
A Quantum Query Complexity Trichotomy for Regular

Languages

Scott Aaronson∗

UT Austin
aaronson@utexas.edu

Daniel Grier†

MIT
grierd@mit.edu

Luke Schaeffer
MIT

lrs@mit.edu

Abstract

We present a trichotomy theorem for the quantum query complexity of regular languages.
Every regular language has quantum query complexity Θ(1), Θ̃(

√
n), or Θ(n). The extreme

uniformity of regular languages prevents them from taking any other asymptotic complexity.
This is in contrast to even the context-free languages, which we show can have query complex-
ity Θ(nc) for all computable c ∈ [1/2, 1]. Our result implies an equivalent trichotomy for the
approximate degree of regular languages, and a dichotomy—either Θ(1) or Θ(n)—for sensi-
tivity, block sensitivity, certificate complexity, deterministic query complexity, and randomized
query complexity.

The heart of the classification theorem is an explicit quantum algorithm which decides
membership in any star-free language in Õ(

√
n) time. This well-studied family of the regu-

lar languages admits many interesting characterizations, for instance, as those languages ex-
pressible as sentences in first-order logic over the natural numbers with the less-than relation.
Therefore, not only do the star-free languages capture functions such as OR, they can also ex-
press functions such as “there exist a pair of 2’s such that everything between them is a 0.”

Thus, we view the algorithm for star-free languages as a nontrivial generalization of Grover’s
algorithm which extends the quantum quadratic speedup to a much wider range of string-
processing algorithms than was previously known. We show a variety of applications—new
quantum algorithms for dynamic constant-depth Boolean formulas, balanced parentheses nested
constantly many levels deep, binary addition, a restricted word break problem, and path-
discovery in narrow grids—all obtained as immediate consequences of our classification theo-
rem.

1 Introduction

Regular languages have a long history of study in classical theoretical computer science, going
back to Kleene in the 1950s [19]. The definition is extremely robust: there are many equivalent
characterizations ranging from machine models (e.g., deterministic or non-deterministic finite au-
tomata, o(log log n)-space Turing machines [28]), to grammars (e.g., regular expressions, prefix
grammars), to algebraic structures (e.g., recognition via monoids, the syntactic congruence, or
rational series). Regular languages are closed under most natural operations (e.g., union, comple-
ment), and also most natural questions are decidable (e.g., is the language infinite?). Perhaps for

∗Supported by a Vannevar Bush Fellowship from the US Department of Defense, a Simons Investigator Award, and
the Simons ”It from Qubit” collaboration.

†Supported by an NSF Graduate Research Fellowship under Grant No. 1122374.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 61 (2019)

this reason, regular languages are also a useful pedagogical tool, serving as a toy model for theory
of computation students to cut their teeth on.

We liken regular languages to the symmetric1 Boolean functions. That is, both are a restricted,
(usually) tractable special case of a much more general object, and often the common thread be-
tween a number of interesting examples. We suggest that these special cases should be studied
and thoroughly understood first, to test proof techniques, to make conjectures, and to gain famil-
iarity with the setting.

In this work, we hope to understand the regular languages from the lens of another great
innovation of theoretical computer science—query complexity, particularly quantum query com-
plexity. Not only is query complexity one of the few models in which provable lower bounds
are possible, but is also often the case that efficient algorithms actually achieve the query lower
bound. In this case, the query lower bound suggests an algorithm which was otherwise thought
not to exist, as was famously the case for Grover’s search algorithm.

In the case of query complexity, symmetric functions are extremely well-understood with com-
plete characterizations known for deterministic, randomized, and quantum algorithms in both the
zero-error and bounded-error settings [8]. However, to the authors’ knowledge, regular languages
have not been studied in the query complexity model despite the fact that they appear frequently
in query-theoretic applications.

For example, consider the OR function over Boolean strings. This corresponds to deciding
membership in the language recognized by the regular expression (0|1)∗1(0|1)∗. Similarly, the
parity function is just membership in the regular language (0∗10∗1)∗0∗. It is well known that the
quantum query complexity of OR is Θ(

√
n), whereas parity is known to require Θ(n) quantum

queries. Yet, there is a two-state deterministic finite automaton for each language. This raises the
question: what is the difference between these two languages that causes the dramatic discrep-
ancy between their quantum query complexities? More generally, can we decide the quantum
query complexity of a regular language given a description of the machine recognizing it? Are all
quantum query complexities even possible? We answer all of these questions in this paper.

The main contribution of this work is the complete characterization of the quantum query com-
plexity of regular languages (up to some technical details), manifest as the following trichotomy:
every regular language has quantum query complexity Θ(1), Θ̃(

√
n), or Θ(n). In the process,

we get an identical trichotomy for approximate degree, and dichotomies—in this case, Θ(1) or
Θ(n)—for a host of other complexity measures including deterministic complexity, randomized
query complexity, sensitivity, block sensitivity, and certificate complexity.

Many of the canonical examples of regular languages fall easily into one of the three categories
via well-studied algorithms or lower bounds. For example, the upper bound for the OR function
results from Grover’s famous search algorithm, and the lower bounds for OR and parity func-
tions are straightforward applications of either the polynomial method [8] or adversary method
[3]. Nevertheless, it turns out that there exists a vast class of regular languages which have neither
a trivial Ω(n) lower bound nor an obvious o(n) upper bound resulting from a straightforward ap-
plication of Grover’s algorithm. A central challenge of the trichotomy theorem for quantum query
complexity was showing that these languages do actually admit a quadratic quantum speedup.

One such example is the language Σ∗(20∗2)Σ∗, where Σ = {0, 1, 2}. Although there is no fi-
nite witness for the language (e.g., to find by Grover search), we show that it nevertheless has
an Õ(

√
n) quantum algorithm. More generally, this language belongs to a subfamily of regular

languages known as star-free languages because they have regular expressions which avoid Kleene

1A symmetric Boolean function f : {0, 1}n → {0, 1} is such that the value of f only depends on the Hamming weight
of the input.

2

star (albeit with the addition of the complement operation).2 Like regular languages, the star-
free languages have many equivalent characterizations: counter-free automata [22], predicates
expressible in either linear temporal logic or first-order logic [18, 22], the preimages of finite ape-
riodic monoids [25], or cascades of reset automata [20]. The star-free languages are those regular
languages which can be decided in Õ(

√
n) queries. As a result, reducing a problem to any one

of the myriad equivalent representations of these languages yields a quadratic quantum speedup
for that problem.

Let us take McNaughton’s characterization of star-free languages in first-order logic as one
example [22]. That is, every star-free language can be expressed as a sentence in first-order logic
over the natural numbers with the less-than relation and predicates πa for a ∈ Σ, such that πa(i)
is true if input symbol xi is a. We can easily express the OR function as ∃i π1(i), or the more
complicated language Σ∗(20∗2)Σ∗ as

∃i ∃k ∀j i < k ∧ π2(i) ∧ π2(k) ∧ (i < j < k =⇒ π0(j)).

Our result gives an algorithm for this sentence and arbitrarily complex sentences like it. We see
this as a far-reaching generalization of Grover’s algorithm, which extends the Grover speedup to
a much wider range of string processing problems than was previously known.3

1.1 Results

Our main result is the following:

Theorem 1 (informal). Every4 regular language has quantum query complexity Θ(1), Θ̃(
√

n), or Θ(n).
Moreover, the quantum time complexity of each language matches its query complexity.

The theorem and its proof have several consequences which we highlight below.

1. Algebraic characterization: We give a characterization of each class of regular languages in
terms of the monoids that recognize them. That is, the monoid is either a rectangular band,
aperiodic, or finite. In particular, given a description of the machine, grammar, etc. gener-
ating the language, we can decide its membership in one of the three classes by explicitly
calculating its syntactic monoid and checking a small number of conditions. See Section 3.

2. Related complexity measures: Many of the lower bounds are derived from lower bounds on
other query measures. To this end, we prove query dichotomies for deterministic complex-
ity, randomized query complexity, sensitivity, block sensitivity, and certificate complexity—
they are all either Θ(1) or Θ(n) for regular languages. By standard relationships between
the measures, this shows that approximate degree and quantum query complexity are either
O(1) or Ω(

√
n). See Section 6.

3. Generalization of Grover’s algorithm: The BQP algorithm using Õ(
√

n) queries for star-
free regular languages extends to a variety of other settings given that the star-free languages

2For example, the star-free expression for Σ∗(20∗2)Σ∗ is ∅2∅{1, 2}∅2∅.
3Readers familiar with descriptive complexity will recall that AC0 has a similar, but somewhat more general char-

acterization in first-order logic. It follows that all star-free languages, which have quantum query complexity Õ(
√

n),
are in AC0. Conversely, we will show that regular languages not in AC0 have quantum query complexity Ω(n). Thus,
another way to state the trichotomy is that very roughly speaking regular languages in NC0 have complexity O(1), regular
languages in AC0 but not NC0 have complexity Θ̃(

√
n), and everything else has complexity Ω(n).

4There are two caveats: the quantum query complexity may oscillate between asymptotically different functions;
the quantum query complexity may also be zero. For the formal statement of this theorem see Section 3.

3

enjoy a myriad of equivalent characterizations. The characterization of star-free languages
as first-order sentences over the natural numbers with the less-than relation shows that the
algorithm for star-free languages is a broad generalization of Grover’s algorithm. See Sec-
tion 4 for the description and proof of the star-free algorithm and Section 1.3 and Appendix D
for applications.

4. Star-free algorithm from faster unstructured search: The Õ(
√

n) algorithm for star-free lan-
guages results from many nested calls to Grover search, using the speedup due to multiple
marked items. However, a careful analysis reveals that whenever this speedup is required,
the marked items are consecutive. We show that these Grover search calls can then be re-
placed by any unstructured search algorithm. Therefore, any model of computation that has
faster-than-brute-force unstructured search will have an associated speedup for star-free lan-
guages. Consider, for example, the model of quantum computation of Aaronson, Bouland,
Fitzsimons, and Lee in which non-collapsing measurements are allowed [1]. It was shown
that unstructured search in that model requires at most Õ(n1/3) queries, and therefore, star-
free languages can be solved in Õ(n1/3) queries as well.

Finally, we stress that this trichotomy is only possible due to the extreme uniformity in the
structure of regular languages. In particular, the trichotomy does not extend to another basic
model of computation, the context-free languages.

Theorem 2. For all limit computable5 c ∈ [1/2, 1], there exists a context-free language L such that
Q(L) = O(nc+ǫ) and Q(L) = Ω(nc−ǫ) for all ǫ > 0. Furthermore, if an additive ǫ-approximation
to c is computable in 2O(1/ǫ) time, then Q(L) = Θ(nc). In particular, any algebraic c ∈ [1/2, 1] has this
property.

In fact, the converse also holds.

Theorem 3. Let L be a context-free language such that limn→∞
log Q(L)

log n = c. Then, c is limit computable.

1.2 Proof Techniques

Most of the lower bounds are derived from a dichotomy theorem for sensitivity—the sensitivity of
a regular language is either O(1) or Ω(n). In particular, we show that the language of sensitive bits
for a regular language is itself regular. Therefore, by the pumping lemma for regular languages,
we are able to boost any nonconstant number of sensitive bits to Ω(n) sensitive bits, from which
the dichotomy follows.

The majority of the work required for the classification centers around the Õ(
√

n) quantum
query algorithm for star-free languages. The proof is based on Schützenberger’s characterization
of star-free languages as those languages recognized by finite aperiodic monoids. Starting from an
aperiodic monoid, Schützenberger constructs a star-free language recursively based on the “rank”
of the monoid elements involved. Roughly speaking, this process culminates in a decomposition
of any star-free language into star-free languages of smaller rank. Although this decomposition
does not immediately give rise to an algorithm, the notion of rank proves to be a particularly
useful algebraic invariant. Specifically, we use it to show that given a Õ(

√
n)-query algorithm for

membership in some star-free language L, we can construct a Õ(
√

n)-query algorithm for Σ∗LΣ∗.
This “infix” algorithm is the key subroutine for much of the general star-free algorithm.

5We say that a number c ∈ R is limit computable if there exists a Turing machine which on input n outputs some
rational number T(n) such that limn→∞ T(n) = c.

4

1.3 Applications

We give quantum quadratic speedups for several problems simply by showing that the underly-
ing language is star free. Consider the language 2Σ∗2\Σ∗20∗2Σ∗, where Σ = {0, 1, 2}. We call this
the dynamic AND-OR language, for reasons which may not be evident from the regular expression
alone. Think of the 2’s as delimiting the string into some number of blocks over {0, 1}. We take the
OR of each block and the AND of those results to decide if the string is in the language. That is, if
there is some pair of consecutive 2’s with no intervening 1, then that block evaluates to 0, and the
whole string is not in the language. It has long been known that the quantum query complexity of
the AND-OR tree, or more generally Boolean formulas with constant depth, is Θ(

√
n) [17]. In that

case, however, the tree or formula is fixed in advance and not allowed to change with the input.
Nevertheless, our quantum algorithm for star-free languages implies that even the dynamic ver-
sion of the AND-OR language (as well as the dynamic generalization of constant-depth Boolean
formulas [7]) can be decided with Θ̃(

√
n) queries and, moreover, there is an efficient quantum

algorithm.
Next consider the language of balanced parentheses, where the parentheses are only allowed

to nest k levels deep. When k is unbounded, this is called the Dyck language. When k = 1 this is
the language of strings of the form ()() . . . (), which has a simple Grover search speedup—search
for ((or)). However, the language quickly becomes more interesting as k increases. Neverthe-
less, for any constant k, this language is known to be star free [13], and therefore has an Õ(

√
n)

quantum algorithm by our classification.
Finally, we mention a few more examples of star-free languages (proofs in Appendix D).

Addition: Given three binary numbers x0y0z0x1y1z1 . . . xnynzn as input, decide if x + y = z.

Word Break: Given finite dictionary D ⊆ Σ ∪ Σ2, decide if word x ∈ Σ∗ is in D∗.

Grid Path: Given a constant-height grid of cells, some of which are impassable, decide
whether there is a path from the bottom left corner to the top right corner.

To the authors’ knowledge, no quantum quadratic speedups for any of the previous problems
were known prior to this publication.

1.4 Related Work

We are not the first to study regular languages in a query-complexity setting. One such example
is work in property testing by Alon, Krivelevich, Newman, and Szegedy. They show that regular
languages can be tested6 with Õ(1/ǫ) queries [2]. Interestingly, Alon et al. also show that there
exist context-free grammars which do not admit constant query property testers [2]. In Section 7,
we show that context-free languages can have query complexity outside the trichotomy.

A second example comes from work of Tesson and Thérien on the communication complexity
of regular languages [29]. As with query complexity, several important functions in communi-
cation complexity happen to be regular, e.g., inner product, disjointness, greater-than, and in-
dex. They show that for several measures of communication complexity, the complexity is Θ(1),
Θ(log log n), Θ(log n), or Θ(n). Clearly, there are many parallels with this work, but surprisingly
the classes of regular languages involved are different. Also, communication complexity is tradi-
tionally more difficult than query complexity, yet the authors appear to have skipped over query

6We say a language L is testable with constantly many queries if there exists a randomized algorithm such that given
a word w ∈ Σn, the algorithm accepts w if w ∈ L, and the algorithm rejects w if at least ǫn many positions of w must be
changed in order to create a word in L. The algorithm is given Õ(1/ǫ) many queries to w.

5

complexity—we assume because quantum query complexity is necessary to get an interesting
result.

There are also striking parallels in work of Childs and Kothari, who conjecture a dichotomy
for the quantum query complexity of minor-closed graph properties [12]. Minor-closed graph
properties are not, to our knowledge, directly related to regular languages, but they are morally
similar in that both are very uniform—(almost) every part of the input is treated the same by the
property. Childs and Kothari show that such properties have query complexity Θ(n3/2), except
for forbidden subgraph properties which are o(n3/2) and Ω(n), and are conjectured to be Θ(n).
Even some of the proof techniques are similar—the proof that forbidden subgraph properties are
Ω(n) could be phrased in terms of block sensitivity, like our Ω(

√
n) lower bound for non-trivial

languages.
Finally, we are aware of one more result on the complexity of star-free languages prior to our

work. It is possible to show that star-free languages have o(n) quantum query complexity, just
barely enough to separate them from non-star-free languages. This result is a combination of
two existing results: Chandra, Fortune, and Lipton [11] show that star-free languages have (very
slightly) super-linear size AC0 circuits; Bun, Kothari, and Thaler show that linear size AC0 circuits
have (moderately) sublinear quantum query complexity [10]. This connection was pointed out to
us by Robin Kothari.

2 Background

This section introduces both regular languages and basic query complexity measures and their
relationships. In particular, we will focus on algebraic definitions of regular languages as they
serve as the basis for many of the results in this paper. Readers familiar with query complexity can
skip much of the introduction on that topic, but may still want to read Section 2.2.2 on extending
the complexity measures to larger alphabets.

2.1 Regular languages

The regular languages are those languages that can be constructed from ∅, {ε}, and singletons {a}
for all a ∈ Σ using the operations of concatenation (e.g., AB), union (e.g., A ∪ B), and Kleene star7

(A∗). A regular expression for a regular language is an explicit expression for how to construct the
language, traditionally writing | for alternation (instead of union), and omitting some brackets by
writing a for {a} and ε for {ε}. For example, over the alphabet Σ = {0, 1}, the OR function can
be written as regular expression Σ∗1Σ∗, and the languages of all strings such that there are no two
consecutive 1’s is (0|10)∗(ε|1).

The class of regular languages has extremely robust definitions and many equivalent char-
acterizations. For instance, some machine-based definitions8 include those languages accepted
by deterministic finite automata (DFA), or by non-deterministic finite automata (NFA), or even
by alternating finite automata. Regular languages also arise by weakening Turing machines, for
example by making the machine read-only or limiting the machine to o(log log n) space.

For our purposes, some of the most useful definitions of regular languages are algebraic in
nature. In particular, regular languages arise as the preimage of a subset of a finite monoid under

7Let A be a set of strings. Define A∗ = {a1 . . . ak : k ≥ 0, ai ∈ A}, that is, the concatenation of zero or more strings in
A. We will also use A+ = {a1 . . . ak : k ≥ 1, ai ∈ A} to capture one or more strings.

8We assume familiarity with the basic machine models for regular languages—see [27] for an introduction.

6

monoid homomorphism.9 First, we say that language L ⊆ Σ∗ is recognized by a monoid M if there
exists a monoid homomorphism ϕ : Σ∗ → M (where Σ∗ is a monoid under concatenation) and a
subset S ⊆ M such that

L = {w ∈ Σ∗ : ϕ(w) ∈ S} = ϕ−1(S).

Theorem 4 (folklore). A language is recognized by a finite monoid iff it is regular.

In fact, starting from a regular language, we can specify a finite monoid recognizing it through
the so-called syntactic congruence. Given language L ⊆ Σ∗, the syntactic congruence is an equiva-
lence relation ∼L on Σ∗ such that x ∼L y if

∀u, v ∈ Σ∗, uxv ∈ L ⇐⇒ uyv ∈ L.

Thus, ∼L divides Σ∗ into equivalence classes. Furthermore, ∼L is a monoid congruence because
u ∼L v and x ∼L y imply ux ∼L vy. This means the equivalence classes of Σ∗ under ∼L are
actually congruence classes (because they can be multiplied), defining a monoid ML which we call
the syntactic monoid of L. Finally, it is not hard to see that the map ϕ : Σ∗ → ML, from a string to
its congruence class, is a homomorphism. Therefore, by Theorem 4, the syntactic monoid for any
regular language is finite.

The most important subclass of regular languages are the star-free languages. These languages
are recognized by a variant of regular expressions where complement (A) is allowed but Kleene
star is not. We call these star-free regular expressions. For convenience, star-free regular expressions
sometimes contain the intersection operation since it follows by De Morgan’s laws.

Note that star-free languages are not necessarily finite. For example, Σ∗ can also be expressed

as ∅, the complement of the empty language. Similarly, 0∗ is ∅(Σ\{0})∅, the set of strings which
do not contain a string other than 0. Once again, an algebraic characterization of star-free lan-
guages will be particularly useful for us. First, we say that a monoid M is aperiodic if for all x ∈ M
there exists an integer n ≥ 0 such that xn = xn+1.

Theorem 5 (Schützenberger [25]). A language is recognized by a finite aperiodic monoid iff it is star free.

We also define a subset of the star-free languages, which we call the trivial languages. Intu-
itively, the trivial languages are those languages for which membership can be decided by the
first and last characters of the input string,10 which we formalize as those languages accepted by
trivial regular expressions. A trivial regular expression is any Boolean combination of the languages
a|aΣ∗a, aΣ∗b, and ε for a 6= b ∈ Σ.

The algebraic characterization of trivial languages will need to use both the properties of the
monoid and the properties of the homomorphism onto the monoid. To that end, we say that
language L ⊆ Σ∗ is recognized by a monoid homomorphism ϕ : Σ∗ → M if L = {w ∈ Σ∗ : ϕ(w) ∈
S} = ϕ−1(S) for some subset S ⊆ M. Finally, a monoid M is a rectangular band if for r, s, t ∈ M,
each element is idempotent, r2 = r, and satisfies the rectangular property, rst = rt.

Theorem 6 (Appendix B). A language is recognized by morphism ϕ such that ϕ(Σ+) is a finite rectan-
gular band iff it is trivial.

9A monoid (M, ·, 1M) is a set M closed under an associative binary operation · : M×M→ M with an identity element
1M ∈ M. A monoid homomorphism is a map from one monoid to another that preserves multiplication and identity.

10More generally, trivial languages are decided by a constant size prefix and/or suffix of the input, but the processing
we do to formalize the trichotomy theorem compresses those substrings to length 1. See Section 3.

7

2.2 Query complexity

This section serves as a brief overview of query complexity, a model of computation where algo-
rithms are charged based on the number of input bits they reveal (the input is initially hidden)
rather than the actual computation being done. To model that the input is hidden, all query algo-
rithms must access their inputs via an indexing oracle—a function which takes some index and
outputs the value of the corresponding input bit. We use the standard notion of oracles in the
quantum setting. That is, for oracle function O : {0, 1}n → {0, 1}, the quantum algorithm can
apply the (n + 1)-qubit transformation which flips the last qubit if O applied to the first n qubits
evaluates to 1.

Formally, the quantum query complexity of a function f : Σ∗ → {0, 1} is a function Q(f) : N → N

such that Q(f)(n) is the minimum number of oracle calls for a quantum circuit to decide (with
bounded error) the value of f for input strings of length n. An astute reader may notice that we
only defined the indexing function over bits and that regular languages are defined over arbitrary
finite alphabets Σ. However, one can always transform the function so that each symbol of Σ is
encoded by ⌈log2 |Σ|⌉ bits. In fact, we will show later that this only affects the query complexity
by a constant factor for regular languages.

One can similarly define deterministic query complexity (D), bounded-error randomized query com-
plexity (R), and zero-error randomized query complexity (R0) by counting the number of input sym-
bols accessed in these models. Closely related to quantum query complexity is a notion of ap-

proximation by polynomials called approximate degree, denoted d̃eg(f). The approximate degree
of a function f : [k]n → {0, 1} is the minimum degree of a polynomial p(x1, . . . , xn) such that
|p(x1, . . . , xn)− f (x1, . . . , xn)| ≤ 1

3 for all x1, . . . , xn ∈ [k].
We conclude by defining several query complexity measures which are useful tools in proving

lower bounds in the more standard models of computation above. Fix a function f : Σ∗ → {0, 1}.
Let x ∈ Σn be some input. We say that some input symbol xi is sensitive if changing only xi changes
the value of the function on that input. The sensitivity of x is equal to its total number of sensitive
symbols. The sensitivity of f , denoted s(f), is the maximum sensitivity over all inputs x.

Similarly, the block sensitivity at an input is the maximum number of disjoint blocks (i.e., subsets
of the input bits) such that changing one entire block changes the value of the function. The block
sensitivity of f , denoted bs(f), is the maximum block sensitivity over all inputs x.

A certificate is a partial assignment of the input symbols such that f evaluates to the same value
on all inputs consistent with the certificate. The certificate complexity of an input is the minimum
certificate size (i.e., the number of bits assigned in the partial assignment). The certificate complexity
of f , denoted C(f), is the maximum certificate complexity over all inputs.

Finally, when clear from context, we will often let a language denote its characteristic function
when used as an argument in the various complexity measures. For example, for language L ⊆ Σ∗,
we will write Q(L) as the quantum query complexity of the function fL : Σ∗ → {0, 1} where
f (x) = 1 iff x ∈ L.

2.2.1 Relationships

There are many relationships between the different complexity measures that will be useful through-
out this paper. For example, the proposition below follows from the fact that some models of
computation can easily simulate others.

Proposition 7 ([8]). For all f : {0, 1}∗ → {0, 1},
1

2
d̃eg(f) ≤ Q(f) ≤ R(f) ≤ R0(f) ≤ D(f).

8

In Section 5, we prove a dichotomy theorem for block sensitivity—it is either O(1) or Ω(n).
This is particularly useful since nearly all complexity measures are polynomially related to block
sensitivity:

Theorem 8 ([9]). For all f : {0, 1}∗ → {0, 1}, we have the following relationships for block sensitivity:

Lower bounds Upper bounds

C(f) ≥ bs(f) s(f) ≤ bs(f)

d̃eg(f) = Ω(
√

bs(f)) C(f) ≤ bs(f)2

R(f) = Ω(bs(f)) D(f) ≤ bs(f)3.

Notice that for nearly all complexity measures M, we have bs(f)a ≤ M(f) ≤ bs(f)b for some
constants a, b ≥ 0. The exception is sensitivity, for which it is famously open whether a polynomial
in sensitivity upper bounds block sensitivity. There is, however, an exponential relation due to
Simon.

Theorem 9 (Simon [26]). For all f : {0, 1}∗ → {0, 1}, bs(f) = O(s(f)4s(f)).

Corollary 10. If any query complexity measure in {s, bs, C, D, R0, R, Q, d̃eg} is O(1), then all of them are
O(1).

2.2.2 Alphabet size

In this section, we discuss how alphabet size affects the various query measures. Recall that the
query complexity measures above are usually defined for Boolean functions. Nevertheless, we
would like to extend the known relationships between the complexity measures to functions over
larger (yet constant) alphabets. While it is true that many of these relationships generalize without
too much work, we would like to avoid reproving the results one at a time.

Our solution is to simply encode symbols of Σ as binary strings of length λ := ⌈log |Σ|⌉. If
the size of the alphabet Σ is not a power of two, we can simply map the extra binary strings to
arbitrary elements of Σ. This maps a language L ⊆ Σ∗ to a language Lbin ⊆ {0, 1}∗ over binary
strings. Since regular languages are closed under inverse morphism, Lbin is regular if L is regular.

It is also easy to see that almost all complexity measures are changed by at most a constant
factor when converting to a binary alphabet. For example, D(L)(n) ≤ D(Lbin)(λn) since for any
bit we look at, there is some symbol we can examine that tells us that bit. In the other direction,
D(Lbin)(n) ≤ λD(L)(λn), since we can query the entire encoding of any symbol we query. Sim-

ilarly, the encoding changes R0, R, Q, s, C, and (with some additional work) d̃eg, by at most a
constant factor. The exception is block sensitivity.

It is clear that bs(L)(n) ≤ bs(Lbin)(λn), since for any sensitive block of symbols there is some
way to flip it, and this changes some block of bits. In the other direction, a block of sensitive bits
gives a block of sensitive symbols in the obvious way, but then disjoint blocks of bits will not
necessarily map to disjoint blocks of symbols, so it is difficult to say more for general languages.

Theorem 11. Let L ⊆ Σ∗ be a regular language. Then, there exists constant c such that bs(L)(n) ≥
c · bs(Lbin)(λn) for all n.

Proof. We borrow a dichotomy result11 from Section 5, namely Corollary 27—any flat regular lan-
guage has sensitivity either O(1) or Ω(n). Since L is a regular language and not necessarily flat,

11Note that Corollary 27 is true for any alphabet size and does not depend on Theorem 11, so the argument is not
circular.

9

we also borrow Theorem 12 from Section 3—membership in L reduces to membership in some
flat language based on some finite suffix of the input string. Therefore, for every length n, the
sensitivity s(L) is either constant or Ω(n), which we use to split the proof into two cases.

If the sensitivity s(L) is constant, then s(Lbin) is also constant. This implies that bs(Lbin) is
constant by Theorem 9. Therefore, bs(L) is also constant since bs(L)(n) ≤ bs(Lbin)(λn). If the
sensitivity s(L) is not constant, then it is linear by the dichotomy theorem. Therefore, s(L)(n) ≤
bs(L)(n) ≤ bs(Lbin)(λn) implies block sensitivity is linear for both languages from which the
theorem follows.

With this theorem, every regular language and its encoding have the same complexity for all of
the measures we are interested in, up to constants. Therefore, we will lift known relationships be-
tween complexity measures in the Boolean setting to the general alphabet setting without further
comment.

3 Formal Statement

The naı̈ve version of the trichotomy theorem states that the quantum query complexity of a regular
language is always Θ(1), Θ̃(

√
n), or Θ(n). Unfortunately, this is not strictly true. We now explain

the difficulty and a technique which we call “flattening” that allows us to formalize this statement.
Let us see why flattening is necessary. Consider any language which has large quantum query

complexity (e.g., parity) and take its intersection with (Σ2)∗, the language of even length strings.
When the input length is odd, we know without any queries that the string cannot be in the
language. When the input length is even, we have to solve the parity problem, which requires
Ω(n) queries. Thus, the query complexity oscillates drastically between 0 and Θ(n) depending on
the length of the input. Strictly speaking, this means the complexity is neither Θ(1), Θ̃(

√
n), nor

Θ(n); the naı̈ve statement of the trichotomy is false.
We want to state the trichotomy only for languages which are length-independent. Fortu-

nately, a DFA cannot count how many symbols it reads. With finite state, the best a DFA can do is
count modulo some constant. Thus, if there is any dependence on length, it is periodic. Similarly,
a language may have periodic dependence on position. For example, consider the language of all
strings with exactly two 1s. This language is star free and therefore has an Õ(

√
n) quantum query

algorithm. If we further require the 1s to be an even distance apart, the language is no longer star
free, but clearly has an Õ(

√
n) quantum query algorithm. Flattening will reduce this language to

a collection of star-free languages, and in general it will remove periodicities not inherent to the
query complexity of the language.

Before continuing with flattening, we address a different way to handle length dependence.
That is, redefine the quantum query complexity of a function to be the minimum number of quan-
tum oracle calls needed to compute the function on inputs of length up to n (rather than exactly n).
For this definition, notice that the quantum query complexity is nondecreasing. In Appendix A.1
we show that trichotomy theorem holds for all regular languages under this definition as a simple
consequence of Theorem 1, the trichotomy theorem for flat languages. To be clear, we will continue
to use the standard definition of quantum query complexity for the remainder of the paper.

3.1 Flattening

The main idea behind flattening is to eliminate a language’s periodicities by dividing the strings
into blocks. For any string x ∈ Σ∗ of length kn, we can reimagine x as a length-n string over
Σk. This operation can be applied to a language by keeping only strings of length divisible by k

10

and projecting them to the alphabet Σk. Flattening a regular language applies this operation to
the language for some carefully chosen k to be determined later. Nevertheless, we argue that the
language and its flattened version are essentially the same since we are simply blocking characters
together. We formalize this in the following theorem.

Theorem 12. Let L ⊆ Σ∗ be a regular language recognized by a monoid M. There exists an integer p ≥ 2
and a finite family of flat regular languages {Li}i∈I over alphabet Σp such that testing membership in L
reduces (in fewer than p queries) to testing membership in Li for some i. Furthermore, the same monoid M
recognizes L and every Li (although there may be a simpler monoid which recognizes Li).

The full proof is in Appendix A with the rest of the details about flattening a language. The
key property of a flattened language is the following:

Property 13. Let L ⊆ Σ∗ be a flat regular language. For any non-empty string x ∈ Σ+, and any non-zero
length k > 0, there exists a string y ∈ Σk of length k such that for any u, v ∈ Σ∗,

uxv ∈ L ⇐⇒ uyv ∈ L.

That is, x and y belong to the same congruence class.

In other words, for any non-empty string x, we can replace (substring) occurrences of x with
some string of every (non-zero) length, without changing membership in the language. Notice
that a flat regular language cannot have a length dependence, otherwise we would replace the
first few letters with something slightly longer or shorter to reduce the problem to whichever
nearby length is easiest.

To summarize, any regular language can be reduced (or flattened) to a collection of flat reg-
ular languages. Some of these languages may be easier than others, but they are all length-
independent, and thus suitable for our trichotomy theorem. See Appendix A for details.

3.2 Formal Statement of Main Result

We are now ready to formally state Theorem 1. Technically, there are a few regular languages (even
flat languages), which can be decided with zero queries, strictly from the length of the input. This
divides the languages into the following four classes (i.e., a tetrachotomy).

Theorem 1. Every flattened regular language has quantum query complexity 0, Θ(1), Θ̃(
√

n), or Θ(n)
according to the smallest class in the following hierarchy that contains the language.

• Degenerate: One of the four languages ∅, ε, Σ∗, or Σ+.

• Trivial: The set of languages which have trivial regular expressions.

• Star free: The set of languages which have star-free regular expressions.

• Regular: The set of languages which have regular expressions.

Note that each class is contained in the next. Furthermore, the quantum time complexity of each class
matches its query complexity.

Nevertheless, we refer to this classification as a trichotomy. We either think of degenerate and
trivial languages under the category of “constant query regular languages” or, alternatively, dis-
regard the degenerate languages entirely because they are uninteresting.

As it turns out, the regular expression descriptions, some of which were already mentioned
in Section 2, are not particularly useful for the classification. We will prefer the following alge-
braic/monoid definitions of the languages, and use them throughout. We prove they coincide
with the regular expression characterizations in Appendix B.

11

Theorem 14. Let L be a regular language.

• L is degenerate iff it is recognized by morphism ϕ such that |ϕ(Σ+)| = 1.

• L is trivial iff it is recognized by morphism ϕ such that ϕ(Σ+) is a finite rectangular band.

• L is star free iff it is recognized by a finite aperiodic monoid.

• L is regular iff it is recognized by a finite monoid.

3.3 Structure of the proof

We separate the proof of the trichotomy into two natural pieces: upper bounds (Section 4) and
lower bounds (Section 6). The upper bounds are derived directly from the monoid characteriza-
tions of the various classes. Given a flat language, we construct explicit algorithms using at most
0 queries for degenerate languages, 2 queries for trivial languages, Õ(

√
n) queries for star-free

languages, and n queries for regular languages.
The lower bound section aims to prove that these are the only possible classes. First, we show

that any non-degenerate language requires at least one quantum query. We then show that any
nontrivial language requires ω(1) quantum queries. At this point, we will appeal to a dichotomy
theorem for the block sensitivity of regular languages, which we prove in Section 5. From this
dichotomy and standard relationships between the complexity measures, we get that any regular
language requiring ω(1) quantum queries actually requires Ω(

√
n) queries. Finally, we show that

any non-star-free language requires Ω(n) queries, completing the proof.

4 Upper Bounds

In this section, we will describe the algorithms for achieving the query upper bounds in Theo-
rem 1. As a warm-up, we will first consider every class besides the star-free languages. Each
algorithm will follow trivially from the monoid characterization of each class.

Proposition 15. Any regular language has an O(n)-time deterministic algorithm. The trivial languages
have constant-time deterministic algorithms. The degenerate languages have 0-query deterministic algo-
rithms.12

Proof. Let L ⊆ Σ∗ be a regular language. Let ϕ be the homomorphism onto its syntactic monoid
ML such that L = {ϕ−1(s) : s ∈ S ⊆ ML}. Let x = x1 . . . xn ∈ Σn. We have that x ∈ L iff
ϕ(x1)ϕ(x2) . . . ϕ(xn) ∈ S. Since ML is finite and ϕ is specified by a finite mapping from characters
to monoid elements, this product is computable in linear time.

Suppose L is trivial. Consider input x = ayb where a, b ∈ Σ and y ∈ Σ∗. By the rectangular
band property, we have ϕ(x) = ϕ(a)ϕ(y)ϕ(b) = ϕ(a)ϕ(b). That is, x ∈ L iff ϕ(ab) ∈ S.

Suppose L is degenerate. Consider some input x ∈ Σ∗. If |x| = 0, then x ∈ L iff ϕ(ε) ∈ S. If
|x| > 0, then ϕ(x) ∈ ϕ(Σ+) = {s} so x ∈ L iff s ∈ S. Since the query algorithm knows the length
in advance, no queries are needed to determine the membership of x.

Of course, the existence of these deterministic algorithms implies their corresponding query
upper bounds as well. Much more interesting is the Õ(

√
n) quantum algorithm for star-free lan-

guages to which the remainder of this section is dedicated. Much like Proposition 15, we will use

12Note, the power of constant-time algorithms depends on the particular model of computation. We assume a RAM
model where the length of the input string is given, and arithmetic on indices can be performed in constant time.

12

the monoid characterization as our starting point for the algorithm; however, before delving di-
rectly into the details of the algorithm, we give some techniques and ideas that will be pervasive
throughout.

4.1 Proof techniques

In this section, we introduce a basic substring search operation and a decomposition theorem (due
to Schützenberger) for aperiodic monoids.

4.1.1 Splitting and infix search

Consider the language L = Σ∗20∗2Σ∗ over the alphabet Σ = {0, 1, 2}, that is, the problem of find-
ing a substring of the form 20∗2. We call the problem of finding a contiguous substring satisfying
a predicate infix search. Since L is star free, our trichotomy theorem implies that infix search for the
language 20∗2 is possible with Õ(

√
n) queries.

Consider the following algorithm for L: Grover search for an index i in the middle of a sub-
string 20∗2, searching outwards to verify that there is a substring of the form 20∗ immediately
before the index (suffix search) and a substring of the form 0∗2 immediately after (prefix search).
More precisely, we can use Grover search to check whether a substring is all 0s, then binary search
to determine how far the 0s extend on either side of the index, and finally check for 2s on either
end.

We introduce a few ideas necessary to prove this algorithm for L is efficient, and to generalize
it to arbitrary languages. The first tool we need is Grover search, to help us search for the position
of the substring. In particular, we use a version of Grover search which is faster when there are
multiple marked items.13

Theorem 16 (Grover search). Given oracle access to a string of length n which is 1 on at least t ≥ 1
indices, there exists a quantum algorithm which returns a random index on which the oracle evaluates to 1
in O(

√
n/t) queries with constant probability.

Next, the solution to Σ∗20∗2Σ∗ used the fact that given an index, we can search outwards for a
substring 20∗ before the index and 0∗2 after. Notice that the index has “split” the regular language
20∗2 into two closely related languages. It is not clear every language has this property, so we
introduce a notion of splitting for arbitrary regular languages.

Definition 17. We say that a language L ⊆ Σ∗ splits if there exists a constant k and languages
A1, . . . , Ak, B1, . . . , Bk such that L =

⋃k
i=1 AiBi and for all x ∈ L and decompositions x = uv, there

exists 1 ≤ i ≤ k such that u ∈ Ai and v ∈ Bi. We say L splits as
⋃k

i=1 AiBi to succinctly introduce
the languages.

13 In this section, we will need the speedup from multiple marked items. However, whenever we require the speedup,
the marked items will be consecutive. In this case, we can derive the same speedup from any Õ(

√
n) unstructured

search algorithm by searching over indices at fixed intervals (a “grid” on the input). In more detail: we search for a grid
size G, starting from n and halving until G is less than the number of consecutive marked items (which is unknown).
Hence, the set of indices divisible by G will intersect some marked item and the search on n/G indices will succeed in
Õ(
√

n/G) queries. Since the last search dominates the runtime, the entire procedure requires Õ(
√

n/t) queries.
In fact, there are other models of computation where unstructured search uses Õ(nc) queries for c 6= 1/2 (for in-

stance, [1]). It will turn out that the procedure described above still accelerates search for multiple consecutive marked
items. This will translate to an Õ(nc)-query algorithm for star-free languages. In particular, the runtime in Theorem 18
becomes Õ(nc).

13

Formally, 20∗2 splits as (20∗2)ε ∪ (20∗)(0∗2) ∪ ε(20∗2). In fact, every star-free language L ⊆ Σ∗

splits as
⋃k

i=1 AiBi where the Ai and Bi are also star free. We will prove this in the next section in
Theorem 23. We delay the proof until we have the definitions to show that the languages Ai and
Bi are in some sense no harder than the language L itself.

Supposing we can determine membership for Σ∗Ai and BiΣ
∗ efficiently, a combination of

Grover search and exponential search will solve the infix search problem, as shown below.

Theorem 18 (Infix search). Let language L ⊆ Σ∗ split as
⋃k

i=1 AiBi. Suppose Q(Σ∗Ai) and Q(BiΣ
∗)

are Õ(
√

n) for all i ∈ {1, . . . , k}. Then, Q(Σ∗LΣ∗) = Õ(
√

n).

Proof. We perform an exponential search—doubling ℓ with ℓ initially set to 1—until the algorithm
succeeds. Let x be the input and suppose there is a substring of x belonging to L of length at least
ℓ and at most 2ℓ, for some power of two ℓ. Search for an index j such that xj−2ℓ · · · xj−1 ∈ Σ∗Ai

and xj · · · xj+2ℓ−1 ∈ BiΣ
∗ for some i = 1, . . . , k. This implies the substring xj−2ℓ · · · xj+2ℓ−1 is in

Σ∗AiBiΣ
∗ ⊆ Σ∗LΣ∗.

Since testing each index requires at most Õ(
√
ℓ) queries and k is constant, there are Õ(

√
ℓ)

queries to the string to test a particular index j. Recall that we assumed the matching substring
has length at least ℓ, and thus, there are ℓ indices of x for which the prefix/suffix queries will
return true. Hence, there are at most O(

√
n/ℓ) total Grover iterations (Theorem 16), and the final

algorithm requires only Õ(
√

n) queries.

4.1.2 Aperiodic monoids and Schützenberger’s proof

At its core, the algorithm for star-free languages uses one direction of Schützenberger’s theorem
for star-free languages, which we recall from Section 2.

Theorem 5. If language L is recognized by a finite aperiodic monoid, then L is star free.

We will show that Schützenberger’s proof can be modified to produce a Õ(
√

n) algorithm for
any star-free language starting from the aperiodic monoid recognizing it. Central to this modifi-
cation will be the notion of splitting introduced in the previous section. In this section we give
the basic prerequisites and outline for Schützenberger’s proof which will eventually culminate in
a formal justification of splitting based on the properties of aperiodic monoids.

Let M be a finite aperiodic monoid recognizing some language L ∈ Σ∗. Recall that L =
ϕ−1(S) =

⋃
m∈S ϕ−1(m), where ϕ : Σ∗ → M is a surjective monoid homomorphism, and S ⊆ M is

some subset of the monoid. Thus, to show that L is star free, it suffices to show that ϕ−1(m) is star
free for each m ∈ M.

One of the central ideas in Schützenberger’s proof is to consider these languages in order of
the size of the ideal14 they generate. Formally, Schützenberger’s proof is an induction on the rank
of m, defined as

ρ(m) := |M−MmM|,
that is, the number of elements not in MmM = {amb : a ∈ M, b ∈ M}. For example, ρ(1) = 0.
Rank is a particularly useful measure of progress in the induction due to the following proposition:

Proposition 19. For any p, q ∈ M we have ρ(p), ρ(q) ≤ ρ(pq).

Proof. MpqM ⊆ MpM, so M−MpqM ⊇ M−MpM. Therefore, ρ(p) ≤ ρ(pq). Similarly, ρ(q) ≤
ρ(pq).

14Let M be a monoid and I ⊆ M be a subset. We say I is a right ideal if IM = I, I is a left ideal if MI = I, and I is an
ideal if MIM = I. For example, for any m ∈ M, mM is a right ideal, Mm is a left ideal, and MmM is an ideal.

14

It will turn out that only the identity of the monoid M has rank 0. First, we show that a product
of monoid elements is the identity if and only if every element is the identity.

Proposition 20. For elements p1, · · · , pn ∈ M in an aperiodic monoid M, if p1 · · · pn = 1 then p1 =
· · · = pn = 1.

Proof. It suffices to prove the result for n = 2 and induct. Suppose 1 = pq, and then by repeated
substitution,

1 = pq = p1q = p2q2 = · · · = piqi,

for any i. Since the monoid is aperiodic, there exists n ≥ 0 such that pn+1 = pn. Therefore,

p = p(pnqn) = pn+1qn = pnqn = 1.

By symmetry, q is also the identity.

Corollary 21. Let M be a finite aperiodic monoid. For any m ∈ M, ρ(m) = 0 iff m = 1.

Proof. Suppose that ρ(m) = 0 for some monoid element m ∈ M. By the definition of rank, we have
that M = MmM, and in particular 1 ∈ M implies 1 = amb for some a, b ∈ M. By Proposition 20,
a = b = m = 1.

It is not hard to see that ϕ−1(1) is star free. For ρ(m) > 0, Schützenberger decomposes ϕ−1(m)
into a Boolean combination of star-free languages with strictly smaller rank, completing the proof.
To avoid recapitulating all of Schützenberger’s proof, we simply quote the main decomposition
theorem.

Theorem 22 (Decomposition Theorem). For any m ∈ M,

ϕ−1(m) = (UΣ∗ ∩ Σ∗V)\(Σ∗CΣ∗ ∪ Σ∗WΣ∗).

where

U =
⋃

(r,a)∈E

ϕ−1(r)a

V =
⋃

(a,r)∈F

aϕ−1(r)

C = {a ∈ Σ : m /∈ Mϕ(a)M}
W =

⋃

(a,r,b)∈G

aϕ−1(r)b

and

E = {(r, a) ∈ M× Σ : rϕ(a)M = mM, rM 6= mM},
F = {(a, r) ∈ Σ×M : Mϕ(a)r = Mm, Mr 6= Mm},
G = {(a, r, b) ∈ Σ×M× Σ : m ∈ (Mϕ(a)rM ∩Mrϕ(b)M)\Mϕ(a)rϕ(b)M}.

Furthermore, for all r ∈ M appearing in E, F, or G, ρ(r) < ρ(m).

15

To see the decomposition theorem worked out on a small example, we refer the reader to
Appendix C. Although Theorem 22 is sufficient to prove Schützenberger’s theorem, the same
inductive approach does not immediately lead to a quantum algorithm for star-free languages.
For example, it is not clear how to efficiently decide membership in UΣ∗ given an algorithm for
membership in U.15 In the next section, we will strengthen our induction hypothesis such that
queries of this type are possible. Let us conclude this section with a splitting theorem based on
Schützenberger’s notion of rank.

Theorem 23. Let L = ϕ−1(m) for monoid element m ∈ M. Then, L splits as

⋃

pq=m

ϕ−1(p)ϕ−1(q).

Furthermore, for all elements of the union, ρ(p), ρ(q) ≤ ρ(m).

Proof. We first verify equality. We have that L ⊇ ∪pq=m ϕ−1(p)ϕ−1(q) since

ϕ(ϕ−1(p)ϕ−1(q)) = ϕ(ϕ−1(p))ϕ(ϕ−1(q)) = pq = m.

Furthermore, ⋃

pq=m

ϕ−1(p)ϕ−1(q) ⊇ ϕ−1(m)ϕ−1(1) = L.

Now, suppose x ∈ L. For any decomposition x = uv, we have that ϕ(x) = ϕ(uv) = ϕ(u)ϕ(v) =
m. Let p = ϕ(u) and q = ϕ(v). Therefore, u ∈ ϕ−1(p) and v ∈ ϕ−1(q) with pq = m. Finally, by
Proposition 19 we get that ρ(p), ρ(q) ≤ ρ(m).

4.2 Õ(
√

n) algorithm for star-free languages

Recall that our objective is to create an Õ(
√

n) algorithm for language ϕ−1(m), where m ∈ M is
an arbitrary monoid element. We mimic Schützenberger’s proof of Theorem 5 by constructing
algorithms for each ϕ−1(m) in the order of the rank of m. Implicit in such an argument is a pro-
cedure that must convert an efficient query algorithm for ϕ−1(r) into an efficient query algorithm
for ϕ−1(r)aΣ∗ for (r, a) ∈ E.

Notice that for (r, a) ∈ E, we have (by definition) that rM) rϕ(a)M. That is, the prefix of
the input string matching ϕ−1(r)a is not an arbitrary location in the string, but one of finitely
many points in the string where the right ideal strictly decreases. We use this to our benefit in the
following key lemma.

Lemma 24. Let ϕ : Σ∗ → M be a monoid homomorphism. Suppose there exists an Õ(
√

n) membership
algorithm for ϕ−1(m) for any m ∈ M such that ρ(m) ≤ k. Then, there exists an Õ(

√
n) algorithm to test

membership in L := ϕ−1(r)aΣ∗ for any r ∈ M and a ∈ Σ such that ρ(r) ≤ k and rM) rϕ(a)M.

Proof. Consider a string x ∈ Σ∗. The right ideal ϕ(x1 · · · xi)M represents the set of monoid ele-
ments we could reach after reading x1 · · · xi. These right ideals descend as we read more of the
string:

M = ϕ(ε)M ⊇ ϕ(x1)M ⊇ ϕ(x1x2)M ⊇ · · · ⊇ ϕ(x1 · · · xn)M = ϕ(x)M.

15We will show this is possible, but it requires that the language is regular. In general, a Õ(
√

n)-query algorithm for
a language L does not imply a Õ(

√
n)-query algorithm for LΣ∗. We have a counterexample: consider the language L of

strings of the form #x0#x1#x2# · · · #xk# such that all xi are binary strings of the same length and xi = xk for some i < k.
L can be decided in Õ(

√
n) queries by a Grover search. There is a clear reduction from element distinctness to LΣ∗,

therefore Q(LΣ∗) is at least Ω(n2/3).

16

If x ∈ L, then there is some prefix y in ϕ−1(r) followed by an a. By assumption, ϕ(y)M = rM)

rϕ(a)M = ϕ(ya)M, so this is a point in the string where the right ideal strictly descends.
Notice that r ∈ rϕ(a)M implies rM ⊆ rϕ(a)M, and since we have rM) rϕ(a)M, we conclude

that r /∈ rϕ(a)M. In other words, the right ideal descends from something containing r (namely
rM), to something not containing r (namely rϕ(a)M).

To decide whether x belongs to L, it suffices to find the longest prefix x1 · · · xi such that
ϕ(x1 · · · xi)M contains r. If xi+1 = a and x1 · · · xi ∈ ϕ−1(r), then the string is in L, otherwise
there is no other possible prefix that could match ϕ−1(r)a, so the string is not in L.

Define a new language K where

K :=
⋃

s:r∈sM

ϕ−1(s).

This is precisely the language of strings/prefixes that could be extended to strings in ϕ−1(r). We
can decide membership in K with O(

√
n) queries because r ∈ sM implies MrM ⊆ MsM and

hence ρ(s) ≤ ρ(r) ≤ k.
It is also clear that K is prefix closed: if x1 · · · xi ∈ K then r ∈ ϕ(x1 · · · xi)M ⊆ ϕ(x1 · · · xi−1)M,

so x1 · · · xi−1 ∈ K as well. The empty prefix is in K, and by binary search we can find the longest
prefix in K. Then, as discussed above, we complete the algorithm by checking whether the prefix
is (i) in ϕ−1(r) and (ii) followed by an a. If so, then we report x ∈ L, otherwise x /∈ L.

We are now ready to state and prove our main theorem.

Theorem 25. For any star-free language L ⊆ Σ∗, there exists a quantum algorithm which solves member-
ship in L with Õ(

√
n) queries and Õ(

√
n) time.

Proof. Let L = ∪m∈S ϕ−1(m) for some homomorphism ϕ : Σ∗ → M to an aperiodic finite monoid
M, and S ⊆ M. We will show that there is an algorithm for each ϕ−1(m) by induction on the rank
of m.

Suppose first that ρ(m) = 0, implying that m is the identity by Corollary 21. From Proposi-
tion 20, we know that a string is in ϕ−1(1) if every character is in ϕ−1(1), i.e.,

ϕ−1(1) = {a ∈ Σ : ϕ(a) = 1}∗.

We can Grover search for a counterexample in O(
√

n) time to decide membership in ϕ−1(1).
Now suppose ρ(m) is nonzero. Our main tool is Theorem 22, which decomposes ϕ−1(m) into

a Boolean combination of languages,

ϕ−1(m) = (UΣ∗ ∩ Σ∗V)\(Σ∗CΣ∗ ∪ Σ∗WΣ∗),

where U, V, C, W ⊆ Σ∗ are as they appear in that theorem statement. We will also make reference
to sets E, F, G from Theorem 22.

To give an algorithm for ϕ−1(m), it suffices to give an algorithm for each component of this
Boolean combination: UΣ∗, Σ∗V, Σ∗CΣ∗ and Σ∗WΣ∗. Since U, V, and W are finite unions of
simpler languages, it suffices to consider each language in the union separately.

The first component is UΣ∗, but we have already done most of the work for UΣ∗ in Lemma 24.
Recall

UΣ∗ =
⋃

(r,a)∈E

ϕ−1(r)aΣ∗

where E = {(r, a) ∈ M× Σ : rϕ(a)M = mM, rM 6= mM}. This gives us an Õ(
√

n)-time algorithm
for UΣ∗. By symmetry, there also exists an algorithm for Σ∗V. Recall that C = {a ∈ Σ : m /∈

17

Mϕ(a)M} is a finite set of characters, so membership in Σ∗CΣ∗ is decided by a Grover search for
any of those characters.

The last component is Σ∗WΣ∗, which consists of a union of languages of the form aϕ−1(r)b
where (a, r, b) ∈ G. That is, m ∈ Mϕ(a)rM and m ∈ Mrϕ(b)M but m /∈ Mϕ(a)rϕ(b)M. We can
use Theorem 23 to split W into ⋃

pq=r

aϕ−1(p)ϕ−1(q)b.

We hope to apply Lemma 24 to ϕ−1(q)bΣ∗ and (in reverse) Σ∗aϕ−1(p), then use infix search (i.e.,
Theorem 18) to try to find a substring in W, but first we need to verify that all the preconditions
of these theorems are met—namely, that the rank of p and q are small, and a and b cause the ideal
to descend.

First, the decomposition theorem (Theorem 22) gives that ρ(r) < ρ(m), and by Proposition 19,
ρ(p), ρ(q) ≤ ρ(r). Next, suppose that qϕ(b)M = qM. It follows that

Mϕ(a)rM = Mϕ(a)pqM = Mϕ(a)pqϕ(b)M = Mϕ(a)rϕ(b)M,

but we know m is in Mϕ(a)rM and not in Mϕ(a)rϕ(b)M, so we have a contradiction from the
definition of G. Hence, qϕ(b)M 6= qM, and by a symmetric argument Mϕ(a)p 6= Mp, so we have
Õ(
√

n)-query algorithms for Σ∗aϕ−1(p) and ϕ−1(q)bΣ∗ from Lemma 24. It follows that there is a
Õ(
√

n) algorithm for Σ∗WΣ∗ as well.

This finishes the main theorem for this section. See Algorithm 1 for pseudocode.

5 Dichotomy Theorems

In this section, we prove a dichotomy result for block sensitivity. This will be important for the
next logical step in the trichotomy theorem: proving lower bounds to match our upper bounds in
Section 6. The core of this section is a dichotomy theorem for sensitivity, namely that the sensitivity
is either O(1) or Ω(n). This implies an identical dichotomy for block sensitivity, from which the
Ω(
√

n) lower bound on approximate degree follows for all nontrivial languages.
Regular languages are closed under an astonishing variety of natural operations. Our Ω(

√
n)

lower bound begins with one such closure property. Recall that a symbol in a string is sensitive
with respect to some input x if changing only that symbol changes the value of the function.

Theorem 26. Let L ⊆ Σ∗ be a regular language. Define the language SL ⊆ {0, 1}∗ of all sensitivity
masks as follows.

SL := {y ∈ {0, 1}∗ : there exists x ∈ Σ∗ such that |x| = |y| and xi is sensitive in L if and only if yi = 1}

Then, SL is regular.

Proof. This is an exercise in using non-determinism, but since there are a few levels, let us spell
out the details. First, let us show that the following language is regular:

S′L := {(x1, y1) · · · (xn, yn) ∈ (Σ× {0, 1})∗ : y1 · · · yn indicate the sensitive bits of x1 · · · xn}.

How do we go about proving a string is not in S′L? There are two possibilities:

• Find some i such that yi = 0, but changing xi flips membership in the language.

18

Algorithm 1 Star Free Language Algorithm

⊲ The monoid M, alphabet Σ, and homomorphism ϕ : Σ∗ → M are fixed and known.
function INFIXSEARCH(x = x[1..n],pred)

⊲ Searches for a substring matching the predicate pred. See Theorem 18.
for ℓ = 1, 2, 4, . . . , n do

Grover search for i such that pred(x[min(1, i− ℓ+ 1)..i], x[i + 1.. max(i + ℓ, n)] is true
if i found then

return TRUE

return FALSE

function PREFIXCHECK(x, r, a)
⊲ This function decides whether x ∈ ϕ−1(r)aΣ∗ as described in Lemma 24.
H ← {s ∈ M : r ∈ sM}
Binary search for largest 1 ≤ i < n satisfying

∨
s∈H MAIN(x[1..i], s)

return (x[i + 1] = a) ∧MAIN(x[1..i], r)

function RIGHTIDEAL(x, m)
⊲ Checks if x is in UΣ∗.
E← {(r, a) ∈ M× Σ : rϕ(a)M = mM, rM 6= mM}
for (r, a) ∈ E do

if PREFIXCHECK(x, r, a) then

return TRUE

return FALSE

⊲ Define SUFFIXCHECK and LEFTIDEAL likewise. Details omitted.

function IDEAL(x,m)
⊲ Checks if x is in Σ∗WΣ∗.
G ← {(a, r, b) ∈ Σ×M× Σ : m ∈ (Mϕ(a)rM ∩Mrϕ(b)M)\Mϕ(a)rϕ(b)M}
for (a, r, b) ∈ G do

if INFIXSEARCH(x, (x1, x2) 7→
∨

pq=r SUFFIXCHECK(x1, p, a) ∧ PREFIXCHECK(x2, q, b))
then

return TRUE

return FALSE

function MAIN(x = x[1..n], m)
⊲ Decides whether x is in ϕ−1(m).
if m = 1 then

return ¬ GROVERSEARCH({1, . . . , n}, i 7→ ϕ(x[i]) 6= 1)
else

return

LEFTIDEAL(x, m) ∧
RIGHTIDEAL(x, m) ∧
¬IDEAL(x, m) ∧
¬GROVERSEARCH({1, . . . , n}, i 7→ m /∈ Mϕ(x[i])M)

19

• Find some i such that yi = 1, but all possible changes to xi fail to flip membership in the
language.

Each of these can be checked by a co-non-deterministic finite automaton. In the first case, we guess
a position i where yi = 0, guess the new value of xi, simulate the DFA on both paths and verify
that they produce different outcomes. In the second case, we also guess a position i where yi = 1,
but now simulate the original DFA for all possible values of xi and ensure that they are the same.
Since there is a coNFA for S′L, we get that SL is regular.

Now use non-determinism to reduce S′L to SL: a string y1 · · · yn ∈ {0, 1}∗ is in SL if we can guess
the accompanying x1 · · · xn ∈ Σ∗ that puts it in S′L. We conclude that there is an NFA accepting SL,
and therefore SL is regular.

Corollary 27. Let L be a flat regular language. The sensitivity of L is either O(1) or Ω(n).

Proof. Consider the language of sensitivity masks SL as defined in Theorem 26. Notice that for a
given length n, the sensitivity of L is exactly the weight of the maximum Hamming weight string
in SL. Suppose the sensitivity is not O(1). Therefore, for any k, there exists a string yk ∈ SL with
Hamming weight at least k.

Since SL is a regular language, it has some pumping length16 p. We can pump down any block
of p consecutive zero bits in yk such that at least 1

p fraction of the remaining bits are sensitive (or

n ≤ kp). This implies that sensitivity is Ω(n) for infinitely many n. We can also pump down
arbitrary blocks of p bits to decrease the length, so we can make sure sensitivity is Ω(n) for at least
1
p fraction of n. Finally, since L is flat, congruence classes contain strings of all length, which allows

us to replace some substring of a Ω(n) sensitive string with a slightly longer or shorter string. In
this way, we can construct strings of sensitivity Ω(n) for all n.

Corollary 28. Let L be a flat regular language. The block sensitivity of L is either O(1) or Ω(n).

Proof. By Corollary 27, sensitivity is either O(1) or Ω(n). If sensitivity is O(1) then block sensi-
tivity and all other measures are O(1) by Corollary 10. However, s(f) ≤ bs(f), so if sensitivity is
Ω(n) then block sensitivity is Ω(n). It follows that block sensitivity is either O(1) or Ω(n).

It follows that the certificate complexity, deterministic complexity, randomized zero-error com-
plexity, randomized complexity are also O(1) or Ω(n).

Theorem 29. Let L be a flat regular language. The approximate degree of L is either O(1) or Ω(
√

n).

Proof. Consider block sensitivity. If block sensitivity is O(1), then so are approximate degree
and quantum query complexity by Corollary 10. If block sensitivity is Ω(n), then we recall that

d̃eg(L) = Ω(
√

bs(L)) = Ω(
√

n) by Theorem 8. Furthermore, 1
2 d̃eg(L) ≤ Q(L) by Proposition 7,

so quantum query complexity is also Ω(
√

n).

It follows that Q(L) is either O(1) or Ω(
√

n).

16Let L ⊆ Σ∗ be a regular language. There exists a finite pumping length p > 0 such that for all strings w ∈ Σ∗ with
|w| ≥ p there exists a decomposition w = xyz for x, y, z ∈ Σ∗ and |y| > 0, w ∈ L ⇐⇒ (∀i ≥ 0, xyiz ∈ L). This (or a
similar statement) is called the “pumping lemma” since the substring y may be repeated (“pumped”) arbitrarily many
times.

20

6 Lower Bounds

In this section, we will show matching lower bounds for the algorithms described in Section 4.
In fact, since approximate degree is a lower bound for quantum query complexity, it suffices to
prove lower bounds for approximate degree, which is what we will do. Let us start with simplest
case—lower bounds on non-degenerate languages.

Proposition 30. Let L be a flat regular language. If L is not degenerate, then d̃eg(L) ≥ 1.

Proof. Let ϕ : Σ∗ → ML be the homomorphism onto the syntactic monoid of L such that L =
{ϕ−1(s) : s ∈ S ⊆ ML}. Since L is not degenerate, there exists x, y ∈ Σ+ such that ϕ(x) 6= ϕ(y).
By the definition of the syntactic congruence, there exist strings u, v ∈ Σ+ such that u ∈ L but
v 6∈ L. Since L is flat, each set ϕ−1(ϕ(u)) and ϕ−1(ϕ(v)) contains strings of all positive lengths.
Therefore, any polynomial approximating the membership function for L cannot be constant.

For the trivial languages, we first prove a theorem about their deterministic complexity. Recall
that a deterministic query algorithm is a decision tree: on input x ∈ Σn, the algorithm queries a
particular index of the input. Based on the value of x at that index (one of finitely many possible
choices), the algorithm either deduces the membership of x in L or decides to query a different
index. The process is repeated until the algorithm can decide membership. The height of the
decision tree is the deterministic query complexity of L. In particular, if the deterministic query
complexity of L is constant, then the height of the decision tree is constant, which implies that the
entire tree has constant size (since each node in the tree has constant fan-out).

Theorem 31. Let L be a flat regular language. If L is not trivial, then D(L) = ω(1).

Proof. We will argue the contrapositive. Suppose D(L) = O(1). That is, for any input x ∈ Σn, the
deterministic algorithm queries a constant-size set of indices to determine membership. Clearly, as
n increases, there will be large gaps between the indices which are queried. Since L is flat we have
two important consequences: first, any nonempty string which is not queried can correspond
to any non-identity element of the syntactic monoid; second, we may assume that any gap of
nonzero size can be expanded or contracted to any other nonzero size. It follows that we can
move the queries made by the deterministic algorithm (provided that we do not create or destroy
any gaps) without changing its correctness.

Therefore, let us move all the queries as close to the start or end of the input as possible,
maintaining 1-symbol gaps where necessary. Since there are only constantly many queries, there
exists a deterministic algorithm which determines membership of x by querying c symbols from
the start and end of x for some constant c.

Let ϕ be the homomorphism from Σ∗ onto the syntactic monoid ML such that L = {ϕ−1(s) :
s ∈ S ⊆ ML}. For x ∈ Σ∗ of length greater than 2c, write x = uwv such that |u| = |v| = c. We
have that membership of x in L is determined completely by prefix u and suffix v.

We claim that this implies that ϕ(uwv) = ϕ(uw′v) for all w ∈ Σ∗. For suppose that ϕ(uwv) 6=
ϕ(uw′v). By the definition of the syntactic congruence, there exists strings a ∈ Σ∗ and b ∈ Σ∗ such
that auwvb ∈ L and auw′vb 6∈ L (or vice versa). Since |au| > 0 and |bv| > 0, there exists strings
au, bv ∈ Σc such that ϕ(au) = ϕ(au) and ϕ(bv) = ϕ(bv). However, auwbv ∈ L and auw′bv 6∈ L
contradicts the fact that membership in L is determined by a prefix and suffix of length at most c.
In particular, this holds when w′ = ε.

Let us now show that ϕ(Σ+) is a rectangular band. Let x, y, z ∈ Σ+ be nonempty strings, and
let x′, z′ be strings of length c such that ϕ(x) = ϕ(x′) and ϕ(z) = ϕ(z′). We have that

ϕ(xyz) = ϕ(x′yz′) = ϕ(x′z′) = ϕ(xz).

21

Finally, we show that ϕ(Σ+) is idempotent. Let x ∈ Σ+. By flatness, we have that ϕ(x) = ϕ(awb)
for strings a, b ∈ Σc. Therefore, we have

ϕ(x) = ϕ(awb) = ϕ(ab) = ϕ(abab) = ϕ(xx),

where the middle two equalities come from substituting w = ε and w = ba, respectively.

Corollary 32. Let L be a flat regular language. If L is not trivial, then d̃eg(L) = Ω(
√

n).

Proof. The corollary follows almost immediately from Theorems 29 and 31. Suppose d̃eg(L) =
o(
√

n). We wish to show that L is trivial. If D(L) = O(1), then we are done by Theorem 31. If

D(L) = ω(1), then approximate degree is also non-constant by Corollary 10. But if d̃eg(L) is

non-constant, then we must have d̃eg(L) = Ω(
√

n) by Theorem 29.

Finally, we turn our attention to the star-free languages. Let MODp be the language of bit
strings whose Hamming weight is 0 modulo some fixed p ≥ 2. We need the following theorem:

Theorem 33 (Beals et al. [8]). d̃eg(MODp) = Ω(n) for any p ≥ 2.

Recall that star-free languages are aperiodic. Therefore, if a language is not star free, then it
should exhibits some periodicity in which we can embed some MODp language. We appeal to this
intuition in the following theorem.

Theorem 34. Let L be a flat regular language. If L is not star free, then d̃eg(L) = Ω(n).

Proof. Let ML be the syntactic monoid of L, and let ϕ : Σ∗ → ML be the accompanying surjection
onto ML. We assume ML is not aperiodic, so there exists an element s ∈ ML such that sn 6= sn+1

for any n. Since ML is finite, we have sn = sn+p for some p and n, and therefore for all sufficiently
large n. Let us take the minimal p so that sn 6= sn+i for 0 < i < p.

Since the language is flat, there exist a0, a1, b ∈ Σ such that ϕ(a0) = sp, ϕ(a1) = s and ϕ(b) = sn.
One might worry that if sn is equal to the identity, its only preimage is the empty string, as is
sometimes true for flat languages. However, because ϕ(an

1) = ϕ(a1)
n = sn, this is not the case.

Given string x ∈ {0, 1}m, observe that

ϕ(ax1
ax2 · · · axm b) = sx1+x2+···+xm+n,

since sn+p = sn. In other words, the monoid element associated with ax1
· · · axm b is determined by

the Hamming weight of x modulo p. Therefore, to decide membership of x in MODp, it suffices to
compute the monoid element for ax1

· · · axm b in ML.
Finally, by the definition of syntactic congruence, any two monoid elements may be distin-

guished by prepending and appending fixed strings to the input, then testing membership in L.
By flatness, we may take those strings to be length zero or one. Thus, we can determine the monoid
element by a constant number of queries to L, and therefore compute the Hamming weight mod-
ulo p. It follows that membership in L has approximate degree Ω(n) by Theorem 33.

7 Context-Free Languages

In this section we will prove that the context-free languages—a slightly larger class of languages
containing the regular languages—have query complexities outside the trichotomy. The context-
free languages are most often defined either through context-free grammars or through pushdown
automata (PDA). It will be easier for us to work with the PDA definition in this section.

22

One can think of a PDA as a nondeterministic Turing machine which has a read-once input
tape and read-write stack. Although the addition of the stack allows PDA to recognize many
languages which are not regular, they are still limited in many senses. For instance, context-
free languages exhibit a pumping lemma much like the regular languages, and the membership
problem is decidable. For a more formal definition we refer the reader to introductory texts [27].

As a simple example, consider the Dyck language over alphabet Σ = {(,)}, which consists of
all words with balanced parentheses. We can show this language is context free by constructing a
PDA for it. The idea is that the stack contains all of the unmatched left parentheses. When a new
parenthesis is read from the input tape, the PDA pushes it onto the stack if it is a left parenthesis
or pops an item from the stack if there is a right parenthesis. The PDA accepts if the stack is empty
when the input is read entirely.

7.1 Context-free languages do not obey the trichotomy

In general, the easiest way to construct a language with arbitrary query complexity is by padding
a hard language. The procedure is simple: take a problem with Ω(n) query complexity, e.g.,
parity, and make the input string longer by adding (or padding) irrelevant symbols to the end. For
instance, computing the parity of the first Θ(n2/3) bits and ignoring the rest will require Θ(n2/3)
queries.

Unfortunately, to create a context-free language with arbitrary query complexity, we cannot take
such a direct approach. Context-free languages cannot simply count out some fraction of their
input as the above example suggests. Instead, let us consider a general procedure for constructing
a context-free language L ⊆ Σ∗ which has quantum query complexity Θ(nc) for some c ∈ [1/2, 1].
We construct L from the union of two context-free languages A and B. To test membership of some
x ∈ Σ∗ in L, we first test whether or not x belongs to A. We always construct A in such a way that
membership in A can be decided in O(

√
n) queries, usually through a simple Grover search.17

If x ∈ A, then we are done. Otherwise, we can assume that x 6∈ A when testing membership
in B. However, A is constructed such that x 6∈ A will imply that x has been “padded”—there is
some special symbol in x such that the distance from that symbol to the beginning of the string
is approximately nc. Therefore, if B is the language of all strings such that the prefix before the
special symbol has even parity, then the query complexity of L = A ∪ B is Θ(nc).

Let us consider an example of such a language A ⊆ (Σ ∪ {#})∗. First, we enforce that every
word in A begins and ends with #. Next, we say that x ∈ A iff there is some substring #y# of x
such that y ∈ Σ∗ and the length of y is not equal to the total number of # symbols in x. Notice that
x 6∈ A implies that x = #x1#x2# . . . #xk# where |xi| ≈

√
n. Furthermore, A is context free and the

quantum query complexity of A is Θ(
√

n) by Grover search.
We will prove a theorem vastly generalizing this approach to create substrings of length nc for

any c ∈ [1/2, 1] which is limit computable.18 A number c ∈ R is limit computable if there exists a
Turing machine which on input n outputs some rational number T(n) such that limn→∞ T(n) = c.

17In fact, the reason we cannot extend this procedure to other exponents c ∈ (0, 1/2) is due to the fact that we will
always incur this cost of Grover search.

18Since the theorem constructs a very contrived language, we note that natural problems can also be embedded
into context-free languages, e.g., the element distinctness problem. Given a list of integers x1, . . . , xn such that each
xi ∈ {1, . . . , m}, the element distinctness problem asks if there exists i 6= j such that xi = xj. Since m ≥ n, we write each
xi as a string over {0, 1}, and delimit the xis by 2’s. The language CF-ED consists of grammar rules: S → A2B2A, B →
0B0 | 1B1 | 2A2, A → 0 | 1 | 2 | ε | AA. CF-ED accepts strings where some xi is the reverse of some xj. Thus, if all xi are
represented by palindromes, CF-ED is at least as hard as element distinctness. On the other hand, it is possible to adapt
the algorithm O(n2/3) quantum query algorithm for element distinctness to CF-ED (with a log factor loss)[4, 21].

23

We will need two main technical lemmas, both of which define a language similar to A above.
The first ensures that the input contains (as a substring) the total length of the input written in
binary, and the second simulates arbitrary computation by a Turing machine.

Lemma 35 (Proof in Appendix E). Let K ⊆ {0, 1, #1, #2, $}∗ be the language such that

• if x ∈ K, then x ends with $y#1, and

• for all n ≥ 6, there is an x ∈ K ending in $y#1,

where y is the binary representation of |x|. Then, K is context free, and Q(K) = O(
√

n).

Lemma 36 (Proof in Appendix E, folklore [27]). Let N be a k-tape nondeterministic Turing machine.
Define language KN which contains strings of the form

C1#CR
2 #C3 . . . CR

n−1#Cn

where C1 is a valid start configuration of N, Cn is a valid accepting configuration, and Ci to Ci+1 is a valid
transition. Then, KN is context free, and Q(KN) = O(

√
n).

We are now ready to construct context-free languages that have quantum query complexi-
ties corresponding to limit computable exponents. Although there are several technical details to
check in the proof, the central idea is straightforward: Let x ∈ Σn be the input. If x is not in the
language defined in Lemma 35, then the n will be written in binary on the string. If x is also not
in the language defined in Lemma 36, then the input will contain a correct simulation of a Turing
machine limit computing some query exponent c ∈ [1/2, 1] and verifying that a # symbol has been
placed at position nc. Using Grover search, we can verify that the membership in these languages
in O(

√
n) time. If x is in neither language, then computing parity on the prefix of the input (up to

the # symbol) takes time Θ(nc), from which the theorem follows.

Theorem 2. For all limit computable c ∈ [1/2, 1], there exists a context-free language L such that
Q(L) = O(nc+ǫ) and Q(L) = Ω(nc−ǫ) for all ǫ > 0. Furthermore, if an additive ǫ-approximation
to c is computable in 2O(1/ǫ) time, then Q(L) = Θ(nc). In particular, any algebraic c ∈ [1/2, 1] has this
property.

Proof. Let M be the Turing machine computing c in the limit. That is, on input 1k it outputs a
rational approximation ck such that limk→∞ ck = c. Let nk be the size of the computation history
when computing ck. Without loss of generality, we assume nk is strictly increasing with k. We also
assume that the computation history for computing nck from n and ck (both written in binary) is
of size at most n for all n ≥ nk.19

Our goal is to construct a context-free language which accepts any input not satisfying the
following array of conditions. Note that each condition may require a complicated witness to
verify, perhaps as long as the input itself. Therefore, we let the alphabet be tuples Σ = Σ1 × Σ2 ×
· · · × Σm so that there are m independent tracks to work with. Suppose the input has length n, and
consider the following six tracks.

1. The first track contains bits and a $ symbol, hopefully at position ⌈nck⌉ in the string.

2. Some Turing machine M limit computes c ∈ [1/2, 1]. The second track holds a valid compu-
tation history of M computing some ck from input 1k.

19Exponentiation will run in polynomial time, which is actually polylog(n) since n is written in binary, plus the
description size of ck. In fact, we can be even sloppier and approximate nck with the first ck fraction of the bits of n, and
still be accurate up to constant factors.

24

3. The third track contains an incomplete execution of M on 1k+1. If the string is long enough to
complete the computation of ck+1, then ck is obsolete and should not be used.

4. The fourth track contains a binary number (and associated machinery, see Lemma 35) match-
ing the length of the input.

5. The fifth track is the same as the fourth, except the number is the position of $ on track one.

6. The sixth track holds a Turing machine computation history which verifies that the position
of $ is ⌈nck⌉, based on the numbers from tracks 2 (ck), 4 (|z|), and 5 (position of $).

We enforce these conditions with a corresponding array of context-free languages, which reject
satisfying strings. The final language will be a union of these languages, so that it rejects a string
if and only if all the conditions are satisfied.

We have already seen most of the languages we need. For example, we want to accept if track
two is not the computation history of the Turing machine M which computes ck, but we have seen
how to construct such a language in Lemma 36. Similarly for tracks three and six, we can tweak
this construction to accept on incomplete computation histories. On track four we want precisely
the binary counter language in Lemma 35. Track five is the same thing concatenated with $Σ∗ to
ignore symbols after $. Track one is actually just a regular language, Σ∗1\(0|1)∗$(0|1)∗.

Each language so far focuses on just one of the tracks, and we need a few “glue” languages
to ensure the various tracks interact correctly. The first verifies that ck, n, and the position of $
(appearing on track two, track four, and track five respectively) match the strings in the input
configuration on track six. A second glue language checks that if the starting configuration on
track two was 1k, then the starting configuration on track three is 1k+1, so that it computes ck+1.
The third and final glue language checks that the $ on track one matches the $ on track five. We
arrange for all of the glue languages to accept strings which fail these checks, in keeping with the
complemented behavior of the other languages.

Suppose we have a string of length nk ≤ n < nk+1 which is rejected by all of the languages.
It follows that all of the conditions are satisfied, so we can say a lot about the string. First, track
two must compute ck′ for some k′ ≤ k, since there is not enough space for ck+1. Similarly, track
three stops in the middle of computing ck′+1 for some k′ ≥ k, since for small k′ it would have
finished. But k′ is the same in both cases (due to a glue language), and hence k′ = k. Track four
and five generate binary numbers for the length and position of the $ symbol which, by another
glue language, are written on the input of track six, along with ck. Finally, the sixth track verifies
that the position is indeed ⌈nck⌉.

We have one final language, which accepts depending on the parity of the bits on the first track
up to the $. If all of the other languages reject, then we have argued that $ is at position ⌈nck⌉, so
computing the parity takes nck queries, up to constant factors. Checking all the other conditions
takes O(

√
n) queries, so the cost of computing the parity dominates because ck ≥ 1

2 . It follows
that the quantum query complexity is within a constant factor of nck for n between nk and nk+1.
For any ǫ > 0 we have |c− ck| ≤ ǫ for sufficiently large k, and hence for sufficiently large n, the
query complexity is Q(L) = O(nc+ǫ) and Ω(nc−ǫ).

Finally, we note that if the cks converge sufficiently quickly (with respect to computation time,
not k) then the query complexity is truly Q(L) = Θ(nc). For example, suppose we have a Turing
machine which spends 2O(1/ǫ) time to output an approximation c′ to c such that |c − c′| ≤ ǫ,
for any ǫ > 0. It does not matter whether the machine outputs a stream of better and better
approximations, or takes ǫ as input and outputs a sufficiently good approximation. Either way,
we can construct a machine which maps 1k to ck with a similar guarantee: the time to compute
ck+1 is at most 2O(1/ǫk) where ǫk = |c− ck|. We claim this is enough to show Q(L) = Θ(nc).

25

Our construction of L is such that the query complexity is (up to constant multiplicative
factors) nck on the entire interval [nk, nk+1). For convenience, define a function c(n) : N → R

such that c(n) = ck iff n ∈ [nk, nk+1). This means Q(L) = Θ(nc(n)), and taking logs gives∣∣∣ log Q(L)
log n − c(n)

∣∣∣ = O(1/ log n). Recall nk+1 ≤ 2b/ǫk for some b (and all sufficiently large k) so

we have |c− ck| = ǫk ≤ b/ log nk+1. It follows that |c− c(n)| ≤ O(1/ log n). Together, this implies

∣∣∣∣
log Q(L)

log n
− c

∣∣∣∣ ≤
∣∣∣∣
log Q(L)

log n
− c(n)

∣∣∣∣+ |c(n)− c| ≤ a

log n

for some a and for all sufficiently large n. It follows 2−anc ≤ Q(L) ≤ 2anc, so we conclude that
for sequences converging sufficiently quickly, Q(L) = Θ(nc). For example, any algebraic number
can be computed to 1/ǫ precision in polylog(1/ǫ) time using Newton’s method from a suitable
starting point.

The converse of this theorem also holds.

Theorem 3. Let L be a context-free language such that limn→∞
log Q(L)

log n = c. Then, c is limit computable.

Proof. Suppose L is context free. Recall that given w ∈ Σ∗, the problem of computing membership
of w in L is decidable [27]. Next, we observe that the quantum query complexity can be expressed
as the solution (up to logarithmic factors) to a large semi-definite program [24]. That is, there
exists a Turing machine which outputs Adv±(L) such that Q(L) = Θ̃(Adv±(L)). Therefore, we
can construct a Turing machine which outputs log(Adv±(L))/(log n), and

lim
n→∞

log(Adv±(L))

log n
= lim

n→∞

log Θ̃(Q(L))

log n
= lim

n→∞

log Q(L)

log n
= c.

Therefore, c is limit computable.

8 Future Work

Recall that the Õ(
√

n) algorithm for star-free languages incurs many log factors. This suggests a
natural question: what is the exact upper bound for the query complexity for star-free languages?
Proving that even one log factor is necessary seems challenging.

Next, we are interested in extending the hierarchy to other languages and settings. The context-
free languages, for example, seem like a natural step. We know (see Section 7) that there is no
longer a trichotomy; for every limit computable number c ∈ [1/2, 1], there exists a context-free
language with quantum query complexity approaching Θ(nc). We also conjecture that no context-
free language has quantum query complexity ω(1) but also o(

√
n).

Another setting to consider is promise problems. In this work, we required the query algo-
rithm to decide membership on all strings. If we restrict the input strings to some promise set, it
may affect the query complexity. Allowing for an arbitrary promise trivially leads to languages
with quantum query complexity Θ(f (n)) for an arbitrary function f between 0 and n. For exam-
ple, consider the parity function with the promise that only the first f (n) bits are nonzero. Instead,
let us take the promise to be a regular language. In this model, we can construct a binary search
language with query complexity Θ(log n). Formally, the problem is to decide whether there is
an occurrence of 01 at an even position (i.e., membership in (ΣΣ)∗01Σ∗) promised that the in-
put is sorted (i.e., belongs to 0∗1∗). We conjecture that the trichotomy becomes Θ(polylog(n)),
Θ(
√

n · polylog(n)), or Θ(n).

26

We are interested in more applications of the star-free algorithm. For example, in the classical
world, linear-time algorithms for the string matching problem have been derived from finite au-
tomata. Quantum algorithms for string matching with quadratic speedup are known [23], but can
one derive a quadratic speedup by applying our algorithm for star-free languages as a black box?
As a toy example, notice that for any fixed w, the language Σ∗wΣ∗ is star free, so we obtain Õ(

√
n)

string search for fixed queries.
Finally, consider the restricted Dyck language introduced in Section 1.3—the language of nested

parentheses where the parentheses are only allowed to nest k levels deep. When k is constant, this
language is star free and therefore has quantum query complexity Θ̃(

√
n). When k is unbounded,

consider the set of inputs wx = ((. . . (x) . . .)) where x ∈ {(,)}n/3 and there are exactly n/3 lead-
ing left parentheses and n/3 trailing right parentheses. Notice that wx is the Dyck language iff the
number of left parentheses in x is equal to the number of right parenthesis in x. Therefore, the
quantum query complexity for k = Ω(n) is Ω(n). We now ask the question: what is the quantum
query complexity of the restricted Dyck language when k is sublinear but superconstant?

9 Acknowledgements

We thank Andris Ambainis, Shalev Ben-David, Robin Kothari, Han-Hsuan Lin, and Ronald de
Wolf for useful discussions.

References

[1] Scott Aaronson, Adam Bouland, Joseph Fitzsimons, and Mitchell Lee. The space just above
BQP. In Proceedings of the 2016 ACM Conference on Innovations in Theoretical Computer Science,
pages 271–280. ACM, 2016.

[2] Noga Alon, Michael Krivelevich, Ilan Newman, and Mario Szegedy. Regular languages are
testable with a constant number of queries. SIAM Journal on Computing, 30(6):1842–1862,
2001.

[3] Andris Ambainis. Quantum lower bounds by quantum arguments. Journal of Computer and
System Sciences, 64(4):750–767, 2002.

[4] Andris Ambainis. Polynomial degree and lower bounds in quantum complexity: Collision
and element distinctness with small range. Theory of Computing, 1(1):37–46, 2005.

[5] Andris Ambainis, Kaspars Balodis, Janis Iraids, Martins Kokainis, Krisjanis Prusis, and Jev-
genijs Vihrovs. Quantum speedups for exponential-time dynamic programming algorithms.
CoRR, abs/1807.05209, 2018.

[6] Arturs Backurs and Piotr Indyk. Which regular expression patterns are hard to match? In
Irit Dinur, editor, IEEE 57th Annual Symposium on Foundations of Computer Science, FOCS 2016,
9-11 October 2016, Hyatt Regency, New Brunswick, New Jersey, USA, pages 457–466. IEEE Com-
puter Society, 2016.

[7] David A Barrington and Denis Thérien. Finite monoids and the fine structure of NC1. Journal
of the ACM (JACM), 35(4):941–952, 1988.

[8] Robert Beals, Harry Buhrman, Richard Cleve, Michele Mosca, and Ronald de Wolf. Quantum
lower bounds by polynomials. Journal of the ACM, 48(4):778–797, Jul 2001.

27

[9] Harry Buhrman and Ronald de Wolf. Complexity measures and decision tree complexity: a
survey. Theoretical Computer Science, 288(1):21–43, 2002.

[10] Mark Bun, Robin Kothari, and Justin Thaler. Quantum algorithms and approximating poly-
nomials for composed functions with shared inputs. arXiv preprint arXiv:1809.02254, 2018.

[11] Ashok K Chandra, Steven Fortune, and Richard Lipton. Unbounded fan-in circuits and asso-
ciative functions. In Proceedings of the fifteenth annual ACM symposium on Theory of computing,
pages 52–60. ACM, 1983.

[12] Andrew M Childs and Robin Kothari. Quantum query complexity of minor-closed graph
properties. SIAM Journal on Computing, 41(6):1426–1450, 2012.

[13] Stefano Crespi-Reghizzi, Giovanni Guida, and Dino Mandrioli. Noncounting context-free
languages. Journal of the ACM (JACM), 25(4):571–580, 1978.

[14] Samuel Eilenberg. Automata, Languages, and Machines. Academic press, 1974.

[15] Michael R Garey, David S Johnson, and Larry Stockmeyer. Some simplified NP-complete
problems. In Proceedings of the Sixth Annual ACM Symposium on Theory of Computing, pages
47–63. ACM, 1974.

[16] Kristoffer Arnsfelt Hansen, Balagopal Komarath, Jayalal Sarma, Sven Skyum, and Navid
Talebanfard. Circuit complexity of properties of graphs with constant planar cutwidth.
In International Symposium on Mathematical Foundations of Computer Science, pages 336–347.
Springer, 2014.

[17] Peter Høyer, Michele Mosca, and Ronald de Wolf. Quantum search on bounded-error inputs.
In International Colloquium on Automata, Languages, and Programming, pages 291–299. Springer,
2003.

[18] Johan Anthony Wilem Kamp. Tense logic and the theory of linear order. 1968.

[19] Stephen Cole Kleene. Representations of events in nerve nets and finite automata. Automata
Studies [Annals of Math. Studies 34], 1956.

[20] Kenneth Krohn and John Rhodes. Algebraic theory of machines. I. Prime decomposition
theorem for finite semigroups and machines. Transactions of the American Mathematical Society,
116:450–464, 1965.

[21] Samuel Kutin. Quantum lower bound for the collision problem with small range. Theory of
Computing, 1(1):29–36, 2005.

[22] Robert McNaughton and Seymour A Papert. Counter-Free Automata (MIT research monograph
no. 65). The MIT Press, 1971.

[23] Hariharan Ramesh and V Vinay. String matching in Õ(n + m) quantum time. Journal of
Discrete Algorithms, 1(1):103–110, 2003.

[24] Ben W Reichardt. Span programs and quantum query complexity: The general adversary
bound is nearly tight for every boolean function. In Foundations of Computer Science, 2009.
FOCS’09. 50th Annual IEEE Symposium on, pages 544–551. IEEE, 2009.

28

[25] Marcel Paul Schützenberger. On finite monoids having only trivial subgroups. Information
and control, 8(2):190–194, 1965.

[26] Hans-Ulrich Simon. A tight Ω(log log n)-bound on the time for parallel RAM’s to compute
nondegenerated boolean functions. In International Conference on Fundamentals of Computation
Theory, pages 439–444. Springer, 1983.

[27] Michael Sipser. Introduction to the Theory of Computation, volume 2. Thomson Course Tech-
nology Boston, 2006.

[28] Richard Edwin Stearns, Juris Hartmanis, and Philip M Lewis. Hierarchies of memory limited
computations. In Switching Circuit Theory and Logical Design, 1965. SWCT 1965. Sixth Annual
Symposium on, pages 179–190. IEEE, 1965.

[29] Pascal Tesson and Denis Thérien. Complete classifications for the communication complexity
of regular languages. In Annual Symposium on Theoretical Aspects of Computer Science, pages
62–73. Springer, 2003.

[30] Leslie G Valiant. Universality considerations in VLSI circuits. IEEE Transactions on Computers,
100(2):135–140, 1981.

A Flattening Details

Let us start with a precise definition of what we mean in this paper by a flat regular language.

Definition 37. Let ϕ : Σ∗ → M be a monoid homomorphism onto a finite monoid. Let Σk de-
note the non-empty strings of length divisible by k. The conductor is the least integer K such
that ϕ(ΣK) = ϕ(ΣnK) for all n ≥ 1. A regular language L ⊆ Σ∗ recognized by the morphism
ϕ : Σ∗ → ML onto its syntactic monoid is flat if its conductor is 1.

Once we convert the language to blocks of size K (i.e., alphabet ΣK), any congruence class
of the monoid containing a non-empty string contains strings of all (non-zero) lengths. We refer
to this as Property 13 in Section 3. However, we still need to show K, and therefore flat regular
languages, exist.

Theorem 38. For any homomorphism ϕ : Σ∗ → M onto a finite monoid, the conductor is finite and
computable.

Proof. Let λ : Σ∗ → N be the homomorphism mapping strings to their lengths. The set Ar :=
λ(ϕ−1(r)) is ultimately periodic, i.e., there exists p such that Ar and Ar + p differ at finitely many
points. This may be easier to see by mapping ϕ−1(r) to unary, and since the language is still
regular, considering the DFA. Let K′ be the least common multiple of the period of Ar for all
r ∈ M. We will take K to be a multiple of K′, so we may as well assume without loss of generality
that the period of Ar is 1.

When a set of natural numbers has period 1, it is either finite or cofinite. Take K larger than all
the finite exceptions in either case. That is, for all r, take K larger than the maximum element in
Ar (if finite) and the maximum element not in Ar (if cofinite). The result is that each Ar ∩ KN is
one of ∅, {0}, KN, or KN\{0}. Only the identity class, A1, can contain 0, so all other Ar are either
∅ or KN\{0}. We throw away r ∈ M such that Ar = ∅, and the remaining elements have the
property, by construction, that they are the images of strings of all lengths divisible by K.

29

We are finally ready to restate and prove Theorem 12, which states that any regular language
can be divided into a collection of flat languages.

Theorem 12. Let L ⊆ Σ∗ be a regular language recognized by a monoid M. There exists an integer p ≥ 2
and a finite family of flat regular languages {Li}i∈I over alphabet Σp such that testing membership in L
reduces (in fewer than p queries) to testing membership in some Li. Furthermore, the same monoid M
recognizes L and every Li.

Proof. Let p be the conductor of L. Consider an input x ∈ Σ∗ of length n. Clearly we can divide
x into a string x′ ∈ (Σp)∗ of length ⌊n/p⌋, and a remainder r ∈ Σ∗ of length less than p. For each
such r, we define the language

Lr := {y ∈ (Σp)∗ : yr ∈ L},
slightly abusing notation so that y denotes both a string over Σp and a string over Σ. We leave it
as an exercise to show that Lr is regular. By construction, x is in L if and only if x′ is in Lr, so by
looking at length of the input and the last |r| symbols, we have reduced testing membership in L
to membership in Lr.

Finally, let ϕp : (Σp)∗ → M denote the extension of ϕ to strings over Σp. Note that we can write
Lr as

Lr = {y ∈ (Σp)∗ : ϕp(y)ϕ(r) ∈ S}
= {y ∈ (Σp)∗ : ϕp(y) ∈ {q ∈ M : qϕ(r) ∈ S}}
= (ϕp)−1({q ∈ M : qϕ(r) ∈ S}).

It follows that Lr is recognized by M. By construction, the conductor of Lr is 1, so Lr is flat.

A.1 Monotonic query complexity

Let us now consider an alternative to flattening—namely, modifying the definition of query com-
plexity so that it is nondecreasing. For this section only, define the quantum query complexity
Q(f)(n) of function f to be the minimum number of quantum oracles calls needed to determine
the value of f on all strings of length up to n. When query complexity is defined in this way, we can
prove a quantum query complexity trichotomy theorem for all regular languages as a corollary of
our trichotomy theorem for flat languages.

Theorem 39. Let L ⊆ Σ∗ be any regular language. The quantum query complexity of L is either
0, Θ(1), Θ̃(

√
n), or Θ(n).

Proof. By Theorem 12, we have that L is a finite disjoint union of languages Lrr where each r ∈ Σ∗

has length less than p. Technically, Lr is over the alphabet Σp, but we extend strings in Lr to strings
over alphabet Σ in the obvious way. If all Lr have constant query complexity, then Q(L) = 0 or
Q(L) = Θ(1). Therefore, assume there is some Lr such that Q(Lr) = ω(1). We will show that
Q(L) = Θ(maxr Q(Lr)).

Let us consider one algorithm for L on strings of length np + i where i < p: query the last
i characters of the string to determine r, and then use at most pQ(Lr)(n) queries to test the rest.
Therefore, we have20

Q(L)(np + i) ≤ max
r

pQ(Lr)(n) + p.

20We now see the need to separate the constant and non-constant cases. The additive p factor would technically take
a 0-query algorithm to an Θ(1)-query algorithm, which we want to avoid.

30

In the other direction, notice that by decreasing the length of the string by at most p, we can
have any remainder string r. By the modified definition of query complexity, shortening the length
must decrease the query complexity. Since we can force the query algorithm to solve any smaller
instance of a flat language Lr, we have

Q(L)(np + i) ≥ max
r

Q(Lr)(n− 1).

That is, Q(L) = Θ(maxr Q(Lr)) from which the theorem follows.

B Equivalence of algebraic and regular expression definitions

This appendix is devoted to proving Theorem 14, which gives algebraic definitions for each class
of regular languages defined by a regular expression. Since Theorems 4 and 5 give characteriza-
tions for the regular and star-free languages, respectively, we focus on the degenerate and trivial
languages.

Proposition 40. A language is recognized by morphism ϕ such that |ϕ(Σ+)| = 1 iff it is degenerate.

Proof. Recall that there are only four degenerate languages: ∅, ε, Σ∗, or Σ+. First, we claim that
the morphism ϕ : Σ∗ → ML onto the syntactic monoid of each language is such that |ϕ(Σ+)| = 1.
This calculation is straightforward, and we leave it as an exercise.

Let language L ⊆ Σ∗ be recognized by morphism ϕ such that |ϕ(Σ+)| = 1. For any x, y ∈ Σ+,
we have that ϕ(x) = ϕ(y). Therefore, x ∈ L iff y ∈ L. This only leaves four possible choices
of languages based on whether or not Σ+ ∈ L and whether or not ε ∈ L. These are exactly the
degenerate languages.

Theorem 41. A language is recognized by morphism ϕ such that ϕ(Σ+) is a rectangular band iff it is
trivial.

Proof. Suppose first that L is a regular language recognized by homomorphism ϕ : Σ∗ → M such
that ϕ(Σ+) is a rectangular band. Suppose a ∈ Σ belongs to L. We want to show that aΣ∗a is also
in L. For any w ∈ Σ+, we have that ϕ(a) = ϕ(aa) = ϕ(awa), where the first equality comes from
idempotence of M and the second equality comes from the rectangular band property. Therefore,
if a ∈ L, then so is aΣ∗a. Similarly, this implies that if awa ∈ L for a ∈ Σ and w ∈ Σ∗, then a ∈ L
and aΣ∗a ∈ L. A similar argument shows that if a 6= b ∈ Σ and awb ∈ L for some w ∈ Σ∗, then
aΣ∗b ∈ L. Finally, membership of ε is independent of ϕ, so it may either be in the language or not
in the language.

Now suppose that L is a trivial language. Define monoid M = (Σ× Σ) ∪ {(ε, ε)} with oper-
ation (a, b) · (c, d) = (a, d) for all a, b, c, d ∈ Σ, and (a, b) = (ε, ε) · (a, b) = (ε, ε) · (a, b). Define
morphism ϕ : Σ∗ → M such that ϕ(a) = (a, a) for a ∈ Σ ∪ {ε}. Therefore, ϕ(awb) = (a, b) for
a, b ∈ Σ and w ∈ Σ∗. Define S ⊆ M, such that (a, a) ∈ S if a ∈ L, (a, b) ∈ S if aΣ∗b ∈ L, and
(ε, ε) ∈ S if ε ∈ L. By construction, we claim that L = ϕ−1(S), which completes the proof.

One might wonder why we needed to reference the homomorphism ϕ explicitly in the defini-
tion of the degenerate and trivial languages, when the other classes only needed a characterization
of the monoid itself. In that case, each class of languages would be a variety. Unfortunately, such
a characterization does not exist due the following theorem of Eilenberg:

31

Theorem 42 (Eilenberg’s Variety Theorem [14]). If V is a class of monoids and L is the class of regular
languages whose syntactic monoids lie in V, then V is a monoid variety only if L is a language variety.21

Consider the degenerate language A = Σ+ and star-free language B = Σ∗1Σ∗ over alphabet
Σ = {0, 1}. We claim that B is the inverse morphism of A by χ : Σ∗ → Σ∗ such that χ(0) = ǫ,
χ(1) = 1. Since B is clearly nontrivial, the trivial languages are not closed under inverse mor-
phism. Therefore, by the Variety Theorem, the class of trivial languages is not a variety.

C Worked Example

Let us consider the language L ⊆ Σ∗ (where Σ = {a, b, c}) recognized by the following automaton.

q0start q1

q2

c
a

b

c

b

a

a, b, c

As this automaton is minimal, we may compute the syntactic monoid M and the associated
morphism ϕ : Σ∗ → M. There are six monoids elements, M = {1, a, b, ab, ba, 0}, corresponding
to the following equivalence classes of strings.

ϕ−1(1) = {ε, c, cc, ccc, . . .}
ϕ−1(a) = {a, ac, ca, aba, acc, cac, cca, . . .}
ϕ−1(b) = {b, bc, cb, bab, bcc, cbc, ccb, . . .}

ϕ−1(ab) = {ab, abc, acb, cab, . . .}
ϕ−1(ba) = {ba, bac, bca, cba, . . .}

ϕ−1(0) = {aa, bb, aaa, aab, aac, abb, aca, baa, . . .}

For convenience, we also present the complete monoid multiplication table (Table 1) and the set
of all two-sided, left, and right ideals (Table 2).

Next, observe that L = ϕ−1(1) ∪ ϕ−1(ab), so we need to consider both ϕ−1(1) and ϕ−1(ab),
plus any languages that arise from recursion. The first language, ϕ−1(1), is actually a base case in
our induction. We see that {a ∈ Σ : ϕ(a) = 1} = {c}, so ϕ−1(1) = c∗.

For the second language, ϕ−1(ab), we need to apply Theorem 22. Let’s compute the relevant

21A class of regular languages is an language variety if it is closed under Boolean operations, left and right quotients,
and inverse morphisms. For x ∈ Σ∗, the left quotient of language L by x is the language x−1L = {z : xz ∈ L}. Let
χ : Σ∗1 → Σ∗2 be a homomorphism, and let L ⊆ Σ∗1 be equal to ∑m∈S ϕ−1(m) for some subset S of the syntactic monoid.

The inverse morphism of L by χ is the language χ−1L = ∑m∈S χ−1 ◦ ϕ−1(m) ⊆ Σ∗2 .

32

· 1 a b ab ba 0

1 1 a b ab ba 0

a a 0 ab 0 aba 0

b b ba 0 b 0 0

ab ab a 0 ab 0 0

ba ba 0 b 0 ba 0

0 0 0 0 0 0 0

Table 1: Monoid multiplication table for the example.

Two-sided ideals:

M1M = {1, a, b, ab, ba, 0}
MaM = MbM = MabM = MbaM = {a, b, ab, ba, 0}

M0M = {0}

Left ideals:

M1 = {1, a, b, ab, ba, 0}
Ma = Mba = {a, ba, 0}
Mb = Mab = {b, ab, 0}

M0 = {0}

Right ideals:

1M = {1, a, b, ab, ba, 0}
aM = abM = {a, ab, 0}
bM = baM = {b, ba, 0}

0M = {0}

Table 2: Ideals of the example monoid M.

33

sets E, F, and G.

E = {(r, a) ∈ M× Σ : rϕ(a)M = abM, rM 6= abM}
= {(1, a)},

F = {(a, r) ∈ Σ×M : Mϕ(a)r = Mab, Mr 6= Mab}
= {(b, 1)},

G = {(a, r, b) ∈ Σ×M× Σ : ab ∈ (Mϕ(a)rM ∩Mrϕ(b)M)\Mϕ(a)rϕ(b)M}
= {(a, 1, a), (b, 1, b)}.

Let us argue that we have correctly identified all elements of E, F, and G. For the set E, we must
find r such that abM (rM. However, there is only one right ideal that strictly contains abM,
namely 1M = M. Since ϕ(c)M 6= abM and ϕ(b)M 6= abM, the only choice left is ϕ(a)M = aM =
abM. The argument is identical for F, but with the left ideals. Finally, ab is in all (two-sided)
ideals except 0M = {0}, so it must be that ϕ(a)rϕ(b) = 0 for any (a, r, b) ∈ G. Brute force analysis
of the remaining options will verify that only the two triples listed above belong in G.

Now that we have E, F, and G, the next step is to write down the relevant languages.

UΣ∗ = ϕ−1(1)aΣ∗ = c∗aΣ∗

Σ∗V = Σ∗bϕ−1(1) = Σ∗bc∗

Σ∗WΣ∗ = Σ∗aϕ−1(1)aΣ∗ ∪ Σ∗bϕ−1(1)bΣ∗

= Σ∗ac∗aΣ∗ ∪ Σ∗bc∗bΣ∗

C = {a ∈ Σ : ab /∈ Mϕ(a)M} = ∅

In other words, UΣ∗ checks that there is an a before the first occurrence of b. Similarly, Σ∗V checks
that there is a b after all occurrences of a. The language C is trivial, because every letter puts us in
an ideal containing ab. If there were some unused letter d ∈ Σ, then it would appear in C. Finally,
W checks for either two as or two bs in a row, discounting the cs.

The query algorithm given in Theorem 25 or in pseudocode as Algorithm 1 is not necessarily
the most natural or efficient algorithm, but in this case it works quite well. First, the language C
is empty (there are no symbols which prevent ϕ−1(ab) from being in the monoid), so there is no
work to do there. To recognize UΣ∗ = ϕ−1(1)aΣ∗, the algorithm computes the longest prefix in

⋃

s : 1∈sM

ϕ−1(s) = ϕ−1(1) = c∗,

by binary search. This requires recursively solving ϕ−1(1), but fortunately this is the base case
(i.e., ρ(1) = 0). Hence, we Grover search for a symbol which does not map to 1, i.e., a symbol
other than c, and reject if any such symbol is found. Having found the end of the longest prefix in
ϕ−1(1), we check again (in this case, unnecessarily duplicating work) that the prefix is in ϕ−1(1)
and that the next symbol is a. If so, then there is a prefix in U, otherwise there is not.

Clearly Σ∗V is symmetric to UΣ∗ and the algorithms are identical except for a reversal, so
we move on to Σ∗WΣ∗. Its two components, Σ∗aϕ−1(1)aΣ∗ and Σ∗bϕ−1(1)bΣ∗ have very similar
algorithms, so we discuss only the former. The algorithm applies infix search to find an index
which is preceded by aϕ−1(1) and followed by ϕ−1(1)a, since the only way to split ϕ−1(1) is into
ϕ−1(1)ϕ−1(1). Checking that the index is followed by ϕ−1(1)aΣ∗ is exactly the same algorithm as
for UΣ∗ above, and Σ∗aϕ−1(1) is just the reverse of that, so there is nothing new here.

34

D Applications

We present a few concrete instances where our main result implies surprising or novel quantum
query algorithms.

D.1 Addition

Chandra, Fortune, and Lipton [11] observed that binary addition can be described by a monoid
product. Specifically, a product over a monoid M with elements {S, R, P} (set, reset, propagate)
satisfying

xS = S, xR = R, xP = x,

for all x ∈ M. The idea is that given two n-bit numbers, we map each column to a monoid element
(i.e., 00 7→ R, 01, 10 7→ P, 11 7→ S) and then the prefix product to a particular column (starting
from the least significant column, so perhaps suffix product is more appropriate) indicates whether
there is a carry in the next column (R, P =⇒ no carry, S =⇒ carry). Chandra et al. show that
there are AC0 circuits for computing all prefix products, and thus binary addition can be computed
in AC0.

Since the monoid is aperiodic, our result implies that the product of any prefix can be com-
puted with Õ(

√
n) queries to the input, and therefore any particular output bit of a binary addi-

tion can be computed in the same number of queries. Similarly, the regular language accepting
triples of binary numbers (represented a column at a time) such that the first two sum to the third
is star free (the monoid is essentially M, adjoin a zero element ⊥ which arises when the string is in-
consistent with any valid addition). This implies that addition can be checked in Õ(

√
n) quantum

queries. Unfortunately, we cannot construct the sum in Õ(
√

n) queries for information theoretic
reasons: if one of the summands is zero then the sum is exactly the other summand, which we
should not be able to reconstruct in fewer than Ω(n) queries.

Furthermore, we can extend these results to the addition over any base k, for an integer k ≥ 2.
In fact, we use the exact same monoid. For example, in decimal, if sum of the digits in a column is
more than 9, then a carry will be created. If the sum of the digits is less than 9, then even if there
is an incoming carry, there will be no outgoing carry. And if the sum of digits is exactly 9, then a
carry will propagate.

D.2 Length-2 Word Break

Problem 43 (Word Break Problem). Given a finite dictionary of strings D ⊆ Σ∗ and a string w ∈ Σ∗,
decide whether w ∈ D∗. That is, can w be written as a concatenation of words in D?

There exists a straightforward dynamic program (DP) which solves this problem in polynomial
time. Faster solutions exist (e.g., [6]), but still heavily rely on DP. Since DP is sometimes claimed to
be incompatible with quantum speedups [5], we find it surprising that our result gives a speedup
on the following (limited) special case of the word break problem.

Theorem 44. Fix a dictionary D ⊆ Σ ∪ Σ2 containing strings of length 1 or 2. Given a string w ∈ Σ∗,
there is a Õ(

√
n) query algorithm to decide whether w ∈ D∗.

The result follows from a lemma characterizing the syntactic monoids of such languages.

Lemma 45. Let D ⊆ Σ∗ be a set of strings of length at most 2. Let M be the flattened syntactic monoid of
D∗. For any m ∈ M, we show that m2 = m3. It follows that M is aperiodic.

35

Proof. It is clear that the identity element 1 ∈ M has the property that 12 = 13. For any other
m ∈ M, m 6= 1, we can find a string y ∈ Σ∗ which ϕ maps to m. Let n be the length of y. We may
assume n is even because the monoid is flat.

The statement m2 = m3 is equivalent to saying that for all x, z ∈ Σ∗,

xy2z ∈ D∗ ⇐⇒ xy3z ∈ D∗.

We will argue this by showing that for any w ∈ D∗ containing y2, there is a substring u in y2,
aligned to the word breaks and of length n = |y|. This substring can be pumped up or down, to
show the =⇒ and⇐= directions respectively.

Now assume y2 is contained in some concatenation of words from D, and consider the po-
sitions where there are word breaks. If we find two word breaks (including the endpoints of the
string, but not both endpoints since then we would pump all of y2!) at the same position modulo n,
we are done because we immediately have a pumpable substring. In particular, if there are n + 1
word breaks within y2, then pigeonhole principle implies there are two at same position modulo
n. We are necessarily close to this limit since |y2| = 2n, and words in D have length at most 2, so
the concatenation involves at least n words.

Let us do the math more carefully. Suppose we have a concatenation of words in with n word
breaks (i.e., n + 1 words) at n different positions modulo n. Since n is even, there must be breaks
at both odd and even positions. It follows that at least one of the words in the concatenation has
length 1, so the entire concatenation has length at most 2n + 1. This is just short enough that y2

and the concatenation must share an endpoint. This endpoint plus the n word breaks already in
y2 give us n + 1 positions to apply the pigeonhole argument from before, finishing the proof.

We also note that this result is tight; if the dictionary contains even a single word of length 3 or
more, the query complexity may be Ω(n). For example, consider D := {0, 11, 101}∗, and note that
the parity of a bit string x1 · · · xn can be decided by testing whether 1x111x21 · · · 1xn1 is in D∗.

D.3 Grid Problems

There are many instances of problems on grids which turn into regular languages if one of the
dimensions is restricted to be constant. For example, 3-colorability is NP-complete for 4-regular
planar graphs [15], and such graphs may be embedded into the grid with rectilinear edges [30].
However, if one dimension of the grid is constant size then the problem becomes regular under a
suitable encoding.

In this section, we consider a grid problem such that the constant-height restriction is star free.
This leads to an efficient Õ(

√
n) quantum query algorithm, which is otherwise difficult to see.

Problem 46 (Grid Path Problem). Given an m × n grid of cells, some of which are impassable, decide
whether there is a path from the bottom left corner to the top right corner.

For constant m, let

L = {w ∈ ({0, 1}m)∗ : grid represented by w contains a path}.

be the language of grids which have a path from the lower left corner to the top right corner. First,
consider a monotone version of the grid path problem in which the path is only allowed to go up
or to the right at each step. In this case, there is a straightforward first order logic characterization

36

of this language, in which the existential quantifiers are used to guess the finitely-many positions
at which the path’s y-coordinate increases.

Such a direct characterization will not suffice for the language L since there is no succinct
way to describe a general path. Instead, we appeal to a more sophisticated approach of Hansen
et al. based on a monoid which recognizes this language [16]. Roughly speaking, the monoid
elements describe sets of compatible paths between the ends of a grid. Thus, by multiplying the
monoid elements corresponding to each column of the grid, one can determine membership in L.
Hansen el al. show that the monoid is aperiodic, which immediately gives a faster quantum query
algorithm using our classification:

Corollary 47 (Combining [16] with star-free algorithm). Q(L) = Õ(
√

n).

In fact, the monoid elements keep track of multiple disjoint paths through the grid (which
is necessary if the path backtracks through a particular section of the grid), so one can decide
whether there exist O(1) disjoint paths through the grid.

E Context-Free Technical Lemmas

In this section we provide proofs for the two main technical lemmas in Section 7.

Lemma 35. Let K ⊆ {0, 1, #1, #2, $}∗ be the language such that

• if x ∈ K, then x ends with $y#1, and

• for all n ≥ 6, there is an x ∈ K ending in $y#1,

where y is the binary representation of |x|. Then, K is context free, and Q(K) = O(
√

n).

Proof. Let K1 be the language over Σ := {0, 1, #1, #2, $} containing all strings which

• start with #1#a or #2$#a,

• end with #1,

• match ((#1|#2)$∗)∗(0|1)∗#1, and

• contain no substring of the form #a(0|1|$)i#b(0|1|$)j#c such that 2(i+1)
a 6= j+1

b where a, b, c ∈
{1, 2} and i, j are integers.

Let us show that K1 is context free as a first step to constructing K. We claim there is a context-free
language which accepts strings containing a substring of the form #a(0|1|$)i#b(0|1|$)j#c. Indeed, it
is easy to describe the pushdown automaton: nondeterministically guess the position of #a, push
symbols onto the stack as we read the input, read #b and pop symbols off the stack at a ratio of
1 stack symbol for each 2b

a input symbols. With some attention to detail, the PDA will be able to

decide whether 2(i+1)
a = j+1

b , and accept if it does not. Since the first three conditions define a

regular language, the entire language K1 is context free.
The conditions above imply that any string z ∈ K1 is of the form

#a0 $∗#a1
$∗ · · · $∗#ak−1

$∗bℓ−1 · · · b1b0#1,

where a0, . . . , ak−1 ∈ {1, 2} and b0, . . . , bℓ−1 ∈ {0, 1}. Let di be the distance (measured by the
difference in indices) between #ai

and #ai+1
, for all i = 0, . . . , k − 2. Let dk−1 be the distance from

#ak−1
to the final #1. Since #a0 is the first symbol and #1 is the last, it follows that |z| = 1 + ∑i di.

37

Since strings in K1 start with #1#a or #2$#a, we have d0 = a0. We also have a condition on any

three consecutive #ai
which translates into 2 di

ai
= di+1

ai+1
. A straightforward induction tells us that

di = ai2
i for all i, which means

|z| = 1 +
k−1

∑
i=0

ai2
i. (1)

On the other hand, we want bℓ−1 · · · b0 to be the binary number representation of |z|. That is,

|z| =
ℓ−1

∑
i=0

bi2
i. (2)

By combining (1) and (2), and considering the result modulo powers of 2, one can show that
bi = ai − 1 for all i, and bk = 1. Let K2 be the language that accepts if the ais and bis match up as
described above. Clearly K2 is context free because a PDA can easily push the ais onto the stack as
it reads them, then pop off and compare as it reads the bis.

We define K := K1 ∩ K2 and note that K = K1 ∪ K2 is context free as desired. There are strings
in K1 of any length n ≥ 2, but to be in K2, we also need the binary representation of n to fit in
dk−1 − 1. We claim the binary representations fits for all n ≥ 6, so there exist strings of those
lengths in K.

Finally, we can decide whether a string z of length n is in K in O(
√

n) time. First, we check
if z ∈ K1, since the length fixes the positions of #a0 through #ak−1

in the string. We can determine
these positions a0, . . . , ak−1 ∈ {1, 2} from the length of the string, and check those positions in
O(log n) queries. If z is in K1 then we check whether bits bk · · · b0 at the end match the length in
O(log n) queries. Finally, we check that all remaining positions are $’s in O(

√
n) quantum queries

by Grover search.

Lemma 36. Let N be a k-tape nondeterministic Turing machine. Define language KN which contains
strings of the form

C1#CR
2 #C3 . . . CR

n−1#Cn

where C1 is a valid start configuration of N, Cn is a valid accepting configuration, and Ci to Ci+1 is a valid
transition. Then, KN is context free, and Q(KN) = O(

√
n).

Proof. The proof of this theorem follows from the observation that computation is local. Let us
sketch the proof. First, we need to fix the encoding of the configuration of a Turing machine.
Many different schemes suffice, but let us assume that the encoding consists of the k tapes laid
out on top of each other so that each symbol of the encoding includes a k-tuple of the values of
the k tapes. We also stipulate that one symbol on each tape is marked with the head and the
current state (we can simply expand our alphabet to include these possibilities as well). To verify
that one configuration follows properly from the next, the push-down automaton for language
KN nondeterministically guesses the location on one of the tapes where a violation might occur. It
can count to the same position in the tape in the next configuration by pushing all remaining tape
symbols onto the stack until the next # symbol. At this point, it can pop these symbols to count
back to the same location (this is why each configuration is the reverse of the previous one). All
that remains is to check a finite set of conditions.

38
ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

