
Counting the Number of Perfect Matchings in K5-free Graphs

Simon Straub
Ulm University

Thomas Thierauf
Aalen University

Fabian Wagner
Ulm University

June 11, 2014

Abstract

Counting the number of perfect matchings in arbitrary graphs is a #P-complete prob-
lem. However, for some restricted classes of graphs the problem can be solved efficiently.
In the case of planar graphs, and even for K3,3-free graphs, Vazirani showed that it is
in NC2. The technique there is to compute a Pfaffian orientation of a graph.

In the case of K5-free graphs, this technique will not work because some K5-free
graphs do not have a Pfaffian orientation. We circumvent this problem and show that the
number of perfect matchings in K5-free graphs can be computed in polynomial time. We
also parallelize the sequential algorithm and show that the problem is in TC2.

1 Introduction

Counting the number of perfect matchings in bipartite graphs is #P-complete [Val79].
Nonetheless for some classes of restricted graphs the problem can be solved efficiently. Kaste-
leyn [Kas67] showed that it is in P for planar graphs. The technique is to compute a Pfaffian
orientation. Such an orientation assures that each term in the Pfaffian of the Tutte matrix of
a graph has the same sign. Since every term in the Pfaffian corresponds to a perfect matching,
this yields an efficient algorithm.

The Pfaffian calculation over skew-symmetric integer matrices is GapL-complete [MSV04].
The result is based on a preliminary work on determinants of Mahajan and Vinay [MV97].
Hence computing the number of perfect matchings in a planar graph is in GapL. Counting
the number of perfect matchings is necessary to prove the best known upper bound SPL on
the construction problem for bipartite planar graphs [DKR10]. Despite counting is possible
in planar graphs it remains an intriguing open question if a planar perfect matching can be
constructed in parallel. On arbitrary graphs perfect matchings are constructible in P although
counting is #P-hard [Edm65, MV80].

Little [Lit74] showed that any K3,3-free graph has a Pfaffian orientation which can be
computed in P. Vazirani [Vaz89] improved the bound to NC2. They utilize the fact that any
biconnected graph can be decomposed into triconnected components and each component is
planar or the K5.

A challenging open problem is to compute the number of perfect matchings in K5-free
graphs efficiently. In this paper, we solve this problem. The Pfaffian orientation technique
is not applicable here because some K5-free graphs have no such orientation. The K3,3

is an example. We solve this problem by decomposing a given K5-free graph G into its
triconnected components. It is known that non-planar triconnected components of G are
either the Möbius ladder M8, or their decomposition into 4-connected components yields only
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planar components. Such a decomposition can be computed in logspace [DNTW09, TW09].
The number of perfect matchings in the planar components can be computed efficiently. The
major task to be accomplished here is to calculate the overall number of perfect matchings
from them. The difficulty thereby is, that the graph is decomposed along separating pairs or
triples which have a copy in every component they split off. However, when counting perfect
matchings, the nodes of the separating pairs and triples should be matched only in one of the
components. We use gadgets to replace components such that every node is matched only
in one component. We adapt some of Valiants matchgates as gadgets to prove our result.
Valiant [Val08] introduced the notion of holographic algorithms and showed various counting
problems to be in P. Thereby matchgates are crucial, which constitute matchgrids.

After some preliminaries, the decomposition of a K5-free graph and its properties are
explained. Subsequently it is shown how to obtain the number of perfect matchings of the
input graph based on this decomposition.

2 Definitions and Notations

A graph G = (V,E) consists of a finite set of vertices V (G) = V and edges E(G) = E ⊆ V ×V .
Graph G is called weighted if there is a weight function w : E → R. For U ⊆ V let G−U be
the induced subgraph of G on V − U .

A graph G is called undirected if E is symmetric. An undirected graph G is connected if
there is a path between any two vertices in G.

A tree T is an undirected, connected, acyclic graph. The root of a tree is a designated
vertex r in the tree. The parent of a vertex v in T is the neighbor of v along a simple path
from v to the root of T . The other neighbors of v are children of v. Let T (v) be the subtree
of T with root v. The number of nodes in T (v) is denoted by |T (v)|. A child u of v is called
a large child if |T (u)| > |T (v)|/2. A large child path in T is a path of maximal length such
that every node on the path, except the first node, is a large child of its parent in T .

Let G be an undirected graph and S ⊆ V with |S| = k. We call S a k-separating set , if
G− S is not connected. For u, v ∈ V we say that S separates u from v in G, if u ∈ S, v ∈ S,
or u and v are in different components of G− S. For sets of vertices V1, V2 ⊆ V we say that
S separates V1 from V2 in G, if S separates every v1 ∈ V1 from every v2 ∈ V2.

A k-separating set is called articulation point (or cut vertex ) for k = 1, separating pair
for k = 2, and separating triple for k = 3.

A graph G is k-connected if it contains no (k − 1)-separating set. Hence a 1-connected
graph is simply a connected graph. A 2-connected graph is also called biconnected , a 3-
connected graph is one type of triconnected graphs.

Let S be a k-separating set in a k-connected graph G. Let G′ be a connected component
in G − S. A split graph or a split component of S in G is the induced subgraph of G on
vertices V (G′) ∪ S, where we add virtual edges between all pairs of vertices in S. Note that
the vertices of a separating set S occur in several split graphs of G.

A K3,3-free graph is an undirected graph which does not contain a K3,3 as a minor. A
K5-free graph is an undirected graph which does not contain a K5 as a minor. In particular,
planar graphs are K3,3-free and K5-free [Wag37].

Let G = (V,E) be an undirected graph, |V | = n. A perfect matching in G is a set M ⊆ E
such that every vertex of G occurs in exactly one edge of M . A consequence is that |M | = n/2.

The number of perfect matchings in G is denoted by #pm(G). We extend the notion to
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weighted graphs. Let w be a weight funtion. The weighted number of perfect matchings in G
is defined as

#pm(G) =
∑
M

∏
(u,v)∈M

w(u, v) ,

where the sum is over all perfect matchings M in G. Weight function w(u, v) = 1 for all
(u, v) ∈ E is equivalent to the unweighted case.

For the definition of complexity classes we refer the reader to any standard text book,
for example [Vol99]. In short, circuit classes NCk, ACk, and TCk consist of polynomial
size circuits of depth O(logk n), where n is the length of the input. NC-circuits have fan-in
two and-or-gates, whereas AC-circuits have unbounded fan-in and-or-gates. TC-circuits have
unbounded fan-in gates as AC, and additionally threshold gates. It is known that for all k ≥ 0

NCk ⊆ ACk ⊆ TCk ⊆ NCk+1 .

The ciruit classes are interleaved by logspace complexity classes. Class L stands for problems
recognized by logspace bounded Turing machines, NL is its nondeterministic counterpart.
The function class #L counts the number of accepting computations of a nondeterministic
logspace bounded Turing machine. An extension of #L is GapL which is the difference of
the number of accepting and rejecting computations of a nondeterministic logspace bounded
Turing machine. It is known that

NC1 ⊆ L ⊆ NL ⊆ AC1

and
#L ⊆ GapL ⊆ TC1 ⊆ NC2 .

The interest for GapL stems from the fact that it characterizes the complexity of computing
the determinant and the Pfaffian of integer matrices. Also, the number of perfect matchings
in planar graphs can be computed in GapL [MSV04]. Our parallel algorithm to count the
number of perfect matchings in K5-free graphs has up to log n levels where perfect matchings
are counted in planar components. This will result in a TC2-circuit.

3 Decomposition of Graphs

Wagner [Wag37] studied the decomposition of K5-free graphs into 2-, 3- and 4-connected
components. He showed that the components will be planar at some point, except for one
type of component which has constant size. The number of perfect matchings in a planar
graph can be computed in polynomial time [Kas67], in fact in NC [Vaz89]. Our goal is to
use Wagners result to reduce the problem of computing the number of perfect matchings in
a K5-free graph to the one for planar graphs.

Let G = (V,E) be a graph. If G is not connected, then the number of perfect matchings
in G is the product of the number of perfect matchings in the connected components of G.
Hence we may assume in the following that G is connected.

But actually we assume that G is biconnected. Otherwise there is an articulation point a
in G. Let G1, . . . , Gl be the connected components of G − a. For a perfect matching to
exist, G must have an even number of vertices. Therefore, exactly one of G1, . . . , Gl has an
odd number of vertices, say G1, and the others have even size. Hence the number of perfect
matchings in G is the product of the number of perfect matchings in G1 ∪ a,G2, . . . , Gl. We
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can continue to split these components along the remaining articulation points until we end
up with biconnected components only. Hence it suffices to determine the number of perfect
matchings in biconnected graphs. We assume in the following that G is biconnected.

There is an extensive literature on graph decomposition, see for example [Tut66, Har69,
HT73, BT89, BT96, MR92]. We follow the exposition of [DNTW09, TW14] which works for
parallel computation, in fact in logspace.

3.1 Triconnected components

Definition 3.1. [DNTW09] Let G = (V,E) be a biconnected graph. A separating pair {a, b}
is called 3-connected if there are three vertex-disjoint paths between a and b in G.

The triconnected components of G are the split graphs we obtain from G by splitting G
successively along all 3-connected separating pairs, in any order. If a separating pair {a, b}
is connected by an edge in G, then we also define a 3-bond for {a, b} as a triconnected
component, i.e., a multigraph with two vertices {a, b} and three edges between them.

The definition yields three types of triconnected components of a biconnected graph: 3-
connected components, cycle components, and 3-bonds. The 3-bonds represent edges of the
graph between separating pairs because they are replaced by virtual edges in the components.
The cycle components are not 3-connected, but they are not decomposed further anyway.

Definition 3.2. Let G = (V,E) be a biconnected graph. The triconnected component tree T
of G is the following graph. There is a node for each triconnected component and for each
3-connected separating pair of G. There is an edge in T between the node for triconnected
component C and the node for a separating pair {a, b}, if a, b belong to C.

Lemma 3.3. [DNTW09, TW14] The triconnected component tree can be computed and
traversed in logspace.

Fix one component node in T as the root of T . Hence we can talk of a parent and
the children of a node. For a component node C in T let T (C) be the subtree of T with
root C. When we reverse the decomposition process just on T (C) we obtain the graph denoted
by G(T (C)), the graph associated with T (C). Analogously we define T (π) and G(T (π)) for
a separating pair π.

3.2 Four-connected components

There are some subtleties in the decomposition of a 3-connected graph into 4-connected
components. We refer to the exposition in [TW14]. In a nutshell, it is an inductive process that
splits off components along separating triples. However, the separating triples might overlap
each other, and even worse, their split components might overlap. In this case separating
triples are called crossing in [TW14]. It is shown that one can select one of the crossing
triples and throw away the other to obtain a decomposition into 4-connected components.

The components we get are

• separating triples where the vertices are connected by virtual edges,

• 4-connected components that contain the separating triples where they are split off.
Again there are virtual edges between the vertices of the separating triples,
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• 3-bonds for every pair a, b of vertices that are part of a separating triple and there is
an edge (a, b) ∈ E.

Let C be a 3-connected component of G. The 4-connected component tree TC of C has a
node for every component as described above that occurs in the decomposition process of C.
There is an edge between a 4-connected component D and a separating triple τ in TC if τ
belongs to D. If there is a 3-bond for two vertices a, b which are in τ , then we also have an
edge between the 3-bond and τ in TC .

Lemma 3.4. [TW14] The 4-connected component tree can be computed and traversed in
logspace.

Fix one component node as the root of TC . Let D be a component node and τ be a
separating triple. Similar as for the triconnected component tree we define TC(D) and TC(τ)
as the subtrees of TC rooted at D and τ , respectively. The graphs associated with the subtrees
are denoted by G(TC(D)) and G(TC(τ)), respectively.

3.3 Properties of K5-free graphs

The crucial theorem about K5-free graphs is due to Wagner [Wag37].

Theorem 3.5. [Wag37] A 3-connected non-planar component of a K5-free biconnected graph
is either the Möbius ladder M8 or its 4-connected components are all planar.

The Möbius ladder M8 is shown in Figure 1. It is a 3-connected graph on 8 vertices which
is non-planar because it contains a K3,3.

Figure 1: The Möbius ladder M8.

The Möbius ladder M8 has 5 perfect matchings. However, we will also have weights on
the edges. In this case, we have to count the weighted perfect matchings of M8. Since M8

has constant size this is computationally a simple task.
Theorem 3.5 describes the route we follow: we decompose the given biconnected graph G

into 3-connected components. When we are lucky, a 3-connected component C is already
planar or M8. In this case we directly compute the number of perfect matchings in C.
Otherwise, we decompose C further into 4-connected components. These are all planar now
and we can again compute the number of perfect matchings there. What makes things a bit
tricky is, that we have to consider all possibilities of assigning the separating pairs and triples
to the components they are part of. This will be the major challenge for the complexity
bound on computing the number of perfect matchings.
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4 Counting Perfect Matchings in K5-free Graphs

In this section we prove the following theorem.

Theorem 4.1. The number of perfect matchings in a K5-free graph can be computed in
polynomial time.

Let G = (V,E) be a biconnected K5-free graph. We will decompose G into triconnected
components, and, if necessary, into 4-connected components. Thereby we end up with com-
ponents that are either planar, or the Möbius ladder M8. The number of perfect matchings of
these components can be computed in polynomial time. Note that the Möbius ladder M8 has
constant size. The critical part of our algorithm is to put these numbers together to obtain
the number of perfect matchings of G.

Consider the triconnected component tree T of G. We will compute the number of perfect
matchings of the components in a bottom-up fashion according to T by dynamic program-
ming. If a component C is non-planar and 6= M8, then we decompose C and consider its
4-connected component tree TC . Then we compute the number of perfect matchings of C by
dynamic programming according to TC . Note that the separating pairs and triples occur in
several components. However, when we consider perfect matchings in G, we should match
the vertices of these pairs or triples only in one of the components, respectively. Hence we
have to consider all possibilities to put the vertices of the separating pairs and triples into
the split components.

Our algorithm will successively replace components by gadgets. The gadgets will have
weighted edges. Hence we will compute the weighted number of perfect matchings. In the
given graph G, edges have no weights. Equivalently we can say that all edges have weight
one. In the decomposition of G into tri- and 4-connected components we introduce virtual
edges between the vertices of the separating pairs and triples. The virtual edges that do not
have an associated 3-bond are defined to have weight zero. These are the edges which are not
present in G. With weight zero they do not contribute to the number of perfect matchings.

We start by considering the algorithm for the triconnected component tree T of G. Then
we look at 4-connected component trees.

4.1 The triconnected component tree

Let T be the triconnected component tree of G. One component node of T is labeled as
the root of T . We describe an algorithm that computes the number of perfect matchings
by dynamic programming. We start with the leaf nodes of T . These are component nodes.
Then we inductively work our way up to the root of T .

Let C be a leaf in T and π = {a, b} be the parent separating pair of C in T . We compute
the number of perfect matchings in C for every possibility of keeping a or b in C or not. If
edge (a, b) is present in G, we should put it only into one of the split components of {a, b} in
order to get the correct number of perfect matchings. We will put edge (a, b) into its parent
component, by giving it weight one there. Therefore, we define the weight of edge (a, b) to
be zero in C.

• If C has odd size, we compute pa(C) = #pm(C − a) and pb(C) = #pm(C − b).

• If C has even size, we compute p∅(C) = #pm(C) and pab(C) = #pm(C − π).
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This works directly only when C is a planar component or C = M8. Otherwise C is non-
planar and we decompose C into 4-connected components. We show in the next subsection
how to compute the number of perfect matchings in this case.

In the inductive step, let π = {a, b} be a separating pair node in T . Let C0 be the parent
of {a, b} in T , and C1, C2, . . . , C` be the children of π. Vertices a, b are contained in all these
components. We should match a and b only in one of the components, respectively.

Define ni to be the number of vertices of the subgraph G(T (Ci)) of G. At most two of
n1, . . . , n` can be odd, otherwise there is no perfect matching in G.

There are three cases:

• n1, . . . , n` are all even. Then a and b have both to be matched within one component Ci,
for some i ∈ {1, . . . , `}, or within C0. Hence there are `+ 1 possibilities to assign a, b.

• One of n1, . . . , n` is odd, say ni. Then either a has to be matched within Ci and b
within C0, or vice versa. Hence there are two ways to assign a, b.

• In case where two of n1, . . . , n` are odd, we assign one of a, b to each of the two odd
components. There are again two ways to assign a, b.

Any assignment of a and b other than the ones described above will result in zero perfect
matchings.

We keep track of the assignments of a and b by a vector β = (β1, β2, . . . , β`) and β0,
where βi ⊆ π are the vertices that should not be matched in Ci. Such a vector β is called
legal w.r.t. β0, if it corresponds to an assignment of a and b as explained above. That is,
let βi = π − βi. Then β is legal w.r.t. β0 if the βi’s are pairwise disjoint and

⋃
i≥0 βi = π.

Moreover, the assignment defined by the vector should respect the odd-even cases explained
above. There are ≤ ` legal vectors β for a fixed β0.

Recall that T (Ci) is the subtree of T rooted at node Ci and G(T (Ci)) is the graph
associated with T (Ci). Inductively assume that we have already computed

pβ(Ci) = #pm(G(T (Ci))− β),

for every β ⊆ π and i = 1, 2, . . . , `. For a legal vector β = (β1, β2, . . . , β`) w.r.t. β0, define

pβ(π) =
∏̀
i=1

pβi(Ci)

pβ0(π) =
∑

β legal w.r.t.β0

pβ(π)

Then we have
pβ0(π) = #pm(G(T (π))− β0).

There are only two possibilities for β0. We compute pβ0(π) for both of these values.
The other case in the inductive step is to consider a component node C in T . Let

π0 = {a0, b0} be the parent separating pair of C in T , and π1 = {a1, b1}, · · · , π` = {a`, b`} be
the children of C. As already explained in the leaf-case above, edge (ai, bi) gets weight one if
it is an edge in G, for i = 1, 2, . . . , `. Edge (a0, b0) gets weight zero.

Inductively assume that we have already computed

pβ(πi) = #pm(G(T (πi))− β),
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for every β ⊆ πi and i = 1, 2, . . . , `. Our goal is to compute

pβ(C) = #pm(G(T (C))− β),

for every β ⊆ π0. To do so, we replace the subgraphs G(T (πi)) of G(T (C)) by appropriate
weighted gadgets, for i = 1, 2, . . . , `. That is, we take component C and add the gadgets at
the separating pairs πi.

• If G(T (πi)) has an odd number of vertices, we add one new vertex vi to C and

– an egde (vi, ai) of weight pbi(πi) and

– an egde (vi, bi) of weight pai(πi).

• If G(T (πi)) has an even number of vertices, we add two new vertices ui, vi to C and

– an egde (ui, ai) of weight p∅(πi),

– an egde (vi, bi) of weight 1, and

– an egde (ui, vi) of weight paibi(πi).

Figure 2 shows the gadgets. These gadgets were also used in [Val08]. Figure 3 shows an
example of the construction.

(a)

a b

v
pb pa

(b)

a b

u v
p∅

pab

1

Figure 2: The gadget for separating pair π = {a, b} in case G(T (π)) has (a) an odd number
and (b) an even number of vertices. The gadgets replace G(T (π)) in G.

Let C ′ be the resulting component. The construction is such that the number of weighted
perfect matchings of C ′ is the same as the number of perfect matchings of G(T (C)). If C
is planar, then also C ′ is planar and we can directly compute #pm(G(T (C))− β), for every
β ⊆ π0. The same holds if C = M8 because then also C ′ has constant size.

The third case is that C is non-planar and 6= M8. This case we handle slightly different.
Namely we do not place the gadgets right now in C. Instead, we first decompose C into
4-connected components. The reason is that C ′ is not 3-connected because of the gadgets.
For every separating pair πi we choose one 4-connected component where πi occurs and put
the gadget there.

The algorithm runs until C is the root of T . In this case C has no parent separating pair.
Then #pm(G(T (C))) is our result, the number of perfect matchings in G.

4.2 The 4-connected component tree

Let C 6= M8 be a non-planar 3-connected component with weighted edges. Let a, b be two
vertices in C that are a separating pair in G, and β ⊆ {a, b}. Recall that β contains the
vertices that should not be matched within C, i.e., we want to compute the weighted number

8



(a)

G

a

b

c

d

(b)

T

c d

a b
π1

0 1

a

b

c

d

C

0

a

b

0

c

d 0

c

d

c d
π2

(c)

0

a

b

c

d

pb

pa
1

p∅

1

pcd

C ′

Figure 3: (a) A biconnected graph G.
(b) The triconnected component tree T of G. Component C is the root of T . In the compo-
nents, the virtual edges are indicated with dashed lines together with their weights.
(c) The component C ′ constructed from C. The subgraphs that correspond to the subtrees
below C in T are replaced by weighted gadgets in C ′.

of perfect matchings in C − β. In the exposition below we omit β for better readability. β
has to be subtracted from every component we consider below.

Let TC be the 4-connected component tree of C. Recall that we postponed the placement
of the gadgets from the child separating pairs π1, π2, . . . , π` of C in the triconnected component
tree T . Our first step now is to choose one component node in TC for each πi where πi occurs
and place the gadget there. We still call the component C in the following.

The algorithm to compute the number of perfect matchings in C is similar to the one for
the triconnected component tree. One 4-connected component node is labeled as the root
of TC . We start at the leafs of TC and inductively proceed to the root of TC .

Let D be a leaf in TC and τ = {a, b, c} be the parent separating triple of D in TC . The
edges between vertices a, b, c which are present in G should be put only into one of the split
components of τ in order to get the correct number of perfect matchings. We will put these
edges into the parent component of τ , by giving them weight one there. Therefore, we define
the weight of the three virtual edges within τ to be zero in D.

We compute the number of perfect matchings in D for every possibility of keeping a, b
or c in D or not. That is, we compute pγ(D) = #pm(D − γ), for all γ ⊆ τ . If D has odd
size, it suffices to take γ odd, and if D has even size, we can restrict γ to be even. Recall
that the 4-connected components are all planar. Hence we can directly compute the number
of perfect matchings.

In the inductive step, let τ = {a, b, c} be a separating triple node in TC . Let D0 be the
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parent of τ in TC , and D1, D2, . . . , D` be the children of τ . We consider the possible cases
where to match a, b and c.

Define ni to be the number of vertices of the subgraph G(TC(Di)) of G. At most three of
n1, . . . , n` can be odd, otherwise there is no perfect matching in G.

There are four cases:

• n1, . . . , n` are all even. Then either two vertices out of τ are matched within one
of D1, . . . , D` and the remaining vertex within D0, or all vertices of τ are matched
within D0. These are 3`+ 1 possibilities to assign a, b, c.

• One of n1, . . . , n` is odd, say ni. Then either a, b, c are all matched within Di, or just
one of a, b, c is matched within Di and the other two in Dj , for some j 6= i, or in D0.
Hence there are again 3`+ 1 possibilities to assign a, b, c.

• Two of n1, . . . , n` are odd, say ni and nj . Then one vertex of a, b, c is matched within Di,
one within Dj , and the remaining one in D0. There are 6 ways to assign a, b, c.

• In case where three of n1, . . . , n` are odd, we assign one of a, b, c to each of the corre-
sponding components. There are again 6 ways to assign a, b, c.

Any assignment of a, b and c other than the ones described above will result in zero perfect
matchings.

We administrate the assignments of a, b and c again by a vector γ = (γ1, γ2, . . . , γ`)
and γ0, where γi ⊆ τ are the vertices not matched in Di. Similar as for the β-vector in the
triconnected component tree, we define γ to be legal w.r.t. γ0 if it represents an assignment
of a, b, c to the Di’s as explained above.

Inductively we have already computed

pγ(Di) = #pm(G(TC(Di))− γ),

for every γ ⊆ τ and i = 1, 2, . . . , `. For a legal vector γ = (γ1, γ2, . . . , γ`) w.r.t. γ0, define

pγ(τ) =
∏̀
i=1

pγi(Di)

pγ0(τ) =
∑

γ legal w.r.t.γ0

pγ(τ)

Then we have
pγ0(τ) = #pm(G(TC(τ))− γ0).

There are ≤ 4 possibilities for γ0. We compute pγ0(τ) for all of these values.
The second case in the inductive step is to consider a component node D in TC . Let τ0 =

{a0, b0, c0} be the parent separating triple of D in TC , and τ1 = {a1, b1, c1}, . . . , τ` = {a`, b`, c`}
be the children of D. As already explained in the leaf-case above, the edges within τ0 get
weight zero, and the edges between the vertices in τi which are present in G get weight one
in D, for i = 1, 2, . . . , `. If τi ∩ τ0 6= ∅ for some i ≥ 1, there might be an edge e within both,
τ0 and τi. Then e gets weight zero in D.

Inductively assume that we have already computed

pγ(τi) = #pm(G(TC(τi))− γ),

10
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Figure 4: The gadget for separating triple τ = {a, b, c} in case G(TC(τ)) has (a) an even
number and (c) an odd number of vertices. The gadgets replace G(TC(τ)) in G. In (a), an
odd number of a, b, c should be matched within the gadget, in (c) an even number.
In (a), when p∅ = 0, we use the gadget shown in (b) instead. Similarly, when pa = 0 in (c)
we use the gadget from (d).
For example in (a), if a, b, c should all be matched within the gadget, we use the edges
(a, u), (b, v), (c, w). These edges contribute weight p∅ to a perfect matching. If only b should
be matched within the gadget, we use edges (b, v) and (u,w). These two edges contribute
weight pac to a perfect matching. Then a and c have to be matched in the rest of the graph.
Similarly, when a should be matched within the gadget, we use edges (a, u) and (v, w). These
two edges contribute weight p∅ · pbcp∅ = pbc to a perfect matching.

for every γ ⊆ τi and i = 1, 2, . . . , `. Our goal is to compute

pγ(D) = #pm(G(TC(D))− γ),

for every γ ⊆ τ0. We replace the subgraphs G(TC(τi)) of G(TC(D)) again by appropriate
weighted gadgets, for i = 1, 2, . . . , `. That is, we add the gadgets at the separating triples τi
of D. The gadgets incorporate all possibilities to match some vertices within G(TC(τ))
and some vertices in the rest of G. We have again two gadgets. We distinguish the cases
whether G(TC(τi)) has an odd or even number of vertices. The gadgets are shown in Figure 4.
They are similar to those given in [Val08].

Let D′ be the resulting component. The construction guarantees that the number of
weighted perfect matchings of D′ equals the number of perfect matchings of G(TC(D)).
Since D is planar, also D′ is planar. Hence we can compute #pm(D′) in polynomial time.
Figure 5 shows an example of the construction. This completes the proof of Theorem 4.1.

5 Counting Perfect Matchings in K5-free Graphs in Parallel

We parallelize the algorithm from Section 4. We explain a circuit construction and argue that
it has polylogarithmic depth. Our plan is to transform the sequential algorithm of Section 4
into a circuit. The decomposition of the given graph into 3- or 4-connected components is in
logspace, and hence can be parallelized. However, since the resulting component trees may
have depth O(n), we cannot simply evaluate the tree bottom-up as in the sequential case.

11
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1
1
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Figure 5: In (a), a triconnected component tree T is shown with C as a triconnected
component node and π as a separating pair node.
In (b), the situation is shown where C 6= M8 is not planar and hence, is decomposed into a
4-connected component tree TC . The more interesting case is, when π ⊆ τ , then there are
several occurrences of π as virtual edges {a, b} in 4-connected component nodes. Only one of
these virtual edges gets weight 1.
In (c), in D, the parent component of τ , the gadget corresponding to T (π) is embedded
above the virtual edge {a, b} which inherits weight 1. The gadget (without indicating weights)
corresponding to TC(τ) is plugged inside the triangle of vertices a, b, c.

To get around this problem we identify large child paths in the component trees. These
paths lead to a large depth. We show how to handle large child paths in parallel. This will
suffice to obtain a small depth circuit.

Theorem 5.1. Counting perfect matchings in K5-free graphs is in TC2.

Recall that the number of perfect matchings in planar graphs can be computed in TC1.
Hence, for every component node C which is planar or M8 and has parent π0, we have a
TC1-circuit which computes #pm(G(T (C))−β) for every β ⊆ π0. We combine these circuits
according to the edge relation in the component trees. I.e., we connect the output of a
subcircuit for a node to the input of the subcircuit corresponding to its parent node. To
obtain a circuit with polylogarithmic depth we deviate from the circuit construction at large
children in the tree. Recall that u is a large child of v in a tree T if |T (u)| > |T (v)|/2. A large
child path is a path v0, v1, . . . , vk of maximal length in T such that vi is a large child of vi−1,
for i = 1, . . . , k.

We will compute the number of perfect matchings in the components on a large child path
in parallel. We do this for all possible input values of a subcircuit. Recall that a subcircuit
gets edge weights as input which are maybe large. Therefore we use the Chinese remainder
representation to represent large numbers, i.e., all computations are done modulo p for enough
small prime numbers p.
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5.1 The computation graph

Recall that we have tri- and 4-connected component trees in the decomposition process of
a K5-free connected graph. We define a new tree, the computation graph K of a K5-free
biconnected graph G which combines the tri- and 4-connected component trees into one tree.
Informally we start with the triconnected component tree T of G and replace every non-
planar component node C 6= M8 of the triconnected component tree T by the 4-connected
component tree TC . More precisely, K is defined as follows.

Definition 5.2. The computation graph K of a K5-free biconnected graph G has the same
nodes as the triconnected component tree T of G, but instead of the node for a non-planar
component C 6= M8, it has all the nodes of the 4-connected component tree TC .

The edges between nodes within T or within a TC are the same as in these trees, re-
spectively. For a non-planar component C 6= M8 in T let π0 be the parent of C in T and
π1, . . . , π` be its children. Let D be the root of TC . Then we define an edge between π0 and D.
Furthermore for every child πi, i ∈ {1, . . . , `} there is a unique node in TC connected to it.
This unique node is the node where the gadget of G(T (πi)) of the algorithm of Section 4 is
plugged in.

Note that when we plug in a tree TC in T for some non-planar nodes C 6= M8 in T , then
the children of C and its parent are connected to exactly one node in TC . Therefore K is
again a tree. We can assume that K is a rooted tree.

Lemma 5.3. The computation graph K of a biconnected graph G is a tree. It can be computed
in logspace.

Proof. The tri- and 4-connected component trees of G can be computed in logspace [TW14].
Hence it remains to compute the edges between the separating pair nodes in T and the 4-
connected component nodes. With the notation from Definition 5.2, there is an edge between
separating pair πi and a 4-connected component D in TC , for some D that contains the
vertices of πi. We may simply choose the first such D that is computed by the logspace
algorithm that computes TC . Therefore also these edges can be computed in logspace.

Let C be a component in T with parent separating pair π. We want to compute
#pm(G(T (C)) − β), for any β ⊆ π. If C 6= M8 is non-planar and D is a component in TC
with parent separating triple τ , then we also want to compute #pm(G(TC(D))− γ − β), for
any γ ⊆ τ . Hence component D does not only depend on its parent separating set node τ ,
but additionally on a separating pair π. We define a set VK which covers all possibilities of β
and γ.

Let R0 be the root in K and let S be any separating pair or triple node in K. Let P be
a simple path from R0 to S. Let Ŝ be the separating pair node with shortest distance to S
on P . I.e. Ŝ = S in case S is a separating pair node. We define VK(S) = P(S) ∪ P(Ŝ),
where P denotes the power set. Let µ = |VK(S)| ≤ 22 + 23.

For a node N in K, the subtree of K with root N is denoted by K(N). The subgraph
of G corresponding to K(N) is denoted by G(K(N)). That is, G(K(N)) is the subgraph of G
induced by the vertices that occur in some component node of K(N).

Because all component nodes in K are planar components or M8, the number of perfect
matchings in these components can be computed in TC1.
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Lemma 5.4. Let S be a separating set node and S1, . . . , S` be all the descendant separating set
nodes at distance two in K. The following function f is in TC1: on input of #pm(G(K(Si))−
κi) for i = 1, . . . , `, κi ∈ VK(Si) and κ ⊆ VK(S) the output of f is #pm(G(K(S))− κ).

Proof. Let N be a component in the level between S and the Si’s. The first step is to remove
the vertices from κ. Let N ′ be the resulting graph. Clearly, N ′ is still planar. Hence, the
number of weighted perfect matchings in N ′ can be computed in TC1 [MSV04]. Recall that
the weights come from the input values #pm(G(K(Si))−κi) which are placed in the gadgets
in N ′.

This has to be done in all the component nodes between S and the Si’s. Then we have
a sum and product of many numbers modulo some small prime number. Recall that modulo
division as well as addition and multiplication of n numbers with n bits is in TC0 [Vol99].

The lemma handles the case of component nodes and it remains to stick the results
together at the nodes of separating pairs and triples in K. Therefore we reduce K by removing
all the component nodes.

Definition 5.5. Let K be the computation graph of G. The reduced computation graph K̂
of K is defined by the following process: for every component node N in K with parent S and
children S1, . . . , S`, remove N from K and instead draw edges between S and S1, . . . , S`.

Similar as K, the reduced computation graphs K̂ is a tree and can be computed in logspace.
The tree K̂ may have linear depth. To evaluate K̂ efficiently in parallel, we have to do

some depth reduction. The reason for the large depth are the large children: let T be a tree
with root r. If v is a non-large child of r, then we have |T (v)| ≤ |T (r)|/2. Hence, any simple
path in T from r to a leaf along non-large children has length ≤ log n. However, paths that
contain large children could be long. The next lemma states that there are only few large
child paths on any path in T .

Lemma 5.6. Let p be a path from the root to a leaf node in a tree T . Then we have

(i) the number of large child paths on p is ≤ log n,

(ii) the number of nodes on p that are not large children is ≤ log n.

Proof. Consider two consecutive large child paths p1, p2 on p. Say, the first path p1 goes
from s1 to t1, and p2 goes from s2 to t2. Because we defined large child paths to be of
maximal length, t1 has no large child. Hence we have

|T (s2)| ≤ |T (t1)|/2 < |T (s1)|/2 .

Now the claim follows.

5.2 Circuit construction

The computation tree K can be computed in logspace from the input graph G. Since L ⊆ TC1,
we may think of K, respectively K̂, being the output of a TC1-circuit, in some appropriate
coding. The output contains information about

• the vertices of G that are in one component node or separating set node in K,

• the edges that are between the nodes of K and K̂,
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• the type of a node, i.e. whether it is the root or a leaf, or a large child,

• all the large child paths in K̂.

Our goal is to evaluate K, as we did in the sequential algorithm in Section 5. However,
K depends on the input graph G and our circuit has to work for all graphs with the same
number n of vertices. We construct the circuit in levels, where there is a subcircuit for
every node of K in each level. Note that K has O(n) nodes. Every subcircuit in one level
is connected to every subcircuit of the next level. These connections represent the potential
edge connections in K. The actual edges in a given K are then activated by the results of
the TC1-circuit that computes K.

Consider a node S be a node in K̂ and let S1, . . . , S` be its children in K̂. We want to
compute #pm(G(K(S))− κS), for κS ∈ VK(S). If S has no large child then there is a TC1-
circuit as described in Lemma 5.4, where the input values are obtained from lower circuit
levels.

Because the depth of K can be as large as O(n), we cannot afford such a level of subcircuits
at any depth of K. That is, we have to deviate from the sequential bottom-up evaluation
of K and do some kind of depth-reduction. What causes the large depth are the large child
paths. We will parallelize the computation along the large child paths with the balanced
binary tree method, see [GR88]. By Lemma 5.6, the number of large child paths is bounded
by O(n log n).

Consider a large child path S = S̃0, S̃1, . . . , S̃t in K̂. For each S̃i we place many TC1-
circuits in parallel as shown in Figure 6, namely one circuit for each possible value of

• #pm(G(K(S̃i+1))− κS̃i+1
) modulo p,

• κ
S̃i+1
∈ VK(S̃i+1), and

• prime p.

Assume for the moment, that for each S̃i of the large child path, the subtrees at the
non-large children of S̃i have already been evaluated. We use a flag to indicate when the
assumption is fulfilled. We compose the functions computed by the circuits for each S̃i in a
binary tree like fashion. In the bottom layer, the composition of the circuits for S̃2i−1 and S̃2i
means: for each circuit C for S̃2i we put an AC0-circuit to select the circuit for S̃2i−1 which
uses the output of C as input. Such a circuit exists, since we have a circuit for S̃2i−1 for every
possible output of C. Clearly, we combine only circuits for the same prime p.

We continue to combine the resulting circuits in higher levels similarly. After log t lev-
els, we have composed the circuits of the whole large child path. Then the correct values
#pm(G(K(S))−κS) for all κS ∈ VK(S) are computed at the output gates of the constructed
circuit. The whole composition circuit is in AC1. A schematic view is shown in Figure 7.

We bound the depth of the resulting circuit. By Lemma 5.6 there are ≤ log n nodes
which are non-large children on every path. Therefore log n levels suffice to evaluate K̂. Each
level consists of TC1-circuits to compute the number of perfect matchings in some planar
component, followed by AC1-circuits to evaluate large child paths. Therefore we obtain
circuits in TC2, for every prime p.

It remains to combine the results for the different primes. An obstacle thereby are the
fractions that occur as weights in the gadgets in the 4-connected components. Let D be a
4-connected component. We do the following modification. For every edge e = (u, v) of a
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. . . TC1 for S̃t, κ

(µ)
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Figure 6: (a) We place many TC1-circuits for each S̃i in parallel, namely one for each
possible weighting scheme for the gadget of K̂(S̃i+1). The circuits for the non-large children

S1, ..., S` are indicated by C(κ
(r)
Sj

), for κ
(r)
Sj
∈ VK(Sj) and j ∈ {1, . . . , `}. They are connected

to all the TC1-circuits for S̃i.
(b) For all nodes S̃0, S̃1, . . . , S̃t−1 along a large child path, there are µpµ many circuits in
parallel, since for a node S̃i, there are µ different sets κ

S̃i
∈ VK(S̃i) and pµ many different

possibilities for the values of K̂(S̃i+1).

gadget with rational weight w(e) = a/b placed in D we do the following. Select one vertex of e,
say v. For every edge incident to v, multiply the corresponding weights by the denominator b.
Let w′ be the resulting weight function. The weights of w′ are integers.

Lemma 5.7. Let b1, . . . , bm be all the denominators of rational weights in gadgets placed in
a 4-connected component D. Then #pmw(D) = #pmw′(D)/(b1 · · · bm).

Proof. If w(e) = a/b, then w′(e) = a. The other edges around v have weights multiplied
with b. Every perfect matching matches exactly one edge around v. Hence #pmw′(D) =
b ·#pmw(D). Now the claim follows by an induction on the number of weighted edges.

Hence, we move denominators step by step upwards in the tree. In two final steps we
compute integers from the Chinese remainder representation and calculate the divisions. The
quotient at the root is the number of perfect matchings in the input graph G. This finishes
the proof of Theorem 5.1.
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Figure 7: A schematic view of the balanced binary tree method is shown for a large child
path S̃0, ..., S̃7. Except for the rightmost one, every box in the bottom row represents µpµ

many circuits, one for every possible result of K̂(S̃i) and every possible κ.

Final Remarks

We presented efficient sequential and parallel algorithms to compute the number of perfect
matchings in K5-free graphs. This extends work of Kasteleyn for planar graphs and comple-
ments work of Little and Vazirani for K3,3-free graphs.

Both, K5 and K3,3 can be drawn in the plane with one crossing, they have crossing number
one. Robertson and Seymour showed a decomposition for H-free graphs, for any graph H with
crossing number one, which is similar to that for K5-free and K3,3-free graphs. Based on this
decomposition, and techniques similar to the ones presented in this paper, Radu Curticapean
independently obtained the following result [personal communication]: The number of perfect
matchings in H-free graphs can be computed in polynomial time, for any fixed graph H with
crossing number at most one.
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