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Abstract. Amplitude amplification (AA) is tool of choice for quantum
algorithm designers to increase the success probability of query algo-
rithms that reads its input in the form of oracle gates. Geometrically
speaking, the technique can be understood as rotation in a specific two-
dimensional space. We study and use a generalized form of this rotation
operator to design algorithms in a geometric manner.Specifically, we ap-
ply AA to algorithms that take their input in the form of input states and
in which rotations with different angles and directions are used in a uni-
fied manner. We show that AA can be used to sequentially discriminate
between two unitary operators, both without error and with bounded-
error, in an asymptotically optimal manner. We also show how to reduce
error probability in one and two-sided bounded error algorithms more
efficiently than the usual parallel repetitions technique; in particular,
errors can be completely eliminated from the exact error algorithms.

1 Introduction

Amplitude amplification (AA) is the engine that powers the “unordered quantum
search” algorithm proposed by L. Grover in 1996 [1]. A lot of efficient quantum
algorithms essentially ride this horse in some way or the other [2–5] and one
wonders how much more can this idea deliver. It is now routine to apply AA for
boosting the success probability of quantum algorithms. One reason behind this
unmatched popularity is the black-box manner in which this technique can be
applied. Suppose A is a quantum algorithm without any intermediate measure-
ment such that after measuring the output of A|00 . . . 0〉, we obtain a solution to
A that may be “good” with some probability, say p. Then AA can be applied to A
to generate an algorithm Q that basically calls A (and A†) as black-boxes in an
iterative manner. Temptation to use AA becomes stronger due to the uniform
nature of Q: A and A† are used as black-box here and the input state to A as
well as the measurement operators at the end remain unchanged (maybe, ex-
tended). Therefore, it makes sense to apply this technique to a family of A, e.g.,
to {Ax}x∈{0,1}∗ in which Ax uses an oracle gate to read bits of input string x.
This is why AA has so far been applied in the query-complexity model in which
A can read the “input” by making oracle queries.

The second reason behind the popularity of AA is the square-root promise
that the amplification algorithm Q makes O(

√
p) calls to A (and A†) and can
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guarantee a good solution with high probability; this is in contrast to classical
techniques that require O(p) calls to A. There are also several improvements to
workaround the requirement of knowing p beforehand [6, 7].

This work is motivated by two other observations about AA. Amplitude am-
plification requires use of a diffusion operator that essentially depends upon the
input state of the algorithm A. Therefore, it is worth investigating if, and when,
can amplitude amplification be applied to non-query algorithms, i.e., algorithms
in which the input is supplied in the form of an input state. In this setting, we
have a family of input states instead of a family of algorithms and therefore, we
no longer have a uniform amplification circuit for different input states. We find
that AA works in general, but with a subtlety for communication protocols.

Amplitude amplification can also be viewed as a rotation in a particular 2-
dimensional space. Our second observation is that it is possible to mix-match
rotations in different directions and by different angles but in a uniform manner
across different instances – this we call as “differential amplification”. This is an
extension of the idea present in the original search algorithm by Grover that if
A has no solution, then the amplified algorithm too will produce no solution —
geometrically, the same amplification routine rotated different states differently.

Contribution: Sequential operator discrimination [Section 3]. A common man-
ner of differentiating between output distributions of algorithms is to run them
in parallel and statistically analyse the aggregate of the outcomes [8, 9]. Differen-
tial amplification can be seen as a sequential technique for the same purpose. For
instance, a recently proposed fault detection method for quantum circuits uses
a classical repeated sampling of the output of a quantum circuit to distinguish
between several output distributions, one for each type of faulty circuit [10]. Our
technique can be used to replace the classical repetition by quantum amplifica-
tion and we show a limited form of this in this work. Specifically, we design
both exact and bounded-error sequential algorithms for discriminating between
two unitary operators (given as black-box) without using any special input state
for the operators, whereas, the existing parallel and sequential methods require
preparation of a specific “optimum” state [9, 11]. Moreover, if the optimum state
is used, then our algorithm makes at most additional call compared to the opti-
mum. In this process we also strengthen and generalize some known upper and
lower bounds on sequential and parallel discrimination algorithms.

Contribution: Sequential amplification of bounded-error algorithms [Section 4].
Quantum algorithms that operate in the non-query mode, i.e., take input in the
form of input states, appear sidelined in the crowd of quantum query algorithms.
However, important problems like “Factoring” and “Discrete-logarithm” with
eye-catching quantum algorithms, belong to the non-query BQP class. The cur-
rent technique for boosting the success probability of RQP (one-sided error) and
BQP (two-sided error) is by parallely and independently running the original
algorithm [8, Ch. 6],[12]. We use differential amplification for reducing error of
bounded-error algorithms faster compared to the parallel ones. We also show that
one-sided and two-sided “exact” error quantum classes (ERQP and EBQP) can
be improved to be included in EQP, thus making EQP = ERQP = EBQP.



2 Grover Iterator Revisited

Brassard et al. [6] formalized the key technique of Grover’s search algorithm
as amplitude amplification (AA) and showed its use in general search prob-
lems. AA involves repeated application of an operator commonly known as the
Grover iterator G. Traditionally G has been defined based on a quantum (oracle)
algorithm A that on input |00 . . . 0〉 searches a state space and outputs a super-
position |Ψ〉 of “good” and “bad” solution states (in the standard basis) of some
search problem (say, searching for 1 in an unordered array). Another operator
UΨ0

= (I − 2
∑
x:good |x〉〈x|) is used to identify “good” solution states. Then, G

is constructed as G = −A(I − 2|00 . . . 0〉〈00 . . . 0|)A†UΨ0 = (2|Ψ〉〈Ψ | − I)UΨ0 .
Soon after Grover proposed his quantum search algorithm, researchers ob-

served that his algorithm, and the underlying amplitude amplification tech-
nique, has an elegant geometric interpretation of a rotation in a 2-dimensional
state. Several extensions to Grover’s search rely on this geometric interpretation,
e.g., the generalization of Grover’s search to handle arbitrary initial states [13,
14]. The algorithms that we study are not search algorithms and we want to
mix-and-match more than one generalizations of G. Even though such general-
ized Grover’s iterator has been analyzed in the context of unordered quantum
search [13, 14], we did not find any independent characterization suitable for us.

Given a state |Ψ〉 and a two-outcome projective measurement P = 〈P 0, P 1〉, we
study the following operator family for any pair of angles 0 ≤ a, b < 2π:

Ga,b = [(1− eia)|Ψ〉〈Ψ | − I] · [I − (1− eib)P 1]
It is easy to show that Ga,b is a unitary operator for any a, b. These operators

were used to amplify query algorithms in which they are applied to rotate certain
types of states that are related to |Ψ〉 and P 1 [6, 13, 14]. Our motivation was to
characterize the transformation and which all states can this be applied on.

Define angle θ ∈ [0, π/2] and orthogonal states |Ψ0〉 and |Ψ1〉 such that
P 0|Ψ〉 = cos θ|Ψ0〉 and P 1|Ψ〉 = sin θ|Ψ1〉. Observe that sin2 θ is the probability
of observing outcome P 1 when |Ψ〉 is measured using P. Denote the Hilbert
space spanned by |Ψ0〉 and |Ψ1〉 by H. If P 0|Ψ〉 = 0 or P 1|Ψ〉 = 0, then H is

1-dimensional, essentially spanned by |Ψ〉. In that case Ga,b
ϕ
' I; we use the no-

tation U
ϕ
' V to indicate that the two operators U and V are identical, except

maybe for different global phases. So, henceforth, we will only consider the cases
when P 0|Ψ〉 6= 0 6= P 1|Ψ〉, and in that case, H is 2-dimensional.

We will use CPρ to denote the conditional phase-change unitary operator

P 0 + eiρP 1. Observe that CPρ
ϕ
' I if H is one-dimensional. We will use Rx to

denote rotation by angle x in H in the anti-clockwise direction from |Ψ0〉 to |Ψ1〉.
The following theorem shows how to implement rotations in H and can be

proved by observing the action of G and CPρ on two-dimensional H [15].

Theorem 1. Given a state |Ψ〉 and a two-outcome projective measurement 〈P 0, P 1〉,
let H be the space spanned by P 0|Ψ〉 and P 1|Ψ〉 and let (|Ψ0〉, |Ψ1〉) be a basis of
H such that 〈Ψ0|P 0|Ψ〉 = cos θ and 〈Ψ1|P 1|Ψ〉 = sin θ for some θ ∈ [0, π/2]. Let
Rα denote rotation by angle α in H from |Ψ0〉 towards |Ψ1〉.



Suppose H is two-dimensional. For any 0 ≤ θ′ ≤ 2θ, there exists angles

ρ, a, b ∈ [0, 2π] such that Rθ′
ϕ
' CPρ · Ga,b · CP †ρ . In particular, R2θ = Gπ,π =

[2|Ψ〉〈Ψ | − I] · [I − 2P 1].

If H is one-dimensional then Gπ,π
ϕ
' I and CPρ · Ga,b · CP †ρ

ϕ
' I for any

ρ, a, b.

For any angle δ ∈ [0, π/2], Rδ can be implemented as Rθ′R
k
2θ in which k is

the largest integer such that δ = k · 2θ + θ′. The above theorem allows us to
rotate any state in H by any angle and may be of independent interest.

Corollary 1. Let |Φ〉 denote some state in H of the form cosφ|Ψ0〉+ sinφ|Ψ1〉
for some φ ∈ [0, π/2] and let δ be some angle. Then, cos(δ+φ)|Ψ0〉+sin(δ+φ)|Ψ1〉
can be obtained by executing Rδ|Φ〉

ϕ
' CPρGa,bCP †ρGkπ,π|Φ〉 for some angles ρ, a, b

depending on δ,θ and k = b δ2θ c.

In particular, let |χ〉 = cosx|Ψ0〉+ sinx|Ψ1〉 be some other state in H. Define
project measurement operators P = 〈P ′0 = I−|χ〉〈χ|, P ′1 = |χ〉〈χ|〉. Then there
exists ρ, a, b, k such that ‖P ′1CPρGa,bCP †ρGkπ,π|Φ〉‖2 = ‖P ′1Rx−φ|Φ〉‖2 = sin2 x.

Simpler rotation operators can surely be constructed for any Hilbert space.
However, we shall see in the next two sections that the particular construction
of Rδ allows us to differentially amplify different states in different manners.

3 Unitary Operator Discrimination

In the unitary operator discrimination problem, we are given a unitary operator
U ∈ {U1, U2} as a black-box with equal chance of picking either of the operators.
The goal is to identify U . Let ω(U), for any unitary operator U , denote the angle
of the smallest arc containing all the eigenvalues of U (on the unit circle). Let

ω represent ω(U†1U2). It is known that 1
2 (1− sin ω

2 ) is the minimum probability
of error to discriminate between U1 and U2 by making only one call to U on an
appropriate input state and using an appropriate measurement operator [9, 11].
Thus, if ω ≥ π then there exists a |γ〉 such that U1|γ〉 and U2|γ〉 are orthonormal
and therefore, can be perfectly distinguished.

On the other hand, if ω < π, then the optimal methods for exact discrim-
ination require k = dπω e calls to U on a bespoken input state followed by a
measurement in a suitable basis. These k calls may happen in parallel in which
case the input state is a maximally entangled one over kd qubits [11, 16] or
may also happen sequentially in which the input state is a superposition of the
eigenstates of (U†1U2) [17]. Such bespoken input states may be difficult to create,
all the more if k is large. It may be desirable to have a method that uses easy to
construct input states and it will be even better if any U1 and U2 can be discrim-
inated using a single input state. Our method requires a sequential application
of U and can be applied to “any input state” (except a small subset).

To discriminate with a probability of error at most 1/3, Kawachi et al. [9]
reported a method that used parallel calls to U and an entangled state over kd



qubits. They proved an upper bound of d π3ω e calls and also showed that there
exists operators that require at least d 2

3ω e calls to U . Their method can be easily
generalized for an arbitrary error ε and after doing that along with additional
tightening (see Appendix A), we obtain an upper bound of d 2ω sin−1(1−2ε)e calls
and a lower bound of d 1−2ε

sin(ω/2)e calls that almost matches their upper bound.

However, even for their method a specific input state is required. Our method
can be seen as an alternative sequential method but with fewer qubits.

Duan et al. gave a lower bound on the number of calls required in a se-
quential method for perfect discrimination [17]. Their method can also be easily
generalized (see Appendix A) to arbitrary error and we obtained the same lower
bound as that obtained from the generalization of Kawachi et al.’s result that
was mentioned earlier. Duan et al. also gave a sequential algorithm for perfect
discrimination (using a specific input state) but it was not immediately clear
how to extend their algorithm for bounded-error discrimination. In any case,
we would like to see our discrimination algorithm as an alternative sequential
method that uses the idea of amplitude amplification, is independent of the in-
put state and makes almost the same number of calls to the black-boxes as the
currently known parallel discrimination method.

3.1 Separation using amplitude amplification

Suppose that we want to use an input state |γ〉 which may be chosen optimally or
may simply be available for use. We assume that we have access to the black-box
U ∈ {U1, U2} and its corresponding adjoint U† as well. It should be noted that
if U is implemented as a quantum circuit, then U† is usually easy to implement.
We will discuss both cases of error probability ε < 0.5 and ε = 0.

Let s be some phase and θ ∈ [0, π/4] be an angle such that 〈γ|U†1U2|γ〉 =
cos 2θeis; define |σ1〉 = U1|γ〉 and |σ2〉 = e−isU2|γ〉 so that 〈σ1|σ2〉 = cos 2θ is
real making it easier to apply Theorem 1. Given this |γ〉, the probability of error
in discriminating between U1|γ〉 and U2|γ〉 can be expressed according to this

well-known relationship: Pr[error] = 1
2

(
1−

√
1− |〈σ1|σ2〉|2

)
= 1−sin 2θ

2

Observe that if θ = π
4 , the states |σ1〉 and |σ2〉 are already orthogonal and

so can be perfectly discriminated; on the other hand, if θ = 0 (i.e., |σ1〉 and |σ2〉
differ only by a global phase), then they cannot be discriminated better than a
random guess. Therefore, we will focus on the case when θ ∈ (0, π/4).

|σ2〉

|σ1〉

θ

π
4

|σ⊥a 〉
|ρ1〉

|σa〉

|ρ2〉

Fig. 1. The different states that are used in operator discrimination.



Construct an orthogonal basis for H = H(|σ1〉, |σ2〉) by first defining |σa〉 =
p|σ1〉+ p|σ2〉 and then defining an appropriate orthogonal state |σ⊥a 〉 = p′|σ1〉 −
p′|σ2〉; it suffices to use p = 1/(2 cos θ) and p′ = 1/(2 sin θ). It is now easy to
represent |σi〉 in the above basis; |σ1〉 = 〈σa|σ1〉|σa〉+ 〈σ⊥a |σ1〉|σ⊥a 〉 = cos θ|σa〉+
sin θ|σ⊥a 〉 and |σ2〉 = 〈σa|σ2〉|σa〉 + 〈σ⊥a |σ2〉|σ⊥a 〉 = cos θ|σa〉 − sin θ|σ⊥a 〉. Define
operators Q0 = |σa〉〈σa|, Q1 = |σ⊥a 〉〈σ⊥a | and define a projective measurement
Q = 〈Q0, Q1〉. It will be easier to visualize all rotations in the basis (|σ〉, |σ⊥〉).

Now define |ρ1〉 = 1√
2
|σa〉+ 1√

2
|σ⊥a 〉 and |ρ2〉 = 1√

2
|σa〉− 1√

2
|σ⊥a 〉. Use this to

define a two-outcome projective measurement operator P = 〈P1, P2〉 in which
P1 = |ρ1〉〈ρ1| and P2 = I − P1 = |ρ2〉〈ρ2|. The different states that were con-
structed are explained in Figure 1.

Suppose GUa,b denotes the operator U [(1− eia)|γ〉〈γ| − I]U† · [I − (1− eib)Q1]

that uses the black-box U . Our first observation is that GUia,b can also be written

as [(1− eia)|σi〉〈σi| − I]U† · [I − (1− eib)Q1]. Since the space spanned by Q0|σ1〉
and Q1|σ1〉 is H itself, and ‖Q1|σ1〉‖2 = |〈σ⊥a |σ1〉|2 = sin2 θ, GU1

a,b operators can
be used in Theorem 1 for rotating any state in H in a counter-clockwise manner
by some angle that is at most 2θ.

Our second observation arises from the fact that since |σ2〉 = cos θ|σa〉 +
sin θ(−|σ⊥a 〉), G

U2

a,b can still be used in Theorem 1 but the rotation will be from

|σa〉 towards −|σ⊥a 〉; that is, the rotation will be in a clockwise manner with
everything else remaining the same as above (also illustrated in Figure 1).

For discriminating with low probability of error, say ε, let ε ∈ [0, π/2] be an
angle such that sin2 ε = ε. Let φ = π/4 − θ − ε. Applying Corollary 1, one can
calculate ρ, a, b and set k = b φ2θ c such that CPρG

Ui
a,bCP

†
ρ [GUiπ,π]k rotates in the

following manner. Here, |σ̄⊥a 〉 denotes the state −|σ⊥a 〉.

|σ1〉 = cos θ|σa〉+ sin θ|σ⊥a 〉 CPρG
U1
a,bCP

†
ρ [G

U1
π,π ]

k

−−−−−−−−−−−−−−−→cos(θ + ε)|σa〉+ sin(θ + ε)|σ⊥a 〉

|σ2〉 = cos θ|σa〉+ sin θ|σ̄⊥a 〉 CPρG
U2
a,bCP

†
ρ [G

U2
π,π ]

k

−−−−−−−−−−−−−−−→cos(θ + ε)|σa〉+ sin(θ + ε)|σ̄⊥a 〉

Let V Ui denote the operator CPρG
Ui
a,bCP

†
ρ [GUiπ,π]kUi. Our discrimination pro-

cedure consists of first deriving the parameters (ρ, a, b, k), constructing a cir-
cuit for the operator V U using the black-box U , executing V U |γ〉 to obtain
state |Ψ〉 and finally measuring |Ψ〉 in the basis P. U is declared to be Ui if
measurement outcome is |ρi〉. The probability of error can be calculated as
‖P1V

U2 |γ〉‖2 = ‖P2V
U1 |γ〉‖2 = sin2 ε = ε, as desired.

Finally, we would like to discuss the query complexity of discrimination. Since
each call to GUa,b involves one call to U and one call to U†, the number of calls

to U† is k+ 1 while the number of calls to U is k+ 2 (including the initial call to

|γ〉). Therefore, the total number of queries is 2k+ 3. Here k = bπ/4−θ−sin
−1√ε

2θ c
that can be simplified to R( π8θ −

sin−1√ε
2θ )−1. We use R(f) to denote the nearest

integer to any floating point number f (R(0.5) is set to 1).

Theorem 2. The above algorithm can differentiate between two operators U1

and U2 for any input state |γ〉 with probability of error at most ε as long as



θ = cos−1 |〈γ|U†1U2|γ〉| 6= 0 and using 2 ∗ R
(
π
8θ −

sin−1√ε
2θ

)
+ 1 total calls to the

black-boxes U and U†.

Of course, |γ〉 can be chosen optimally to maximize θ. For the optimal |γ〉,
|〈γ|U†1U2|γ〉| equals cos2 ω2 (therefore, use θ = ω/4) which leads to the following
corollary about optimal discrimination between U1 and U2.

Corollary 2. The above algorithm can differentiate between two operators U1

and U2 without any error using the optimal input state and a total of 2 ·R
(
π
2ω

)
+

1 ∈ {dπω e, d
π
ω e+ 1} calls to the black-boxes. The number of calls to discriminate

with probability of error ε is at most 2·R
(
π
ω −

2 sin−1√ε
ω

)
+1 = 2·R

(
sin−1(1−2ε)

ω

)
+

1 and in particular, with error 1/3 is at most 2 · R(0.34/ω) + 1.

For both exact and bounded-error algorithms, the query complexity of our al-
gorithm using the optimal state is at most one more than current known bounds.

4 Randomized non-query classes

The current methods for improving success probability of bounded-error non-
query quantum algorithms are parallel repetitions [12] that have the same com-
plexity as classical methods. Intuitively, however, amplitude amplification ought
to be applicable for such algorithms too.

Consider the randomized complexity class RQPε. For any language L ∈
RQPε, there exists a corresponding uniform family of quantum circuits {C}n,
say, over n + a qubits and an initial state |α〉 over a ancilla qubits that may
depend on n. As per standard practice, we assume that after C is applied the first
qubit is measured in the standard basis, i.e., the output state is measured by the
projective measurement operator P = 〈P 0 = |0〉〈0|⊗I, P 1 = |1〉〈1|⊗I〉. This can
be easily generalized to any other decision criteria that involves measuring the
output state by a two-outcome projective measurement. We denote the output
state Cn(|x〉 ⊗ |α〉) by |Ψx〉 in which n denotes |x|. Let θ ∈ (0, π/2) be an angle
such that sin2 θ = ε; note that if θ = π/2, then p = 1 and in that case we anyway
have L ∈ EQP. Since L ∈ RQPε, the following should hold for any x ∈ {0, 1}∗.

x ∈ L =⇒ ‖P 1|Ψx〉‖2 ≥ ε = sin2 θ, and x 6∈ L =⇒ ‖P 1|Ψx〉‖2 = 0 = sin2 0

We also define the exact one-sided error quantum class ERQPε by extending
RQPε: for x ∈ L, ‖P 1|Ψx〉‖2 = ε and the probability is zero for x 6∈ L.

We can similarly define two-sided bounded-error quantum classes. For any
0 ≤ ε2 < 1

2 < ε1 ≤ 1, define BQPε1,ε2 as the class of languages L such that:

x ∈ L =⇒ ‖P 1|Ψx〉‖2 ≥ ε2, and x 6∈ L =⇒ ‖P 1|Ψx〉‖2 ≤ ε1 for any x

Also, define its exact error version 1 EBQPε1,ε2 which consists of languages with
error probabilities that is exactly ε1 if x ∈ L and exactly ε2 if x 6∈ L.

1 A similar question on exact two-sided-error classical class was asked in http://

cstheory.stackexchange.com/questions/20027.



Furthermore, define ERQP =
⋃
ε ERQPε and EBQP =

⋃
ε1,ε2

EBQPε1,ε2 .
Obviously, EQP ⊆ ERQP and EQP ⊆ EBQP.

θ

|ψyesx 〉
Rδ|ψyesx 〉

δ

Rδ|ψnox 〉
= |ψnox 〉

(a) Amplification of
ERQP

θ1

θ2
π
2
−θ2

π
2
−θ2
|ψyesx 〉

|ψ̃yesx 〉 = Rπ
2
−θ2 |ψ

yes
x 〉

|ψ̃nox 〉 = Rπ
2
−θ2 |ψ

no
x 〉

|ψnox 〉

(b) Stage-1 of EBQP
amplification

Rθ′2
|ψ̃yesx 〉

= |ψ̃yesx 〉

θ′2 Rθ′2
|ψ̃nox 〉

|ψ̃nox 〉

(c) Stage-2 of EBQP
amplification

Fig. 2. Amplification of exact-error classes can be seen as conditional rotations. Solid
lines denote the states before rotation and dashed lines denotes the states after rotation.

4.1 One-sided exact error class: ERQP

Languages in ERQPε can be amplified immediately by using Theorem 1. Con-
sider any such L and any x ∈ L. Let H denote the space spanned by P 1|Ψx〉
and P 0|Ψx〉; clearly, |Ψx〉 ∈ H. Let δ = π/2 − θ. Construct rotation operator
Rδ using |Ψx〉 and P 1. Applying this Rδ on |Ψx〉 gives us a state such that
‖P 1Rδ|Ψx〉‖2 = 1. On the other hand, if x 6∈ L, H is one-dimensional and in
that case the constructed operator Rδ acts as the identity operator; therefore,
‖P 1Rδ|Ψx〉‖2 = 0. Figure 2a illustrates the action of Rδ for both the cases.

We only need to show that Rδ can be constructed in a uniform manner for
a fixed L. Rδ will be constructed as Rδ′R

k
2θ where k = b δ2θ c and δ′ = δ − k · 2θ.

However, the difficulty lies in constructing the Rδ′ and R2θ operators. Both of
them involve some uniformly chosen gates (that depend upon |α〉, P 1, δ and 2θ)
but also operators of the type [(1− eiγ)|Ψx〉〈Ψx| − I] that seem to be dependent
on x. The key observation here is that

((1− eiγ)|Ψx〉〈Ψx| − I) = C · ((1− eiγ)|x〉〈x| ⊗ |α〉〈α| − I) · C†
and that a Fanout gate [18] can be used to make a copy of the input state
|x〉 at the beginning which can be used later to implement |x〉〈x|. The detailed
construction of the above operator is given in Appendix B. Essentially we are
able to construct a uniform circuit Rδ that can completely eliminate any error
in deciding strings in ERQP languages.

Theorem 3. EQP =
⋃
ε ERQPε = ERQP.

We will now analyse the complexity of amplification. Let s(n) be an upper
bound on the size (number of gates) the circuits Cn and C†n. Let C ′n denote the
amplified zero-error circuit that calls Cn and C†n and let s′(n) denote the size
of C ′n. Assuming that A,B,E can be implemented without much overhead on
size, s′(n)/s(n) is proportional to 1 + 2(k + 1) ≈ 2( π

4 sin−1
√
ε
− 1

2 ) + 3 ≤ 1.6√
ε

+ 2.



Now contrast this with the usual parallel scheme of running multiple copies of
Cn in parallel (on copies of |x〉⊗|α〉, with |x〉 being copied using a Fanout gate).
First of fall, such a parallel scheme cannot possible achieve 100% probability of
success. Secondly, the size increases by a factor proportional to 1

− ln(1−ε) ≈
1
ε

that is quadratic ally large compared to the amplified C ′n with zero-error.

4.2 Two-sided exact error class EBQP

Two-sided bounded-error classes can be treated similarly as their one-sided coun-
terparts. We will leave out the details and only chalk the main ideas using the
Rθ rotation operators for suitable θ. We have already explained in the earlier
subsections how to implement Rθ in a uniform manner; this is sufficient to give
us uniform circuits to decide languages with a higher probability of success.

For the two-sided exact error class EBQP and some language L ∈ EBQP,
consider the two-stage amplification process illustrated in Figure 2. Consider any
n-bit x and let C denote the corresponding circuit and |α〉 denote the (uniformly
generated) fixed-state ancilla register. Let |Ψx〉 denote C|x〉 ⊗ |α〉.

Consider any xyes ∈ L and denote C|xyes〉 ⊗ |α〉 by |Ψyesx 〉. Similarly, if
xno 6∈ L, denote C|xno〉 ⊗ |α〉 by |Ψnox 〉. Furthermore, let 0 < θ1 < θ2 < π/2 be
angles such that sin2 θ1 = ε1 and sin2 θ2 = ε2.

In stage-1 (Figure 2b), first Rπ/2−θ2 is applied to |Ψx〉; let C1 denote the

circuit and |Ψ̃x〉 = C1|x〉 ⊗ |α〉 denote the state thus obtained. Here Rπ/2−θ2 is

constructed by using |Ψx〉 and P 1 and involves C and C† similar to the construc-
tion in Subsection 4.1. If x ∈ L, then |Ψ̃x〉 is now aligned with P 1|Ψx〉 whereas
if x 6∈ L, then |P 1|Ψ̃x〉| = sin(π/2− (θ2 − θ1)).

Let θ′2 denote π/2− (θ2− θ1). Observe that |Ψ̃x〉 belongs to the same Hilbert
space spanned by P 1|Ψx〉 and P 0|Ψx〉. In stage-2 (Figure 2c), R̃θ′2 is applied on

|Ψ̃x〉 but now R̃θ′2 is constructed using |Ψ̃x〉 and P 0 and involves C1 and C†1
similar to the construction in Subsection 4.1; C1 and C†1 in turn calls C and C†.

First consider the case of x ∈ L. P 0|Ψ̃x〉 = 0 implies that R̃θ′2 |Ψ̃x〉 is identical

to |Ψ̃x〉 (up to a global phase). Then consider the case of x 6∈ L. Since, |P 0|Ψ̃x〉| =
sin(θ2 − θ1), R̃θ′2 |Ψ̃x〉 will be now aligned with P 0.

Thus we get the resultant circuit C ′ = R̃θ′2Rπ/2−θ2C and the final state

applying C ′ is measured using (P 0, P 1). If P 0 is observed, (correctly) decide
that x 6∈ L and otherwise, (correctly) decide that x ∈ L.

Theorem 4. EQP =
⋃
ε1,ε2

EBQPε1,ε2 = EBQP.

We will now discuss the complexity of the amplified algorithm and compare it
with the usual parallel repetition algorithm for BQP that outputs the majority.
Like for the EQP case, we will use C and C ′ for the original circuit and the
zero-error amplified circuit, respectively. We will focus only on overhead caused
by the multiple calls to C and C† hoping that the additional components in the
Rδ gates can be implemented with a small number of gates.



For comparison with the parallel repetition algorithm, it will be convenient
to assume that ε2 = 1− ε1 and therefore, θ2 = π/2− θ1 in which θ2 > π/4.

Apart from the initial call to C to generate |Ψx〉, notice that the number of

calls in the first phase is at most 2 since π/2−θ2
2θ2

< 1. The number of calls in the

second phase is ≈ 2
(

1 + π/2−(θ2−θ1)
2(θ2−θ1)

)
= 1 + π

2(θ2−θ1) = 1 + π
2(sin−1√ε2−sin−1√ε1)

= 1 + π/2

sin−1(
√
ε2(1−ε1)−

√
ε1(1−ε2))

≤ 1 + π/4
ε2−1/2 . Let ns denote this upper bound.

Contrast this with the parallel repetition method that takes the majority
of several parallel executions of C|x〉 ⊗ |α〉. Even though this method cannot
collapse EBQP to EQP, suppose we are interested to improve the probability
ε2 to σ ≈ 1. Applying the usual Chernoff’s bound based analysis, the number of

parallel executions necessary is 4(1−ε2)
(ε2−1/2)2 ln 1

1−σ that we denote by np.

Note that if ε2 ≥ 3/4, i.e., θ2 ≥ π/3 and θ1 ≤ π/6, then only 2 calls are
necessary in the second phase. So, for comparison we consider 1/2 < ε2 < 3/4.
In that case, np ≥ 1

(ε2−1/2)2 ln 1
1−σ and ns ≈

√
np (ignoring small constants).

4.3 Non-exact classes RQP and BQP

First we address the amplification of non-exact RQPε languages. For such lan-
guages 1−ε is only an upper bound on the failure probability (when x ∈ L). Since
amplitude amplification requires knowledge of the success probability, there has
been several attempts to generalize amplitude amplification for the cases when
this probability is not known. An often followed approach guesses the value of ε
in an exponentially increasing manner until a solution is found [6] or time-out
happens. Instead we suggest using the quantum “fixed-point” search techniques
for RQPε languages, e.g., following the one proposed by Yoder et al. [7] gives us
a quantum circuit that makes O( 1√

ε
log 2√

1−δ ) = O( 1√
ε

log 1
1−δ ) calls to C and

C† and is sufficient to increase the success probability from ε to δ. The gates in
that circuit are either fixed for L or of the form Ga,b that we showed how to
construct in a uniform manner in the earlier subsection. Contrast this to classi-
cal techniques for amplifying probability of RP languages; if C was a classical

algorithm, then ln(1−δ)
ln(1−ε) ≥

1
ε ln 1

1−δ calls to C are required which is almost square

of the number of calls required for the quantum case.
Circuits for BQP languages can also be amplified using ideas presented here.

However, we leave out the specific details from this paper.

4.4 Communication Protocols

Apart from black-box/query algorithms, quantum amplitude amplification has
also been applied to quantum communication protocols [19] for reducing proba-
bility of error and for distributed leader election [4] but they do not involve pro-
tocols that use pre-shared entangled bits. One can observe that existing quantum
communication complexity protocols can be applied to protocols in which the
parties get their input in the form of input state and not as oracle gates.



In this context we want to point out that the the subtle requirement that it
is not possible to amplify protocols that use arbitrary shared entangled qubits
as ancilla. This is in stark contrast to quantum circuits that may use ancilla in
entangled states and yet, can be amplified.
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|0〉
|rn〉

|x1〉
|x2〉

|xn〉
|r1〉

|x·r〉

(a) Circuit IP

Alice

Bob

IP

IP

|x〉

|y〉

|0〉

|0〉

n

n

(b) Circuit imple-
menting randomized
string equality

Fig. 3. Circuit to detect if x = y with probability at least 1/2

Consider the quantum protocol illustrated in Figure 3 that implements the
well-known randomized algorithm for EQ(x, y) that asks whether two n-bit
string x and y are identical. The protocol compares x · r and y · r in which
r represents n random bits known to both parties. The circuit uses n EPR pairs
to simulate n public random bits used in the randomized algorithm. It can be
verified that if x = y, then the output qubit is always observed to be in |0〉
whereas if x 6= y, then the output qubit is observed in |0〉 or |1〉 with equal prob-
ability. If we could somehow apply amplitude amplification to this protocol, then
Grover iterator would be applied only once, i.e., involving a total communication
of 6 qubits (each Grover iterator involves a call to the circuit and a call to its
inverse). That would invalidate the well-established lower bound that computing
EQ by a communication protocol that involves pre-shared EPR pairs requires
communication of at least n/2 qubits [20].

5 Conclusion

Amplitude amplification is commonly used to improve the probability of success
of quantum query algorithms. We extend their usage to non-query algorithms
by exploiting the fact that what they essentially do is increase the difference in
probability of success between two cases. Based on this observation, we obtain
efficient sequential algorithms for discrimination of unitary operators and for
improving success probability of bounded error quantum algorithms.
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A Appendix: Operator discrimination

In this section we generalize the operator discrimination upper and lower bounds
given by Kawachi et al. [9] and the lower bound given by Duan et al. [17] to
arbitrary bounded-error ε.

A.1 Upper bound for parallel method

Kawachi et al. showed that the probability of error in their operator discrimina-
tion algorithm that makes k parallel calls to U is given by 1

2 (1 − sin kω
2 ) when

ω < π [9, Lemma 2]. Equating that error to ε gives us the required upper bound
on k as d 2ω sin−1(1− 2ε)e.

A.2 Lower bound for parallel method

Kawachi et al. showed that if an operator discrimination algorithm makes k
parallel calls to U , then its error probability is at least 1

2 (1 − kω
2 ) [9, Theorem

5]. Equating the error to ε gives us the required lower bound of d 1−2ε
sin(ω/2)e.

A.3 Lower bound for sequential method

Duan et al. showed that if kω(U) < π for some operator U , then for any opera-
tors X1, X2, . . . Xk−1, ω([Xk−1Xk . . . X1]† · [UXk−1UXk−2 . . . UX1U ]) ≤ kω(U).
ω(O) was defined earlier as the length of the smallest arc containing all the
eigenvalues of an operator O. Furthermore, it is known that the probability of

discriminating two unitary operators A and B is 1
2 (1 − sin ω(A†B)

2 ) (using the
optimal input state and measurement). Therefore, using A = Xk−1Xk . . . X1

and B = UXk−1UXk−2 . . . UX1U and equating for k such that probability of
error in discriminating between A and B is ε gives us k ≥ d 2

ω(U) sin−1(1− 2ε)e.
The authors then showed that this lower bound of discriminating between A
and B translates to the lower bound d 2

ω(U†V )
sin−1(1 − 2ε)e for any sequential

algorithm to discriminate between U1 and U2.

B Uniform Grover iterator

Consider the operator ((1−eiγ)|Ψx〉〈Ψx|−I) = C ·((1−eiγ)|x〉〈x|⊗|α〉〈α|−I)·C†
that is used in the differential amplifications of ERQP and EBQP circuits. We
show how to implement it without using a gate that depends upon the input
state |x〉.

Denote the middle operator ((1 − eiγ)|x〉〈x| ⊗ |α〉〈α| − I) by M . Figure 4
explains how to implement M in a uniform manner. M acts on two registers, R1

with n qubits and R2 with a qubits. It is implemented using three sub-operators
A,B,E and uses n + 2 ancilla qubits. The states of the ancilla qubits are reset
to their initial states at the end of M , and hence, these qubits can be reused
during all calls to G.
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Fig. 4. Circuit to implement the module ((1− eiγ)|Ψx〉〈Ψx| − I)

Operator A acts on three registers, first one on n qubits that is always fixed
to |x〉 (corresponding to the classical input x), the third one is always fixed to |0〉
and the second register is R1. The action of A can be described by the mapping

|x〉|y〉R1
|b〉 7→ |x〉|y〉R1

|b ⊕ (x
?
= y)〉 on the basis states. It is important to note

that the state of the first register of A remains unchanged. At the very beginning
of the circuit, a Fanout gate [18] can be applied to the input register (in state
|x〉) to create a copy of |x〉 that can be used for the first register of A in every
call to G.

In a similar manner, B acts on two registers in which the first register is
always fixed to |0〉 and the second register is R2. Since |α〉 is known, B can be
implemented to map |0〉|α〉R2

7→ |1〉|α〉R2
and |0〉|α⊥〉R2

7→ |0〉|α⊥〉R2
.

E is a two-qubit operator that simply changes the phase by eiγ if both the
input qubits are in the state |1〉, i.e., E = I − (1− eiγ)|11〉〈11|.

It can be seen that A,B and E altogether changes the phase of |x〉R1
|α〉R2

by
eiγ and leaves any orthogonal state in R1, R2 as it is — essentially implementing
−M . After correctly changing the phase, A† and B† are executed to reset the
states of the third register of A to |0〉 and first register of B to |0〉, respectively.
Therefore, those registers can be reused in the next call to G.
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