
Faster FPT Algorithm for Graph Isomorphism

Parameterized by Eigenvalue Multiplicity

V. Arvind Gaurav Rattan

Institute of Mathematical Sciences, Chennai, India
{arvind,grattan}@imsc.res.in

Abstract. We give a O∗(kO(k)) time isomorphism testing algorithm for graphs
of eigenvalue multiplicity bounded by k which improves on the previous best
running time bound of O∗(2O(k2/ log k)) [EP97a].1

1 Introduction

Two simple undirected graphs X = (V,E) and X ′ = (V ′, E′) are said to be
isomorphic if there is a bijection ϕ : V → V ′ such that for all pairs {u, v} ∈

(
V
2

)
,

{u, v} ∈ E if and only if {ϕ(u), ϕ(v)} ∈ E′. Given two graphs X and X ′ as
input the decision problem Graph Isomorphism asks whether X is isomorphic
to X ′. An outstanding open problem in the �eld of algorithms and complexity is
whether the Graph Isomorphism problem has a polynomial-time algorithm. The
asymptotically fastest known algorithm for Graph Isomorphism has worst-case
running time time 2O(

√
n lgn) on n-vertex graphs [BL83]. On the other hand, the

problem is unlikely to be NP-complete as it is in NP ∩ coAM [BHZ87].

However, e�cient algorithms for Graph Isomorphism have been discovered
over the years for various interesting subclasses of graphs, like, for example,
bounded degree graphs [Luks80], bounded genus graphs [Mil80,GM12], bounded
eigenvalue multiplicity graphs [BGM82,EP97a].

The focus of the present paper is Graph Isomorphism for bounded eigenvalue
multiplicity graphs. This was �rst studied by Babai et al [BGM82] who gave an
nO(k) time algorithm for it. There is also an NC algorithm2 for the problem for
constant k due to Babai [Bab86]. Using an approach based on cellular algebras
and some nontrivial group theory, Evdokimov and Ponomarenko [EP97a] gave
an O∗(2O(k2/ log k)) algorithm for it. This puts the problem in FPT, which is the
class of �xed parameter tractable problems. The parameter in question here is
the bound k on the eigenvalue multiplicity of the input graphs.

In this paper we obtain a O∗(kO(k)) time isomorphism algorithm for graphs
of eigenvalue multiplicity bounded by k. We follow a relatively simple geomet-
ric approach to the problem using integer lattices. Recently, we obtained an
O∗(kO(k)) time algorithm for Point Set Congruence (abbreviated GGI) in Qk

in the `2 metric [AR14]. Our algorithm is based on a lattice isomorphism algo-
rithm of running time O∗(kO(k)), due to Haviv and Regev [HR14]. They design

1 Throughout the paper, we use the O∗()̇ notation to suppress multiplicative factors that are
polynomial in input size.

2 NC denotes the class of problems that can be solved in in the parallel-RAM model in
polylogarithmic time using polynomially many processors.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 111 (2014)

an O∗(nO(n)) time algorithm for checking if two integer lattices in Rn are isomor-
phic under an orthogonal transformation. In [AR14] we adapt their technique
to solve the Point Set Congruence problem, GGI, in O∗(kO(k)) time.

Now, in this paper, building on our previous algorithm forGGI [AR14], com-
bined with some permutation group algorithms, we �rst give an O∗(kO(k)) time
algorithm for a suitable geometric automorphism problem, de�ned in Section 4.
It turns out that the bounded eigenvalue multiplicity Graph Isomorphism can
be e�ciently reduced to this geometric automorphism problem, which yields the
O∗(kO(k)) time algorithm for it.

2 Preliminaries

Let [n] denote the set {1, . . . , n}. We assume basic familiarity with the notions of
vector spaces, linear transformations and matrices. The projection of a vector
v ∈ Rn on a subspace S ⊆ Rn is denoted as projS(v). The inner product of

vectors u = (u1, . . . , un) and v = (v1, . . . , vn) is 〈u, v〉 =
∑
i∈[n]

uivi. The euclidean

norm, ‖u‖, of a vector u, is
√
〈u, u〉, and the distance between two points u

and v in Rn is ‖u − v‖. Vectors u, v are orthogonal if 〈u, v〉 = 0. Subspaces
U, V are orthogonal if for every u ∈ U, v ∈ V , u, v are orthogonal. A set of
subspaces W1, . . . ,Wr is said to be an orthogonal decomposition of Rn if each
pair of subspaces are mutually orthogonal, and they span Rn. A square matrix
M is orthogonal if MTM = I. A linear transformation T stabilizes a subspace
S if T (S) ⊆ S. Given a matrix M , we call λ to be an eigenvalue of M if there
exists a vector v such that Mv = λv. We call v to be an eigenvector of M
of eigenvalue λ. The set of all eigenvectors of M of eigenvalue λ is a subspace
of Rn. The following well-known fact about n × n symmetric matrices will be
useful.

Fact 1. All eigenvalues of a symmetric matrix are real. Moreover, the

eigenspaces form an orthogonal decomposition of Rn.

We use Sym(V) to denote group of all permutations on a �nite set V . Given
a graph X = (V,E), a permutation π ∈ Sym(V) is an automorphism of the
graph X if for all pairs {u, v} of vertices, {u, v} ∈ E i� {π(u), π(v)} ∈ E. In
other words, π preserves adjacency in X. The set of all automorphisms of a
graph X, denoted by Aut(X), is a subgroup of Sym(V), which is denoted by
Aut(X) ≤ Sym(V).

We can similarly talk of automorphisms of hypergraphs: Let X = (V,E) be a
hypergraph with vertex set V and edge set E ⊂ 2E . A permutation π ∈ Sym(V)
is an automorphism of the hypergraph X if for every subset e ⊆ V , e ∈ E if and
only if π(e) ∈ E, where π(e) = {π(v) | v ∈ e}.

Given an undirected graph X = (V,E), the set V indexed by [n], we de�ne
its adjacency matrix AX is de�ned as follows: AX(i, j) = 1 if {vi, vj} ∈ E
and 0 otherwise. Clearly, the adjacency matrix AX of an undirected graph X
is symmetric. Given a permutation π : [n] → [n], we can associate a natural
permutation matrix Mπ with it. It is easy to verify that π is an automorphism

2

of a graph G i� MT
π AXMπ = AX . Since permutation matrices are orthogonal

matrices, the following simple folklore lemma characterizes the automorphisms
of a graph through the action of the associated matrix on the eigenspaces of its
adjacency matrix.

Lemma 1. Let X be the adjacency matrix of a graph G = (V,E). Then, a

permutation π ∈ Sym(V) is an automorphism of G i� the associated linear map

Mπ preserves the eigenspaces of X.

Proof. Suppose π ∈ Aut(G). Then MπAX = AXMπ and therefore, for any
eigenvector v in eigenspace Wi of eigenvalue λi, AXMπv = MπAXv = λiMπv
which shows that Mπv ∈Wi. Conversely, suppose Mπ preserves eigenspaces Wi

of X. Then, for any v ∈ Wi, AXMπv = λiMπx = MπAXv. Since eigenvec-
tors of the symmetric matrix AX span Rn, this implies that AXMπ = MπAX .
Therefore, π must be an automorphism of G.

Remark 1. Our approach to solving Graph Isomorphism for bounded eigenvalue
multiplicity is based on a variation of this lemma, as described in Proposition 2.
We �rst map the graph G into a point set P in the n-dimensional space Rn.
Then, we project P into eigenspace Wi of G, to obtain Pi, for each eigenspace
Wi. It turns out that π is an automorphism of G if and only if π, in its induced
action is a congruence for the point set Pi for each eigenspace Wi. When the
eigenspaces Wi are of dimension bounded by the parameter k, it creates the
setting for application of the O∗(kO(k))-time algorithm for GGI [AR14].

Next, we recall some useful results about permutation group algorithms.
Further details can be found in the excellent text of Seréss [Ser].

A permutation group is a subgroup G ≤ Sym(Ω) of the group of all per-
mutations on a �nite domain Ω. A subset A ⊆ G of a permutation group G
is a generating set for G if every element of G can be expressed as a product
of elements of A. Every permutation group G ≤ Sym(Ω) has a generating set
of size log |G| ≤ n log n) where n = |Ω|. Thus, algorithmically, a compact in-
put representation for permutation groups is by a generating set of size at most
n log n. With this input representation, it turns out there several natural permu-
tation group problems have e�cient polynomial-time algorithms. A fundamental
problem here is membership testing : Given a permutation π ∈ Sym(Ω) and per-
mutation group G by a generating set, there is a polynomial-time algorithm (the
Schreier-Sims algorithm [Ser]) to check if in π ∈ G. The pointwise stabilizer of
a subset ∆ ∈ Ω in a permutation group G ≤ Sym(Ω) is the subgroup

G{∆} = {π ∈ G | ∀γ ∈ Γ, π(γ) = γ}.

Given a permutation group G ≤ Sym(Ω) by a generating set, a generat-
ing set for G{∆} in polynomial time using ideas from the Schreier-Sims al-
gorithm [Ser]. More generally, suppose G ≤ Sym(Ω) is given by a gener-
ating set and σ ∈ Sym(Ω) is a permutation. The subset of permutations
(Gσ)∆} = {π ∈ Gσ | π(γ) = γ∀γ ∈ ∆} that pointwise �x ∆ is a right coset
G{π−1(∆})τ and a generating set for G{π−1(∆}) and such a coset representative
τ can be computed in polynomial time [Ser]. We often use the following group-
theoretic fact.

3

Fact 2. Let Hi ≤ Sym(Ω), 1 ≤ i ≤ t and σi ∈ Sym(Ω), 1 ≤ i ≤ t, where

each Hi is given by a generating set Ai. Suppose the union of the right cosets⋃t
i=1Hiσi is a coset Gσ for some subgroup G ≤ Sym(Ω). Then, we can choose

the coset representative σ to be σ1 and the set
⋃t
i=1Ai ∪ {σiσ

−1
1 | 2 ≤ i ≤ t} is

a generating set for G.

3 Algorithm Overview

Before we give an overview of the main result of this paper, we recall the Point
Set Congruence problem (also known as the geometric isomorphism problem)
GGI [AMW+88,Ak98,BK00].

Given two �nite n-point sets A and B in Qk, we say A and B are isomorphic

if there is a distance-preserving bijection between A and B, where the distance
is in the l2 metric. The Geometric Graph Isomorphism problem, denoted GGI,
is to decide if A and B are isomorphic. This problem is also known as Point Set
Congruence in the computational geometry literature [Ak98,BK00,AMW+88].
It is called �Geometric Graph Isomorphism� by Evdokimov and Ponomarenko
in [EP97b], which we �nd more suitable as the problem is closely related to
Graph Isomorphism. In [AR14] we obtained a O∗(kO(k)) time algorithm for this
problem.

We now begin with a de�nition.

De�nition 1. Let P = {p1, p2, . . . , pm} ⊂ Qn be a �nite point set. A geometric
automorphism of P is a permutation π of the point set P such that for each pair

of points pi, pj ∈ P we have

‖pi‖ = ‖π(pi)‖, and

‖pi − pj‖ = ‖π(pi)− π(pj)‖,

where pi denotes, by abuse of notation, also the position vector of the point pi.

Let P = {p1, p2, . . . , pm} ⊂ Qn be a �nite point set such that their set of
position vectors {pi} spans Rn. We refer to P as a full-dimensional point set in
Rn.

Proposition 1. Let P = {p1, p2, . . . , pm} ⊂ Qn be a full-dimensional point set.

Then there is a unique orthogonal n×n matrix Aπ such that Aπ(pi) = π(pi) for
each pi ∈ P.

Proof. As P is full dimensional, we can de�ne a unique matrix Aπ by extending
π linearly to all of Rn. Aπ can be shown to be orthogonal as follows. Any

vector x ∈ Rn, x is a linear combination
n∑
i=1

σivi where vi ∈ P. Then, ‖Ax‖2 =∑
i,j

σiσjviA
TAvj . It su�ces to observe that 2viA

TAvj = ‖A(vi−vj)‖2−‖Avi‖2−

‖Avj‖2 = ‖vi − vj‖2 − ‖vi‖2 − ‖vj‖2 = 2vTi vj for any vectors vi, vj ∈ P.

The geometric automorphism problem is de�ned below:

4

Problem 1 (Geom-AUTk).

Input: A point set {p1, p2, . . . , pm} ⊂ Qn and an orthogonal decomposition of
Rn =W1 ⊕W2 ⊕ · · · ⊕Wr, where dim(Wi) ≤ k and Wi ⊥Wj for all i 6= j.
Parameter: k.
Output: The subgroup G ≤ Sm consisting of all automorphisms π of the input
point set such that the orthogonal matrix Aπ stabilizes each subspace Wi.

The O∗(kO(k)) time algorithm for EVGIk has the following three steps.

1. We give a polynomial-time reduction from EVGIk to Geom-AUT2k.
2. We apply the O∗(kO(k)) time algorithm for GGI [AR14] to give a O∗(kO(k))

time reduction from Geom-AUT2k to a special hypergraph automorphism
problem Hyp-AUT.

3. We give a polynomial-time dynamic programming algorithm for Hyp-AUT
by adapting the hypergraph isomorphism algorithm for bounded color classes
in [ADKT10].

Proposition 2. There is a deterministic polynomial-time reduction from

EVGIk with parameter k to Geom-AUT2k with parameter 2k.

Proof. Let X = X1 ∪X2 be the disjoint union of the input instance (X1, X2) of
EVGIk. The adjacency matrix AX of X is block diagonal and has the adjacency
AX1 and AX2 as its two blocks along the diagonal. Thus, AX has the same set
of eigenvalues as AX1 and AX2 , and the multiplicity at most doubles.3 Clearly,
we can decide whether X1 and X2 are isomorphic by computing Aut(X) and
checking if there exists a π ∈ Aut(X) such that π(X1) = X2 and vice-versa.

Furthermore, by Lemma 1 a permutation π ∈ Sym(V (X)) is an automor-
phism of X if and only if π (considered as a linear map on R2n) preserves each
eigenspace ofX. Let λ1, λ2, . . . , λr be the r eigenvalues ofX andW1,W2, . . . ,Wr

be the corresponding eigenspaces.4

Next, we compute the point set P = {p1, p2, . . . , pm+2n} corresponding to
the graph X = (V,E), where |V | = 2n and |E| = m. The points p1, p2, . . . , p2n
are de�ned by the elementary n-dimensional vectors ei ∈ R2n, 1 ≤ i ≤ 2n. The
points p2n+1, . . . , p2n+m are de�ned by vectors corresponding to the edges in E
as follows: For each edge e = {i, j} ∈ E the corresponding point has 1 in the ith

and jth locations and zeros elsewhere.
We claim that π ∈ Aut(X) i� π is a geometric automorphism of P. Let

π be any permutation on the vertex set V (X). The action of the permuta-
tion π extends (uniquely) to the edge set, and hence to the point set P as
well. If π ∈ Aut(X) then, clearly, π is a geometric automorphism for the point
set P. Conversely, if π is geometric automorphism of the point set P then it
stabilizes the subset of points {p1, . . . , p2n} encoding vertices and the subset
{p2n+1, . . . , p2n+m} encoding edges which means π ∈ Aut(X). This completes
the reduction and its correctness proof.

3 We can assume w.l.o.g. that AX1 and AX2 have the same eigenvalues with the same mul-
tiplicity as we can check that in polynomial time.

4 By applying suitable numerical methods we can compute each λi and basis for each Wi to
polynomially many bits of accuracy in polynomial time. This su�ces for our algorithms.

5

4 The Geometric Automorphism Problem Geom-AUTk

In this section, we introduce some necessary de�nitions and state a useful char-
acterization of a geometric isomorphism of a set of points. This will lead to
our O∗(kO(k)) time algorithm for Geom-AUTk which yields the main result for
EVGIk by Proposition 2.

Let (P,W1,W2, . . . ,Wr) be the instance of Geom-AUTk. W.l.o.g. we can
assume that P is full dimensional. Otherwise, we can cut down the dimensional
of the ambient space Rn to the dimension of the point set P.

We can assume w.l.o.g. that each W` is given by a basis u`1, u`2, . . . , u`k`
where k` ≤ k for all ` ∈ [r].

Each point pi ∈ P has its projection proj`(pi) in the subspace W` de�ning
the projection P` = proj`(P) inside W` of the point set P. For each pi ∈ P we
can uniquely express it as

pi =
r∑
`=1

proj`(pi).

Thus we have the projections P1,P2, . . . ,Pr of the input point set P into the
orthogonal subspaces W1,W2, . . . ,Wr, respectively. These projections naturally
de�ne equivalence relations on the point set P as follows.

De�nition 2. Two points pi, pj ∈ P are (`)-equivalent if proj`(pi) = proj`(pj),
and they are [`]-equivalent if projt(pi) = projt(pj), 1 ≤ t ≤ `.

Since Rn =W1 ⊕W2 ⊕ · · · ⊕Wr we observe the following.

Fact 3. For any two pi, pj ∈ P we have pi = pj i� pi and pj are [r]-equivalent.

In other words, the common re�nement of the (`)-equivalence relations, 1 ≤
` ≤ r, is the identity relation on P, and the equivalence classes of this re�nement
are the singleton sets. Given a permutation π on the point set P we can ask
whether it induces an automorphism on the projection P` in the following sense.

A subset ∆ ⊂ P of points is an (`)-equivalence class of P if and only if for
some point p ∈ P` we have ∆ = proj−1` (p). Thus, each point in the projected set
P` represents an (`)-equivalence class. We say that permutation π ∈ Sym(P)
respects P` i� for each (`)-equivalence class ∆ ⊂ P the subset π(∆) is an (`)-
equivalence class. Suppose π ∈ Sym(P) is a permutation that respects P`. Then
π induces a permutation π` on the point set P` as follows: for each p ∈ P` its
image is

π`(p) = proj`(π(proj
−1
` (p))).

De�nition 3. A permutation π ∈ Sym(P) is said to be an induced geometric
automorphism on the projection P` ⊂W` if π respects P` and π` is a geometric

automorphism of the point set P`.

Lemma 2. Let (P,W1,W2, . . . ,Wr) be an instance of Geom-AUTk and P be

full dimensional in Rn. Let π be a permutation on P. Then π is a geometric

automorphism of P such that Aπ(W`) = W` for each ` ∈ [r] if and only if π is

an induced automorphism of each P`, 1 ≤ ` ≤ r.

6

Proof. For the forward direction, suppose π is a geometric automorphism of P
such that Aπ(W`) = W` for each W`. We claim that π is an induced automor-
phism of P` for each `.

For any point pi ∈ P we can write

pi = proj`(pi) + u,

where u is a vector in W⊥` . Since Aπ stabilizes each Wi, it follows by linearity
that

proj`(Aπ(pi)) = Aπ(proj`(p)).

Hence Aπ(P`) = P` which implies π is an induced automorphism of P` for each
`.

Conversely, suppose a permutation π on P is an induced automorphism of
each P`, 1 ≤ ` ≤ r. Since each P` is a full-dimensional point set in W`, it follows
that Aπ(W`) =W` for each `. To see that π is a geometric automorphism of P,
let pi, pj ∈ P. We can write pi =

∑r
`=1 proj`(pi) and pj =

∑r
`=1 proj`(pj). By

linearity, we have Aπ(pi) =
∑

`Aπ(proj`(pi)) and Aπ(pj) =
∑

`Aπ(proj`(pj)).
Hence, by Pythagoras theorem we have

‖Aπ(pi)−Aπ(pj)‖2 =
r∑
`=1

‖Aπ(proj`(pi))−Aπ(proj`(pj))‖2

=
r∑
`=1

‖proj`(pi))− proj`(pj))‖2

= ‖pi − pj‖2,

where the third line above follows because π is an induced automorphism of
each P`.

5 The Hypergraph Automorphism Problem

By Lemma 2 it follows that Aut(P) is the group of all π ∈ Sym(P) such that π
is an induced automorphism of each P`, 1 ≤ ` ≤ r. In this section we describe
the algorithm for computing a generating set for Aut(P) in O∗(kO(k)) time.

The �rst step is to reduce Geom-AUTk in O
∗(kO(k)) time to a hypergraph

automorphism problem de�ned below:

Problem 2 (Hyp-AUT).

Input: A hypergraph X = (V,E) and a partition of the vertex set into color
classes V = V1 ∪ V2 ∪ · · · ∪ Vr, and subgroups Gi ≤ Sym(Vi), 1 ≤ i ≤ r, where
each Gi is given as an explicit list of permutations.

Output: A generating set for Aut(X) ∩G1 ×G2 × · · · ×Gr.

We will give a polynomial-time algorithm for this problem based on a dy-
namic programming strategy as used in [ADKT10]. Before that we will show
that Geom-AUTk is reducible to Hyp-AUT in O∗(kO(k)) time. Combining the
two we will obtain the O∗(kO(k)) time algorithm for Geom-AUTk.

7

Theorem 1. There is a O∗(kO(k)) time reduction from the Geom-AUTk prob-

lem to Hyp-AUT.

Proof. Let (P,W1,W2, . . . ,Wr) be an instance of Geom-AUTk. In order to
compute Aut(P) we �rst compute each P`, ` ∈ [r]. Then, since W` is k-
dimensional we can compute the geometric automorphisms Aut(P`) inO∗(kO(k))
time by applying the main result of [AR14]. Indeed, Aut(P`) can be explic-
itly listed down in O∗(kO(k)) time, also implying that |Aut(P`)| is bounded by
O∗(kO(k)). Now, we construct a hypergraph instance X = (V,E) of Hyp-AUT
as follows: The vertex set V is the disjoint union V = P1 ∪ . . .Pr, and the
explicitly listed groups G` = Aut(P`), ` ∈ [r]. For each point pi ∈ P we include
a hyperedge ep ∈ E, where ep = {proj1(pi), proj2(pi), . . . , projr(pi)}. Since the
edges of X encode points in P, the induced action of the automorphism group
Aut(X)∩G1×G2× · · ·×Gr on the edges of X is in one-to-one correspondence
with Aut(P) by Lemma 2. Hence, we can obtain a generating set for Aut(P).
Clearly, the reduction runs in time O∗(kO(k)).

In the polynomial-time algorithm for Hyp-AUT we will use as subroutine a
polynomial-time algorithm for the following simple coset intersection problem.

Problem 3 (Restricted Coset Intersection).

Input: Let V = V1] V2] · · ·] Vr be a partition of the domain into color
classes and Gi ≤ Sym(Vi) be an explicitly listed subgroup of permutations on
Vi, 1 ≤ i ≤ r. Let H and H ′ be subgroups of the product group G1 × · · · ×Gr,
where H and H ′ are given by generating sets as input. Let π, π′ ∈ G1×· · ·×Gr.
Output: The coset intersection Hπ ∩ H ′π′ which, if nonempty, is given by a
generating set for H ∩H ′ and a coset representative π′′ ∈ Hπ ∩H ′π′.

Lemma 3. The above restricted coset intersection problem has a polynomial-

time algorithm.

Proof. We give a sketch of the algorithm which is a simple application of the
classical Schreier-Sims algorithm (mentioned in Section 2): given a permutation
group G ≤ Sym(Ω) by a generating set and another permutation π ∈ Sym(Ω),
for any point α ∈ Ω the subcoset of Gπ that �xes the point α can be computed
in time polynomial in |Ω| and the size of the generating set for G. See, e.g. [Ser]
for details.

In order to compute the intersection Hπ ∩ H ′π′, we consider the product
group H ×H ′ acting on the set ∆ =

⋃r
i=1 Vi × Vi component-wise. The permu-

tation pair (π, π′) too de�nes a permutation on the set ∆. We consider now the
coset (H ×H ′)(π, π′) of the group H ×H ′. De�ne the diagonal sets

Di = {(α, α) | α ∈ Vi}, 1 ≤ i ≤ r.

The following claim is immediate from the de�nitions.

Claim. A pair (h, h′) ∈ (H×H ′)(π, π′) maps each Di to Di if and only if h = h′

and h ∈ Hπ ∩H ′π′.

8

Thus, in order to compute the coset intersection it su�ces to compute the
subcoset

{(h, h′) ∈ (H ×H ′)(π, π′) | (h, h′)(Di) = (Di)1 ≤ i ≤ r}

of the coset (H ×H ′)(π, π′). Notice that Di ⊂ Vi × Vi and the elements of the
coset (H ×H ′)(π, π′) restricted to Vi × Vi are from the group Gi ×Gi which is
polynomially bounded in input size. LetΩ denote the entire orbit ofDi under the
action of the group Gi ×Gi. Clearly, |Ω| ≤ |Gi|2 and therefore is polynomially
bounded in input size and can be computed. Now, Di is just a point in the
set Ω and we can compute its pointwise stabilizer subcoset in (H ×H ′)(π, π′)
by the Schreier-Sims algorithm (as outlined above) in time polynomial in |Ω|
and the generating sets sizes of H and H ′. Repeating this procedure for each
Di, 1 ≤ i ≤ r yields the subcoset that maps Di to Di for each i. This completes
the proof sketch.

We now describe the polynomial-time algorithm for Hyp-AUT.

Theorem 2. There is a polynomial-time algorithm for Hyp-AUT.

Proof. The algorithm is a dynamic programming strategy exactly as in
[ADKT10]. But, unlike the problem considered in [ADKT10], we do not have
bounded-size color classes in our hypergraph instances. Instead, we have color
classes Vi and explicitly listed subgroups Gi ≤ Sym(Vi) on each color class and
we have to compute color-class preserving automorphisms π ∈ Aut(X) that,
when restricted to each color class Vi belong to the corresponding Gi. We now
describe the algorithm.

The subproblems of this dynamic programming algorithm involve hyper-
graphs (V,E) with multiple hyperedges (i.e., E is a multi-set). Thus, we may
assume that the input X too is a multi-hypergraph given with the vertex set
partition V =]r`=1V`, and groups G` ≤ Sym(V`) explicitly listed as permuta-
tions. A bijection ϕ : V → V is an automorphism of interest if ϕ maps each V`
to V` such that:

� The permutation ϕ restricted to V` is an element of the group G`.
� The map induced by ϕ on E preserves the hyperedges with their multiplic-
ities (for each hyperedge e ⊆ V , e and ϕ(e) have the same multiplicity in
E).

We �rst introduce some notation. For ` ∈ [r] and any multi-set D of hy-
peredges e ⊆ V , let D[`] denote the multi-hypergraph (V[`], {e ∩ V[`] | e ∈ D})
on vertex set V[`] = V1] · · ·] V`. Further, let D` denote the multi-hypergraph
(V`, {e ∩ V` | e ∈ D}) on vertex set V`. For two multi-hypergraphs D[`] and
D′[`] let ISO(D[`], D

′
[`]) denote the coset of all isomorphisms between them that

belong to G1 × · · · ×G`.
For ` ∈ [r] we de�ne an equivalence relation ≡` on the hyperedges in E: for

hyperedges e1, e2 ∈ E we say e1 ≡` e2 if

e1 ∩ Vj = e2 ∩ Vj for j = `+ 1, . . . , r.

9

The equivalence classes of ≡` are called (`)-blocks. For ` ≤ j, notice that ≡`
is a re�nement of ≡j . Thus, if e1 and e2 are in the same (`)-block then they are
in the same (j)-block for all j ≥ `.

The algorithm works in stages ` = 0, . . . , r. In stage `, the algorithm consid-
ers the multi-hypergraphs A[`+1] induced by the di�erent (`)-blocks A on the ver-
tex set V[`+1]. For each pair of (`)-blocks A,B the algorithm computes the cosets

ISO(A[`], B[`]) (unless ` = 0) using the cosets of the form ISO(Ai[`−1], B
j
[`−1])

computed already. Finally, for the single (r)-block E the algorithm computes
the coset ISO(E[r], E[r]) which is the desired group Aut(X) ∩G1 × · · · ×Gr.

Stage 0: Let A and B be (0)-blocks. Then A contains a single hyperedge a
with multiplicity |A|, and B contains b with multiplicity |B|. The coset
ISO(A[1], B[1]) = ∅ if ‖A‖ 6= ‖B‖ or ‖a ∩ V1‖ 6= ‖b ∩ V1‖. Otherwise,
ISO(A[1], B[1]) ∩ G1 is a subcoset of all elements of G1 that maps a ∩ V1
to b ∩ V1, which can be computed by inspecting the list of elements in G1.

For ` := 1 to r − 1 do

Stages `: For each pair (A,B) of (`)-blocks compute the table entry
T (`, A,B) = ISO(A[`], B[`]) as follows:
1. Partition the (`)-blocks A and B into (` − 1)-blocks A1, · · · , At and
B1, · · · , Bt′ , respectively. If t 6= t′ then ISO(A[`], B[`]) is empty.

2. Otherwise, t = t′. Clearly, for all e ∈ A1, e ∩ Vl is identical. Let ai =
e∩V`, e ∈ Ai and bi′ = e∩V`, e ∈ Bi′ , for 1 ≤ i, i′ ≤ t. Let S` ⊂ G` be the
subcoset of all permutations τ ∈ G` such that τ (injectively) maps the set
{a1, a2, . . . , at} to the set {b1, b2, . . . , bt}. For each τ ∈ S|ell, we denote
by τ̂ this induced mapping that injectively maps the set {ai | 1 ≤ i ≤ t}
to {bτ̂(i) | 1 ≤ i ≤ t}.
We can compute S` in polynomial time since G` is given as an explicit
list as part of the input.

3. For τ ∈ S`, recall that Aj[`−1] and B
τ̂(j)
[`−1] denote the multi-hypergraphs

obtained from the (`−1)-blocks Aj and Bτ̂(j), where j 7→ τ̂(j) for τ ∈ S`
means that τ maps aj to bτ(j). Then it is clear that we have

ISO(A[`], B[`]) =
⋃
τ∈S`

t⋂
j=1

ISO(Aj[`−1], B
τ̂(j)
[`−1])× {τ} (1)

where we have already computed the coset ISO(Aj[`−1], B
π(j)
[`−1]).

4. In order to compute the coset ISO(A[`], B[`]) from Equation 1, we cycle
through the polynomially many τ ∈ S`, and compute each coset inter-

section
⋂t
j=1 ISO(Aj[`−1], B

τ̂(j)
[`−1]) by repeated application of the restricted

coset intersection algorithm of Lemma 3. We can write a generating set
for the union of the cosets over all τ using Fact 2.

Output: In the last step, the unique (r)-block is the entire set of hyperedges
E, and the table entry T (r, E[r], E[r]) = ISO(E[r], E[r]).

It is clear from the description that the running time is polynomially
bounded in |E|, |V | and max1≤`≤r |G`|.

10

Acknowledgement. We thank Saket Saurabh for suggesting the problem
of obtaining a faster isomorphism algorithm for graphs of bounded eigenvalue
multiplicity using the O∗(kO(k)) time algorithm for GGI.

References

[AMW+88] H. Alt, K. Mehlhorn, H. Wagener, E. Welzl. Congruence, similarity, and symme-
tries of geometric objects. Discrete Computational Geometry, 3:237-256, 1988.

[Ak98] Tatsuya Akutsu. On determining the congruence of point sets in d dimensions.
Computational Geometry, 9(4):247�256, 1998.

[BK00] Peter Braÿ and Christian Knauer. Testing the congruence of d-dimensional point
sets. In Symposium on Computational Geometry, pages 310�314, 2000.

[BL83] László Babai and Eugene M. Luks. Canonical labeling of graphs. In Proceedings

of the ACM STOC Conference, pages 171�183, 1983.
[BHZ87] Ravi B. Boppana, Johan Håstad and Stathis Zachos. Does co-NP Have Short

Interactive Proofs? Inf. Process. Lett., 25:2, 127-132, 1987.
[Luks80] Eugene M. Luks. Isomorphism of Graphs of Bounded Valence Can Be Tested in

Polynomial Time. In Proceedings of the IEEE FOCS Conference, pages 42-49,
1980.

[Mil80] Gary L. Miller. Isomorphism Testing for Graphs of Bounded Genus. In Proceedings
of the ACM STOC Conference, pages 225-235, 1980.

[GM12] Martin Grohe and Dániel Marx. Structure theorem and isomorphism test for
graphs with excluded topological subgraphs. 44th ACM Symp. on Theory of Com-

puting, pp. 173-192, 2012.
[EP97a] S.A. Evdokimov and I.N. Ponomarenko. Isomorphism of Coloured Graphs with

Slowly Increasing Multiplicity of Jordan Blocks. Combinatorica 19(3): 321-333
(1999).

[EP97b] S.A. Evdokimov and I.N. Ponomarenko. On the geometric graph isomorphism
problem. Pure and Applied Algebra, 117-118:253�276, 1997.

[BGM82] László Babai, D. Yu. Grigoryev and David M. Mount. Isomorphism of Graphs with
Bounded Eigenvalue Multiplicity. In Proceedings of the ACM STOC Conference,

pages 310-324, 1982.
[Bab86] László Babai. A Las Vegas-NC Algorithm for isomorphism of graphs with bounded

multiplicity of eigenvalues. In Proceedings of IEEE FOCS Conference, pages 303-
312, 1986.

[HR14] Ishay Haviv and Oded Regev. On the lattice isomorphism problem. In Proceedings

of the 25th Annual ACM-SIAM Conference, pages 391-404, SODA 2014.
[AR14] V. Arvind and Gaurav Rattan. The parameterized complexity of geometric graph

isomorphism. In Proceedings of IPEC Conference 2014, to appear.
[ADKT10] Vikraman Arvind, Bireswar Das, Johannes Köbler and Seinosuke Toda. Col-

ored Hypergraph Isomorphism is Fixed Parameter Tractable. In Proceedings of

FSTTCS Conference, pages 327-337, 2010.
[Ser] Á. Seress. Permutation Group Algorithms. Cambridge University Press, 2003.

11

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

