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Abstract

If a concept class can be represented with a certain amount of memory, can it be efficiently
learned with the same amount of memory? What concepts can be efficiently learned by algo-
rithms that extract only a few bits of information from each example? We introduce a formal
framework for studying these questions, and investigate the relationship between the fundamen-
tal resources of memory or communication and the sample complexity of the learning task. We
relate our memory-bounded and communication-bounded learning models to the well-studied
statistical query model. This connection can be leveraged to obtain both upper and lower
bounds: we show strong lower bounds on learning parity functions with bounded communica-
tion, as well as the first upper bounds on solving generic sparse linear regression problems with
limited memory.

1 Introduction

The increasing scale of problems we want to solve has led to new computing architectures, ranging
from GPUs to distributed networks of computers, for which performance is not constrained by the
maximum possible number of operations per second. Instead, the performance of such systems often
depends on resources such as the memory per processor or machine, or the amount of communication
required by the algorithm. This trajectory of modern computing suggests that we revisit the theory
of the learnable with an eye not only towards the usual resources of time (number of operations
required) and data (number of examples required), but with a consideration of both memory and
communication.

From a very different perspective, it seems both practically and philosophically important to
understand what factors drive the difficulty of a learning problem. Intuitively, we might assume that
easy problems can still be learned in the presence of various constraints, whereas hard problems have
fragile solutions that cannot withstand them; under this view, robustness to resource constraints can
provide us with a richer understanding of the hardness of learning than traditional PAC theory.
One natural question in this line is to explore which concept classes can be efficiently learned
by an algorithm that does not require significantly more memory than is required to store the
true concept—essentially by an algorithm that can learn the concept class “in memory” without
requiring additional side computations or “scratch paper.” Similarly, many seemingly easy learning
tasks have the property that even if relatively little information from each example is used, learning
is still possible and rapid; it is natural to ask for a characterization of the class of problems that
can be learned in this way. While these constraints on memory or communication may seem
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stringent, it is tempting to argue that nearly all of the processes by which humans learn—in
addition to requiring relatively few examples and time—have little memory overhead and allow
for a considerable compression of the information given in each example (for instance, millions of
pixels may simply be remembered as “a persimmon”).1

1.1 Our Contributions

Motivated by the dual goals of attending to the memory and communication considerations of mod-
ern systems, and developing a more nuanced understanding of the difficulty of learning problems,
we introduce and study three complexity classes for investigating what concepts can be learned
efficiently given memory or communication constraints (see Section 2 for formal definitions):

• The class MEM(b) of concepts that are learnable from a polynomial number of examples, by
an algorithm that uses at most b bits of memory.

• The class COM(b) of concepts that are learnable from a polynomial number of examples, by
an algorithm that can extract at most b bits of information from each example. Equivalently,
this class can be viewed as those concepts that are learnable via an arbitrary multiround
multiparty communication protocol in which there are a polynomial number of parties, each
party is given a labeled example, and each party can broadcast at most b bits over the course
of the algorithm.

• The class sCOM(b) of concepts that are learnable in a streaming setting by a protocol in
which each example must be compressed to b bits before the next example is given. Note
that the compression function can be adaptive, and can depend arbitrarily on the earlier
compressed examples. The class sCOM(b) can also be viewed as the restriction of COM(b)
to the setting in which each party is allowed to broadcast a single b-bit message.

We now provide an informal summary of our main theorems. Our main results connect the
classes COM and MEM with the class of concepts efficiently learnable via statistical query algo-
rithms (SQ); see Section 2 for formal definitions. These connections are then leveraged to yield
both upper, and lower bounds for several learning problems of interest.

Our first theorem shows that classes of function that can be learned via statistical queries can
be learned with relatively little memory. We stress that our proof of this result is of an existential
nature, and the reduction may not be computationally efficient.

Theorem. If a class of functions F over length n examples is learnable with poly(n) statistical
queries of tolerance 1/ poly(n), then it is learnable with at most poly(n, log |F|) samples and b =
O (log |F| log(n)) bits of memory.

Our next theorem shows a tight correspondence between those classes of function that are
learnable via statistical queries, and those that are learnable using a single bit of communication
per example:

Theorem. A concept class is learnable from a polynomial number of statistical queries (of a poly-
nomial tolerance) if, and only if, it is learnable with a polynomial number of examples in the com-
munication setting in which O(log n) bits of information are extracted from each example. That is,
for any constant C > 0,

COM(1) = COM(C log n) = sCOM(1) = sCOM(C log n) = SQ .

1Beyond the memory and communication bounds studied in this paper, such constraints could also involve, e.g.,
limits on the class of algorithms that can be used or robustness requirements with respect to faulty hardware.
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One direction of the above theorem—showing that SQ ⊂ COM(1)—is trivial. The other direc-
tion is given as a consequence of the following theorem:

Theorem. If a concept class can be (ε, δ) learned with m examples and b bits of communication
per example, then it can be (ε, 2δ) learned by a statistical query algorithm that asks 2bm queries of
tolerance τ = 1

2b+1m
.

Communication Lower bounds

The preceding theorem serves as a powerful tool allowing one to immediately translate exponential
lower bounds for SQ into exponential lower bounds for bounded communication protocols. We
illustrate this via lower bounds for the well studied problem of learning a parity (PARITY). Recall
that the problem of learning a parity over n-bit examples is the problem of recovering an arbitrary
set S ⊆ {1, . . . , n} given access to uniformly random examples x ∈ {0, 1}n together with their
label `(x) =

∑
i∈S xi mod 2. The above theorem immediately implies that, as a direct corollary

to the classical exponential SQ lower bounds for learning PARITY of Blum et al. [1994], any
communication protocol for learning PARITY in which at most n/4 bits are communicated per
example requires 2Ω(n) examples.

The following more striking corollary of the above theorem is also established by first showing
the associated SQ lower bound.

Corollary. Given a multiround multiplayer protocol for learning PARITY over length n examples in
which each party receives n/4 uniformly random labeled examples and each party can communicate
at most b = n/16 bits, it is necessary to have 2Ω(n) parties in order to recover the correct parity
with probability at least 2/3.

This result is surprisingly strong: if each party is allowed to communicate arbitrarily, then with
decent probability, 4 parties would suffice to learn the parity. Meanwhile, if each party is allowed
to communicate b = n bits, then O(n) parties would suffice to learn the parity; and if each party
receives n examples rather than n/4 examples, then even if the communication per party is limited
to b = 1 bit, O(n) parties would also be capable of learning the parity.

While our theorem allows exponential SQ lower bounds to be mapped to exponential lower
bounds in the bounded communication setting, the constants in the exponent are not in general
tight. Intriguingly, we show that an alternate approach based on Assouad’s method [Assouad, 1983]
seems capable of giving nearly tight results in the streaming setting sCOM. As one example of this
approach we show the following polynomially tight bounds on learning PARITY with noise in the
streaming bounded communication setting:

Theorem. Given an instance of PARITY over n bit examples for which the label of each example
is corrupted independently with constant probability η < 1/2, any streaming algorithm that (even
adaptively) compresses each example down to b bits necessarily requires Ω(2n−b) examples to learn
the parity. This is tight to a linear factor, as O(n2n−b) examples suffice to learn a parity in this
setting.

Upper Bounds

We also consider implications of our reduction from SQ to MEM for sparse high-dimensional learn-
ing. In several common statistical learning problems, we seek to learn an n-dimensional parameter
vector that only has k � n non-zero entries. A natural question to ask is whether we need O(n)
memory to solve such problems, or if maintaining memory that scales with k is enough. Our
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framework enables us to move towards an answer to this question: We provide a sample-efficient
statistical query algorithm for sparse online linear regression, and then use the connection between
SQ and MEM to provide nearly memory-optimal algorithms requiring only k · polylog(n) memory
and n · poly(k) samples.2 Of course, because our reduction from SQ to MEM is implicit, and not
necessarily computationally efficient, this should be viewed as an existential result rather than a
practical result.

Open Problems

This work raises some intriguing open questions. Perhaps the most pressing (and, in some sense,
embarrassing) open problem is to prove an assumption-free separation between MEM and PAC. We
strongly believe that the problem of learning a parity should provide such a separation. Standard
Gaussian elimination can solve parity with O(n) samples and n2 memory; however, we conjecture
that the required sample complexity grows exponentially if the available memory decreases by
a constant factor. While we were able to make some progress towards this result—for example
proving that the statement holds for any algorithm whose memory states correspond to subspaces—
a complete proof eludes us.

Conjecture 1.1. Any algorithm for learning parities over n-bit examples requires either at least
2n/4 labeled examples (in expectation), or at least n2/4 bits of memory.

In a different direction, it would be useful to give a computationally efficient reduction from
SQ to MEM, as opposed to our implicit reduction. One related and perhaps more modest and
practically relevant goal would be to provide a practical memory-bounded algorithm for sparse
regression.

1.2 Related Work

Building off a number of early efforts to develop classification algorithms, as well as algorithms
for learning patterns, grammars, etc., the introduction of the PAC learning framework [Valiant,
1984] offered a formal model in which to investigate a theory of learnability via the rich and
rigorous tools of probability, computational complexity, and information theory. Similarly, while
there were a number of efforts to develop noise-tolerant learning algorithms, the introduction of
the statistical query model of Kearns [1998] allowed for the development of a more general theory
of how learning algorithms may be robust to noise, and the development of a common set of
abstract tools for the design of such algorithms. Informally, a statistical query learning algorithm
is one that never sees any actual examples, and, instead, interacts with the data via an adaptive
sequence of queries that request noisy estimates of various statistics of the example/label pairs.
Any such algorithm is inherently robust to noise in the label. Surprisingly, most common learning
algorithms can be adapted to be statistical query algorithms. Since the initial definition of the
statistical query framework, there have been successful efforts to characterize which concepts can
be learned within this framework [e.g., Blum et al., 1994], including recent results showing inherent
connections between statistical query learnability and differential privacy [Gupta et al., 2011, Balcan
and Feldman, 2013] and evolvability [Feldman, 2009].

Perhaps the line of investigation most closely related to ours is the recent work of Shamir [2014].
That work considers a class of information theoretic constraints that can be applied to learning

2As discussed in Section 4.1, this is essentially the best result we could hope for; Steinhardt and Duchi [2015]
show that solving sparse regression with poly(k, log(n)) memory and poly(k, log(n)) samples is impossible, even with
uncorrelated features.
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processes, which implies results for online learning given partial information, and learning with
memory and communication restrictions. The main difference is that both their definitions and
techniques are strictly in terms of information theoretic quantities. Thus, due to inherent limitations
of the information-theoretic approach explained in Section 3.3, their results are necessarily limited
to linear trade-offs between the information and the number of samples required, as opposed to the
distinctions between polynomial versus super-polynomial that we seek.

Several authors have also considered communication and/or privacy restrictions in the dis-
tributed data setting [Balcan et al., 2012, Duchi et al., 2013, Zhang et al., 2013, Garg et al., 2014,
M. Braverman, 2015]. As in Shamir [2014], this work is largely restricted to classical informa-
tion theoretic arguments, and hence again obtains only linear trade-offs between the information
exchanged per sample/round and the sample complexity/number of rounds.

An early work of Ben-David and Dichterman [1998] also considers several learning models in
the streaming setting in which limited information may be extracted from each example. Among
other models, they consider one equivalent to our sCOM streaming model with bounded com-
munication, and establish the polynomial equivalence of sCOM(log n) and SQ. They exploit this
characterization to provide lower bounds for learning PARITY, though our bounds are stronger in
two ways. First, their reduction only shows exponential sample lower bounds for PARITY when
log n bits per example are communicated (in contrast to our result which holds even if n/4 bits are
communicated per example); second, their results only apply to bounded communication protocols
in the streaming setting (sCOM) rather than the more general multi-round communication setting
(COM).

There is a huge literature on communication complexity (see Kushilevitz and Nisan [1997],
Lee and Shraibman [2009] for surveys), and the related concept of information complexity from
the theoretical computer science community [Chakrabarti et al., 2001, Bar-Yossef et al., 2004,
Braverman and Rao, 2011]. Such work focuses on understanding the length or entropy/information
content of messages that must be communicated between distributed parties in order to compute
a desired function, such as the set intersection, of their individual inputs. Recently, it was shown
that there exist problems that exhibit an exponential gap between the required message length
and the required entropy of the communicated messages [Ganor et al., 2014]. This and other
curious connections and discrepancies between the communication and information complexities of
problems led us to consider the COM and MEM classes defined in terms of both actual bits as well
as information theoretic bits of entropy.

Finally, there is a large body of work on memory bounded computation from the theory com-
munity [e.g., Reingold, 2008], and work on the applied side on reducing the memory needs [e.g.,
Langford et al., 2009, Xiao, 2010, Agarwal et al., 2012, Mitliagkas et al., 2013, Arora et al., 2013,
Steinhardt et al., 2014] and/or communication needs [e.g., Niu et al., 2011] for various specific
learning tasks, though this literature is beyond the scope of this paper. The topic of finite-memory
learning has also received attention from the statistics community, with a focus on hypothesis
testing [e.g., Cover, 1969, Hellman and Cover, 1970].

2 Definitions

Before making precise definitions, we will state our notational conventions. We use the symbol m
for the number of samples/queries, n to denote the length of each sample (for instance, if samples
lie in {0, 1}n), δ to denote the probability of failure, and ε to denote the accuracy of a solution.
For communication and memory constraints, b denotes the number of allowed bits; for statistical
queries, τ denotes the tolerance of each query.
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Learnability. We consider learning problems (X , F , D), where F is a concept class of functions
f : X → {−1, +1}, and D is a distribution on X . Our goal is to learn f ∈ F given some
indirect access to it (for instance, samples of the form (x, f(x)) with x ∼ D). We say that an
algorithm (ε, δ)-learns F if, for each f ∈ F , with probability 1 − δ the algorithm returns an f̂
with Px∼D[f(x) = f̂(x)] ≥ 1 − ε. We are interested in what problems can be (ε, δ)-learned given
various constraints on the algorithm, as described below. Note that any ε-accurate f̂ can with
high probability be verified to be accurate with only Õ(1/ε2) samples; by standard amplification
arguments, it therefore suffices to consider (ε, 1/3)-learnability.

Statistical queries. The class SQ is defined as the class of problems that can be (ε, 0)-learned
using poly(n, ε−1) statistical queries of tolerance 1/ poly(n, ε−1). By standard derandomization
arguments, this is equivalent to the class of problems that can be (ε, 1/3)-learned in the same
way (using a number of queries that is larger by at most an extra logarithmic factor in the size
of an ε-covering of the concept class). For our purposes, a statistical query of tolerance τ takes
as input a function ψ : X × {−1, +1} → [−1, +1], and outputs µ = SQ(ψ, τ) satisfying |µ −
Ex∼D[ψ(x, f(x))]| < τ .

Communication bounded learning: COM. We define COM(b) to be the class of problems
that are learnable with b bits of communication per example using a number of examples that is
polynomial in the length n of each example. Formally, a learning problem (X , F , D) is in COM(b)
if for all ε, δ > 0, the class can be (ε, δ)-learned with m = poly(n, ε−1, log(δ−1)) labeled examples
via a 2-phase algorithm of the following form: the first phase is the communication phase, where
at the t-th step of the algorithm, a “player” i ∈ {1, . . . ,m} is chosen according to a (possibly
randomized function) of the transcript of communications that occurred in the first j − 1 steps of
the algorithm. The chosen player, i, broadcasts (i, c) where c is a single bit c = gi,j(xi, `(xi)) which
is computed via an arbitrary (possibly randomized) function gi,j of the i-th labeled example, where
the function gi,j may be adaptively chosen dependent on the entire transcript of communications in
the first j−1 rounds. We require that each player i ∈ {1, . . . ,m} broadcasts at most b times during
the communication phase of the algorithm. After the communication phase of the algorithm, the
second phase of the algorithm outputs a hypothesis f̂ that is a (possibly randomized) function of
the entire communication transcript.

Streaming communication bounded learning: sCOM. We define sCOM(b) to be the class
of problems that are learnable with b bits of communication per example in a streaming model
using a number of examples that is polynomial in the length n of each example. Formally, a
learning problem (X , F , D) is in sCOM(b) if for all ε, δ > 0, the class can be (ε, δ)-learned with
m = poly(n, ε−1, log(δ−1)) labeled examples via a 2-phase algorithm of the following form: the
first phase is the communication phase, where at the i-th step of the algorithm, the i-th example
xi, `(xi) is compressed to zi = gi(xi, `(xi)) where zi ∈ {0, 1}b and gi : X × {−1, 1} → {0, 1}b is a
(possibly randomized) function dependent on z1, . . . , zi−1. After the communication/compression
phase of the algorithm, the second phase of the algorithm outputs a hypothesis f̂ that is a (possibly
randomized) function of z1, . . . , zm.

Memory bounded learning: MEM. We define MEM(b) to be the class of problems that are
learnable with b bits of memory using a number of examples that is polynomial in the length of
each example. Formally, a learning problem (X , F , D) is in MEM(b) if for all ε, δ > 0, the class
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can be (ε, δ)-learned with m = poly(n, ε−1, log(δ−1)) examples via an algorithm that streams over
examples while maintaining only b bits of state in memory.

3 Characterizing COM(b)

In this section, we will show that the complexity classes COM and SQ are closely related. Our main
high-level result is that a problem is learnable from statistical queries if and only if it is learnable
with logarithmic (equivalently, 1-bit) communication.

Theorem 3.1. For any constant C > 0,

COM (1) = COM (C log n) = sCOM (1) = sCOM (C log n) = SQ .

One direction of the above theorem is easy and unsurprising: showing that SQ ⊂ sCOM(1) ⊂
COM(1). This follows from the fact that a statistical query SQ(ψ, τ) can be simulated by evaluating
ψ on approximately 1/τ2 samples and taking the average. Moreover, this still works if we first
randomly round ψ(x, f(x)) to either +1 or−1, which allows us to send the sample with a single bit of
communication in the streaming setting. We make this explicit in Lemma 3.2 whose straightforward
proof is deferred to Appendix A.

Lemma 3.2. If a concept class F is (ε, δ)-learnable with m statistical queries of tolerance τ , then
it is (ε, 2δ)-learnable with 2m log(2m/δ)/τ2 samples and 1 bit of communication per sample.

For the other direction of Theorem 3.1, we leverage the following theorem that provides a general
prescription for converting bounded communication algorithms into statistical query algorithms:

Theorem 3.3. If a concept class can be (ε, δ)-learned with m examples and b bits of communication
per example, then the concept class can also be (ε, 2δ)-learned by a statistical query algorithm that
asks 2bm statistical queries of tolerance τ = δ/

(
2b+1m

)
.

Note that as long as b = O(log n) and m = poly(n), the above theorem yields a polynomial
number of statistical queries of a polynomial tolerance τ , establishing that COM(C log n) ⊂ SQ.
Beyond showing this polynomial equivalence, the above theorem allows one to translate exponential
hardness for SQ learning into exponential lower bounds for learning with bounded communication.
To give a concrete example, consider the following bound of Blum et al. [1994] on the learnability
of parity functions in the SQ model:3

Let Pn, r be the class of n-bit parity functions that depend on at most r coordinates:
that is, X = {0, 1}n, and fv(x) = (−1)

∑n
i=1 vixi for some v ∈ {0, 1}n with ‖v‖0 ≤ r. Also

let s = |Pn, r|. Then, for s ≥ 16, no algorithm can (1/3, 1/3)-learn Pn, r with s1/3/2
statistical queries of tolerance s−1/3.

Via Theorem 3.3, this result directly implies the following bound for parity with bounded commu-
nication; in particular PARITY(n) 6∈ COM(αn) for any α < 1/3.

Corollary 3.4. Given only b bits of communication per sample, no algorithm can (1/3, 1/6)-learn
the class Pn, r with less than |Pn, r|1/3/

(
2b+4

)
examples. In particular, no algorithm can (1/3, 1/6)-

learn Pn, n with less than 2n/3−b−4 examples, and hence, for example, any algorithm communicating
at most n/4 bits per example requires an exponential number of examples.

3The theorem as stated in Blum et al. [1994] is for (1/3, 0)-learning, but the same proof establishes the impossibility
of (1/3, 1/3)-learning as well.
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As a second corollary to Theorem 3.3, we can prove similar bounds even in the setting in which
each “example” consists of a list of Θ(n) examples drawn uniformly at random from PARITY(n).
The proof of the following corollary is given in Appendix A.1. As discussed in the introduction,
this corollary may be a bit surprising, since if each party could either see n examples instead of
n/4 examples, or communicate n bits instead of n/16 bits, then the exponential blow-up would
disappear.

Corollary 3.5. Suppose we have a multiround multiparty protocol for learning a parity in which
each party is given ≤ n/4 uniformly distributed length-n labeled examples, and each party can com-
municate at most b ≤ n/16 bits. Then, Ω(2n/16/n) parties are needed in order to learn PARITY(n)
with probability 0.9.

3.1 Proof of Theorem 3.3

The high level proof approach is to argue that we can simulate all of the communications just by
using statistical queries. We will proceed via induction, and argue that the total variation distance
between the distribution of communications in the communication model, and the distribution of
simulated communications based on statistical queries, is small—bounded by α—and hence if the
communication algorithm succeeds with probability 1 − δ, the statistical query algorithm will be
successful with probability at least 1− δ−α. The following protocol describes how each step of this
simulation proceeds.

Algorithm 1. Simulating Communication Protocol via Statistical Queries

Given the description of a communication protocol in which each of m players receives an
example/label pair (x, `(x))) drawn from the distribution over examples, the following algorithm
describes how to simulate the protocol using statistical queries.

Consider an intermediate step of the communication protocol in which the i-th player is
supposed to communicate a bit. Assume that the i-th player has already communicated j− 1 bits,
c1, . . . , cj−1 in earlier steps of the protocol. Let fi,j denote the (possibly randomized) function
that maps (x, `(x)) to {0, 1}, representing the function that player i uses to compute the j-th bit
cj to communicate. Note that fi,j might have been chosen dependent on the entire transcript
of communications up to this point, and let fi,1, . . . , fi,j−1 denote the analogous functions that
were used to compute the first j − 1 bits that player i communicated (which were each de-
pendent on the transcripts of communication up until the corresponding bits were communicated).

For k ≤ j − 1, let Ek =
∧k
h=1[fi,h(x, `(x)) = ch] and pk = Prx[Ek], and assume that we

have estimates of p1, . . . , pj−1, which we denote by q1, . . . , qj−1, satisfying |pk − qk| ≤ 2τ.

1. We ask two statistical queries of tolerance τ :

0qj := SQ
(
I[Ej−1 ∧ fi,j(x, `(x)) = 0], τ

)
,

1qj := SQ
(
I[Ej−1 ∧ fi,j(x, `(x)) = 1], τ

)
,

where I is the indicator function.

2. Define t = 0qj+(qj−1−1qj)
2 and s = max (0,min (t, qj−1)).

3. Set cj = 0 with probability s/qj−1, and cj = 1 otherwise.

4. If cj = 0, then set qj = s, otherwise set qj = qj−1 − s.
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We note that in the above reduction, in Step 1 we use two statistical queries—one to estimate 0qj ≈
Pr[Ej−1 ∧ fi,j(x, `(x)) = 0] and one to estimate 1qj ≈ Pr[Ej−1 ∧ fi,j(x, `(x)) = 1]. We could have gotten
away with a single query, leveraging the fact that 0qj + 1qj ≈ qj−1, though the errors in the approximation
would increase as more bits are communicated, yielding that |pk − qk| ≤ kτ, rather than the invariant that
|pk − qk| ≤ 2τ . Hence we could have reduced the total number of statistical queries by a factor of 2, at the
expense of needing to decrease the tolerance by a factor of b—the total number of bits communicated per
player.

The following lemma justifies the calculations in Step 2 of the above algorithm, showing that the above
process preserves the invariant that |pk − qk| ≤ 2τ.

Lemma 3.6. Assume 0pj , 1pj , pj−1 ∈ [0, 1] satisfy 1pj + 0pj = pj−1, and let 0qj , 1qj , and qj−1 satisfy
|pj−1 − qj−1| ≤ 2τ, |0pj −0 qj | ≤ τ , and |1pj − 1qj | ≤ τ . Then if we define

t =
0qj + (qj−1 − 1qj)

2
and s = max (0,min (s, qj−1)) ,

the following two inequalities hold:

|0pj − s| ≤ 2τ and |1pj − (qj−1 − s)| ≤ 2τ.

Proof. First note that since 0 ≤ 0pj , 1pj ≤ pj−1, and |pj−1 − qj−1| ≤ 2τ, it suffices to show that |0pj − t| ≤
2τ and |1pj − (qj−1 − t)| ≤ 2τ, as the restriction of t to lie in the range [0, qj−1] can never cause these
equations to go from being true to being false. For the first inequality, note that qj−1−1qj ∈ [1pj−3τ, 0pj−3τ ],
and hence 0qj + (qj−1 − 1qj) ∈ [20pj − 4τ, 20pj + 4τ ], from which the first inequality follows. For the second
inequality, first note that (0qj− 1qj)− (0pj− 1pj)| ≤ 2τ, and hence (0qj− 1qj)− (pj−1−21pj)| ≤ 2τ. Plugging
this in, we have the following:∣∣∣∣1pj − (qj−1 − 0qj + (qj−1 − 1qj)

2

)∣∣∣∣ =

∣∣∣∣1pj +
−qj−1 + (0qj − 1qj)

2

∣∣∣∣
≤

∣∣∣∣1pj +
−qj−1 + pj−1 − 21pj

2

∣∣∣∣+ τ,

≤
∣∣∣∣pj−1 − qj−12

∣∣∣∣+ τ

≤ 2τ.

We are now equipped to prove the validity of the simulation algorithm, establishing Theorem 3.3.

Proof of Theorem 3.3. Let ct denote the bit of communication communicated in round t, and let it and jt
denote the corresponding party and index of the bit. For shorthand, define the tuple zt = (it, jt, ct), and let
m′ = bm denote the total number of rounds of communication. Then, we can bound the total variational
distance as

‖p− q‖TV =
1

2

∑
z1:m′

|p(z1:m′)− q(z1:m′)|

≤ 1

2

m′∑
t=1

Ez1:t−1 [|p(it, jt | z1:t−1)− q(it, jt | z1:t−1)|] + Ez1:t−1,it,jt [|p(ct | it, jt, c1:t−1)− q(ct | it, j1, c1:t−1)|]

=
1

2

m′∑
t=1

Ez1:t−1,it,jt [|p(ct | c1:t−1, it, jt)− q(ct | c1:t−1, it, jt)|] ,

where the final equality is because it is selected using the same protocol for both p and q, and jt is a
deterministic function of (z1:t−1, it).
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Consequently, for a given party i, the contribution from the simulation of bit cj to the total variation

distance is bounded by 1
2E
[∣∣∣ pj
pj−1

− qj
qj−1

∣∣∣] . We now analyze this quantity.

First observe that

E
[

1

qj
| qj−1

]
= u

1

uqj−1
+ (1− u)

1

(1− u)qj−1
=

2

qj−1
,

where u = s/qj−1 is the probability of the coin used to decide cj as specified in Step 3 of the algorithm.
Hence 1

2q1
, 1
22q2

, . . . , 1
2jqj

is a martingale, from which it follows that E[ 1
qj

] = 2j , where the expectation is

taken over the randomness of the entire simulation.
From Lemma 3.6, |qk − pk| ≤ 2τ , hence we have the following inequality:∣∣∣∣ pjpj−1

− qj
qj−1

∣∣∣∣ =
|pjqj−1 − qjpj−1|

pj−1qj−1

≤ pj |qj−1 − pj−1|+ pj−1|pj − qj |
pj−1qj−1

≤ 2τ(pj + pj−1)

pj−1qj−1
≤ 4τpj−1
pj−1qj−1

≤ 4τ

qj−1
.

Consequently, 1
2E
[∣∣∣ pj
pj−1

− qj
qj−1

∣∣∣] ≤ 2jτ , and so the overall contribution of the ith party to the total varia-

tional distance is at most
∑b
j=1 2jτ < 2b+1τ . Summing over all parties yields a bound of ‖p−q‖TV < m2b+1τ .

Hence, as long as τ ≤ δ
m2b+1 , the total variational distance is bounded by δ, which means that the probability

of failure can increase by at most δ, and so is bounded by 2δ, as desired.

3.2 Direct Bounds on Communication in the Streaming Setting

In the previous section, we showed that learnability with bounded communication is closely tied to statistical
query learnability, and used this to prove lower bounds on the amount of communication needed to learn
PARITY in polynomially many samples. In this section, we complement this result with a more direct
communication lower bound based on Assouad’s method [Assouad, 1983] that applies to the streaming
model of bounded communication. As illustrated in the case of learning parity with noise, this approach can
yield essentially sharp lower bounds on the hardness of communication-constrained learning in the streaming
settings. It remains an intriguing open question to extend these techniques from the streaming setting sCOM
to the more general bounded communication setting COM.

Suppose that we are trying to learn some unknown x ∈ X by observing a stream of i.i.d. samples
from a distribution px(y). Intuitively, given a sample y, a communication-bounded algorithm would like to
approximate the likelihood function ly(x) = px(y) with as few bits as possible. If there is a cluster S ⊆ Y
across which the values of ly are highly correlated, then we can save communication by transmitting the
cluster rather than the particular value of y. If no such clusters exist, communication-bounded learning should
be difficult. Theorem 3.7 below formalizes this, by measuring the covariance M between the probabilities of
different points in Y.

Theorem 3.7. Consider any problem where x ∈ X is drawn according to a measure µ(x), and y1, . . . , ym ∈
Y are drawn i.i.d. (conditioned on x) with probability px(y). Let p0(y) be any distribution on Y and define
the matrix M ∈ RY×Y by

My,y′ =
∑
x∈X

µ(x) (px(y)− p0(y)) (px(y′)− p0(y′)) ; (1)

moreover, write λ = |Y| ·λmax(M) for the maximum eigenvalue of |Y| ·M and assume that µ(x) ≤ 1/2 for all

x. Then any procedure using b bits of communication requires at least
√

2
log2(1/λ)−b−8 samples yi to identify

x with probability greater than 3/4.
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If we take p0(y) = pµ(y) :=
∑
x px(y)µ(x), then we can interpret My, y′ as the covariance between px(y)

and px(y′), where y, y′ are treated as fixed and x is random. Note that log2(1/λ) identifies a threshold in
communication below which sample complexity increases exponentially. Assuming that px(y) ≈ 1/|Y|, we
will have tr(M) ≈ |Y|−1, and hence λ ∈ [|Y|−1, 1]. Therefore, log2(1/λ) will typically be between 0 and
log2 |Y|.

The two key steps to proving our result are given as lemmas below. The first is the standard lemma on
which Assouad’s method is based, while the second is a new bound that lets us leverage the bounded com-
munication assumption. The idea behind the latter result is that, letting z be a message in one of the rounds,
the KL divergence between p0(z) and px(z) can be bounded by the χ2-divergence

∑
z |p0(z)− px(z)|2/px(z)

(Tsybakov [2009], Lemma 2.7). Since z ∈ {0, 1}b, the denominator 1/px(z) is with high probability not much
larger than 2b, which yields a bound that leverages the communication constraint b. Proofs are provided in
Appendix B.

Lemma 3.8 (Assouad [1983]; Arias-Castro et al. [2013]). Let Z(1:m) be the messages sent by a communication-
bounded streaming algorithm, and suppose that

m∑
i=1

∑
x∈X

µ(x)Ez(1:i−1)∼p0

[
KL
(
p0(Z(i) | z(1:i−1)) ‖ px(Z(i) | z(1:i−1)

)]
≤ K. (2)

Then, the probability of recovering x is at most µmax +
√
K/2, where µmax = maxx µ(x).

Lemma 3.9. Let the message Z ∈ {0, 1}b depend on Y and Ẑ and suppose that px(y) ≥ ε/|Y| for all x, y.
Let M be as defined in (1). Then, for any ẑ, we have∑

x∈X
µ(x) KL (p0(Z | ẑ) ‖ px(Z | ẑ)) ≤ 2bλ/ε, (3)

where λ = |Y| · λmax(M) is the measure of problem complexity in the statement of Theorem 3.7.

Given these two lemmas, the proof of Theorem 3.7 proceeds as follows. For any given distribution px(y),
we modify both it and p0(y) by averaging in a multiple of 1/(8m) of the uniform distribution on Y; this
guarantees that px(y) ≥ 1/(8m|Y|) uniformly, and with probability 7/8 this difference will not manifest even

once over m samples. Also, M becomes scaled down by a factor of (1− 1/(8m))
2
, so λ can only decrease

due to this modification. We can then apply Lemma 3.9 to conclude that

m∑
i=1

∑
x∈X

µ(x)Ez(1:i−1)∼p0

[
KL
(
p0(Z(i) | z(1:i−1)) ‖ px(Z(i) | z(1:i−1))

)]
≤ m2 2b+3λ, (4)

so that the probability of recovering x is at most 1/2 + 1/8 +
√
m2 2b+2λ. As long as m2 2b+2λ ≤ 1/64, the

probability of success is at most 3/4; this corresponds to m ≤ 1/
√
λ2b+8, as claimed.

Applying the bound. We can use the lower bound in Theorem 3.7 to provide a short proof of the
communication lower bounds for PARITY in the streaming setting. For convenience, we consider the equiv-
alent version of PARITY where instead of getting samples labeled by the parity, we see samples drawn
uniformly at random from the positive class. In the language of Theorem 3.7, we have X = Y = {0, 1}n and
px(y) =

(
1 + (−1)〈x,y〉

)
/2n. If we let p0(y) = 2−n, then we have

My,y′ =
1

4n

∑
x∈X

µ(x)(−1)〈x,y〉(−1)〈x,y
′〉 =

1

4n

∑
x∈X

µ(x)(−1)〈x,y+y
′〉. (5)

From this, we see that My,y′ is a circulant matrix over {0, 1}n, and hence is diagonalized by the Fourier
transform. More concretely, if we let χs(y) = (−1)〈s,y〉, then one can easily check (Lemma B.1) that χs is
an eigenvector of M with eigenvalue µ(s)/2n. Since |Y| = 2n, we have λ = maxs µ(s) = µmax. Hence we

need at least
√

2
log2(1/µmax)−b−8

samples to learn PARITY, for any distribution µ(x) with µ(x) ≤ µmax.
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As an immediate consequence, if µ(x) is uniform over {0, 1}n, then we need 2(n−b)/2−4 samples to solve
PARITY on n bits. This result is substantially stronger than Corollary 3.4. In particular, it implies that
PARITY(n) 6∈ sCOM(αn) for any α < 1 (instead of α < 1/3). Note that we can trivially verify that
PARITY(n) ∈ sCOM(n); thus, Corollary 3.10 is sharp to within o(n) for the amount of communication
required to efficiently learn a parity.

Corollary 3.10. Any algorithm that learns PARITY on n bits with probability of success at least 3/4, using
only b bits of communication per example in the streaming setting, must use at least 2(n−b)/2−5 examples.

In the case of learning a noisy parity, where samples from the negative class occur with some probability
0 < η < 0.5, we obtain even tighter bounds. This is because we no longer need to add in artificial noise in
the proof of Theorem 3.7 and instead can directly bound the left-hand side of (4) by m 2b λη = m 2b−nη,
thus yielding a lower bound of Ω

(
2n−b

)
.

Holding η fixed, a näıve algorithm that guesses the first n−b bits of the answer can learn noisy parity with
O
(
n2n−b

)
samples (since it takes O (b) samples to compute the answer conditioned on a given guess, followed

by O (n− b) samples to verify the guess with sufficiently high probability). We can therefore characterize
the number of samples required to learn a noisy parity to within a factor n. Moreover, this result implies
that the noisy parity problem is not in the class sCOM(n− ω(log(n))).

Corollary 3.11. For a fixed noise level, learning a noisy parity on n bits with b bits of communication
and success probability 7

8 in the streaming setting requires at least Ω
(
2n−b

)
samples and at most O

(
n 2n−b

)
samples.

3.3 The Limits of Information Theory

In the above sections, we established exponential thresholds for communication-bounded procedures, showing
that below a certain threshold the sample complexity doubles for every 1-bit reduction in the allowed com-
munication. This lower bound is very different in kind than much of the prior work on resource-constrained
learning [e.g., Bar-Yossef et al., 2004, Zhang et al., 2013, Garg et al., 2014, Shamir, 2014], which reduce re-
source constraints to information constraints in order to build on well-developed mathematical tools from in-
formation theory. Instead of finding exponential thresholds, prior work has only established linear thresholds,
where the sample complexity doubles every time the allowed communication is halved. We will show that,
in a strong sense, exponential thresholds can never be obtained from a reduction to information-theoretic
constraints: the linear thresholds exhibited thus far are the best possible with a purely information-theoretic
approach.

The idea is the following: given any algorithm that communicates using b bits of entropy per example,
we can run the same algorithm while only sending a message once every k steps, e.g., by only looking at the
examples whose index is i mod k, with i ∼ Uniform({0, . . . , k−1}). This requires k times as many examples
total, but the amount of communication per example is only about b/k in expectation. Therefore, we can
always increase the number of samples by a factor of k while decreasing the entropy by the same factor. We
prove the following more precise result in Appendix C, as well as an analogous result for memory-constrained
problems.

Proposition 3.12. Any communication-constrained problem that can be learned with m samples and H(zi) ≤
b can be learned with mk samples and H(zi) ≤ b/k + log2(k · e)/k.

In addition to justifying the statistical query techniques presented above, Proposition 3.12 also validates
our definitions: if we had instead, for instance, defined the class COMH(b) of problems learnable with
polynomially many examples and b bits of entropy communicated per example, then we would already have
COMH(1) ⊇ PAC. The class COMH is therefore completely trivial, while the previous sections show that
COM has rich structure.

4 Reducing SQ to MEM

Many classical algorithms use poly(n) memory to solve n-dimensional problems; e.g., Gaussian elimination
uses on the order of n2 memory to solve an n-dimensional linear system; this is infeasible in modern applica-
tions, where n could easily be 109 or larger. In such cases, streaming algorithms such as stochastic gradient
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have generated enormous practical benefit by solving regression problems using nearly-linear memory in
exchange for modest increases in sample complexity.

The success of such algorithms leads us to ask the more general question: which problems can be solved
in such a memory-efficient way? Theorem 4.1 below provides a positive result for problems that are learnable
from statistical queries: all such problems may also be learned with nearly-linear memory memory, using
only a polynomial number of samples. We note, however, that our reduction procedure is not necessarily
computationally efficient. Proofs for this section may be found in Appendix D.

Theorem 4.1. Suppose that the distribution D over X is known. If a class F is (ε, 0)-learnable with m0

statistical queries of tolerance τ , then it is (ε, δ)-learnable with at most

m = O
(
m0 log |F|

τ2
(log log |F|+ log(m0) + log(1/δ))

)
samples and (6)

b = O (log |F| (log(m0) + log log(1/τ)) + log(1/τ)) bits of memory. (7)

Let REP be the class of efficiently representable problems (i.e., with log |F| = Õ (n)). Note that MEM(Õ(n)) ⊆
REP. Theorem 4.1 implies a partial converse:

Corollary 4.2. If a class F is learnable with poly(n) statistical queries of tolerance 1/ poly(n), then it is
learnable with at most poly(n, log |F|) samples and b = O (log |F| log(n)) bits of memory. In particular,

SQ∩REP ⊆ MEM(Õ(n)).

We remark here that the näıve approach of simply remembering the results of the statistical queries will
not work, since the number m of statistical queries could be much larger than log |F|. Instead, we show
that it is always possible to identify a subset of O (log |F|) “important” queries, such that remembering the
results of only these queries suffices to recover the answer.

More specifically, the proof of Theorem 4.1 relies on a reduction of statistical queries to a canonical form.
First, we replace statistical queries with statistical threshold queries, which return a binary yes-no answer
about whether a statistical query lies above or below a given threshold. We also apply a normalization
procedure to ensure that at least one of the two answers will narrow down the space of concepts by a factor
of 3/4 or better. Then, we simply record the first point at which we receive an “important” answer that
narrows the space by at least this factor: by construction, all of the previous answers are then uniquely
determined, so that this is enough to recover the full sequence of queries and responses up to that point.
Iterating this process O (log |F|) times leaves us with a unique concept.

To make the canonicalization process more precise, recall that a statistical query oracle SQ takes a
statistic ψ : X × {−1, +1} → [−1, +1] and a tolerance τ , and outputs a value µ = SQ(ψ, τ) satisfying
|µ − Ex∼D[ψ(x, f(x))]| < τ . We define a related statistical threshold query oracle, which takes a triple
(ψ, µ, τ) and outputs a response r = STQ(ψ, µ, τ) ∈ {0, 1}, such that r = 1 if Ex∼D[ψ(x, f(x))] ≥ µ + τ ,
r = 0 if Ex∼D[ψ(x, f(x))] ≤ µ − τ , and r may be arbitrary otherwise. Then, for any statistical threshold
query q = (ψ, µ, τ), define F1(q) and F0(q) to be the subsets of F consistent with a response of 1 and 0 to
the query, respectively:

F1(q)
def
= {f ∈ F : Ex∼D [ψ(x, f(x))] > µ− τ} , (8)

F0(q)
def
= {f ∈ F : Ex∼D [ψ(x, f(x))] < µ+ τ} . (9)

Note that F1(q) ∪ F0(q) = F . We say that a statistical threshold query q = (ψ, µ, τ) is valid if

min
{∣∣F1(q)

∣∣ , ∣∣F0(q)
∣∣} ≤ 3

4
|F| . (10)

As shown in the following result, any statistical query can be replaced with a small number of valid statistical
threshold queries.

Lemma 4.3. Any statistical query with tolerance τ ≤ 2 can be implemented with
⌈
log
(
2
τ

)⌉
statistical thresh-

old queries with tolerance τ/2. Moreover, any invalid statistical threshold query with tolerance τ/2 can be
simulated with a valid statistical threshold query with tolerance τ/4.
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Now, for a query q, call a response r good if |Fr(q)| ≤ 3
4 |F|, and bad otherwise. If we get a good

response to q, then we can simply remember this response and recursively solve the problem for the class
Fr(q), which is at least 25% smaller than before. If we have only received bad responses so far, then the
sequence of responses and queries is uniquely determined (since there is at most one bad response to each
query and the algorithm is deterministic) and we can remember this with 1 bit of memory. This yields:

Lemma 4.4. If a problem is (ε, 0)-learnable with m statistical threshold queries with tolerance τ/2, then it can
be (ε, 0)-learned with O(m log |F|) statistical threshold queries with tolerance at least τ/4 and O(log |F| log(m))
bits of memory.

Theorem 4.1 follows by using the fact that all of the statistical threshold queries in Lemma 4.3 can be
obtained from a single statistical query of tolerance τ/4, and that m such statistical queries can be simulated
with probability 1− δ using O

(
m log(m/δ)/τ2

)
samples.

Separating SQ from MEM(Õ (n)). Learning from statistical queries is in fact strictly harder than
learning with memory constraints. To show this, let F be the class of parity functions that depend only on
the first

√
n bits. This class belongs to MEM(Õ(n)), since we can recover the true concept by performing

Gaussian elimination over F2 on the first O(
√
n) samples, which requires O((

√
n)2) = O(n) bits of memory.

On the other hand, this class is not in SQ [Blum et al., 1994]. Therefore, we have MEM(Õ(n)) ) SQ∩REP.

4.1 Application: Sparse Linear Regression

Sparse linear regression is one of the most widely studied problems in machine learning (see, e.g., Hastie
et al. [2015]). A simple form of the linear regression problem is as follows: we observe independent and
identically distributed pairs (x, y) ∈ [−1, 1]n × [−R, R] where the x are drawn from a known distribution
x ∼ D, y = w∗ · x+ v, and v is drawn from a known noise distribution Dv that is uncorrelated with x. We
then seek to recover w∗ via the relation

w∗ = arg min
w

{
E
[
‖y − w · x‖22

]
: ‖w‖1 ≤ R

}
. (11)

We say that this problem is a k-sparse regression problem if, moreover, ‖w∗‖0 ≤ k for some k � n; in this
case, we also set R = k. It is well known that the regression problem (11) can be efficiently solved with
O (k log n) samples using, for instance, the exponentiated gradient (EG) algorithm of Kivinen and Warmuth
[1997]. However, the EG algorithm uses Ω(n) bits of memory, whereas the answer w∗ can be stored with
only O (k log n) bits of memory. This discrepancy leads us to a natural question: is it possible to efficiently
solve k-sparse linear regression as defined above using poly(n) samples and only poly(k, log(n)) memory?

Using the relationship between SQ and MEM, we answer this question in the affirmative—at least from
the point of view of sample complexity. To our knowledge, this is the first result on memory-efficient linear
regression that does not require structural assumptions on the covariance matrix. The result below extends
directly to other sparse convex optimization problems such as logistic regression. All proofs in this section
may be found in Appendix E.

Theorem 4.5. Suppose that the linear regression problem (11) has k-sparse true parameters w∗, known
covariate distribution D, and known noise distribution Dv. Then, for any ε, δ > 0, there exists an algorithm
that (ε, δ)-solves (11); that is, with probability at least 1− δ the algorithm returns a predictor ŵ satisfying

E
[
‖y − ŵ · x‖22

]
≤ E

[
‖y − w∗ · x‖22

]
+ ε, while requiring only (12)

O
(
k log2

(n
ε

))
bits of memory and Õ

(
nk8 log δ−1

ε4

)
samples. (13)

As a baseline to Theorem 4.5, we note that a simple “guess-and-check” algorithm that can store s
coordinates at a time would need at least

(
n
s

)
samples to solve sparse linear regression. The only other result

we are aware of that enables memory-efficient sparse linear regression is the algorithm of Steinhardt and
Duchi [2015], which runs with a polynomial number of samples but only works in the special case where the
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features x are known to have identity covariance. Thus, it appears that our abstract reduction from SQ to
MEM has enabled us to state results that may have been difficult to establish without this machinery.

To prove Theorem 4.5, it suffices to provide an efficient SQ learning algorithm for linear regression and
then apply Theorem 4.1. To this end, we note the following standard result on performing gradient descent
with small errors on the gradients:

Lemma 4.6. Let f be a convex function. Suppose that for any point w with ‖w‖1 ≤ R (R ≥ 1), one can
obtain an approximate gradient z satisfying ‖z‖∞ ≤ B and ‖z−∇f(w)‖∞ ≤ τB. Then, after m approximate
gradient computations, exponentiated gradient obtains an estimate ŵ satisfying

f (ŵ)− min
‖w‖1≤R

f(w) ≤ O

(√
RB2 log(n)

m
+ τRB

)
. (14)

The proof of Theorem 4.5 now follows by taking f(w) = Ex∼D[(w · x− y)
2
]; the gradient ∇f(w) is

equal to Ex∼D[2x(w · x − y)], which has coordinates bounded by B = 4R. Then, ∇f(w)/B is a mean of
random variables over [−1, 1]n and so can be estimated with n statistical queries; in particular, queries with
tolerance τ lead to an accuracy of τB for the estimate z of ∇f(w). Thus, by Lemma 4.6, we obtain a vector
ŵ satisfying (12) in

M = O
(
nε−2 log (n)R3

)
statistical queries of tolerance τ = O

(
ε
/
R2
)
, (15)

whether or not w∗ is k-sparse. Now, if in addition w∗ is known to be k-sparse, the answer w∗ can be
represented (to accuracy ε) with log |F| = O (k log (n/ε)) bits of memory. We immediately conclude from
Theorem 4.1 that (11) can be (ε, δ)-solved with4

b = O
(
k log2

(n
ε

)
+ log

(
R2

ε

))
bits of memory and M = Õ

(
nR7k

ε4
log

(
1

δ

))
samples. (16)

The statement of Theorem 4.5 follows by setting R = k. As a follow-up to Theorem 4.5 we might be
tempted ask whether it is possible to do better yet: can we efficiently solve k-sparse linear regression using
poly(k, log(n)) samples and poly(k, log(n)) memory? The answer to this question, however, is in general
no: as shown by Steinhardt and Duchi [2015], n-dimensional regression with b bits of memory requires at
least Ω (nk/(bε)) samples to attain an error rate ε for k-sparse regression.

If, however, we also know that x is r-sparse for some r � n, we can eliminate the linear dependence on
n completely by using the count-min sketch algorithm of Cormode and Muthukrishnan [2005] to reduce the
number of statistical queries required for sparse regression in (15). To our knowledge, this is the first bound
for sparse linear regression that requires neither memory nor sample resources that scale linearly in n.

Theorem 4.7. Under the conditions of Theorem 4.5, suppose in addition that ‖x‖1 ≤ r for all x. Then,
there exists an algorithm that (ε, δ)-solves (11) with

O
(
k log2 (n/ε)

)
bits of memory and Õ

(
r3k10 log2(1/δ)/ε5

)
samples. (17)

References

A. Agarwal, S. Negahban, and M.J. Wainwright. Stochastic optimization and sparse statistical recovery:
Optimal algorithms for high dimensions. In Advances in Neural Information Processing Systems (NIPS),
pages 1538–1546, 2012.

E. Arias-Castro, E.J. Candes, and M.A. Davenport. On the fundamental limits of adaptive sensing. IEEE
Transactions on Information Theory, 59(1):472–481, 2013.

R. Arora, A. Cotter, and N. Srebro. Stochastic optimization of PCA with capped MSG. In Advances in
Neural Information Processing Systems (NIPS), 2013.

4Theorem 4.1 does not directly apply, since the notion of error ε is different here than before. However, the proof
of Theorem 4.1 does not rely on any important properties of the error metric and so still applies in this case.

14



P. Assouad. Deux remarques sur l’estimation. Comptes rendus des séances de l’Académie des sciences. Série
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A The Equivalence of SQ and COM

Proof of Lemma 3.2

We will simply simulate whatever statistical queries would have been made, using only a small number of
samples and 1 bit of communication per sample.

More precisely, we will show that we can with probability 1 − δ
m simulate a single statistical query of

tolerance τ , using 2 log(2δ/m)
τ2 samples and 1 bit of communication per sample. By the union bound, we can

then simulate m statistical queries with probability 1− δ.
To simulate a single statistical query, suppose we have k samples (x1, f(x1)), . . . , (xk, f(xk)). For each

sample i, evaluate ψi = ψ(xi, f(xi)), and round it to +1 with probability 1+ψi

2 and to −1 with probability
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1−ψi

2 . If we let zi be the result of this rounding process, then clearly E[zi] = Ex∼D[ψ(x, f(x))]. Moreover, if
we let z = 1

k (z1 + · · ·+ zk), then by the Chernoff bound, we have

P[|z − E[ψ(x, f(x))]| ≥ τ ] ≤ 2 exp(−kτ2/2). (18)

For k ≥ 2 log(2m/δ)
τ2 , this probability is less than δ

m , as desired.

A.1 Lower bounds on PARITY

In this section we prove Corollary 3.5, which shows that even if we have a multiparty communication protocol
in which each party is given a set of n/4 examples drawn from PARITY(n), then if each party communicates
at most b ≤ n/16 bits, an exponential number of parties is required to learn the parity. The proof follows
from first proving a statistical query lower bound in the setting in which one can ask arbitrary queries of
lists of n/4 examples (Proposition A.1), and then applying Theorem 3.3 to transform the statistical query
lower bound into a bounded communication lower bound.

We will prove the lower bound in the following setting: a vector s ∈ {0, 1}n is chosen uniformly at
random from the set of nonzero vectors. Each s defines a rank n − 1 subspace S of {0, 1}n defined by
S = {x :

∑
i:s(i)=1 xi = 0 mod 2}, and “examples” consist of uniformly drawn elements from this PARITY

subspace, x ← Unif [S]. The goal is to recover the set s given access to a set of such examples. This is
equivalent to the standard problem of learning PARITY, except that instead of being given labelled examples
(x, `(x)), we are considering the label as just another bit of the example. (This can also be regarded as
the problem of learning PARITY given random positively labelled examples—the two learning tasks are
equivalent, up to a factor of 2 in number of examples.)

For our proof, we will consider the setting where we are given batches of n/k examples drawn from
a PARITY subspace S ⊂ {0, 1}n. Throughout, we denote a “batch” of examples from subspace S as
b = (x1, . . . , xn/k), where xi ∈ S, and we denote the process of drawing this batch uniformly at random
from S via “b← S”. Additionally, let “S ← Unif” denote the process of choosing such a PARITY subspace
uniformly at random from such subspaces (namely, by choosing the set of parity indices s ∈ {0, 1}n, s.t.
s 6= ~0 uniformly at random).

Proposition A.1. Consider statistical query algorithms for PARITY that are allowed to ask queries of
a batch of n/4 examples—hence queries that propose functions f : {0, 1}n2/4 → [−1, 1]. Any such statis-
tical query algorithm that learns PARITY with probability at least 0.6 after adaptively proposing functions
f1, f2, . . . , fN with fi : {0, 1}n2/4 → [−1, 1] and receiving r1, r2, . . . , rN with ri adversarially chosen subject
to

|ri − Eb←S [fi(b)]| ≤ τ,

where S is the true parity subspace, either requires τ ≤ 2−n/8 or N = Ω( 2n/8

n ).

The following lemma, which is a simple application of Chebyshev’s inequality to the random variable
representing Eb←S [f(b)] over the choice of random subspace S, is the core of the proof of Proposition A.1.
For a rank n − 1 subspace S ⊂ {0, 1}n and function mapping a list of n/k examples to the range [−1, 1],

f : {0, 1}n2/k → [−1, 1] define XS,f = Eb←S [f(b)].

Lemma A.2. Let f : {0, 1}n2/k → [−1, 1] be a function satisfying ES←Unif [XS,f ] = 0, where S ← Unif
denotes the process of selecting a rank n − 1 subspace of {0, 1}n uniformly at random from the set of all
2n − 1 such subspaces; the following holds:

Pr
S←Unif

[|XS,f | > α] ≤ 3n

α22n−2n/k
.

Hence for k = 4, for sufficiently large n,

Pr[|XS,f | > 2−n/8] ≤ 3n

2n/4
.

Before proving the lemma, we show why it implies Proposition A.1:
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Proof of Proposition A.1. Fix any δ ∈ [0, 1], τ = 2−n/8 and N ≤ δ 2n/4

3n , and consider the learning setting in
which a parity S is chosen uniformly at random, and a statistical query algorithm begins by asking statistical
query SQ(f1, τ). By Lemma A.2, with probability at least 1− 3n

2n/4 , the response r1 = ES′←Unif [XS′,f ] will
satisfy |ri − Eb←S [f1(b)]| ≤ τ , and hence r1, which is a deterministic function of f1 will be an appropriate
response to the statistical query. Inductively, defining fi to be the i-th function proposed by the statistical
query algorithm given the sequence of responsesr1, . . . , ri−1 as defined above, the probability that the re-
sponses r1, . . . , rN all satisfy |ri − Eb←S [fi(b)]| ≤ τ | is at least 1− δ. Since ri are deterministic functions of
fi, and do not depend on the true parity S, for any two parities S1 6= S2, the distribution of outcomes of
the algorithm given parity S1 will have total variation distance at most δ from the analogous distribution
corresponding to the true parity being S2, and hence no such algorithm can correctly output the parity set
with probability greater than 1/2 + δ/2.

We now prove Lemma A.2.

Proof of Lemma A.2. The proof will be a simple application of Chebyshev’s inequality. We begin by bound-
ing Var[XS,f ]. In the following calculations, #S = 2n − 1 denotes the number of rank n − 1 subspaces of
{0, 1}n.

E[X2
S,f ] = ES

( 1

2(n−1)(n/k)

∑
b∈S

f(b)

)2


=
1

22n2/k−2n/k
1

(#S)

∑
S

∑
b∈S

f(b)
∑
b′∈S

f(b′)

=
1

(#S)22n2/k−2n/k

∑
b∈{0,1}n2/k

f(b)
∑

b′∈{0,1}n2/k

f(b′) · Pr[b, b′ ∈ S ← Unif ] · (#S), (19)

where Pr[b, b′ ∈ S ← Unif ] in the above equation denotes the probability that all the examples contained in
the batches b and b′ lie within a subspace S that is drawn uniformly at random from the set of rank n − 1
subspaces. To bound this probability, let r = rank(b ∪ b′) denote the rank of the space spanned by the list
of 2n/k vectors represented by the two lists b and b′. Let x1, . . . , xr denote a basis for the space spanned

by b ∪ b′, and note that the probability that x1 ∈ S for a randomly chosen S is exactly 2n−1−1
2n−1 (where the

minus 1’s take into account the fact that xi 6= ~0), and

Pr[xi ∈ S|x1, . . . , xi−1 ∈ S] =
2n−i − 1

2n−i+1 − 1
Pr[xi−1 ∈ S|x1, . . . , xi−2 ∈ S].

Hence

Pr[b, b′ ∈ S ← Unif ] =
(2n−1 − 1)(2n−2 − 1) · · · (2n−r − 1)

(2n − 1)(2n−1 − 1) · · · (2n−r+1 − 1)
∈ [

1

2r
− r

2n
,

1

2r
].

Combining this with Equation 19 yields that

E[X2
S,f ] ≤ 22n

2/k

22n2/k−2n/k
n

2n
+

∣∣∣∣∣ 1

22n2/k−2n/k

∑
b

f(b)
∑
b′

f(b′)
1

2rank(b∪b′)

∣∣∣∣∣
=

n

2n−2n/k
+

∣∣∣∣∣ 1

22n2/k−2n/k

∑
b

f(b)
∑
b′

f(b′)
1

2rank(b∪b′)

∣∣∣∣∣ . (20)

We will now bound this second term. Note that by our assumption that ES←Unif [XS,f ] = 0, we have
that

0 =
∑
b

f(b) Pr[b ∈ S ← Unif ] =
∑
b

f(b)
(2n−1 − 1)(2n−2 − 1) · · · (2n−rank(b) − 1)

(2n − 1)(2n−1 − 1) · · · (2n−rank(b)+1 − 1)
,

and hence it follows that |
∑
b f(b) 1

2rank(b) | ≤ 2n
2/k n

2n , and

|
∑
b

f(b)
∑
b′

f(b′)
1

2rank(b)+rank(b′)
| = |

∑
b

f(b)
1

2rank(b)

∑
b′

f(b′)
1

2rank(b′)
| ≤ 22n

2/k n

2n
. (21)
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To relate the above bounds to Equation 20, we now argue that∣∣∣∣∣
(∑

b

f(b)
∑
b′

f(b′)
1

2rank(b)+rank(b′)

)
−

(∑
b

f(b)
∑
b′

f(b′)
1

2rank(b∪b′)

)∣∣∣∣∣ ≤ (2n/k)22n
2/k−n+2n/k. (22)

To see this, note that for any pair b, b′ such that rank(b∪b′) = 2n/k, we have rank(b∪b′) = rank(b)+rank(b′),
and hence the above difference is trivially bounded in magnitude by

|{b, b′|rank(b ∪ b′) < 2n/k}| ≤ 22n
2/k 2n/k

2n−2n/k
,

where the first term is the total number of pairs b, b′, and the second term is a crude upper bound on the
probability that a list of 2n/k randomly chosen vectors has rank less than 2n/k.

We now combine Equations 20, 21, and 22:

E[X2
S,f ] ≤ n

2n−2n/k
+

∣∣∣∣∣ 1

22n2/k−2n/k

∑
b

f(b)
∑
b′

f(b′)
1

2rank(b∪b′)

∣∣∣∣∣
≤ n

2n−2n/k
+

22n
2/k(n/2n)

22n2/k−2n/k +

∣∣∣∣∣ 1

22n2/k−2n/k

∑
b

f(b)
1

2rank(b)

∑
b′

f(b′)
1

2rank(b′)

∣∣∣∣∣
≤ n

2n−2n/k
+

22n
2/k(n/2n)

22n2/k−2n/k +
22n

2/k(n/2n)

22n2/k−2n/k

≤ 3n

2n−2n/k
.

B Direct Communication Bounds with Assouad’s Method

Proof of Lemma 3.8

Note that the left-hand-side of (2) is just the expansion of
∑
x µ(x) KL

(
p0(Z(1:m)) ‖ px(Z(1:m))

)
under the

chain rule. Let X̂ be any estimator of x. Then the probability of recovering x is
∑
x µ(x)px(X̂ = x), which

we can bound as follows:∑
x

µ(x)px(X̂ = x) ≤
∑
x

µ(x)
(
p0(X̂ = x) + |px(X̂ = x)− p0(X̂ = x)|

)
≤ µmax

∑
x

p0(X̂ = x) +
∑
x

µ(x)‖px − p0‖TV

≤ µmax +
∑
x

µ(x)
√

KL
(
p0(Z(1:m)) ‖ px(Z(1:m))

)
/2 (Pinsker’s inequality)

≤ µmax +

√∑
x

µ(x) KL
(
p0(Z(1:m)) ‖ px(Z(1:m))

)
/2 (Jensen’s inequality)

≤ µmax +
√
K/2,

as claimed.

Proof of Lemma 3.9

Recall that Z is a potentially random function of Y and Ẑ; writing π(z | y, ẑ) for its conditional distribution,
we have that

p0(z | ẑ) =
∑
y

π(z | y, ẑ) p0(y), px(z | ẑ) =
∑
y

π(z | y, ẑ) px(y).
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We then have:

Ex∼µ[|px(z|ẑ)− p0(z|ẑ)|2] = Ex∼µ

∑
y,y′

(px(y)− p0(y))(px(y′)− p0(y′))π(z|y, ẑ)π(z|y′, ẑ)


=
∑
y,y′

Ex∼µ [(px(y)− p0(y)) (px(y′)− p0(y′))] π(z|y, ẑ)π(z|y′, ẑ)

=
∑
y,y′

My,y′ π(z|y, ẑ)π(z|y′, ẑ)

≤ λmax(M) ‖π(z|·, ẑ)‖22
≤ λmax(M) ‖π(z|·, ẑ)‖1, (23)

where the last step follows since π(z|y, ẑ) ≤ 1. Note also that, since px(y) ≥ ε/|Y| for all x and y by
assumption,

px(z|ẑ) =
∑
y∈Y

px(y)π(z|y, ẑ) ≥ ε

|Y|
‖π(z|·, ẑ)‖1. (24)

We are now ready to bound the KL divergence:

KL (p0(Z|ẑ) ‖ px(Z|ẑ))
(i)

≤ Dχ2 (p0(Z|ẑ) ‖ px(Z|ẑ))

=
∑
z

|px(z|ẑ)− p0(z|ẑ)|2

px(z|ẑ)

≤ |Y|
ε

∑
z

|px(z|ẑ)− p0(z|ẑ)|2

‖π(z|·, ẑ)‖1
,

where (i) is Lemma 2.7 of Tsybakov [2009]. Hence,∑
x∈X

µ(x) KL (p0(Z|ẑ) ‖ px(Z|ẑ)) ≤ |Y|
ε

∑
z

1

‖π(z|·, ẑ)‖1

∑
x

µ(x) |px(z|ẑ)− p0(z|ẑ)|2

=
|Y|
ε

∑
z

Ex∼µ[|px(z|ẑ)− p0(z|ẑ)|2]

‖π(z|·, ẑ)‖1
(ii)

≤ |Y|
ε

∑
z

λmax(M)

= 2bλ/ε,

where (ii) is just the inequality (23). We thus have the claimed result.

Lemma B.1. For M as given in (5), the eigenvectors of M are χs(y) = (−1)〈s,y〉, with corresponding

eigenvalues µ(s)
2n .
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Proof. The verification is straightforward:

[Mχs](y) =
∑
y′

My,y′χs(y
′)

=
1

4n

∑
x∈X

µ(x)
∑
y′

(−1)〈x,y+y
′〉(−1)〈s,y

′〉

=
1

4n

∑
x∈X

µ(x)(−1)〈x,y〉
∑
y′

(−1)〈x+s,y
′〉

=
1

4n

∑
x∈X

µ(x)(−1)〈x,y〉2nI[x = s]

=
1

2n
µ(s)(−1)〈s,y〉

=
µ(s)

2n
χs(y).

C Polynomial Insensitivity of the Information Theoretic Approach

Proof of Proposition 3.12

Suppose that we have an algorithm that takes m steps. We will perform step i ∈ {1, . . . ,m} on the
(i− 1)k + r-th sample, where r ∼ Uniform({1, . . . , k}). For all other samples we transmit a blank message.

Let us now compute the entropy of each message; each message is either blank (with probability 1−1/k)
or else is a message whose entropy is b. Letting h2(p) be the entropy of a coin flip with probability p, we
can then bound the total entropy of each message by

b

k
+ h2(1/k) =

b

k
+

1

k
log2(k) +

k − 1

k
log2

(
k

k − 1

)
=
b

k
+

log2(k)

k
+

1

k
log2

((
1 +

1

k − 1

)k−1)

≤ b+ log2(k) + log2(e)

k
,

as was to be shown.
We can also prove a similar result for memory-constrained procedures:

Proposition C.1. Any memory-constrained problem that can be learned to accuracy ε with m samples and

H(zi) ≤ b can be learned to accuracy 2ε with mk samples and H(zi) ≤ b
k + log2(k·e)

k + log2(mk2|F|) for any
integer k. In particular, it can be learned with mb samples and H(zi) ≤ 1 + log2(emb3|F|).

Proof. We split our memory into three chunks; at a high level, the first chunk will be used to run an instance
of the original algorithm, the second chunk will be used to store the answer, and the third chunk will store
a small amount of auxiliary data.

Our procedure first samples a random number j ∈ {1, . . . , k}. Then, it runs the original algorithm on
the samples with index i ∈ {(j − 1)m+ 1, . . . , jm} (using the third chunk to track j and i). Afterwards, it
writes the recovered answer to the second chunk, and zeroes out the first chunk. One the index i reaches
km, it returns the answer in the second chunk (which is guaranteed to have been written to exactly once).

First, to see that this algorithm works, we need to make sure that the answer can be represented with
log2 |F| bits. This is straightforward if the answer f̂ lies in F , but this need not be the case. On the other

hand, we know that Px∼D[f(x) = f̂(x)] ≥ 1−ε. Therefore, take any f ′ ∈ F satisfying Px∼D[f ′(x) = f̂(x)] ≥

21



1 − ε, and use this as the answer5; this f ′ will satisfy Px∼D[f(x) = f ′(x)] ≥ 1 − 2ε, which is all that we
require.

Now, let us measure the entropy of zi under this procedure. As before, the first chunk is zeroes with
probability 1− 1

k , and is otherwise a random variable with entropy at most b. Hence, as in Proposition 3.12,

the entropy of this chunk is at most log2(k·e)
k + b

k . Furthermore, the second chunk takes on at most |F| values
and the third chunk at most k · km values (for the random draw j together with the counter i), and so they
together add at most log2(k2m|F|) bits to the entropy. The claimed result follows.

D Reductions with Valid Queries

Proof of Lemma 4.3

We first show that any statistical query with tolerance τ ≤ 2 can be implemented with
⌈
log
(
2
τ

)⌉
statistical

threshold queries with tolerance τ
2 . To do so, we use the following binary search algorithm to implement

SQ(ψ, τ):

L← −1− τ/2
R← 1 + τ/2
while R− L > 2τ do
M ← L+R

2
b← STQ(ψ,M, τ/2)
if b = 1 then
L←M − τ/2

else
R←M + τ/2

end if
end while
return L+R

2

Consider the value of R − L; it is initially 2 + τ , and on each loop iteration updates as (R − L)new =
1
2 (R − L)old + τ

2 . After m loop iterations (and hence m calls to STQ(ψ, ·, τ/2)) we thus have R − L =
(2 + τ) · 2−m + τ(1− 2−m) = τ + 21−m. For m = dlog2

(
2
τ

)
e, we then have R − L ≤ 2τ , at which point the

loop exits. But we also then know that E[ψ(x, f(x))] ∈ (L,R), whence R+L
2 is a valid output of SQ(ψ, τ).

Next, we show that any statistical threshold query with tolerance τ can be simulated with a valid
statistical threshold query with tolerance at least τ/2. Consider any statistical threshold query q = (ψ, µ, τ).
If q is already valid, then we are done. Otherwise, min(|F0(q)|, |F1(q)|) > 3

4 |F|, which means that |F0(q) ∩
F1(q)| > 1

2 |F|. This means that more than half of all f satisfy E[ψ(x, f(x))] ∈ (µ−τ, µ+τ). Therefore, more
than one-fourth of all f satisfy either E[ψ(x, f(x))] ∈ (µ− τ, µ] or E[ψ(x, f(x))] ∈ [µ, µ+ τ). We will assume
that it is the former (the other case is symmetric). In this case, we can make a query q′ = (ψ, µ+ τ/2, τ/2).
First, note that q′ is valid, since

|F1(q′)| = |{f : E[ψ(x, f(x))] > µ}| ≤ |{f : E[ψ(x, f(x))] 6∈ (µ− τ, µ]| ≤ 3

4
|F|.

In addition, given r′ = STQ(q′), we can also use r′ as the answer to STQ(q): if r′ = 1, then E[ψ(x, f(x))] >
µ > µ− τ , and if r′ = 0, then E[ψ(x, f(x))] < (µ + τ/2) + τ/2 = µ + τ . So, the valid query q′ can be used
to simulate q, which completes the proof.

Proof of Lemma 4.4

We formalize our procedure with the following pseudocode.

procedure BoundedMemoryLearn(F , D):
if |F| = 1 then

return the unique element of F
5Finding such an f ′ may in general require superpolynomial computation.
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end if
for i = 1 to m do
q ← queryIfAllBad(i, F , D) {gets query i assuming all previous responses are bad}
if not valid(q, F , D) then
q ← makeValid(q, F , D)

end if
r ← STQ(q)
if good(r, F , D) then
firstGoodIndex← i
goodResponse← r
return BoundedMemoryLearn(Fr(q), D) {q is the first query to get a good response}

end if
end for
return answerIfAllBad(F , D)

Note that when we recurse to subsets of F , we can use the same statistical query algorithm as before (since if
it learns F it will certainly learn any subset of F), though the return values of valid and good may change.
By construction, the above procedure can only recurse O(log |F|) times, and only requires m queries and
O(log(m)) bits at each level of recursion (to keep track of i, firstGoodIndex, and goodResponse).6 This
establishes the result.

E Sparse Regression with Memory Constraints

Proof of Lemma 4.6

We make use of the following version of exponentiated gradient, which restricts the domain of optimization
to the l1-ball of radius R; the vector γj measures the error in the approximation zj :

zj = ∇f(wj) + γj , (25)

wj+1 = arg min
w

η−1
n∑
i=1

w(i) log
(
w(i)

)
+

〈
w,

j∑
j′=1

zj′

〉
: ‖w‖1 ≤ R, w ≥ 0

 . (26)

Note that this algorithm restricts to the positive orthant w ≥ 0; however, we can remove this assumption
(while making our constants worse by a factor of 2) by splitting each coordinate of w into a positive and
negative part [Kivinen and Warmuth, 1997].

The approximate gradient zj can be interpreted as the exact gradient of the modified function f̃(w) =
f(w) + γj · w. Thus, by standard online convex optimization results [e.g., Shalev-Shwartz, 2011], for any
η > 0 and n ≥ 3 we have

m∑
j=1

(f(wj)− f(w∗) + γj · (wj − w∗))

≤ η−1
(
R log(n/R) +

n∑
i=1

w∗,(i) log
(
w∗,(i)

))
+ η

m∑
j=1

‖zj‖2∞

≤ η−1 (R log(n)−R log(R) + ‖w∗‖1 log ‖w∗‖1) + ηmB2

≤ η−1R log (n) + ηmB2,

where the last inequality uses the fact that x log(x) ≤ y log(y) whenever x ≤ y and y ≥ 1. Optimizing our
choice of η, we then get

m∑
j=1

(f(wj)− f(w∗) + γj · (wj − w∗)) ≤ 2
√
mR log (n)B.

6Note that, even though answerIfAllBad(F , D) need not lie in F , it is a fixed quantity depending only on F and
D, and so requires no additional bits to represent.
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Moreover, since ‖wj − w∗‖1 ≤ 2R, we know that γj · (wj − w∗) ≥ −2τRB, and so

m∑
j=1

(f (wj)− f (w∗)) ≤ 2
√
mR log (n)B + 2τRBm.

Finally, the desired conclusion follows by convexity of f(·).

Proof of Theorem 4.7

Our proof relies on the min-count sketch construction [Cormode and Muthukrishnan, 2005]. For our purposes,

the main implication of the construction is as follows: there is a distribution of matrices A ∈ {0, 1}ωd×n
such that, for any fixed vector u ∈ Rn, we can recover û from Au such that (see, e.g., Section 2 of Gilbert
and Indyk [2010])

‖û− u‖∞ ≤
2

ω
‖u‖1 , with probability at least 1− n 2−d.

Moreover, if we only get to observe Au up to tolerance τ in each coordinate, resulting in a recovered vector
ûτ , then the result correspondingly weakens to

‖ûτ − u‖∞ ≤
2

ω
‖u‖1 + τ, with probability at least 1− n 2−d.

In our situation, we want to estimate z∗ = ∇f(w) as defined in Lemma 4.6 with as few statistical queries as
possible. To do this, we proceed as follows (letting u = z∗):

• Draw a matrix A from the count-sketch distribution with parameters d and ω,

• Estimate Az∗ to tolerance τ‖Az∗‖∞ using ωd statistical queries of tolerance τ , and finally

• Generate a recovered vector z using the count-min sketch algorithm.

Note that ‖Az∗‖∞ ≤ ‖z∗‖1 (since all entries of A are in {0, 1}) and hence the error on Az∗ is at most
τ‖z∗‖1 ≤ τ‖x‖1|y−w ·x| ≤ 2τrR. We of course also have ‖u‖1 = ‖z∗‖1 ≤ 2rR. Toegether, these imply that
‖z − z∗‖∞ ≤ 2

(
2
ω + τ

)
rR. Thus, setting

ω =

⌈
1

τ

⌉
and d = dlog (n) + log

(
δ−1
)

+ log (m)e, we conclude that ‖zm − z∗m‖∞ ≤ 6τrR, (27)

with probability at least 1 − δ/m; by the union bound, (27) holds with probability at least 1 − δ for all
m samples simultaneously. The upshot is that we can now get the gradients z from ωd = O (log(n/δ)/τ)
statistical queries instead of n queries. In summary, we can then obtain error ε using

O
(
R3 log(n/δ)/(τε2)

)
queries of tolerance τ = O

(
ε/rR2

)
. (28)

Substituting in for R and τ , this leads to rk5 log(n/δ)/ε3 queries of tolerance ε/(rk2). To apply Theorem 4.1,
we then need to derandomize, which we can do by standard amplification techniques, at the cost of increasing
the number of queries by a further factor of k log(n/ε). Finally, applying Theorem 4.1, the number of samples
needed is (up to polylogarithmic factors in k, n, and ε) the number of statistical queries divided by the square
of the tolerance, times log(1/δ). This yields a final number of samples equal to

Õ
(
r3k10 log2(1/δ)/ε5

)
, (29)

as claimed.
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