Faster FPT Algorithm for Graph Isomorphism Parameterized by Eigenvalue Multiplicity

V. Arvind Gaurav Rattan
Institute of Mathematical Sciences, Chennai, India
\{arvind,grattan\}@imsc.res.in

Abstract

We give a $O^{*}\left(k^{O(k)}\right)$ time isomorphism testing algorithm for graphs of eigenvalue multiplicity bounded by k which improves on the previous best running time bound of $O^{*}\left(2^{O\left(k^{2} / \log k\right)}\right)$ [EP97a]. ${ }^{1}$

1 Introduction

Two simple undirected graphs $X=(V, E)$ and $X^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ are said to be isomorphic if there is a bijection $\varphi: V \rightarrow V^{\prime}$ such that for all pairs $\{u, v\} \in\binom{V}{2}$, $\{u, v\} \in E$ if and only if $\{\varphi(u), \varphi(v)\} \in E^{\prime}$. Given two graphs X and X^{\prime} as input the decision problem Graph Isomorphism asks whether X is isomorphic to X^{\prime}. An outstanding open problem in the field of algorithms and complexity is whether the Graph Isomorphism problem has a polynomial-time algorithm. The asymptotically fastest known algorithm for Graph Isomorphism has worst-case running time time $2^{O(\sqrt{n \lg n})}$ on n-vertex graphs [BL83]. On the other hand, the problem is unlikely to be NP-complete as it is in NP \cap coAM [BHZ87].

However, efficient algorithms for Graph Isomorphism have been discovered over the years for various interesting subclasses of graphs, like, for example, bounded degree graphs [Luks80], bounded genus graphs [Mil80,GM12], bounded eigenvalue multiplicity graphs [BGM82,EP97a].

The focus of the present paper is Graph Isomorphism for bounded eigenvalue multiplicity graphs. This was first studied by Babai et al [BGM82] who gave an $n^{O(k)}$ time algorithm for it. There is also an NC algorithm ${ }^{2}$ for the problem for constant k due to Babai [Bab86]. Using an approach based on cellular algebras and some nontrivial group theory, Evdokimov and Ponomarenko [EP97a] gave an $O^{*}\left(2^{O\left(k^{2} / \log k\right)}\right)$ algorithm for it. This puts the problem in FPT, which is the class of fixed parameter tractable problems. The parameter in question here is the bound k on the eigenvalue multiplicity of the input graphs.

In this paper we obtain a $O^{*}\left(k^{O(k)}\right)$ time isomorphism algorithm for graphs of eigenvalue multiplicity bounded by k. We follow a relatively simple geometric approach to the problem using integer lattices. Recently, we obtained an $O^{*}\left(k^{O(k)}\right)$ time algorithm for Point Set Congruence (abbreviated GGI) in \mathbb{Q}^{k} in the ℓ_{2} metric [AR14]. Our algorithm is based on a lattice isomorphism algorithm of running time $O^{*}\left(k^{O(k)}\right)$, due to Haviv and Regev [HR14]. They design

[^0]an $O^{*}\left(n^{O(n)}\right)$ time algorithm for checking if two integer lattices in \mathbb{R}^{n} are isomorphic under an orthogonal transformation. In [AR14] we adapt their technique to solve the Point Set Congruence problem, GGI, in $O^{*}\left(k^{O(k)}\right)$ time.

Now, in this paper, building on our previous algorithm for GGI [AR14], combined with some permutation group algorithms, we first give an $O^{*}\left(k^{O(k)}\right)$ time algorithm for a suitable geometric automorphism problem, defined in Section 4. It turns out that the bounded eigenvalue multiplicity Graph Isomorphism can be efficiently reduced to this geometric automorphism problem, which yields the $O^{*}\left(k^{O(k)}\right)$ time algorithm for it.

2 Preliminaries

Let $[n]$ denote the set $\{1, \ldots, n\}$. We assume basic familiarity with the notions of vector spaces, linear transformations and matrices. The projection of a vector $v \in \mathbb{R}^{n}$ on a subspace $S \subseteq \mathbb{R}^{n}$ is denoted as $\operatorname{proj}_{S}(v)$. The inner product of vectors $u=\left(u_{1}, \ldots, u_{n}\right)$ and $v=\left(v_{1}, \ldots, v_{n}\right)$ is $\langle u, v\rangle=\sum_{i \in[n]} u_{i} v_{i}$. The euclidean norm, $\|u\|$, of a vector u, is $\sqrt{\langle u, u\rangle}$, and the distance between two points u and v in \mathbb{R}^{n} is $\|u-v\|$. Vectors u, v are orthogonal if $\langle u, v\rangle=0$. Subspaces U, V are orthogonal if for every $u \in U, v \in V, u, v$ are orthogonal. A set of subspaces W_{1}, \ldots, W_{r} is said to be an orthogonal decomposition of \mathbb{R}^{n} if each pair of subspaces are mutually orthogonal, and they span \mathbb{R}^{n}. A square matrix M is orthogonal if $M^{T} M=I$. A linear transformation T stabilizes a subspace S if $T(S) \subseteq S$. Given a matrix M, we call λ to be an eigenvalue of M if there exists a vector v such that $M v=\lambda v$. We call v to be an eigenvector of M of eigenvalue λ. The set of all eigenvectors of M of eigenvalue λ is a subspace of \mathbb{R}^{n}. The following well-known fact about $n \times n$ symmetric matrices will be useful.

Fact 1. All eigenvalues of a symmetric matrix are real. Moreover, the eigenspaces form an orthogonal decomposition of \mathbb{R}^{n}.

We use $\operatorname{Sym}(V)$ to denote group of all permutations on a finite set V. Given a graph $X=(V, E)$, a permutation $\pi \in \operatorname{Sym}(V)$ is an automorphism of the graph X if for all pairs $\{u, v\}$ of vertices, $\{u, v\} \in E$ iff $\{\pi(u), \pi(v)\} \in E$. In other words, π preserves adjacency in X. The set of all automorphisms of a graph X, denoted by $\operatorname{Aut}(X)$, is a subgroup of $\operatorname{Sym}(V)$, which is denoted by $\operatorname{Aut}(X) \leq \operatorname{Sym}(V)$.

We can similarly talk of automorphisms of hypergraphs: Let $X=(V, E)$ be a hypergraph with vertex set V and edge set $E \subset 2^{E}$. A permutation $\pi \in \operatorname{Sym}(V)$ is an automorphism of the hypergraph X if for every subset $e \subseteq V, e \in E$ if and only if $\pi(e) \in E$, where $\pi(e)=\{\pi(v) \mid v \in e\}$.

Given an undirected graph $X=(V, E)$, the set V indexed by $[n]$, we define its adjacency matrix A_{X} is defined as follows: $A_{X}(i, j)=1$ if $\left\{v_{i}, v_{j}\right\} \in E$ and 0 otherwise. Clearly, the adjacency matrix A_{X} of an undirected graph X is symmetric. Given a permutation $\pi:[n] \rightarrow[n]$, we can associate a natural permutation matrix M_{π} with it. It is easy to verify that π is an automorphism
of a graph G iff $M_{\pi}^{T} A_{X} M_{\pi}=A_{X}$. Since permutation matrices are orthogonal matrices, the following simple folklore lemma characterizes the automorphisms of a graph through the action of the associated matrix on the eigenspaces of its adjacency matrix.

Lemma 1. Let X be the adjacency matrix of a graph $G=(V, E)$. Then, a permutation $\pi \in \operatorname{Sym}(V)$ is an automorphism of G iff the associated linear map M_{π} preserves the eigenspaces of X.

Proof. Suppose $\pi \in \operatorname{Aut}(G)$. Then $M_{\pi} A_{X}=A_{X} M_{\pi}$ and therefore, for any eigenvector v in eigenspace W_{i} of eigenvalue $\lambda_{i}, A_{X} M_{\pi} v=M_{\pi} A_{X} v=\lambda_{i} M_{\pi} v$ which shows that $M_{\pi} v \in W_{i}$. Conversely, suppose M_{π} preserves eigenspaces W_{i} of X. Then, for any $v \in W_{i}, A_{X} M_{\pi} v=\lambda_{i} M_{\pi} x=M_{\pi} A_{X} v$. Since eigenvectors of the symmetric matrix A_{X} span \mathbb{R}^{n}, this implies that $A_{X} M_{\pi}=M_{\pi} A_{X}$. Therefore, π must be an automorphism of G.

Remark 1. Our approach to solving Graph Isomorphism for bounded eigenvalue multiplicity is based on a variation of this lemma, as described in Proposition 2. We first map the graph G into a point set \mathcal{P} in the n-dimensional space \mathbb{R}^{n}. Then, we project \mathcal{P} into eigenspace W_{i} of G, to obtain \mathcal{P}_{i}, for each eigenspace W_{i}. It turns out that π is an automorphism of G if and only if π, in its induced action is a congruence for the point set \mathcal{P}_{i} for each eigenspace W_{i}. When the eigenspaces W_{i} are of dimension bounded by the parameter k, it creates the setting for application of the $O^{*}\left(k^{O(k)}\right)$-time algorithm for GGI [AR14].

Next, we recall some useful results about permutation group algorithms. Further details can be found in the excellent text of Seréss [Ser].

A permutation group is a subgroup $G \leq \operatorname{Sym}(\Omega)$ of the group of all permutations on a finite domain Ω. A subset $A \subseteq G$ of a permutation group G is a generating set for G if every element of G can be expressed as a product of elements of A. Every permutation group $G \leq \operatorname{Sym}(\Omega)$ has a generating set of size $\log |G| \leq n \log n)$ where $n=|\Omega|$. Thus, algorithmically, a compact input representation for permutation groups is by a generating set of size at most $n \log n$. With this input representation, it turns out there several natural permutation group problems have efficient polynomial-time algorithms. A fundamental problem here is membership testing: Given a permutation $\pi \in \operatorname{Sym}(\Omega)$ and permutation group G by a generating set, there is a polynomial-time algorithm (the Schreier-Sims algorithm [Ser]) to check if in $\pi \in G$. The pointwise stabilizer of a subset $\Delta \in \Omega$ in a permutation group $G \leq \operatorname{Sym}(\Omega)$ is the subgroup

$$
G_{\{\Delta\}}=\{\pi \in G \mid \forall \gamma \in \Gamma, \pi(\gamma)=\gamma\} .
$$

Given a permutation group $G \leq \operatorname{Sym}(\Omega)$ by a generating set, a generating set for $G_{\{\Delta\}}$ in polynomial time using ideas from the Schreier-Sims algorithm [Ser]. More generally, suppose $G \leq \operatorname{Sym}(\Omega)$ is given by a generating set and $\sigma \in \operatorname{Sym}(\Omega)$ is a permutation. The subset of permutations $(G \sigma)_{\Delta\}}=\{\pi \in G \sigma \mid \pi(\gamma)=\gamma \forall \gamma \in \Delta\}$ that pointwise fix Δ is a right coset $G_{\left\{\pi^{-1}(\Delta\}\right)} \tau$ and a generating set for $G_{\left\{\pi^{-1}(\Delta\}\right)}$ and such a coset representative τ can be computed in polynomial time [Ser]. We often use the following grouptheoretic fact.

Fact 2. Let $H_{i} \leq \operatorname{Sym}(\Omega), 1 \leq i \leq t$ and $\sigma_{i} \in \operatorname{Sym}(\Omega), 1 \leq i \leq t$, where each H_{i} is given by a generating set A_{i}. Suppose the union of the right cosets $\bigcup_{i=1}^{t} H_{i} \sigma_{i}$ is a coset $G \sigma$ for some subgroup $G \leq \operatorname{Sym}(\Omega)$. Then, we can choose the coset representative σ to be σ_{1} and the set $\bigcup_{i=1}^{t} A_{i} \cup\left\{\sigma_{i} \sigma_{1}^{-1} \mid 2 \leq i \leq t\right\}$ is a generating set for G.

3 Algorithm Overview

Before we give an overview of the main result of this paper, we recall the Point Set Congruence problem (also known as the geometric isomorphism problem) GGI [AMW $\left.{ }^{+} 88, A k 98, B K 00\right]$.

Given two finite n-point sets A and B in \mathbb{Q}^{k}, we say A and B are isomorphic if there is a distance-preserving bijection between A and B, where the distance is in the l_{2} metric. The Geometric Graph Isomorphism problem, denoted GGI, is to decide if A and B are isomorphic. This problem is also known as Point Set Congruence in the computational geometry literature [Ak98, BK00, AMW ${ }^{+}$88]. It is called "Geometric Graph Isomorphism" by Evdokimov and Ponomarenko in [EP97b], which we find more suitable as the problem is closely related to Graph Isomorphism. In [AR14] we obtained a $O^{*}\left(k^{O(k)}\right)$ time algorithm for this problem.

We now begin with a definition.
Definition 1. Let $\mathcal{P}=\left\{p_{1}, p_{2}, \ldots, p_{m}\right\} \subset \mathbb{Q}^{n}$ be a finite point set. A geometric automorphism of \mathcal{P} is a permutation π of the point set \mathcal{P} such that for each pair of points $p_{i}, p_{j} \in \mathcal{P}$ we have

$$
\begin{aligned}
\left\|p_{i}\right\| & =\left\|\pi\left(p_{i}\right)\right\|, \text { and } \\
\left\|p_{i}-p_{j}\right\| & =\left\|\pi\left(p_{i}\right)-\pi\left(p_{j}\right)\right\|
\end{aligned}
$$

where p_{i} denotes, by abuse of notation, also the position vector of the point p_{i}.
Let $\mathcal{P}=\left\{p_{1}, p_{2}, \ldots, p_{m}\right\} \subset \mathbb{Q}^{n}$ be a finite point set such that their set of position vectors $\left\{p_{i}\right\}$ spans \mathbb{R}^{n}. We refer to \mathcal{P} as a full-dimensional point set in \mathbb{R}^{n}.

Proposition 1. Let $\mathcal{P}=\left\{p_{1}, p_{2}, \ldots, p_{m}\right\} \subset \mathbb{Q}^{n}$ be a full-dimensional point set. Then there is a unique orthogonal $n \times n$ matrix A_{π} such that $A_{\pi}\left(p_{i}\right)=\pi\left(p_{i}\right)$ for each $p_{i} \in \mathcal{P}$.

Proof. As \mathcal{P} is full dimensional, we can define a unique matrix A_{π} by extending π linearly to all of \mathbb{R}^{n}. A_{π} can be shown to be orthogonal as follows. Any vector $x \in \mathbb{R}^{n}, x$ is a linear combination $\sum_{i=1}^{n} \sigma_{i} v_{i}$ where $v_{i} \in \mathcal{P}$. Then, $\|A x\|^{2}=$ $\sum_{i, j} \sigma_{i} \sigma_{j} v_{i} A^{T} A v_{j}$. It suffices to observe that $2 v_{i} A^{T} A v_{j}=\left\|A\left(v_{i}-v_{j}\right)\right\|^{2}-\left\|A v_{i}\right\|^{2}-$ $\left\|A v_{j}\right\|^{2}=\left\|v_{i}-v_{j}\right\|^{2}-\left\|v_{i}\right\|^{2}-\left\|v_{j}\right\|^{2}=2 v_{i}^{T} v_{j}$ for any vectors $v_{i}, v_{j} \in \mathcal{P}$.

The geometric automorphism problem is defined below:

Problem 1 (GEom-AUT ${ }_{k}$).
Input: A point set $\left\{p_{1}, p_{2}, \ldots, p_{m}\right\} \subset \mathbb{Q}^{n}$ and an orthogonal decomposition of $\mathbb{R}^{n}=W_{1} \oplus W_{2} \oplus \cdots \oplus W_{r}$, where $\operatorname{dim}\left(W_{i}\right) \leq k$ and $W_{i} \perp W_{j}$ for all $i \neq j$.
Parameter: k.
Output: The subgroup $G \leq S_{m}$ consisting of all automorphisms π of the input point set such that the orthogonal matrix A_{π} stabilizes each subspace W_{i}.

The $O^{*}\left(k^{O(k)}\right)$ time algorithm for EVGI_{k} has the following three steps.

1. We give a polynomial-time reduction from EVGI_{k} to Geom- $\mathrm{AUT}_{2 k}$.
2. We apply the $O^{*}\left(k^{O(k)}\right)$ time algorithm for GGI [AR14] to give a $O^{*}\left(k^{O(k)}\right)$ time reduction from GЕом- $\mathrm{AUT}_{2 k}$ to a special hypergraph automorphism problem HYp-AUT.
3. We give a polynomial-time dynamic programming algorithm for HYP-AUT by adapting the hypergraph isomorphism algorithm for bounded color classes in [ADKT10].

Proposition 2. There is a deterministic polynomial-time reduction from EVGI_{k} with parameter k to $\mathrm{GEOM}_{\mathrm{AUT}}^{2 k}$ with parameter $2 k$.

Proof. Let $X=X_{1} \cup X_{2}$ be the disjoint union of the input instance (X_{1}, X_{2}) of EVGI ${ }_{k}$. The adjacency matrix A_{X} of X is block diagonal and has the adjacency $A_{X_{1}}$ and $A_{X_{2}}$ as its two blocks along the diagonal. Thus, A_{X} has the same set of eigenvalues as $A_{X_{1}}$ and $A_{X_{2}}$, and the multiplicity at most doubles. ${ }^{3}$ Clearly, we can decide whether X_{1} and X_{2} are isomorphic by computing $\operatorname{Aut}(X)$ and checking if there exists a $\pi \in \operatorname{Aut}(X)$ such that $\pi\left(X_{1}\right)=X_{2}$ and vice-versa.

Furthermore, by Lemma 1 a permutation $\pi \in \operatorname{Sym}(V(X))$ is an automorphism of X if and only if π (considered as a linear map on $\mathbb{R}^{2 n}$) preserves each eigenspace of X. Let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{r}$ be the r eigenvalues of X and $W_{1}, W_{2}, \ldots, W_{r}$ be the corresponding eigenspaces. ${ }^{4}$

Next, we compute the point set $\mathcal{P}=\left\{p_{1}, p_{2}, \ldots, p_{m+2 n}\right\}$ corresponding to the graph $X=(V, E)$, where $|V|=2 n$ and $|E|=m$. The points $p_{1}, p_{2}, \ldots, p_{2 n}$ are defined by the elementary n-dimensional vectors $e_{i} \in \mathbb{R}^{2 n}, 1 \leq i \leq 2 n$. The points $p_{2 n+1}, \ldots, p_{2 n+m}$ are defined by vectors corresponding to the edges in E as follows: For each edge $e=\{i, j\} \in E$ the corresponding point has 1 in the $i^{t h}$ and $j^{\text {th }}$ locations and zeros elsewhere.

We claim that $\pi \in \operatorname{Aut}(X)$ iff π is a geometric automorphism of \mathcal{P}. Let π be any permutation on the vertex set $V(X)$. The action of the permutation π extends (uniquely) to the edge set, and hence to the point set \mathcal{P} as well. If $\pi \in \operatorname{Aut}(X)$ then, clearly, π is a geometric automorphism for the point set \mathcal{P}. Conversely, if π is geometric automorphism of the point set \mathcal{P} then it stabilizes the subset of points $\left\{p_{1}, \ldots, p_{2 n}\right\}$ encoding vertices and the subset $\left\{p_{2 n+1}, \ldots, p_{2 n+m}\right\}$ encoding edges which means $\pi \in \operatorname{Aut}(X)$. This completes the reduction and its correctness proof.

[^1]
4 The Geometric Automorphism Problem Geom-AUT ${ }_{k}$

In this section, we introduce some necessary definitions and state a useful characterization of a geometric isomorphism of a set of points. This will lead to our $O^{*}\left(k^{O(k)}\right)$ time algorithm for GEOM- AUT_{k} which yields the main result for EVGI ${ }_{k}$ by Proposition 2.

Let $\left(\mathcal{P}, W_{1}, W_{2}, \ldots, W_{r}\right)$ be the instance of GEOM-AUT k. W.l.o.g. we can assume that \mathcal{P} is full dimensional. Otherwise, we can cut down the dimensional of the ambient space \mathbb{R}^{n} to the dimension of the point set \mathcal{P}.

We can assume w.l.o.g. that each W_{ℓ} is given by a basis $u_{\ell 1}, u_{\ell 2}, \ldots, u_{\ell k_{\ell}}$ where $k_{\ell} \leq k$ for all $\ell \in[r]$.

Each point $p_{i} \in \mathcal{P}$ has its projection $\operatorname{proj}_{\ell}\left(p_{i}\right)$ in the subspace W_{ℓ} defining the projection $\mathcal{P}_{\ell}=\operatorname{proj}_{\ell}(\mathcal{P})$ inside W_{ℓ} of the point set \mathcal{P}. For each $p_{i} \in \mathcal{P}$ we can uniquely express it as

$$
p_{i}=\sum_{\ell=1}^{r} \operatorname{proj}_{\ell}\left(p_{i}\right)
$$

Thus we have the projections $\mathcal{P}_{1}, \mathcal{P}_{2}, \ldots, \mathcal{P}_{r}$ of the input point set \mathcal{P} into the orthogonal subspaces $W_{1}, W_{2}, \ldots, W_{r}$, respectively. These projections naturally define equivalence relations on the point set \mathcal{P} as follows.

Definition 2. Two points $p_{i}, p_{j} \in \mathcal{P}$ are (ℓ)-equivalent if $\operatorname{proj}_{\ell}\left(p_{i}\right)=\operatorname{proj}_{\ell}\left(p_{j}\right)$, and they are [$\ell]$-equivalent if $\operatorname{proj}_{t}\left(p_{i}\right)=\operatorname{proj}_{t}\left(p_{j}\right), 1 \leq t \leq \ell$.

Since $\mathbb{R}^{n}=W_{1} \oplus W_{2} \oplus \cdots \oplus W_{r}$ we observe the following.
Fact 3. For any two $p_{i}, p_{j} \in \mathcal{P}$ we have $p_{i}=p_{j}$ iff p_{i} and p_{j} are $[r]$-equivalent.
In other words, the common refinement of the (ℓ)-equivalence relations, $1 \leq$ $\ell \leq r$, is the identity relation on \mathcal{P}, and the equivalence classes of this refinement are the singleton sets. Given a permutation π on the point set \mathcal{P} we can ask whether it induces an automorphism on the projection \mathcal{P}_{ℓ} in the following sense.

A subset $\Delta \subset \mathcal{P}$ of points is an (ℓ)-equivalence class of \mathcal{P} if and only if for some point $p \in \mathcal{P}_{\ell}$ we have $\Delta=\operatorname{proj}_{\ell}^{-1}(p)$. Thus, each point in the projected set \mathcal{P}_{ℓ} represents an (ℓ)-equivalence class. We say that permutation $\pi \in \operatorname{Sym}(\mathcal{P})$ respects \mathcal{P}_{ℓ} iff for each (ℓ)-equivalence class $\Delta \subset \mathcal{P}$ the subset $\pi(\Delta)$ is an (ℓ) equivalence class. Suppose $\pi \in \operatorname{Sym}(\mathcal{P})$ is a permutation that respects \mathcal{P}_{ℓ}. Then π induces a permutation π_{ℓ} on the point set \mathcal{P}_{ℓ} as follows: for each $p \in \mathcal{P}_{\ell}$ its image is

$$
\pi_{\ell}(p)=\operatorname{proj}_{\ell}\left(\pi\left(\operatorname{proj}_{\ell}^{-1}(p)\right)\right)
$$

Definition 3. A permutation $\pi \in \operatorname{Sym}(\mathcal{P})$ is said to be an induced geometric automorphism on the projection $\mathcal{P}_{\ell} \subset W_{\ell}$ if π respects \mathcal{P}_{ℓ} and π_{ℓ} is a geometric automorphism of the point set \mathcal{P}_{ℓ}.

Lemma 2. Let $\left(\mathcal{P}, W_{1}, W_{2}, \ldots, W_{r}\right)$ be an instance of $\mathrm{GEOM}-\mathrm{AUT}_{k}$ and \mathcal{P} be full dimensional in \mathbb{R}^{n}. Let π be a permutation on \mathcal{P}. Then π is a geometric automorphism of \mathcal{P} such that $A_{\pi}\left(W_{\ell}\right)=W_{\ell}$ for each $\ell \in[r]$ if and only if π is an induced automorphism of each $\mathcal{P}_{\ell}, 1 \leq \ell \leq r$.

Proof. For the forward direction, suppose π is a geometric automorphism of \mathcal{P} such that $A_{\pi}\left(W_{\ell}\right)=W_{\ell}$ for each W_{ℓ}. We claim that π is an induced automorphism of \mathcal{P}_{ℓ} for each ℓ.

For any point $p_{i} \in \mathcal{P}$ we can write

$$
p_{i}=\operatorname{proj}_{\ell}\left(p_{i}\right)+u
$$

where u is a vector in W_{ℓ}^{\perp}. Since A_{π} stabilizes each W_{i}, it follows by linearity that

$$
\operatorname{proj}_{\ell}\left(A_{\pi}\left(p_{i}\right)\right)=A_{\pi}\left(\operatorname{proj}_{\ell}(p)\right)
$$

Hence $A_{\pi}\left(\mathcal{P}_{\ell}\right)=\mathcal{P}_{\ell}$ which implies π is an induced automorphism of \mathcal{P}_{ℓ} for each ℓ.

Conversely, suppose a permutation π on \mathcal{P} is an induced automorphism of each $\mathcal{P}_{\ell}, 1 \leq \ell \leq r$. Since each \mathcal{P}_{ℓ} is a full-dimensional point set in W_{ℓ}, it follows that $A_{\pi}\left(W_{\ell}\right)=W_{\ell}$ for each ℓ. To see that π is a geometric automorphism of \mathcal{P}, let $p_{i}, p_{j} \in \mathcal{P}$. We can write $p_{i}=\sum_{\ell=1}^{r} \operatorname{proj}_{\ell}\left(p_{i}\right)$ and $p_{j}=\sum_{\ell=1}^{r} \operatorname{proj}_{\ell}\left(p_{j}\right)$. By linearity, we have $A_{\pi}\left(p_{i}\right)=\sum_{\ell} A_{\pi}\left(\operatorname{proj}_{\ell}\left(p_{i}\right)\right)$ and $A_{\pi}\left(p_{j}\right)=\sum_{\ell} A_{\pi}\left(\operatorname{proj}_{\ell}\left(p_{j}\right)\right)$. Hence, by Pythagoras theorem we have

$$
\begin{aligned}
\left\|A_{\pi}\left(p_{i}\right)-A_{\pi}\left(p_{j}\right)\right\|^{2} & =\sum_{\ell=1}^{r}\left\|A_{\pi}\left(\operatorname{proj}_{\ell}\left(p_{i}\right)\right)-A_{\pi}\left(\operatorname{proj}_{\ell}\left(p_{j}\right)\right)\right\|^{2} \\
& \left.\left.=\sum_{\ell=1}^{r} \| \operatorname{proj}_{\ell}\left(p_{i}\right)\right)-\operatorname{proj}_{\ell}\left(p_{j}\right)\right) \|^{2} \\
& =\left\|p_{i}-p_{j}\right\|^{2},
\end{aligned}
$$

where the third line above follows because π is an induced automorphism of each \mathcal{P}_{ℓ}.

5 The Hypergraph Automorphism Problem

By Lemma 2 it follows that $\operatorname{Aut}(\mathcal{P})$ is the group of all $\pi \in \operatorname{Sym}(\mathcal{P})$ such that π is an induced automorphism of each $\mathcal{P}_{\ell}, 1 \leq \ell \leq r$. In this section we describe the algorithm for computing a generating set for $\operatorname{Aut}(\mathcal{P})$ in $O^{*}\left(k^{O(k)}\right)$ time.

The first step is to reduce GEOM- AUT_{k} in $O^{*}\left(k^{O(k)}\right)$ time to a hypergraph automorphism problem defined below:

Problem 2 (HYP-AUT).
Input: A hypergraph $X=(V, E)$ and a partition of the vertex set into color classes $V=V_{1} \cup V_{2} \cup \cdots \cup V_{r}$, and subgroups $G_{i} \leq \operatorname{Sym}\left(V_{i}\right), 1 \leq i \leq r$, where each G_{i} is given as an explicit list of permutations.

Output: A generating set for $\operatorname{Aut}(X) \cap G_{1} \times G_{2} \times \cdots \times G_{r}$.
We will give a polynomial-time algorithm for this problem based on a dynamic programming strategy as used in [ADKT10]. Before that we will show that GEOM-AUT k is reducible to HyP-AUT in $O^{*}\left(k^{O(k)}\right)$ time. Combining the two we will obtain the $O^{*}\left(k^{O(k)}\right)$ time algorithm for GEOM-AUT ${ }_{k}$.

Theorem 1. There is a $O^{*}\left(k^{O(k)}\right)$ time reduction from the GEOM-AUT ${ }_{k}$ problem to HYP-AUT.

Proof. Let $\left(\mathcal{P}, W_{1}, W_{2}, \ldots, W_{r}\right)$ be an instance of GEOM- AUT_{k}. In order to compute $\operatorname{Aut}(\mathcal{P})$ we first compute each $\mathcal{P}_{\ell}, \ell \in[r]$. Then, since W_{ℓ} is k dimensional we can compute the geometric automorphisms $\operatorname{Aut}\left(\mathcal{P}_{\ell}\right)$ in $O^{*}\left(k^{O(k)}\right)$ time by applying the main result of [AR14]. Indeed, $\operatorname{Aut}\left(\mathcal{P}_{\ell}\right)$ can be explicitly listed down in $O^{*}\left(k^{O(k)}\right)$ time, also implying that $\left|\operatorname{Aut}\left(\mathcal{P}_{\ell}\right)\right|$ is bounded by $O^{*}\left(k^{O(k)}\right)$. Now, we construct a hypergraph instance $X=(V, E)$ of HYP-AUT as follows: The vertex set V is the disjoint union $V=\mathcal{P}_{1} \cup \ldots \mathcal{P}_{r}$, and the explicitly listed groups $G_{\ell}=\operatorname{Aut}\left(\mathcal{P}_{\ell}\right), \ell \in[r]$. For each point $p_{i} \in \mathcal{P}$ we include a hyperedge $e_{p} \in E$, where $e_{p}=\left\{\operatorname{proj}_{1}\left(p_{i}\right), \operatorname{proj}_{2}\left(p_{i}\right), \ldots, \operatorname{proj}_{r}\left(p_{i}\right)\right\}$. Since the edges of X encode points in \mathcal{P}, the induced action of the automorphism group $\operatorname{Aut}(X) \cap G_{1} \times G_{2} \times \cdots \times G_{r}$ on the edges of X is in one-to-one correspondence with $\operatorname{Aut}(\mathcal{P})$ by Lemma 2. Hence, we can obtain a generating set for $\operatorname{Aut}(\mathcal{P})$. Clearly, the reduction runs in time $O^{*}\left(k^{O(k)}\right)$.

In the polynomial-time algorithm for HYP-AUT we will use as subroutine a polynomial-time algorithm for the following simple coset intersection problem.

Problem 3 (Restricted Coset Intersection).
Input: Let $V=V_{1} \uplus V_{2} \uplus \cdots \uplus V_{r}$ be a partition of the domain into color classes and $G_{i} \leq \operatorname{Sym}\left(V_{i}\right)$ be an explicitly listed subgroup of permutations on $V_{i}, 1 \leq i \leq r$. Let H and H^{\prime} be subgroups of the product group $G_{1} \times \cdots \times G_{r}$, where H and H^{\prime} are given by generating sets as input. Let $\pi, \pi^{\prime} \in G_{1} \times \cdots \times G_{r}$. Output: The coset intersection $H \pi \cap H^{\prime} \pi^{\prime}$ which, if nonempty, is given by a generating set for $H \cap H^{\prime}$ and a coset representative $\pi^{\prime \prime} \in H \pi \cap H^{\prime} \pi^{\prime}$.

Lemma 3. The above restricted coset intersection problem has a polynomialtime algorithm.

Proof. We give a sketch of the algorithm which is a simple application of the classical Schreier-Sims algorithm (mentioned in Section 2): given a permutation group $G \leq \operatorname{Sym}(\Omega)$ by a generating set and another permutation $\pi \in \operatorname{Sym}(\Omega)$, for any point $\alpha \in \Omega$ the subcoset of $G \pi$ that fixes the point α can be computed in time polynomial in $|\Omega|$ and the size of the generating set for G. See, e.g. [Ser] for details.

In order to compute the intersection $H \pi \cap H^{\prime} \pi^{\prime}$, we consider the product group $H \times H^{\prime}$ acting on the set $\Delta=\bigcup_{i=1}^{r} V_{i} \times V_{i}$ component-wise. The permutation pair $\left(\pi, \pi^{\prime}\right)$ too defines a permutation on the set Δ. We consider now the coset $\left(H \times H^{\prime}\right)\left(\pi, \pi^{\prime}\right)$ of the group $H \times H^{\prime}$. Define the diagonal sets

$$
D_{i}=\left\{(\alpha, \alpha) \mid \alpha \in V_{i}\right\}, 1 \leq i \leq r
$$

The following claim is immediate from the definitions.
Claim. A pair $\left(h, h^{\prime}\right) \in\left(H \times H^{\prime}\right)\left(\pi, \pi^{\prime}\right)$ maps each D_{i} to D_{i} if and only if $h=h^{\prime}$ and $h \in H \pi \cap H^{\prime} \pi^{\prime}$.

Thus, in order to compute the coset intersection it suffices to compute the subcoset

$$
\left\{\left(h, h^{\prime}\right) \in\left(H \times H^{\prime}\right)\left(\pi, \pi^{\prime}\right) \mid\left(h, h^{\prime}\right)\left(D_{i}\right)=\left(D_{i}\right) 1 \leq i \leq r\right\}
$$

of the coset $\left(H \times H^{\prime}\right)\left(\pi, \pi^{\prime}\right)$. Notice that $D_{i} \subset V_{i} \times V_{i}$ and the elements of the coset $\left(H \times H^{\prime}\right)\left(\pi, \pi^{\prime}\right)$ restricted to $V_{i} \times V_{i}$ are from the group $G_{i} \times G_{i}$ which is polynomially bounded in input size. Let Ω denote the entire orbit of D_{i} under the action of the group $G_{i} \times G_{i}$. Clearly, $|\Omega| \leq\left|G_{i}\right|^{2}$ and therefore is polynomially bounded in input size and can be computed. Now, D_{i} is just a point in the set Ω and we can compute its pointwise stabilizer subcoset in $\left(H \times H^{\prime}\right)\left(\pi, \pi^{\prime}\right)$ by the Schreier-Sims algorithm (as outlined above) in time polynomial in $|\Omega|$ and the generating sets sizes of H and H^{\prime}. Repeating this procedure for each $D_{i}, 1 \leq i \leq r$ yields the subcoset that maps D_{i} to D_{i} for each i. This completes the proof sketch.

We now describe the polynomial-time algorithm for HYP-AUT.
Theorem 2. There is a polynomial-time algorithm for HYP-AUT.
Proof. The algorithm is a dynamic programming strategy exactly as in [ADKT10]. But, unlike the problem considered in [ADKT10], we do not have bounded-size color classes in our hypergraph instances. Instead, we have color classes V_{i} and explicitly listed subgroups $G_{i} \leq \operatorname{Sym}\left(V_{i}\right)$ on each color class and we have to compute color-class preserving automorphisms $\pi \in \operatorname{Aut}(X)$ that, when restricted to each color class V_{i} belong to the corresponding G_{i}. We now describe the algorithm.

The subproblems of this dynamic programming algorithm involve hypergraphs (V, E) with multiple hyperedges (i.e., E is a multi-set). Thus, we may assume that the input X too is a multi-hypergraph given with the vertex set partition $V=\uplus_{\ell=1}^{r} V_{\ell}$, and groups $G_{\ell} \leq \operatorname{Sym}\left(V_{\ell}\right)$ explicitly listed as permutations. A bijection $\varphi: V \rightarrow V$ is an automorphism of interest if φ maps each V_{ℓ} to V_{ℓ} such that:

- The permutation φ restricted to V_{ℓ} is an element of the group G_{ℓ}.
- The map induced by φ on E preserves the hyperedges with their multiplicities (for each hyperedge $e \subseteq V, e$ and $\varphi(e)$ have the same multiplicity in $E)$.

We first introduce some notation. For $\ell \in[r]$ and any multi-set D of hyperedges $e \subseteq V$, let $D_{[\ell]}$ denote the multi-hypergraph ($V_{[\ell]},\left\{e \cap V_{[\ell]} \mid e \in D\right\}$) on vertex set $V_{[\ell]}=V_{1} \uplus \cdots \uplus V_{\ell}$. Further, let D_{ℓ} denote the multi-hypergraph ($V_{\ell},\left\{e \cap V_{\ell} \mid e \in D\right\}$) on vertex set V_{ℓ}. For two multi-hypergraphs $D_{[\ell]}$ and $D_{[\ell]}^{\prime}$ let $\operatorname{ISO}\left(D_{[\ell]}, D_{[\ell]}^{\prime}\right)$ denote the coset of all isomorphisms between them that belong to $G_{1} \times \cdots \times G_{\ell}$.

For $\ell \in[r]$ we define an equivalence relation \equiv_{ℓ} on the hyperedges in E : for hyperedges $e_{1}, e_{2} \in E$ we say $e_{1} \equiv \ell e_{2}$ if

$$
e_{1} \cap V_{j}=e_{2} \cap V_{j} \text { for } j=\ell+1, \ldots, r
$$

The equivalence classes of \equiv_{ℓ} are called (ℓ)-blocks. For $\ell \leq j$, notice that \equiv_{ℓ} is a refinement of \equiv_{j}. Thus, if e_{1} and e_{2} are in the same (ℓ)-block then they are in the same (j)-block for all $j \geq \ell$.

The algorithm works in stages $\ell=0, \ldots, r$. In stage ℓ, the algorithm considers the multi-hypergraphs $A_{[\ell+1]}$ induced by the different (ℓ)-blocks A on the vertex set $V_{[\ell+1]}$. For each pair of (ℓ)-blocks A, B the algorithm computes the cosets $\operatorname{ISO}\left(A_{[\ell]}, B_{[\ell]}\right)$ (unless $\left.\ell=0\right)$ using the cosets of the form $\operatorname{ISO}\left(A_{[\ell-1]}^{i}, B_{[\ell-1]}^{j}\right)$ computed already. Finally, for the single (r)-block E the algorithm computes the coset $\operatorname{ISO}\left(E_{[r]}, E_{[r]}\right)$ which is the desired group $\operatorname{Aut}(X) \cap G_{1} \times \cdots \times G_{r}$.

Stage 0: Let A and B be (0)-blocks. Then A contains a single hyperedge a with multiplicity $|A|$, and B contains b with multiplicity $|B|$. The coset $\operatorname{ISO}\left(A_{[1]}, B_{[1]}\right)=\emptyset$ if $\|A\| \neq\|B\|$ or $\left\|a \cap V_{1}\right\| \neq\left\|b \cap V_{1}\right\|$. Otherwise, $\operatorname{ISO}\left(A_{[1]}, B_{[1]}\right) \cap G_{1}$ is a subcoset of all elements of G_{1} that maps $a \cap V_{1}$ to $b \cap V_{1}$, which can be computed by inspecting the list of elements in G_{1}.
For $\ell:=1$ to $r-1$ do
Stages ℓ : For each pair (A, B) of (ℓ)-blocks compute the table entry $T(\ell, A, B)=\operatorname{ISO}\left(A_{[\ell]}, B_{[\ell]}\right)$ as follows:

1. Partition the (ℓ)-blocks A and B into $(\ell-1)$-blocks A^{1}, \cdots, A^{t} and $B^{1}, \cdots, B^{t^{\prime}}$, respectively. If $t \neq t^{\prime}$ then $\operatorname{ISO}\left(A_{[\ell]}, B_{[\ell]}\right)$ is empty.
2. Otherwise, $t=t^{\prime}$. Clearly, for all $e \in A^{1}, e \cap V_{l}$ is identical. Let $a_{i}=$ $e \cap V_{\ell}, e \in A^{i}$ and $b_{i^{\prime}}=e \cap V_{\ell}, e \in B^{i^{\prime}}$, for $1 \leq i, i^{\prime} \leq t$. Let $S_{\ell} \subset G_{\ell}$ be the subcoset of all permutations $\tau \in G_{\ell}$ such that τ (injectively) maps the set $\left\{a_{1}, a_{2}, \ldots, a_{t}\right\}$ to the set $\left\{b_{1}, b_{2}, \ldots, b_{t}\right\}$. For each $\tau \in S_{\mid}$ell, we denote by $\hat{\tau}$ this induced mapping that injectively maps the set $\left\{a_{i} \mid 1 \leq i \leq t\right\}$ to $\left\{b_{\hat{\tau}(i)} \mid 1 \leq i \leq t\right\}$.
We can compute S_{ℓ} in polynomial time since G_{ℓ} is given as an explicit list as part of the input.
3. For $\tau \in S_{\ell}$, recall that $A_{[\ell-1]}^{j}$ and $B_{[\ell-1]}^{\hat{\tau}(j)}$ denote the multi-hypergraphs obtained from the $(\ell-1)$-blocks A^{j} and $B^{\hat{\tau}(j)}$, where $j \mapsto \hat{\tau}(j)$ for $\tau \in S_{\ell}$ means that τ maps a_{j} to $b_{\tau(j)}$. Then it is clear that we have

$$
\begin{equation*}
\operatorname{ISO}\left(A_{[\ell]}, B_{[\ell]}\right)=\bigcup_{\tau \in S_{\ell}} \bigcap_{j=1}^{t} \operatorname{ISO}\left(A_{[\ell-1]}^{j}, B_{[\ell-1]}^{\hat{\tau}(j)}\right) \times\{\tau\} \tag{1}
\end{equation*}
$$

where we have already computed the coset $\operatorname{ISO}\left(A_{[\ell-1]}^{j}, B_{[\ell-1]}^{\pi(j)}\right)$.
4. In order to compute the coset $\operatorname{ISO}\left(A_{[\ell]}, B_{[\ell]}\right)$ from Equation 1, we cycle through the polynomially many $\tau \in S_{\ell}$, and compute each coset intersection $\bigcap_{j=1}^{t} \operatorname{ISO}\left(A_{[\ell-1]}^{j}, B_{[\ell-1]}^{\hat{\tau}(j)}\right)$ by repeated application of the restricted coset intersection algorithm of Lemma 3. We can write a generating set for the union of the cosets over all τ using Fact 2.
Output: In the last step, the unique (r)-block is the entire set of hyperedges E, and the table entry $T\left(r, E_{[r]}, E_{[r]}\right)=\operatorname{ISO}\left(E_{[r]}, E_{[r]}\right)$.

It is clear from the description that the running time is polynomially bounded in $|E|,|V|$ and $\max _{1 \leq \ell \leq r}\left|G_{\ell}\right|$.

Acknowledgement. We thank Saket Saurabh for suggesting the problem of obtaining a faster isomorphism algorithm for graphs of bounded eigenvalue multiplicity using the $O^{*}\left(k^{O(k)}\right)$ time algorithm for GGI.

References

[AMW $\left.{ }^{+} 88\right]$ H. Alt, K. Mehlhorn, H. Wagener, E. Welzl. Congruence, similarity, and symmetries of geometric objects. Discrete Computational Geometry, 3:237-256, 1988.
[Ak98] Tatsuya Akutsu. On determining the congruence of point sets in dimensions. Computational Geometry, 9(4):247-256, 1998.
[BK00] Peter Braß and Christian Knauer. Testing the congruence of d-dimensional point sets. In Symposium on Computational Geometry, pages 310-314, 2000.
[BL83] László Babai and Eugene M. Luks. Canonical labeling of graphs. In Proceedings of the ACM STOC Conference, pages 171-183, 1983.
[BHZ87] Ravi B. Boppana, Johan Håstad and Stathis Zachos. Does co-NP Have Short Interactive Proofs? Inf. Process. Lett., 25:2, 127-132, 1987.
[Luks80] Eugene M. Luks. Isomorphism of Graphs of Bounded Valence Can Be Tested in Polynomial Time. In Proceedings of the IEEE FOCS Conference, pages 42-49, 1980.
[Mil80] Gary L. Miller. Isomorphism Testing for Graphs of Bounded Genus. In Proceedings of the ACM STOC Conference, pages 225-235, 1980.
[GM12] Martin Grohe and Dániel Marx. Structure theorem and isomorphism test for graphs with excluded topological subgraphs. 44th ACM Symp. on Theory of Computing, pp. 173-192, 2012.
[EP97a] S.A. Evdokimov and I.N. Ponomarenko. Isomorphism of Coloured Graphs with Slowly Increasing Multiplicity of Jordan Blocks. Combinatorica 19(3): 321-333 (1999).
[EP97b] S.A. Evdokimov and I.N. Ponomarenko. On the geometric graph isomorphism problem. Pure and Applied Algebra, 117-118:253-276, 1997.
[BGM82] László Babai, D. Yu. Grigoryev and David M. Mount. Isomorphism of Graphs with Bounded Eigenvalue Multiplicity. In Proceedings of the ACM STOC Conference, pages 310-324, 1982.
[Bab86] László Babai. A Las Vegas-NC Algorithm for isomorphism of graphs with bounded multiplicity of eigenvalues. In Proceedings of IEEE FOCS Conference, pages 303312, 1986.
[HR14] Ishay Haviv and Oded Regev. On the lattice isomorphism problem. In Proceedings of the 25th Annual ACM-SIAM Conference, pages 391-404, SODA 2014.
[AR14] V. Arvind and Gaurav Rattan. The parameterized complexity of geometric graph isomorphism. In Proceedings of IPEC Conference 2014, to appear.
[ADKT10] Vikraman Arvind, Bireswar Das, Johannes Köbler and Seinosuke Toda. Colored Hypergraph Isomorphism is Fixed Parameter Tractable. In Proceedings of FSTTCS Conference, pages 327-337, 2010.
[Ser] Á. Seress. Permutation Group Algorithms. Cambridge University Press, 2003.

[^0]: ${ }^{1}$ Throughout the paper, we use the $O^{*}()$ notation to suppress multiplicative factors that are polynomial in input size.
 ${ }^{2} \mathrm{NC}$ denotes the class of problems that can be solved in in the parallel-RAM model in polylogarithmic time using polynomially many processors.

[^1]: ${ }^{3}$ We can assume w.l.o.g. that $A_{X_{1}}$ and $A_{X_{2}}$ have the same eigenvalues with the same multiplicity as we can check that in polynomial time.
 ${ }^{4}$ By applying suitable numerical methods we can compute each λ_{i} and basis for each W_{i} to polynomially many bits of accuracy in polynomial time. This suffices for our algorithms.

