite inequality?Consider the optimal proto
ol π for fn in the sense of de�nition for Dn,µn

ǫ (fn),so that CC(π) = Dn,µn

ǫ (fn). Using information-theoreti
 te
hnique, des
ribedin [2℄, you 
an 
onvert π into the randomized proto
ol τ 
omputing f , whi
hsatisfy following inequalities: ICµ(τ) ≤ CC(π)
n , CC(τ) ≤ CC(π) and:

Pr[τ(x, y) 6= f(x, y)] ≤ ǫ,where probability in the last inequality is taken from distribution µ and theinner randomness of the proto
ol. Suppose that you are given some numeri
alfun
tion φ(I, C). Consider the following statement:For every proto
ol α whi
h 
omputes fun
tion g over the distribution µ witherror probability ǫ there exists proto
ol α′ whi
h 
omputes g over distribution
µ with error probability 2ǫ su
h that CC(α′) = O (φ(ICµ(α), CC(α))Figure 1.1: Comression statement for φIt is not hard to see that 
ompression statement for φ implies followinginequality for Dire
t-Sum Problem:1

Dµ
2ǫ(f) = O

(

φ

(

Dn,µn

ǫ (fn)

n
,Dn,µn

ǫ (fn)

))

.In order to rea
h this result you have just to 
onvert τ into the proto
ol with theproperties stated in 
ompression statement for φ and then make it deterministi
by �xing an optimal 
hoi
e of random bits.The following theorem was proved in [1℄:Theorem 1.1. Compression statement holds for φ(I, C) =
√
IC log(C).1It is not evident how to de
rease error from 2ǫ to ǫ. Instead you may 
onsider thesimilar inequality stated for Rǫ(f), whi
h 
an be derived using mini-max argument; sin
e

R2ǫ(f) = Ω (Rǫ(f)) it is not a problem. 2



Automati
ally it implies that Dn,µn

ǫ (fn) = Ω (
√
nDµ

2ǫ(f))(up to logarith-mi
 fa
tor). Next result, proved in [4℄, gives an improvement of the previoustheorem, but with some restri
tion:Theorem 1.2. Compression statement holds for publi
-
oin proto
ols with
φ(I, C) = I log(C).Unfortunately proto
ol τ is rea
hed using publi
 
oins as well as private
oins. We 
an try to 
ir
umvent this 
onfuse 
onsidering the problem of simu-lation private-
oin proto
ol using publi
-
oin proto
ols.As marked in [4℄, this problem is reverse in some sense to the Newmantheorem, whi
h states that every publi
-
oin 
ommuni
ation proto
ol 
an be ef-fe
tively simulated by private-
oin proto
ol(for the details look in the [6℄). Notethat in the 
ase of Communi
ation Complexity publi
 
oins are more powerfultool than private 
oins. With respe
t to Information Complexity it is not true.For example, suppose that Ali
e re
eives binary string of length n and privately�ips n 
oins; then she sends to Bob the bit-wise XOR of her input and 
oins.Information that Bob re
eives about Ali
e's input from the message is equal tozero unless Ali
e's 
oins are available to Bob; otherwise, Bob 
an reestablishAli
e's input from the message.We say that two proto
ols are distributional-equivalent if they are de�nedon the same input spa
e X × Y and for every (x, y) ∈ X × Y their trans
ripts,
onditioned on (x, y), are same distributed. For every private-
oin proto
ol πwith information 
omplexity I out task is to �nd publi
-
oin proto
ol with in-formation 
omplexity 
lose to I, whi
h is distributional equivalent to π. Firstresults in this setting were proved in [4℄ and [3℄ for the bounded-round proto
ols.The following estimate, proven in [3℄, is tight for one-way 
ommuni
ation:Theorem 1.3. For every one-way private-
oin 
ommuni
ation proto
ol π andevery distribution µ there exists publi
-
oin 
ommuni
ation proto
ol τ whi
h isdistributional-equivalent to π, satisfying following inequality:

ICµ(τ) ≤ ICµ(π) + log(ICµ(π)) + O(1).Constant in right-hand side is 
ru
ial when you try to generalize last theoremfor unbounded-round 
ase. Our 
ontribution is the estimate, whi
h holds for allproto
ols:Theorem 1.4. There exists universal 
onstant C > 0 su
h that for everyprivate-
oin proto
ol π there exists publi
-
oin proto
ol τ whi
h is distributional-equivalent to π su
h that for every distribution µ the following holds:
ICµ(τ) ≤ C

√

ICµ(π)CC(π).This theorem gives also new, undire
t way to prove 
ompression result,stated in theorem 1.1 ; use our result to remove private 
oins from the pro-to
ol and then apply theorem 1.2.Te
hnique, that we use to bound information 
omplexity of the proto
ol after3



removing private-
oins, is not new. The key 
onsidiration is a fa
t that on ea
hstep of the proto
ol total variation between Ali
e's a priori distribution of thenext bit in proto
ol and Bob's one 
an be bounded, using Pinsker's inequality,by the term related with information 
omplexity of this step. It is worth notingthat proof of the theorem 1.1, whi
h 
ontains in [1℄, uses this fa
t to bound anumber of mistakes in simulating of an original proto
ol.2 PreliminariesWe denote logarithms in base 2 by log and natural logarithms by ln.2.1 Information theoryWe use standart notion of a Shannon Entropy; if X is a random variable, takingvalues in the set X , then:
H(X) =

∑

x∈X
Pr[X = x] log

(

1

Pr[X = x]

)

.Conditional entropy 
an be de�ned as follows:
H(X |Y ) = H(X,Y )−H(Y ).Also it 
an be de�ned as expe
tation valueH(X |Y ) = EY=yH(X |Y = y), where

X |Y = y denote a random variable whi
h distribution is equal to distributionof X , 
ondition on the event Y = y. Mutual information between two randomvariables de�ned as follows:
I(X : Y ) = H(X)−H(X |Y ).Mutual information is symmetri
: I(X : Y ) = I(Y : X); it follows from the well-known fa
t that H(X,Y ) = H(X) +H(Y |X) = H(Y ) +H(X |Y ). Conditionalmutual information is de�ned in the same way:

I(X : Y |Z) = H(X |Z)−H(X |Y, Z).Entropy and the mutual information satisfy the 
hain rule:Proposition 2.1 (Chain Rule).
H(X1 . . .Xn) = H(X1) +

n
∑

i=2

H(Xi|X1 . . . Xi−1),

I(X1 . . . Xn : Y ) = I(X1 : Y ) +
n
∑

i=2

I(Xi : Y |X1 . . . Xi−1).4



Chain rule holds also for 
onditional entropy and 
onditional mutual infor-mation.Let P , Q denote two probability distributions on the set W . We 
onsidertwo quantities that measure dissimilarity between P and Q: total variation:
δ(P,Q) = sup

A⊂W
|P{A} −Q{A}|,and the information divergen
e

D(P ||Q) =
∑

w∈W
P (w) log

(

P (w)

Q(w)

)

.We will use the following well-known inequality:Proposition 2.2 (Pinkser's inequality).
δ(P,Q) ≤

√

D(P ||Q)

2
.When α is a number we use letter H also to denote the following fun
tion:

H(α) = α log

(

1

α

)

+ (1− α) log

(

1

1− α

)

H(α) is equal to entropy of a random variable ξ with two possible values
{w1, w2} su
h that Pr[ξ = w1] = α. We will use the following fa
t:Fa
t 2.1. If α ≤ 1

2 , then H(α) ≤ 2α log
(

1
α

)Proof. It is su�
ient to show that (1 − α) log
(

1
1−α

)

≤ α log
(

1
α

) when α ≤ 1
2 .Consider fun
tion f(α) = α log

(

1
α

)

− (1− α) log
(

1
1−α

). We have:
f ′(α) =

1

ln(2)

(

ln

(

1

α(1− α)

)

− 2

)

.It means that f grows on [0, α0], (α0 is a left root of equation α(1 − α) = 1
e2 );respe
tively f de
rease on [α0,

1
2 ]. Sin
e f(0) = f(12 ) = 0 it means that f(α) ≥ 0for any α ∈ [0, 1

2 ].2.2 Communi
ation Proto
olsIn order to prove our result we have to give a formal de�nition of private-
oin 
ommuni
ation proto
ol. Let Z be the set of the possible outputs andlet δ : {0, 1}∗ → {A,B} ∪ Z be the fun
tion whi
h de
ides who's turn to
ommuni
ate unless it's time to produ
e output. This fun
tion determines threesets A = {s ∈ {0, 1}∗ | δ(s) = A}, B = {s ∈ {0, 1}∗ | δ(s) = B}, O = {s ∈
{0, 1}∗ | δ(s) ∈ Z}. Finally let p : X × A → [0, 1] and q : Y × B → [0, 1] be the5



1. Ali
e re
eives x ∈ X , Bob re
eives y ∈ Y; they add some bits to the string
s, starting with empty string s = λ;2. If s ∈ A, Ali
e uses her private randomness to produ
e one bit b withprobability for b to be 0 equal to p(x, s); then Ali
e and Bob add b to s;3. If s ∈ B, Bob a
ts similarly to Ali
e;4. If s ∈ O, Ali
e and Bob output δ(s) and terminate.Figure 2.2: Private-
oin proto
ol run-timefun
tions whi
h instru
t Ali
e and Bob how to 
ommuni
ate. In the �gure 2.2we des
ribe how private-
oin 
ommuni
ation proto
ol pro
eed.We say that proto
ol is deterministi
, if values of fun
tions p and q lie in

{0, 1}. We de�ne publi
-
oin proto
ol as a random variable R taking values inset of deterministi
 proto
ols. Con
atenation of all bits Ali
e and Bob send toea
h other is 
alled trans
ript of the proto
ol π; the maximum length of thetrans
ript in proto
ol π is 
alled 
ommuni
ation 
omplexity of the proto
ol π,denoted by CC(π).For the formal de�nition of 
ommuni
ation 
omplexity of fun
tions and for
lassi
 results in this area, see the book [5℄.2.3 Information ComplexitySuppose that you are given a 
ommuni
ation proto
ol π and suppose that it'sinput spa
e X × Y is distributed a

ording µ. Trans
ript of the proto
ol πfrom this point be
omes a random variable whi
h distribution depends on µand inner randomness of the proto
ol. Denote this random variable by Π. Wede�ne information 
omplexity of the proto
ol π as follows:
ICµ(π) = I(X : Π, R|Y ) + I(Y : Π, R|X).The following fa
t proved in [2℄Proposition 2.3. ICµ(π) ≤ CC(π).If π is publi
-
oin, ICµ(π) 
an be represented in a shorter form:Proposition 2.4. If π is a publi
-
oin proto
ol, then:

ICµ(π) = H(Π|R, Y ) +H(Π|R,X).Proof. We have:
I(X : Π, R|Y ) = H(Π, R|Y )−H(Π, R|X,Y )

= H(Π|R, Y ) +H(R|Y )−H(Π|R,X, Y )−H(R|X,Y ).6



H(Π|R,X, Y ) = 0, sin
e Π is determined by R,X, Y ; H(R|Y ) = H(R|X,Y ) =
H(R) sin
e R and X,Y are independent. Hen
e I(X : Π, R|Y ) = H(Π|R, Y ).Similarly we proof that I(Y : Π, R|X) = H(Π|R,X).3 Simulation for one-bit proto
olsIn this se
tion we prove theorem 1.4 for one-way proto
ols of depth 1. It meansthat Ali
e re
eives her input and sends just 1 bit to Bob, using random bits,after what proto
ol terminates.Proposition 3.1. There exists a universal 
onstant C > 0, su
h that for everyone-bit private-
oin proto
ol π there exists one-bit publi
-
oin proto
ol τ whi
his distributional-equivalent to π, su
h that for every distribution µ the followingholds:

ICµ(τ) ≤ C
√

ICµ(π).Proof. Suppose that we are given private-
oin proto
ol π of depth 1; it meansthat there is some set X of Ali
e's inputs and there is a fun
tion p : X → [0, 1]su
h that on input x ∈ X Ali
e send 0 to Bob with probability p(x). Also weare given probability distribution µ on the set X whi
h de�nes random variable
X . Let B denote the Ali
e's message in proto
ol π. LetQ denote the distributionof B and let Px denote the distribution of B|X = x. It is easy to to see that:

Q =
∑

x∈X
µ(x)Px.We de�ne publi
-
oin proto
ol τ as follows:1. Ali
e re
eives value x of a random variable X ;2. Ali
e and Bob publi
ly sample R uniformly at random from [0, 1];3. If R ≤ p(x), then Ali
e sends B = 0 to Bob; otherwise, Ali
e sends B = 1to Bob.Note that τ does not depends on µ. It is 
lear that Ali
e's message B, 
on-ditioned on X = x, is distributed a

ording to Px. Hen
e τ is distributional-equivalent to π. Let B(x, t) denote Ali
e's message in proto
ol τ 
onditionedon X = x and R = t. The only thing we have to do from now is to estimateInformation Complexity of τ . By proposition 2.4 we have ICµ(τ) = H(B|R).By de�nition we have:

H(B|R) =

1
∫

0

H(B|R = t)dt.Set I = ICµ(π). We will use the following fa
t:7



Fa
t 3.1. I = Ex←µD(Px||Q).Proof.
I = I(X : B) = H(B)−H(B|X)

=
∑

b∈{0,1}
Q(b) log

(

1

Q(b)

)

−
∑

x∈X
µ(x)

∑

b∈{0,1}
Px(b) log

(

1

Px(b)

)

=
∑

b∈{0,1}

(

∑

x∈X
µ(x)Px(b)

)

log

(

1

Q(b)

)

−
∑

x∈X
µ(x)

∑

b∈{0,1}
Px(b) log

(

1

Px(b)

)

=
∑

x∈X
µ(x)

∑

b∈{0,1}
Px(b) log

(

Px(b)

Q(b)

)

= Ex←µD(Px||Q)By Pinsker's inequality (proposition 2.2) we have: δ(Px, Q) ≤
√

D(Px||Q)/2.Using this inequality and fa
t 3.1 we get:
Ex←µδ

2(Px, Q) ≤ I/2. (1)Consider set Ω, whi
h is de�ned as follows:
Ω = {t ∈ [0, 1] | |t−Q(0)| >

√
I}.It is 
lear that Pr[R ∈ [0, 1]/Ω] ≤ 2

√
I. Trivially we 
on
lude that:

∫

[0,1]/Ω

H(B|R = t)dt ≤ 2
√
I. (2)WLOG we assume that X 
ontains some spe
ial element a with the followingproperties: µ(a) = 0 and p(a) = Q(0). Fix t ∈ Ω. The following statementholds:

H(B|R = t) = H (µ{x |B(x, t) 6= B(a, t)}) .Let us show that if B(x, t) 6= B(a, t), then δ(Px, Q) ≥ |t−Q(0)|. Suppose that
B(x, t) 6= B(a, t); by de�nition of τ it implies that t lies on the segment between
Px(0) and Q(0); hen
e δ(Px, Q) ≥ |Px(0) −Q(0)| ≥ |t − Q(0)|.By that and byMarkov's inequality applied to 1 we get:

µ{x |B(x, t) 6= B(a, t)} ≤ µ{x | δ(Px, Q) ≥ |t−Q(0)|}

≤ I

2(t−Q(0))2
≤ 1

2
.

8



Using an estimate from fa
t 2.1, we derive:
∫

Ω

H(B|R = t)dt ≤
∫

Ω

H

(

I

2(t−Q(0))2

)

dt

≤ 2

∫

Ω

I

2(t−Q(0))2
log

(

2(t−Q(0))2

I

)

dt

≤
√
2
√
I

∫

Ω

I

2(t−Q(0))2
log

(

2(t−Q(0))2

I

)

d

√
2(t−Q(0))√

I

≤
√
2

∫

|y|>
√
2

log(y2)

y2
dy

√
I.We showed that

∫

Ω

H(B|R = t)dt ≤ D
√
I, (3)where D =

√
2

∫

|y|>
√
2

log(y2)
y2 dy (it is 
orre
t to de�ne D this way sin
e integralis 
onvergent). Fixing C = 2 +D we 
on
lude from 2 and 3:

ICµ(τ) = H(B|R) =

1
∫

0

H(B|R = t)dt

=

∫

[0,1]/Ω

H(B|R = t)dt+

∫

Ω

H(B|R = t)dt

≤ (2 +D)
√
I = C

√
I,

.

Here we give an example from [3℄, whi
h shows that our bound for one-bitproto
ols is tight. Suppose that Ali
e re
eives 0 or 1 with the same probabilityand then sends one bit to Bob, whi
h is equal to her input with probability
1
2 + ǫ and di�ers with probability 1

2 − ǫ. The proportion of those random bits,on whi
h Ali
e always sends her input to Bob, is at least 1 − 2(12 − ǫ) = 2ǫ.Hen
e information 
omplexity of every publi
-
oin proto
ol for this task is atleast 2ǫ. At the same time simple 
al
ulations show that if random bits areprivate, then information 
omplexity drops to Θ(ǫ2).4 Generalizaton for all proto
olsIn this se
tion we extend the result of the previous se
tion to all proto
ols.9



Proof of theorem 1.4. Suppose that π is arbitrary private-
oin 
ommuni
ationproto
ol de�ned in �gure 2.2. Set N = CC(π) and let Π = Π1 . . .ΠN denotetrans
ript of π. Set Π<k = Π1 . . .Πk−1. Also we are given some probabilitydistribution µ on X × Y whi
h de�nes two random variables X an Y . Here wede�ne publi
-
oin proto
ol τ :1. Ali
e re
eives value x of random variable X , Bob re
eives value y of arandom variable Y ; they add some bits to the string s, starting withempty string s = λ;2. Ali
e and Bob publi
ly sample R = (R1, . . . , RN ) uniformly at randomfrom [0, 1]N ;3. If s ∈ A, Ali
e produ
es one bit b: if R|s|+1 ≤ p(x, s) then b = 0, otherwise
b = 1; after that Ali
e and Bob add b to s;4. If s ∈ B, Bob a
ts similarly to Ali
e;5. If s ∈ O, Ali
e and Bob output δ(s) and terminate.Note that τ does not depend on µ. By de�nition τ is distributional-equivalentto π. By 
hain rule(proposition 2.1), applied to proto
ol π we have:

ICµ(π) = I(X : Π|Y ) + I(Y : Π|X)

=

N
∑

i=1

I(X : Πk|Y,Π<k) + I(Y : Πk|X,Π<k)

=

N
∑

i=1

Ik,where Ik = I(X : Πk|Y,Π<k) + I(Y : Πk|X,Π<k). By proposition 2.4 we have
ICµ(τ) = H(Π|R, Y ) +H(Π|R,X). By 
hain rule we get:

ICµ(τ) = H(Π|R, Y ) +H(Π|R,X)

=

N
∑

i=1

H(Πk|R, Y,Π<k) +H(Πk|R,X,Π<k)

=
N
∑

i=1

I ′k,where I ′k = H(Πk|R, Y,Π<k) +H(Πk|R,X,Π<k).Fix arbitrary k ∈ {1, . . . , N}, s ∈ {0, 1}k−1. WLOG it is Ali
e turn to
ommuni
ate, that is δ(s) = A. Hen
e for arbitrary x ∈ X we have
H(Πk|R,X = x,Π<k = s) = 0,

I(Y : Πk|X = x,Π<k = s) = 0.10



Fix then arbitrary y ∈ Y. s and y de�ne private-
oin proto
ol π′ of depth 1:a

ording to π′ Ali
e a
ts as though she were running proto
ol π from the pointwhen message story is equal to s. Similarly publi
-
oin proto
ol τ ′ of depth1 
an be de�ned from proto
ol τ . Note that proto
ol τ ′ with respe
t to π′ isexa
tly the same to one that was 
onstru
ted in proof of proposition 3.1. Wederive
H (Πk|Rk, Y = y,Π<k = s) = ICµ(τ

′)

≤ C
√

ICµ(π′)

= C
√

I (X : Πk|Y = y,Π<k = s).After averaging over all s ∈ {0, 1}k−1, x ∈ X , y ∈ Y by 
on
avity of root weget:
I ′k = H (Πk|R, Y,Π<k) +H (Πk|R,X,Π<k)

≤ H (Πk|Rk, Y,Π<k) +H (Πk|Rk, X,Π<k)

≤ C
√

I (X : Πk|Y,Π<k) + I (Y : Πk|X,Π<k) = C
√

Ik.Using Cau
hy�S
hwarz inequality we 
on
lude
ICµ(τ) = I ′1 + . . .+ I ′N

≤ C
(

√

I1 + . . .+
√

IN

)

≤ C
√

(I1 + . . .+ IN )N = C
√
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