
Fast Approximate Matrix Multiplication in ECCC TR14-117

Fails to Converge

Kevin Kowalski∗ Dieter van Melkebeek∗

February 6, 2015

Abstract

The paper [1] presents an efficient iterative algorithm that purportedly computes an approx-
imation to the product of two n × n matrices. We show that, in fact, the algorithm converges
to a different matrix than the product matrix.

1 Overview

In [1] the authors claim to have discovered an O(n2 log δ−1)-time algorithm for approximately
multiplying two n×n matrices where each entry is bounded by a constant such that the Frobenius
distance between the returned product and the correct product is at most δ. The algorithm consists
of three main steps:

1. a framing step, where the problem of matrix multiplication is reduced to solving a system of
linear equations;

2. a perturbation step, where the system of linear equations is tweaked to be positive definite; and

3. an approximation step, where an approximate solution to the tweaked system is found.

The flaw in this algorithm is that the perturbation forces the approximation procedure to converge
to an incorrect solution.

2 Summary of the algorithm

The problem of matrix multiplication can be stated as follows: given two n × n matrices A and
B, return a matrix C such that AB = C. In this setting, the matrix C contains n2 entries of
unknown value, so the problem can be cast as solving a system of n2 equations (each of the form
Cij = Ai· ·B·j) over n2 variables {Cij}i,j∈[n].
In the algorithm of [1], the system of equations AB = C is reduced to a new system as follows. Let
v be a chosen n× 1 vector, and consider the system ABv = Cv. This system can be rewritten as
ABv = V c where V is an n× n2 block-diagonal matrix where each block is vT , and c is an n2 × 1
variable vector where each block of n entries constitutes a row of C. More formally,

c = Flatten(C),

∗Department of Computer Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA. Partially sup-
ported by NSF grant CCF-1319822.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Comment 1 on Report No. 117 (2014)

where for any n× n matrix X, x = Flatten(X) is the n2 × 1 vector such that xn(i−1)+j = Xij .

The new system is then given by
V TABv = V TV c. (1)

Note that this system is underdetermined–the n2×n2 matrix V TV has rank at most n, so the system
has n2 variables and at most n linearly independent equations. The vector c = Flatten(AB) is
one solution to the system, but there are necessarily many others.

Additionally, note that the system (1) is positive semidefinite–the coefficient matrix V TV is block-
diagonal where each block is vvT and the only nonzero eigenvalue of vvT is

∑
i v

2
i . Hence, the

eigenvalues of V TV are 0 with multiplicity n2 − n and
∑

i v
2
i with multiplicity n, which are all

nonnegative. The algorithm then perturbs V TV into a positive definite matrix by adding εI, where
ε is a small constant and I is the identity matrix. This adds ε to all the eigenvalues of the coefficient
matrix, so they all become positive. The perturbed system is then

V TABv = (V TV + εI)c. (2)

Since the perturbed system is positive definite, it has exactly one solution. A close approximation
to this solution can be found efficiently using a steepest descent method.

3 Explanation of the flaw

The issue with the perturbed system (2) is that its unique solution, say c∗, when written as an
n × n matrix instead of an n2 × 1 vector is AB

[
vvT /(vT v + ε)

]
rather than the correct product

C
.
= AB. This fact is stated and proved in the following claim. Since vvT is a rank 1 matrix, the

solution also has rank at most 1, so it is impossible in nearly every case for a matrix close to the
solution to also be close to the correct product.

Claim. Let
c∗

.
= Flatten(C

[
vvT /(vT v + ε)

]
).

Then, c = c∗ is the unique solution to the perturbed system (2).

Proof. First note that by definition, for all i, j ∈ [n], the (n(i − 1) + j)-th entry of V TCv is
vj
∑n

k=1Cikvk. Additionally, for all i, j ∈ n, c∗n(i−1)+j =
∑n

k=1Cikvkvj/(v
T v + ε). Hence, the

(n(i− 1) + j)-th entry of (V TV + εI)c∗ is[
n∑
`=1

vjv`c
∗
n(i−1)+`

]
+ εc∗n(i−1)+j =

vj
vT v + ε

[(
n∑
`=1

v2`

)(
n∑
k=1

Cikvk

)
+ ε

n∑
k=1

Cikvk

]

= vj

n∑
k=1

Cikvk,

so V TCv = (V TV + εI)c∗ and c = c∗ is a solution to (2), as desired.

Given that in nearly every case the output of the algorithm is distant from the correct product, the
error analysis in section 4.3 of [1], which claims otherwise, must have some issues. The heart of the
analysis lies in Lemma 4, which attempts to bound the Frobenius distance between the output of
the algorithm and “the” solution1 to the unperturbed, positive semidefinite system (1), denoted by

1First sentence of section 4.3 in [1].

2

x′′′ in the paper. The incorrect implicit assumption that (1) has a unique solution that corresponds
to the correct product, i.e., x′′′ = Flatten(C), is used in the equality in the last line on page 7 of
[1].

In addition, even if x′′′ = Flatten(C), there are a number of errors in the derivation of an upper

bound on the 2-norm of x′′′, denoted |x′′′|. The analysis assumes values of v =
[
1/n3 · · · 1/n3

]T
and ε = 1/n3, and using these, claims that |x′′′| ≤ n−5/2 · λ+εε ·M

′, where M ′ denotes the maximum
row sum of any row in C and 1 ≤ (λ + ε)/ε ≤ 2. Due to a mistake in parenthesization on the
third line in the proof of Lemma 4 in [1], the actual bound obtained is a factor of n3 larger, i.e.,
|x′′′| ≤

√
n · λ+εε ·M

′. Note that a better upper bound of |x′′′| ≤
√
n ·M ′ follows from the known

relationships between the Frobenius norm and the row sum norm of a matrix.

Due to the additional factor, the upper bound on |x′′′| no longer vanishes when n grows. In fact,
as x′′′ is supposed to be Flatten(C), it is impossible to upper bound |x′′′| by a vanishing term,
and the approach of showing convergence by bounding the error term |x′ − x′′′| as |x′ − x′′′| ≤
|x′ − x′′|+ |x′′|+ |x′′′| cannot work.

References

[1] Shiva Manne and Manjish Pal. Fast approximate matrix multiplication by solving linear sys-
tems. Electronic Colloquium on Computational Complexity (ECCC), TR14-117, 2014.

3

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

