
On the Beck-Fiala Conjecture for Random Set Systems

Esther Ezra ∗ Shachar Lovett †

November 1, 2015

Abstract

Motivated by the Beck-Fiala conjecture, we study discrepancy bounds for random
sparse set systems. Concretely, these are set systems (X,Σ), where each element
x ∈ X lies in t randomly selected sets of Σ, where t is an integer parameter. We
provide new bounds in two regimes of parameters. We show that when |Σ| ≥ |X|
the hereditary discrepancy of (X,Σ) is with high probability O(

√
t log t); and when

|X| ≫ |Σ|t the hereditary discrepancy of (X,Σ) is with high probability O(1). The
first bound combines the Lovász Local Lemma with a new argument based on partial
matchings; the second follows from an analysis of the lattice spanned by sparse vectors.

1 Introduction

Let (X,Σ) be a finite set system, with X a finite set and Σ a collection of subsets of X.
A two-coloring of X is a mapping χ : X → {−1,+1}. For a subset S ∈ Σ we define
χ(S) :=

∑

x∈S χ(x). The discrepancy of Σ is defined as

disc(Σ) := min
χ

max
S∈Σ

|χ(S)|.

In other words, the discrepancy of the set system (X,Σ) is the minimum over all colorings χ of
the largest deviation from an even split, over all subsets in Σ. For background on discrepancy
theory, we refer the reader to the books of Chazelle [Cha00] and Matoušek [Mat09].

In this paper, our interest is in the discrepancy of sparse set systems. The set system
(X,Σ) is said to be t-sparse if any element x ∈ X belongs to at most t sets S ∈ Σ. A well-
known result of Beck and Fiala [BF81] is that sparse set systems have discrepancy bounded
only in terms of their sparsity.

Theorem 1.1 ([BF81]). If (X,Σ) is t-sparse then disc(Σ) ≤ 2t− 1.
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Beck and Fiala conjectured that in fact, the bound can be improved to O(
√
t), analogous

to Spencer’s theorem for non-sparse set systems [Spe85]. This is a long standing open
problem in discrepancy theory. The best result to date is by Banaszczyk [Ban98].

Theorem 1.2 ([Ban98]). If (X,Σ) is t-sparse with |X| = n then disc(Σ) ≤ O(
√
t log n).

Our results. In this paper, we study random sparse set systems. To sample a random
t-sparse set system (X,Σ) with |X| = n, |Σ| = m, for each x ∈ X choose uniformly and
independently a subset Tx ⊂ [m] of size |Tx| = t. Then set Si = {x ∈ X : i ∈ Tx}
and Σ = {S1, . . . , Sm}. Letting E[·] denote expectation, our main quantity of interest is
E[disc(Σ)]. We show that when m ≥ n, this is close to the conjectured bound of Beck and
Fiala. Specifically, we show E[disc(Σ)] = O(

√
t log t). In particular, the bound does not

depend on n.
In fact, we obtain such bound for the hereditary discrepancy of the set system. For

Y ⊂ X let Σ|Y = {S ∩ Y : S ∈ Σ} be the set system restricted to Y . The hereditary
discrepancy of a set system (X,Σ) is defined as

herdisc(Σ) = max
Y⊂X

disc(Σ|Y ).

Our main result is the following.

Theorem 1.3. Assume m ≥ n ≥ t. Let (X,Σ) be a random t-sparse set system with
|X| = n, |Σ| = m. Then

E[disc(Σ)] ≤ E[herdisc(Σ)] ≤ O(
√

t log t).

In fact, the bound holds with probability 1− exp(−Ω(t)).

We note that our technique can be extended to the case where m ≥ cn for any absolute
constant c > 0, but fails whenever m ≪ n. The main reason is that in this regime, most sets
are large. Nevertheless, when n is considerably larger than m, we use a different approach
and show that the discrepancy is small in this case as well. Specifically, when n is somewhat
larger than

(

m
t

)

we show that the discrepancy is only O(1).

Theorem 1.4. Fix m ≥ t and let N =
(

m
t

)

. Assume that n ≥ Ω(N logN). Let (X,Σ) be a
random t-sparse set system with |X| = n, |Σ| = m. Then

E[disc(Σ)] = O(1).

In fact, the bound holds with probability 1−N−Ω(1).

To summarize, the work in this paper was motivated by the elusive Beck-Fiala conjecture.
We considered a natural setting of random t-sparse set systems, and showed that in this case,
in some regimes of parameters, the conjecture holds (with the bound of O(

√
t) replaced by

the slightly weaker bound of O(
√
t log t) in our first result). We hope that the techniques

developed in this work will be useful for the study of random sparse set systems in the full
spectrum of parameters, as well as for the original Beck-Fiala conjecture.
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2 Preliminaries and Proof Overview

The Lovász Local Lemma. The Lovász Local Lemma [EL75] is a powerful probabilistic
tool. In this paper we only need its symmetric version.

Theorem 2.1. Let E1, E2, ..., Ek be a series of events such that each event occurs with
probability at most p and such that each event is independent of all the other events except
for at most d of them. If ep(d+ 1) ≤ 1 then Pr[∧m

i=1Ei] > 0.

Tail bounds. In our analysis we exploit a few standard tail bounds for the sum of inde-
pendent random variables (Chernoff-Hoeffding bounds, see, e.g., [AS00]).

Lemma 2.2 (Tail bounds for additive error). Let Z1, . . . , Zk ∈ {−1, 1} be independent
random variables and let Z = Z1 + . . .+ Zk. Then for any λ > 0

Pr
[

|Z − E[Z]| ≥ λ
√
k
]

≤ 2 exp(−2λ2).

Lemma 2.3 (Tail bounds for multiplicative errors). Let Z1, . . . , Zk ∈ {0, 1} be independent
random variables and let Z = Z1 + . . .+ Zk. Then for any λ > 0

Pr [Z ≥ (1 + λ)E[Z]] ≤ exp(−λ2/3 · E[Z]).

2.1 Proof Overview for Theorem 1.3

We next present an overview of our proof for Theorem 1.3. For simplicity of exposition,
we present the overview only for the derivation of the discrepancy bound. In Section 3 we
present the actual analysis and show a bound on the hereditary discrepancy.

First, we classify each set as being either “small” if its cardinality is O(t), or “large”
otherwise. Then we proceed in several steps:

• (i) Making large sets pairwise disjoint: Initially, we show that with high prob-
ability over the choice of the set system, it is possible to delete at most one element
from each large set, such that they become pairwise disjoint after the deletion. This
property is proved in Lemma 3.1.

• (ii) Partial matching: For each large set resulting after step (i), we pair its elements,
leaving at most, say, two unpaired elements. Since each pair appears in a unique set,
this process results in a partial matching M = {(a1, b1), . . . , (ak, bk)} on X. We observe
that as soon as we have such a matching, we can restrict the two-coloring function χ
on X to assign alternating signs on each pair of M . Since each large set S has at most
two unpaired elements, we immediately conclude that |χ(S)| ≤ 2.

• (iii) Applying the Lovász Local Lemma on the small sets: We are thus left
to handle the small sets. In this case, we observe that a random coloring χ, with
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alternating signs on M as above1, satisfies with positive probability that |χ(S)| ≤
O(

√
t log t) for all small sets S ∈ Σ. This is a consequence of the Lovász Local Lemma,

as each small set S contains only O(t) elements, and each of these elements participates
in t sets of Σ. The fact that some of these elements appear in the partial matching
implies that S can “influence” (w.r.t. the random coloring χ) at most 2|S|t = O(t2)
other small sets; see Section 3 for the details.

We point out that as soon as we have a partial matching M as above, we can “neutralize”
the deviation that might be caused by the large sets, and only need to keep the deviation,
caused by the small sets, small. The latter is fairly standard to do, and so the main effort
in the analysis is to show that we can indeed make large sets disjoint as in step (i).

We note that our proof technique is constructive. Our arguments for steps (i) and (ii)
(see Lemma 3.1 and our charging scheme in Claim 4.2) give an efficient algorithm to find an
element to delete in each large set, thereby making large sets disjoint, as well as build the
partial matching, or, alternatively, report (with small probability) that a partial matching of
the above kind does not exist and halt. In step (iii) we can apply the algorithmic Lovász Local
Lemma of Moser and Tardos [Mos09, MT10], since the colors are assigned independently
among the pairs in M as well as the unpaired elements. Thus, we obtain an expected
polynomial time algorithm, which, with high probability over the choice of the set system,
constructs a coloring with discrepancy O(

√
t log t).

3 A Low Hereditary Discrepancy Bound: The Analysis

We now proceed with the proof of Theorem 1.3. We classify the sets in Σ based on their
size. A set S ∈ Σ is said to be large if |S| ≥ 6t and small otherwise. Note that as m ≥ n,
most sets in Σ are small. Let I = {i : Si is large} be a random variable capturing the indices
of the large sets. To construct a coloring, we proceed in several steps. First, we show that
with high probability the large sets are nearly disjoint. We will assume throughout that t is
sufficiently large (concretely t ≥ 55).

Lemma 3.1. Fix t ≥ 55. Let E denote the following event: “there exists a choice of xi ∈ Si

for i ∈ I such that the sets {Si \ {xi} : i ∈ I} are pairwise disjoint”. Then Pr[E] ≥ 1− 2−t.

We defer the proof of Lemma 3.1 to Section 4 and prove Theorem 1.3 based on it, in the
remainder of this section. Decompose

E[herdisc(Σ)] = E[herdisc(Σ)|E] Pr[E] + E[herdisc(Σ)|E] Pr[E]

≤ E[herdisc(Σ)|E] + (2t− 1) Pr[E]

≤ E[herdisc(Σ)|E] + 1

where we bounded E[herdisc(Σ)|E] by the Beck-Fiala theorem (Theorem 1.1) which holds for
any t-sparse set system, and bounded Pr[E] by 2−t according to Lemma 3.1. To conclude the

1That is, each pair in M is assigned (+1,−1) or (−1,+1) independently with probability 1/2.
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proof we will show that when E holds then herdisc(Σ) ≤ O(
√
t log t). Thus, we assume from

now on that the event E holds. Fix a subset Y ⊂ X, where we will construct a two-coloring
for Σ′ = Σ|Y of low discrepancy.

Partition each Si ∩ Y = Ai ∪ Bi for i ∈ I, where |Ai| is even, |Bi| ≤ 2 and the sets
{Ai : i ∈ I} are pairwise disjoint. Partition each Ai arbitrarily into |Ai|/2 pairs, and let
M be the union of these pairs. That is, M is a partial matching on Y given by M =
{(a1, b1), . . . , (ak, bk)} where a1, b1, . . . , ak, bk ∈ Y are distinct, and each Ai is a union of a
subset of M , and each pair aj, bj appears in a unique set Ai due to the fact that these sets are
pairwise disjoint (they thus form a partition ofM). We say that a coloring χ : Y → {−1,+1}
is consistent with M if χ(aj) = −χ(bj) for all j ∈ [k]. Note that if Si is a large set, then for
any coloring χ consistent with M ,

|χ(Si ∩ Y )| = |χ(Ai) + χ(Bi)| = |0 + χ(Bi)| ≤ |Bi| ≤ 2.

Thus, we only need to minimize the discrepancy of χ over the small sets in Σ. To do so, we
choose χ uniformly from all two-colorings consistent with M . These are given by choosing
uniformly and independently χ(ai) ∈ {−1,+1} for i ∈ [k], setting χ(bi) = −χ(ai) and
choosing χ(x) ∈ {−1,+1} uniformly and independently for all x /∈ {a1, b1, . . . , ak, bk}.

Let Si be a small set, that is |Si| ≤ 6t. Let Ei denote the event

Ei :=
[

|χ(Si ∩ Y )| ≥ c
√

t log t
]

.

Each pair {aj, bj} contained in Si contributes 0 to the discrepancy, and all other elements ob-
tain independent colors. Hence χ(Si) is the sum of t′ ≤ 6t independent signs. By Lemma 2.2,
for an appropriate constant c we have

Pr[Ei] ≤ 1/100t2.

We next claim that each event Ei depends on at most d = 12t2 other events {Ej : j 6= i}.
Indeed, let S ′

i = Si ∪ {aj : bj ∈ Si} ∪ {bj : aj ∈ Si}. Then |S ′
i| ≤ 2|Si| ≤ 12t and χ(Si) is

independent of χ(x) for all x /∈ S ′
i. So, if Ei depends on Ej, it must be the case that Sj

intersects S ′
i. However, as each x ∈ S ′

i is contained in t sets, there are at most 12t2 such
events Ej.

We are now in a position to apply the Lovász Local Lemma (Theorem 2.1). Its condition
are satisfied as we have p = 1/100t2 and d = 12t2. Hence Pr[∧Ei] > 0, that is, there exists a
coloring χ consistent with M for which |χ(Si)| ≤ c

√
t log t for all small sets Si. This coloring

shows that disc(Σ′) ≤ max(c
√
t log t, 2) as claimed.

4 Proof of Lemma 3.1

Let (X,Σ) be a t-sparse set system with |X| = n, |Σ| = m. It will be convenient to identify
it with a bi-partite graph G = (X, V,E) where |V | = m and E = {(x, i) : x ∈ Si}. Then, a
random t-sparse set system is the same as a random left t-regular bi-partite graph. That is,
a uniform graph satisfying deg(x) = t for all x ∈ X.
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Large sets in Σ correspond to the subset of the vertices V ′ = {v ∈ V : deg(v) ≥ 6t}. For
a vertex v ∈ V let Γ(v) ⊂ X denote its neighbors. Lemma 3.1 is equivalent to the following
lemma, which we prove in this section.

Lemma 4.1. Fix t ≥ 55. With probability at least 1− 2−t over the choice of G, there exists
a choice of xv ∈ Γ(v) such that the sets {Γ(v) \ {xv} : v ∈ V ′} are pairwise disjoint.

Let G′ be the induced (bi-partite) sub-graph on (X, V ′). We will show that with high
probability G′ has no cycles. In such a case Lemma 4.1 follows from the straightforward
scheme described below:

Claim 4.2. Assume that G′ has no cycles. Then there exists a choice of xv ∈ Γ(v) such that
the sets {Γ(v) \ {xv} : v ∈ V ′} are pairwise disjoint.

Proof. We present a charging scheme of the vertices xv ∈ Γ(v), for each v ∈ V ′. If G′ has
no cycles then it is a forest. Fix a tree T in G′ and an arbitrary root vT ∈ V ′ of T . Orient
the edges of T from vT to the leaves. For each v ∈ T other than the root, choose xv to be
the parent of v in the tree, and choose xvT arbitrarily. Let Av = Γ(v) \ {xv} for v ∈ V ′. We
claim that {Av : v ∈ V ′} are pairwise disjoint. To see that, assume towards contradiction
that x ∈ Av1 ∩ Av2 for some x ∈ X, v1, v2 ∈ V ′. Then v1, x, v2 is a path in G′ and hence
v1, v2 must belong to the same tree T . However, the only case where this can happen (as
T is a tree) is that x is the parent of both v1, v2 in T . However, by construction in this
case x = xv1 = xv2 and hence x /∈ Av1 , Av2 , from which we conclude that {Av : v ∈ V ′} are
pairwise disjoint, as claimed.

In the remainder of the proof we show that with high probability G′ has no cycles. The
girth of G′, denoted girth(G′), is the minimal length of a cycle in G′ if such exists, and
otherwise it is ∞. Note that as G′ is bipartite, then girth(G′) is (if finite) the minimal 2ℓ
such that there exist a cycle x1, v1, x2, v2, . . . , xℓ, vℓ, x1 in G′ with xi ∈ X and vi ∈ V ′.

Claim 4.3. Pr[girth(G′) = 4] ≤ t4 exp(−t).

Proof. Fix x1, x2 ∈ X and v1, v2 ∈ V . They form a cycle of length 4 if v1, v2 ∈ Γ(x1)∩Γ(x2).
As each Γ(xi) is a uniformly chosen set of size t we have that

Pr[v1, v2 ∈ Γ(x1) ∩ Γ(x2)] =

(

(

t
2

)

(

m
2

)

)2

≤ (t/m)4.

Next, conditioned on the event that v1, v2 ∈ Γ(x1) ∩ Γ(x2), we still need to have v1, v2 ∈ V ′

(that is v1, v2 represent large sets of Σ). We will only require that v1 ∈ V ′ for the bound.
Note that so far we only fixed Γ(x1),Γ(x2), and hence the neighbors of Γ(x) for x 6= x1, x2

are still uniform. Then v1 ∈ V ′ if at least 6t−2 other nodes x ∈ X have v1 as their neighbor.
By Lemma 2.3, the probability for this is bounded by

Pr[v1 ∈ V ′|v1, v2 ∈ Γ(x1) ∩ Γ(x2)] ≤ exp(−((5t− 2)/t)2/3 · t) ≤ exp(−t).
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So,
Pr[v1, v2 ∈ Γ(x1) ∩ Γ(x2) ∧ v1 ∈ V ′] ≤ (t/m)4 · exp(−t).

To bound Pr[girth(G′) = 4] we union bound over all
(

n
2

)(

m
2

)

choices of x1, x2, v1, v2. Using
our assumption that m ≥ n we get

Pr[girth(G′) = 4] ≤ m4(t/m)4 exp(−t) ≤ t4 exp(−t).

Claim 4.4. For any ℓ ≥ 3, Pr[girth(G′) = 2ℓ] ≤ exp(−tℓ).

Proof. Let x1, v1, . . . , xℓ, vℓ denote a potential cycle of length 2ℓ. As it is a minimal cycle and
ℓ ≥ 3, the vertices vi, vj have no common neighbors, unless j = i+ 1 in which case xi is the
only common neighbor of vi, vi+1 (where indices are taken modulo ℓ). Thus there exist sets
Xi ⊂ X of size |Xi| = 6t− 2 such that Xi ⊂ Γ(vi) and X1, . . . , Xℓ, {x1, . . . , xℓ} are pairwise
disjoint.

Let E(x1, v1, . . . , xℓ, vℓ, X1, . . . , Xℓ) denote the event described above, for a fixed choice
of x1, v1, . . . , xℓ, vℓ, X1, . . . , Xℓ. The event holds if

1. vi, vi+1 are neighbors of xi.

2. vi is a neighbor of all x ∈ Xi.

There are independent events, as Γ(x) is independently chosen for each x ∈ X. So

Pr[E(x1, v1, . . . , xℓ, vℓ, X1, . . . , Xℓ)]

=
ℓ
∏

i=1

Pr[vi, vi+1 ∈ Γ(xi)] ·
ℓ
∏

i=1

∏

x∈Xi

Pr[vi ∈ Γ(x)]

=

(

(

t
2

)

(

m
2

)

)ℓ

·
(

t

m

)(6t−2)ℓ

≤
(

t

m

)6tℓ

.

To bound Pr[girth(G′) = 2ℓ] we union bound over all choices of x1, v1, . . . , xℓ, vℓ, X1, . . . , Xℓ.
The number of choices is bounded by

nℓmℓ

(

n

6t− 2

)ℓ

≤
(

nm · e6t−2 · n6t−2

(6t− 2)6t−2

)ℓ

≤
(

(em)6t

(6t− 2)6t−2

)ℓ

.

Thus,

Pr[girth(G′) = 2ℓ] ≤
(

(em)6t

(6t− 2)6t−2

)ℓ

·
(

t

m

)6tℓ

=

(

(6t− 2)2
(

et

6t− 2

)6t
)ℓ

≤ exp(−tℓ).
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Proof of Lemma 4.1. Using Claims 4.3 and 4.4, the probability that girth(G′) < ∞ is
bounded by:

Pr[girth(G′) < ∞] =
∞
∑

ℓ=2

Pr[girth(G′) = ℓ] ≤ t4 exp(−t) +
∞
∑

ℓ=3

exp(−tℓ) ≤ 2t4 exp(−t).

For t ≥ 55, we have that Pr[girth(G′) < ∞] ≤ 2−t.

5 The regime of large sets

We next prove Theorem 1.4. Let (X,Σ) be a t-sparse set system with |X| = n, |Σ| = m. In
this setting, we consider the case of fixed m, t and n → ∞. Consider its m × n incidence
matrix. The columns are t-sparse vectors in {0, 1}m, and hence have N =

(

m
t

)

possible
values. When n ≫ N , there will be many repeated columns. We show that in this case, the
discrepancy of the set system is low. Setting notations, let v1, . . . , vN ∈ {0, 1}m be all the
possible t-sparse vectors, and let r1, . . . , rN denote their multiplicity in the set system. Note
that they define the set system uniquely (up to permutation of the columns, which does not
effect the discrepancy).

Our main result in this section is the following. We will assume throughout thatm is large
enough and that 4 ≤ t ≤ m− 4. We note that if t ≤ 3 or t ≥ m− 3 then result immediately
follows from the Beck-Fiala theorem (Theorem 1.1), for any set systems. The first case
follows by a direct application, and the second case by first partitioning the columns to pairs
and subtracting one vector from the next in each pair, which gives a 6-sparse {−1, 0, 1}
matrix, to which we apply the Beck-Fiala theorem.

Theorem 5.1. Let (X,Σ) be a t-sparse set system with 4 ≤ t ≤ m− 4 and m large enough.
Assume that min(r1, . . . , rN) ≥ 7. Then disc(Σ) ≤ 2.

Note that the statement in Theorem 5.1 is somewhat stronger than that in Theorem 1.4,
as it only assumes that all possible t-sparse column vectors comprise the incidence matrix of
(X,Σ), and their multiplicity is 7 or higher. In fact, Theorem 1.4 follows from Theorem 5.1
using a straightforward coupon-collector argument [EA61]. In this regime, with high prob-
ability (say, with probability at least 1 − 1/N), a random sample of Θ(N logN) columns
guarantees that each t-sparse column appears with multiplicity 7 (or higher). Therefore, we
obtain:

E[disc(Σ)] ≤ 2

(

1− 1

N

)

+
2t− 1

N
= O(1).

We are thus left to prove Theorem 5.1. First, we present an overview of the proof.

Proof overview. Every column vi is repeated ri times. As we may choose arbitrary signs
for each occurrence of a vector, the aggregate total would be civi, where ci ∈ Z, |ci| ≤ ri
and ci ≡ ri mod 2. Our goal is to show that such a solution ci always exists, for which
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‖∑ civi‖∞ is bounded, for any initial settings of r1, . . . , rN , as long as they are all large
enough.

We show that such a solution always exists, with |ci| ≤ 7. In order to show it, we first fix
some solution with the correct parity, and then correct it to a low discrepancy solution, by
adding an even number of copies of each vector. In order to do that, we study the integer
lattice L spanned by the vectors v1, . . . , vN , as our correction comes from 2L. We show
that L = {x ∈ Z

m :
∑

xi = 0 mod t}, which was already proved by Wilson [Wil90] in a
more general scenario. However, we need an additional property: vectors in L are efficiently
spanned by v1, . . . , vN . This allows us to perform the above correction efficiently, keeping
the number of times that each vi is repeated bounded. Putting that together, we obtain the
result.

5.1 Proof of Theorem 5.1

Initially, we investigate the lattice spanned by the vectors v1, . . . , vN . As the sum of the
coordinates of each of them is t, they sit within the lattice

L =
{

x ∈ Z
m :
∑

xi ≡ 0 mod t
}

.

We first show that they span this lattice, and moreover, they do so effectively.

Lemma 5.2. For any w ∈ L there exist a1, . . . , aN ∈ Z such that
∑

aivi = w. Moreover,

|ai| ≤ A for all i ∈ [N ] where A = 2‖w‖1

(m−2

t−1
)
+ 2.

Proof. Assume first that we have
∑

wi = 0. We will later show how to reduce to this case.
Pair the positive and negative coordinates of w. For L = ‖w‖1/2 let (i1, j1), . . . , (iL, jL) be
pairs of elements of [N ] such that: if (i, j) is a pair then wi > 0, wj < 0; each i ∈ [m] with
wi > 0 appears wi times as the first element in a pair; and each j ∈ [m] with wj < 0 appears
−wj times as the second element in a pair. For any ℓ ∈ [L] choose Sℓ ⊂ [m] of size t − 1.
Set Iℓ = Sℓ ∪ {iℓ} and Jℓ = Sℓ ∪ {jℓ}. Identifying [N ] with subsets of [m] of size t, we have

w =
L
∑

ℓ=1

vIℓ − vJℓ .

We choose the sets S1, . . . , SL to minimize the maximum number of times that each vector
from {v1, . . . , vN} is repeated in the decomposition. When we choose Sℓ, we can choose one
of M =

(

m−2
t−1

)

many choices. There is a choice for Sℓ such that both Iℓ and Jℓ appeared thus
far less than 2ℓ/M times. Choosing such a set, we maintain the invariant that after choosing
S1, . . . , Sℓ, each vector is repeated at most 2ℓ/M + 1 times. Thus, at the end each vector is
repeated at most 2L/M + 1 times.

In the general case, we have
∑

wi = st, where we may assume s > 0. We apply the
previous argument to w − (vi1 + . . . + vis), whose coordinates sum to zero. We choose
i1, . . . , is ∈ [N ] (potentially with repetitions) so as to minimize the maximum number of
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times that each vector participates; this number is ⌈s/N⌉ ≤ ‖w‖1/M+1. Combining the two
estimates, we obtain that at the end each vector is repeated at most 4L/M+2 = 2‖w‖1/M+2
times.

Lemma 5.3. For any b1, . . . , bN ∈ {0, 1} there exist c1, . . . , cN ∈ Z such that

(i) ci ≡ bi mod 2.

(ii) ‖
∑

civi‖∞ ≤ 2.

(iii) |ci| ≤ 7 for all i ∈ [N ].

Proof. As a first step, choose zi ∈ {−1, 0, 1} such that zi = 0 if bi = 0, and zi ∈ {−1, 1}
chosen uniformly if bi = 1. Let u =

∑

zivi. Note that for j ∈ [m], if there are kj indices
i ∈ [N ] for which (vi)j = 1 and bi = 1, then Ez[u

2
j ] = kj. Thus,

Ez[‖u‖22] =
∑

kj ≤ Nt.

Thus, with probability at least 1/2, ‖u‖2 ≤
√
2Nt and hence ‖u‖1 ≤

√
2Ntm. Fix such a u.

Next, we choose w ∈ L such that ‖u− 2w‖∞ is bounded. If we only wanted that w ∈ Z
m

we could simply choose q ∈ {0, 1}m with qi = ui mod 2 and take w = (u − q)/2. In order
to guarantee that w ∈ L, namely that

∑

wi = 0 mod t, we change at most t coordinates in
q by adding or subtracting 2. Thus, we obtain q ∈ {−2,−1, 0, 1, 2}m where qi ≡ ui mod 2
and set w = (u− q)/2 ∈ L. We have ‖u− 2w‖∞ ≤ 2.

Next, we apply Lemma 5.2 to w. We obtain a decomposition w =
∑

aivi. This implies
that if we set ci = zi − 2ai then indeed ci ≡ bi mod 2 and ‖∑ civi‖∞ = ‖u− 2w‖∞ ≤ 2. To
bound |ci|, note that ‖w‖1 ≤ ‖u‖1/2 +m. We have by Lemma 5.2 that |ai| ≤ A for

A = 2 + η ≤ 3,

where

η = 2
‖w‖1
(

m−2
t−1

) ≤ O





√

mt
(

m
t

)

(

m−2
t−1

)



 ≤ O

(

m3/2

(

m
t

)1/2

)

≤ 1,

whenever 4 ≤ t ≤ m− 4 and m is large enough, as is easily verified by the fact that the last
term is a decreasing function of m.

Proof of Theorem 5.1. Assume that r1, . . . , rN ≥ 7. By Lemma 5.3, there exists ci ∈ Z such
that ci ≡ ri mod 2, |ci| ≤ 7 and ‖∑ civi‖∞ ≤ 2. For each i ∈ [N ], we color |ci| of the
vectors vi with sign(ci) ∈ {−1,+1} and the remaining ri − |ci| vectors with alternating +1
and −1 colors (so that their contribution cancels, since ri − |ci| is even). The total coloring
produces exactly the vector

∑

civi, which as guaranteed has discrepancy bounded by 2.
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tation.
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