
Almost Optimal Testers for

Concise Representations

Nader H. Bshouty
Dept. of Computer Science
Technion, Haifa, 32000

June 21, 2023

Abstract

We give improved and almost optimal testers for several classes of Boolean functions on n
inputs that have concise representation in the uniform and distribution-free model. Classes,
such as k-Junta, k-Linear Function, s-Term DNF, s-Term Monotone DNF, r-DNF, Decision
List, r-Decision List, size-s Decision Tree, size-s Boolean Formula, size-s Branching Program,
s-Sparse Polynomial over the binary field and functions with Fourier Degree at most d.

The approach is new and combines ideas from Diakonikolas et al. [30], Bshouty [15], Goldreich
et al. [39], and learning theory. The method can be extended to several other classes of functions
over any domain that can be approximated by functions that have a small number of relevant
variables.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 156 (2019)

Contents

1 Inroduction 4
1.1 Results . 4
1.2 Notations . 4
1.3 The Model . 6

2 Overview of the Distribution-Free Tester 7
2.1 Preface . 7
2.2 A Bird’s Eye View . 7
2.3 The Actual Tester . 9

2.3.1 Stage 1: Finding I and corresponding v(i) . 9
2.3.2 Stage 2: Extracting the value of an influential variable 10
2.3.3 Stage 3: Emulating a tester of C ′ . 10

2.4 Digest: Our approach vs the original one [30] . 11
2.5 More on Our Techniques . 11

2.5.1 Testing Subclasses of k-Junta . 11
2.5.2 Testing Classes that are Close to k-Junta . 13

3 Preparing the Target for Accessing the Relevant Variables 14
3.1 Preliminaries . 14
3.2 Approximating the Target . 15
3.3 Testing the Relevant Sets . 19
3.4 Determining the Values of the Relevant Variables . 20

4 Testing Subclasses of k-Junta 22
4.1 Testing the Closeness of f(xX ◦ 0X) to F . 24
4.2 Testing the Closeness of F to C(Γ) . 25
4.3 Testing the Closeness of F to C(Γ) via Learning C(Γ) 26
4.4 The First Tester . 28

5 Results 31
5.1 Testing k-Junta . 31
5.2 Testing k-Linear . 31
5.3 Testing k-Term . 32
5.4 Testing s-Term Monotone r-DNF . 32
5.5 Testing Size-s Decision Tree and Size s Branching Program 34
5.6 Functions with Fourier Degree at most d . 35
5.7 Testing Length k Decision List . 35
5.8 Testing s-Sparse Polynomial of Degree d . 36

6 Testing Classes that are Close to k-Junta 38
6.1 Removing Variables that only Appears in Large Size Terms 39
6.2 Testing s-term DNF . 41

2

7 Results 42
7.1 Testing s-Term Monotone DNF . 42
7.2 Testing Size-s Boolean Formula and Size-s Boolean Circuit 43
7.3 Testing s-Sparse Polynomial . 44

8 A General Method for Other Testers 46
8.1 Testing Decision List . 48
8.2 Testing r-DNF and r-Decision List for Constant r 48

9 Appendix A 54

3

1 Inroduction

Property testing of Boolean function was first considered in the seminal works of Blum, Luby and
Rubinfeld [13] and Rubinfeld and Sudan [55] and has recently become a very active research area.
See for example, [2, 4, 5, 6, 9, 10, 15, 19, 20, 21, 22, 23, 25, 26, 30, 33, 38, 40, 43, 44, 48, 47, 51, 56]
and other works referenced in the surveys [36, 53, 54].

A Boolean function f : {0, 1}n → {0, 1} is said to be k-junta if it depends on at most k
coordinates. The class k-Junta is the class of all k-juntas. The class k-Junta has been of particular
interest to the computational learning theory community [11, 12, 17, 29, 41, 45, 49]. A problem
closely related to learning k-Junta is the problem of learning and testing subclasses C of k-Junta and
classes C of Boolean functions that can be approximated by k-juntas [10, 12, 31, 21, 30, 39, 40, 51]:
Given black-box query access to a Boolean function f . In learning, for f ∈ C, we need to learn,
with high probability, a hypothesis h that is ϵ-close to f . In testing, for any Boolean function f ,
we need to distinguish, with high probability, the case that f is in C versus the case that f is ϵ-far
from every function in C.

In the uniform-distribution property testing (and learning) the distance between Boolean func-
tions is measured with respect to the uniform distribution. In the distribution-free property test-
ing, [39], (and learning [57]) the distance between Boolean functions is measured with respect to
an arbitrary and unknown distribution D over {0, 1}n. In the distribution-free model, the testing
(and learning) algorithm is allowed (in addition to making black-box queries) to draw random
x ∈ {0, 1}n according to the distribution D. This model is studied in [15, 27, 32, 34, 42, 46].

1.1 Results

We give improved and almost optimal testers for several classes of Boolean functions on n inputs that
have concise representation in the uniform and distribution-free models. The classes studied here
are k-Junta, k-Linear Functions, k-Term, s-Term DNF, s-Term Monotone DNF, s-Term Monotone
r-DNF, r-DNF, Decision List, Length-k Decision List, r-Decision List, size-s Decision Tree, size-s
Branching Programs, size-s Boolean Formula, size-s-Boolean Circuit, s-Sparse Polynomials over
the binary field, s-Sparse Polynomials of Degree d and functions with Fourier Degree at most d.

In Table 1, we list all the previous results and our results in this paper. In the table, Õ(T)
stands for O(T ·poly(log T)), U and D stand for uniform and distribution-free model, and Exp and
Poly stand for exponential and polynomial time.

It follows from the lower bounds of Saglam, [56], that our query complexity is almost optimal
(with log-factor) for the classes k-Junta, k-Linear, k-Term, s-Term DNF, s-Term Monotone DNF, r-
DNF (r constant), Decision List, r-Decision List (r constant), size-s Decision Tree, size-s Branching
Programs and size-s Boolean Formula. For more details on the previous results and the results in
this paper see Table 1 and Sections 5, 7 and 8.

1.2 Notations

In this subsection, we give some notations that we use throughout the paper.
Denote [n] = {1, 2, . . . , n}. For S ⊆ [n] and x = (x1, . . . , xn) we denote x(S) = {xi|i ∈ S}.

For X ⊂ [n] we denote by {0, 1}X the set of all binary strings of length |X| with coordinates
indexed by i ∈ X. For x ∈ {0, 1}n and X ⊆ [n] we write xX ∈ {0, 1}X to denote the projection
of x over coordinates in X. We denote by 1X and 0X the all-one and all-zero strings in {0, 1}X ,

4

Class of Functions Model #Queries Time Reference

s-Term Monotone DNF U Õ(s2/ϵ) Poly. [51]

s-Term Unate DNF U Õ(s/ϵ2) Exp. [21]

U Õ(s/ϵ) Poly. This Paper

s-Term Monotone r-DNF U Õ(s/ϵ2) Exp. [21]

s-Term Unate r-DNF U Õ(s/ϵ) Poly. This Paper

D Õ(s2r/ϵ) Poly. This Paper

s-Term DNF U Õ(s2/ϵ) Exp. [30]

U Õ(s/ϵ2) Exp. [21]

U Õ(s/ϵ) Exp. This Paper

r-DNF (Constant r) U Õ(1/ϵ) Poly. This Paper

Decision List U Õ(1/ϵ2) Poly. [30]

U Õ(1/ϵ) Poly. This Paper

Length-k Decision List D Õ(k2/ϵ) Poly. This Paper

r-DL (Constant r) U Õ(1/ϵ) Poly. This Paper

k-Linear U Õ(k/ϵ) Poly. [8, 13]

D Õ(k/ϵ) Poly. This Paper

k-Term U O(1/ϵ) Poly. [51]

U Õ(1/ϵ) Poly. This Paper

D Õ(k/ϵ) Poly. This Paper

size-s Decision Trees and U Õ(s/ϵ2) Exp. [21]

size-s Branching Programs U Õ(s/ϵ) Exp. This Paper

D Õ(s2/ϵ) Exp. This Paper

size-s Boolean Formulas U Õ(s/ϵ2) Exp. [21]

U Õ(s/ϵ) Exp. This Paper

size-s Boolean Circuit U Õ(s2/ϵ2) Exp. [21]

U Õ(s2/ϵ) Exp. This Paper

Functions with U Õ(22d/ϵ2) Exp. [21]

Fourier Degree ≤ d D Õ(2d/ϵ+ 22d) Poly. This Paper

s-Sparse Polynomial U poly(s/ϵ) + Õ(22d) Poly. [1, 31]

over F2 of Degree d U Õ(s2/ϵ+ 22d) Poly. This Paper+[1]

U Õ(s/ϵ+ s2d) Poly. This Paper

D Õ(s2/ϵ+ s2d) Poly. This Paper

s-Sparse Polynomial U Õ(s/ϵ2) Exp. [21]
over F2 U Poly(s/ϵ) Poly. [31]

U Õ(s2/ϵ) Poly. This Paper

Figure 1: A table of the results. In the table, Õ(T) stands for O(T · poly(log T)), U and D stand
for uniform and distribution-free model, and Exp and Poly stand for exponential and polynomial
time.

respectively. When we write xI = 0 we mean xI = 0I . For X1, X2 ⊆ [n] where X1 ∩X2 = ∅ and

5

x ∈ {0, 1}X1 , y ∈ {0, 1}X2 we write x◦y to denote their concatenation, i.e., the string in {0, 1}X1∪X2

that agrees with x over coordinates in X1 and agrees with y over coordinates in X2. Notice that
x ◦ y = y ◦ x. When we write u = ◦w∈Ww we mean that u is the concatenation of all the strings in
W . For X ⊆ [n] we denote X = [n]\X = {x ∈ [n]|x ̸∈ X}. We say that two strings x and y are
equal on I if xI = yI .

Given f, g : {0, 1}n → {0, 1} and a probability distribution D over {0, 1}n, we say that f
is ϵ-close to g with respect to D if Prx∈D[f(x) ̸= g(x)] ≤ ϵ, where x ∈ D means x is chosen
from {0, 1}n according to the distribution D. We say that f is ϵ-far from g with respect to D if
Prx∈D[f(x) ̸= g(x)] ≥ ϵ. For a class of Boolean functions C, we say that f is ϵ-far from every
function in C with respect to D if for every g ∈ C, f is ϵ-far from g with respect to D. We will use
U to denote the uniform distribution over {0, 1}n or over {0, 1}X when X in clear from the context.

For a Boolean function f and X ⊂ [n], we say that X is a relevant set of f if there are
a, b ∈ {0, 1}n such that f(a) ̸= f(bX ◦ aX). We call the pair (a, b) (or just a when b = 0) a witness
of f for the relevant set X. When X = {i} then we say that xi is a relevant variable of f and a is
a witness of f for xi. Obviously, if X is relevant set of f then x(X) contains at least one relevant
variable of f .

We say that the Boolean function f : {0, 1}n → {0, 1} is a literal if f ∈ {x1, . . . , xn, x1, . . . , xn}
where x is the negation of x.

Let C be a class of Boolean functions f : {0, 1}n → {0, 1}. We say that C is closed under
variable projection if for every projection π : [n]→ [n] and every f ∈ C, we have f(x(π)) ∈ C where
x(π) := (xπ(1), · · · , xπ(n)). We say that C is closed under zero projection (resp. closed under one
projection) if for every f ∈ C and every i ∈ [n], f(0{i} ◦ x{i}) (resp. f(1{i} ◦ x{i}) ∈ C). We say it

is closed under zero-one projection if is closed under zero and one projection.
Throughout the paper, we assume that the class C is closed under variable and zero projection.

After section 3, we assume that it is also closed under one projection.

1.3 The Model

In this subsection, we define the testing and learning models.
In the testing model, we consider the problem of testing a class of Boolean function C in the

uniform and distribution-free testing models. In the distribution-free testing model (resp. uniform
model), the algorithm has access to a Boolean function f via a black-box that returns f(x) when a
string x is queried. We call this query membership query (MQf or just MQ). The algorithm also has
access to unknown distribution D (resp. uniform distribution) via an oracle that returns x ∈ {0, 1}n
chosen randomly according to the distribution D (resp. according to the uniform distribution). We
call this query example query (ExQD (resp. ExQ)).

A distribution-free testing algorithm, [39], (resp. testing algorithm) A for C is an algorithm
that, given as input a distance parameter ϵ and the above two oracles to a Boolean function f ,

1. if f ∈ C then A outputs “accept” with probability at least 2/3.

2. if f is ϵ-far from every g ∈ C with respect to the distribution D (resp. uniform distribution)
then A outputs “reject” with probability at least 2/3.

We will also call A a tester (or ϵ-tester) for the class C and an algorithm for ϵ-testing C.
We say that A is one-sided if it always accepts when f ∈ C; otherwise, it is called two-sided

algorithm. The query complexity of A is the maximum number of queries A makes on any Boolean
function f .

6

In the learning models, C is a class of representations of Boolean functions rather than a
class of Boolean functions. Therefore, we may have two different representations in C that are
logically equivalent. In this paper, we assume that this representation is verifiable, that is, given a
representation g, one can decide in polynomial time on the length of this representation if g ∈ C.

A distribution-free proper learning algorithm (resp. proper learning algorithm under the uniform
distribution) A for C is an algorithm that, given as input an accuracy parameter ϵ, a confidence
parameter δ and an access to both MQf for the target function f ∈ C and ExQD, with unknown
D, (resp. ExQ or ExQU), with probability at least 1 − δ, A returns h ∈ C that is ϵ-close to
f with respect to D (resp. with respect to the uniform distribution). This model is also called
proper PAC-learning with membership queries under any distribution (resp. under the uniform
distribution) [3, 57]. A proper exact learning algorithm [3] for C is an algorithm that given as input
a confidence parameter δ and an access to MQf for f ∈ C, with probability at least 1− δ, returns
h ∈ C that is equivalent to f . The query complexity of A is the maximum number of queries A
makes on any Boolean function f ∈ C.

2 Overview of the Distribution-Free Tester

2.1 Preface

Our approach refers to testing properties that are (symmetric) sub-classes C of k-juntas; that
is, f : {0, 1}n → {0, 1} has the property if there exists a function f ′ : {0, 1}k → {0, 1} that
belongs to a predetermined class C ′ of functions (over k-bit strings) such that f(x) = f ′(xΓ) for
some k-subset Γ. Our new approach builds upon the “testing by implicit sampling” approach of
Diakonikolas et al. [30], while extending it from the case of uniform distribution to the case of
arbitrary unknown distributions (i.e., the distribution-free model).

This allows us to present (almost optimal) distribution-free testers for classes of properties that
are sub-classes of k-juntas, which correspond to classes of k-bit long Boolean functions.

While we follow Diakonikolas et al. [30] in considering learning algorithms for the underlying
classes, our approach is also applicable to testing algorithms (see [37, Sec. 6.2]).

Let us again spell out our task. For a class C of n-bit long Boolean functions and a proximity
parameter ϵ, given samples from an unknown distribution D and oracle access to a function f :
{0, 1}n → {0, 1}, we wish to distinguish the case that f ∈ C from the case that f is ϵ-far from
C. Recall that C is a (symmetric) class consisting of a symmetric subclass of k-juntas C ′; that is,
f ∈ C if and only if there exists a k-subset Γ ⊂ [n] and f ′ ∈ C ′ such that f(x) = f ′(xΓ), where
x{i1,...,ik} = (xi1 , . . . , xik). Actually, we also assume that C ′ is closed under zero projection.

2.2 A Bird’s Eye View

The basic strategy is to consider a random partition of [n] to r = O(k2) parts, denoted (X1, . . . , Xr),
while relying on the fact that, whp, each Xi contains at most one influential variable. Assuming
that f ∈ C, first we determine a set I of at most k indices such that ∪i∈[n]\IXi contains no

“significantly influential” variables of f . Suppose that f ′ : {0, 1}k → {0, 1}, f ′ ∈ C ′, is a function
that corresponds to the tested function f : {0, 1}n → {0, 1}, and that I ⊂ [n] is indeed the collection
of all sets that contain influential variables. The crucial ingredient is devising a method that allows
to generate samples of the form (x′, f ′(x′)), when given samples of the form (x, f(x)) (for x ∈ D).
We stress that we cannot afford to find the influential variables, and so this method works without

7

determining these locations. Using this method, we can test whether f ′ belongs to the underlying
class C ′; hence, we test f by implicitly sampling the projection of D on the (unknown) influential
variables.

The method employed by Diakonikolas et al. [30] only handles the uniform distribution (i.e.,
the case that D is uniform over {0, 1}n), and so it only yields testers for the standard testing model
(rather than for the distribution-free testing model). Furthermore, their method as well as the
identification of the set I rely heavily on the notion of influence of sets, where the influence of a set
S of locations on the value of a function is defined as Prx′,x′′∈{0,1}n:x′

S=x′′
S
[f(x′) ̸=f(x′′)]. However,

this notion refers to the uniform distribution (over {0, 1}n) and does not seem adequate for the
distribution-free context (e.g., for1 f(x) = x1 + x2 we may get Prx′,x′′∈D:x′

1=x′′
1
[f(x′) ̸=f(x′′)] = 0).

We use a different way of identifying the set I and for generating samples for the underlying
function f ′. Loosely speaking, we identifies I as the set of indices i for which f(1Xi ◦ 0Xi

) ̸= f(0n),
where (recall that) 1S ◦ 0S is a string that is 1 on the locations in S and is 0 on other locations.
(Be warned that this description is an over-simplification!) This means that for every i ∈ I and
x ∈ {0, 1}n, the value of x at the influential variable in the set Xi (a variable whose location
is unknown to us!), equals f(x′) + f(0n) where x′ = xXi ◦ 0Xi

, i.e., x′j = xj if j ∈ Xi and

x′j = 0 otherwise.2 Note that the foregoing holds when f ∈ C; in general, we can test whether
x 7→ f(x′) + f(0n) is close to a dictatorship (under the uniform distribution) and reject otherwise,
whereas if the mapping is close to a dictatorship, we can self-correct it.

To sample the distribution DΓ, where Γ is the influential variables in XI = ∪i∈IXi, we sample D
and determine the value of the influential variable in each set Xi, for i ∈ I. Queries to the function
f ′ are answered by querying f such that the query y = y1 · · · yk is mapped to the query ext(y) such
that3 ext(y)j = yi if j belongs to the ith set in the collection I (and ext(y)j = 0 if j ∈ [n] \XI).
Effectively, we query the function F : {0, 1}n → {0, 1} defined as F (x) = f(ext(xΓ)), and this
makes sense provided that F is close to f (under the distribution D). To test the latter hypothesis
condition, we sample D and for each sample point x we compare f(x) to F (x), where here we again
use the ability to determine the value of the influential variable in each set. Specifically, ext(xΓ) is
computed by determining the value of xΓ (without knowing Γ), and using our knowledge of (Xi)i∈I .

We warn that the foregoing description presumes that we have correctly identified the collection
I of all sets containing an influential variable. This leaves us with two questions: The first question
is, how do we identify the set I. (Note that the influence of a variable may be as low as 2−k,
whereas we seek algorithms of poly(k)-complexity.) The solution (to be presented in Section 2.3.1)
will be randomized, and will have one-sided error; specifically, we may fail to identify some sets that
contain influential variables, but will never include in our collection sets that have no influential
variables. Consequently, f(1Xi ◦ 0Xi

) ̸= f(0n) may not hold for some i ∈ I, and (over-simplifying

again) we shall seek instead some v(i) ∈ {0, 1}n such that f(v(i)) ̸= f(w(i)), where w(i) = v
(i)

Xi
◦ 0Xi

(i.e., w
(i)
j = v

(i)
j if j ∈ [n] \ Xi and w

(i)
j = 0 otherwise). Second, as before, for every i ∈ I and

x ∈ {0, 1}n, we wish to determine the value in x of the influential variable in the set Xi (a variable

1The addition operation in this paper is over the binary field F2
2Indeed, if τ(i) ∈ Xi is the index of the (unique) influential variable that resides in the set Xi, then

f(x′) = xτ(i) · f(1Xi ◦ 0Xi
) + (xτ(i) + 1) · f(0n) = xτ(i) + f(0n)

since f(1Xi ◦ 0Xi
) + f(0n) = 1.

3Notice that ext(y) = 0XI
◦
(

◦
i∈I

(yi)Xi

)
- Here (y)X = 1X if y = 1 and 0X if y = 0.

8

whose location is unknown to us!). This is done by observing that if f ∈ C then this value equals

f(x′) + f(v(i)) + 1 where x′ = xXj ◦ v
(i)

Xj
(i.e., x′j = xj if j ∈ Xi and x′j = v

(i)
j otherwise).4 Again,

we need to test whether x 7→ f(x′) + f(v(i)) + 1 is a dictatorship, and use self-correction.

2.3 The Actual Tester

As warned, the above description is an over-simplification, and the actual way in which the set I
is identified and used is more complex.

We fix a random partition of [n] to r = O(k2) parts, denoted (X1, . . . , Xr). If f ∈ C, then, with
high probability, each Xi contains at most one influential variable, denoted τ(i). We assume that
this is the case when providing intuition throughout this section.

2.3.1 Stage 1: Finding I and corresponding v(i)

Our goal is to find a collection I of at most k sets such that the function hI is ϵ/3-close to f (w.r.t
distribution D), where hI is defined as hI(x) = f(xXI

◦ 0XI
) and XI = ∪i∈IXi. In addition, for

each i ∈ I, we seek a witness v(i) for the fact that f depends on some variable in Xi; that is,
f(v(i)) ̸= f(w(i)) for some v(i) that differ from w(i) only on Xi.
The procedure.

We proceed in iterations, starting with I = ∅.

1. We sample D for O(1/ϵ) times, trying to find u ∈ D such that f(u) ̸= hI(u).

(Note that if I = ∅, then hI(u) = f(0n). In general, we seek u such that f(u) ̸= f(uXI
◦ 0XI

).

If no such u is found, then we set h = hI and proceed to Stage 2. In this case, we may assume
that hI is ϵ/3-close to f (w.r.t D).

2. Otherwise (i.e., f(u) ̸= hI(u)), we find an i ∈ [m]\I and v(i) such that hI(v
(i)) ̸= hI∪{i}(v

(i)),

which means that Xi contains an influential variable and v(i) is the witness for the sensitivity
that we seek. We set I ← I ∪ {i} and proceed to the next iteration.

(We find this i by binary search that seeks i and S such that hI∪S∪{i}(u) ̸= hI∪S(u), which

means that v(i) equals u in locations outside S and is zero on S.)5

Once the iterations are suspended (due to not finding u), we reject if |I| > k, and continue to the
Stage 2 otherwise. Recall that in the latter case h = hI is ϵ/3-close to f (w.r.t D).

Note that if f ∈ C, then I contains only sets that contain variables of the k-junta, and so
we never reject in this stage. In general, if i ∈ I, then hI\{i}(v

(i)) ̸= hI(v
(i)), which implies that

f(x′) ̸= f(x′′), where x′ and x′′ differ only on Xi (e.g., x
′′
XI

= v
(i)
XI

and x′′j = 0 if j ̸∈ XI).

4Indeed, if τ(i) ∈ Xi is the index of the (unique) influential variable that resides in the set Xi, then

f(x′) = xτ(i) · f(v(i)) + (xτ(i) + 1) · f(w(i)) = xτ(i) + f(v(i)) + 1

since f(v(i)) + f(w(i)) = 1.
5By Step 1, we have hS′∪I(u) ̸= hS′′∪I(u), for S′ = [n] \ I and S′′ = ∅, and in each iteration we cut S′ \ S′′ by

half while maintaining hS′∪I(u) ̸= hS′′∪I(u).

9

2.3.2 Stage 2: Extracting the value of an influential variable

Given a collection I as found in Stage 1 (and a sensitivity witness v(i) for each i ∈ I), let h = hI
and recall that h is close to f w.r.t D. For each i ∈ I, given x ∈ {0, 1}n, we wish to determine the
value of x at the influential variable that resides in Xi.

For each i ∈ I, we define νi : {0, 1}|Xi| → {0, 1} such that νi(z) = hI(y), where yXi = z and

yXi
= v

(i)

Xi
. Suppose that f ∈ C, and recall that τ(i) ∈ Xi denotes the location of the influential

variable in Xi. Let σ(i) denote the index of τ(i) in Xi (i.e., the σ(i)
th element of Xi is τ(i)). Then,

in this case, νi is either a dictatorship or an anti-dictatorship. In particular, if νi is a dictatorship,
then νi(z) = zσ(i) (and otherwise νi(z) = zσ(i) + 1).

For each i ∈ I, we test whether νi is a dictatorship or anti-dictatorship, where testing is w.r.t
the uniform distribution over {0, 1}|Xi|. Note that we also check whether νi is a dictatorship or
anti-dictatorship. If the tester (run with proximity parameter 0.1) fails, we reject. Otherwise (i.e., if
we did not reject), we can compute νi via self-correction on hI ; that is, to compute νi at z, we select
u ∈ {0, 1}|Xi| at random, and return νi(z+u)+νi(u), which (w.h.p.) equals (z+u)σ(i)+uσ(i) = zσ(i).

Hence, we always continue to Stage 3 if f ∈ C, and whenever we continue to Stage 3 we can
compute all νi (for i ∈ I) via self-correction.

2.3.3 Stage 3: Emulating a tester of C ′

Recall that when reaching this stage, we may assume that h = hI is ϵ/3-close to f (w.r.t D). Also
recall that hI(x) depends only on xXI

, whereXI = ∪i∈IXi, and that by Stage 2 we may assume that
νi(z) = zσ(i) (for every i ∈ I and almost all z). In light of the forgoing, we define F : {0, 1}n → {0, 1}
such that F (x) = h(x′) where x′Xi

= (xσ(i), . . . , xσ(i)) (i.e., x′j = (xXi)σ(i) = xτ(i) if j ∈ Xi)
6 and

x′j = 0 otherwise. (Indeed, if f ∈ C, then F (x) = h(x), since h(y) depends only on (yτ(i))i∈I . Using
hypothesis that C ′ (and so C) is closed under zero projection, it follows that F ∈ C.)

We observe that if F is ϵ/3-close (w.r.t D) to both h and C, then f must be ϵ-close to C (since
f is ϵ/3-close to h). Hence, we test both these conditions. Specifically, using our ability to sample
D, query f , and determine the value of the influential variables in XI , we proceed as follows:

1. Test whether F = h, where testing is w.r.t the distribution D and proximity parameter ϵ/3.

This is done by taking O(1/ϵ) samples of D, and comparing the values of F and h on these
sample points. Recall that h(u) = hI(u) = f(uXI

◦ 0XI
).

The value of F on u is determined as follows.

(a) For every i ∈ I, if νi is a dictatorship, then set vi to equal the self-corrected value of
νi(uXi), where νi is as defined in Stage 2. Otherwise (i.e., when νi is an anti-dictatorship),
we set vi to equal the self-corrected value of νi(uXi) + 1.

(b) Return the value h(u′), where u′j = vi if j ∈ Xi and u′j = 0 otherwise.

Indeed, F = h always passes this test, whereas F that is ϵ/3-far from h (w.r.t D) is rejected
w.h.p.

2. Test whether F is in C, where testing is w.r.t the distribution D and proximity parameter
ϵ/3. This is done by testing whether F ′ is in C, where F ′(z) = F (x) such that xj = zi if j is

6In general, τ(i) denotes the location in [n] of the σ(i)th element of Xi.

10

in the ith set in the collection I, and xj = 0 otherwise. Here we use a distribution-free tester,
and analyze it w.r.t the distribution DI . Toward this end, we need to samples DI as well as
answer queries to F ′, where both tasks can be performed as in the prior step.

Recall that if f ∈ C, then F ∈ C, and this test will accept (w.h.p.), whereas if F is ϵ/3-far
from C the test will reject (w.h.p.).

We conclude that if we reached Stage 3 and f ∈ C (resp., f is ϵ-far from C), then we accept (resp.,
reject) w.h.p.

2.4 Digest: Our approach vs the original one [30]

Our new approach differs from the original approach of Diakonikolas et al. [30] in two main aspects:

1. In [30], sets that contain influential variables are identified according to their influence, which
is defined with respect to the uniform distribution. This definition seems inadequate when
dealing with arbitrary distributions. Instead, we identify such a set by searching for two as-
signments that differ only on this set and yield different function values. The actual process is
iterative and places additional constraints on these assignments (as detailed in Section 2.3.1).

2. In [30], given an assignment to the function, the value of the unique influential variable that
resides in a given set S is determined by approximating the influence of two subsets of S
(i.e., the subsets of locations assigned the value 0 and 1, respectively). In contrast, we deter-
mines this value by defining an auxiliary function, which depends on the unknown influential
variable, and evaluating this function (via self-correction w.r.t the uniform distribution; see
Section 2.3.2).

2.5 More on Our Techniques

In this section, we give a detailed overview of our techniques.

2.5.1 Testing Subclasses of k-Junta

For testing a subclass C of k-Junta that is closed under variable and zero projections, we use
TesterC in Figure 8. We first note that TesterC rejects if any procedure that it calls rejects.

First, TesterC calls the procedure ApproxTarget, in Figure 2. ApproxTarget partitions
the (indices of the) variables [n] into r = O(k2) disjoint sets X1, . . . , Xr. Since C ⊆ k−Junta it
follows that, with high probability (whp), if f ∈ C then different relevant variables of f fall into
different sets. Therefore, if f ∈ C, whp, every Xi contains at most one relevant variable of f . The
procedure then binary searches for enough relevant sets {Xi}i∈I such that, whp, for X = ∪i∈IXi,
h = f(xX ◦ 0X) is (ϵ/3)-close to f with respect to D. If the procedure finds more than k relevant
sets of f then there are more than k relevant variables in f and it rejects. If f ∈ C then the
procedure does not reject and, since C is closed under zero projection, h ∈ C. Since, whp, h is
(ϵ/3)-close to f with respect to D, it is enough to distinguish whether h is in C or (2ϵ/3)-far from
every function in C with respect to D. ApproxTarget also finds, for each relevant set Xi, i ∈ I,

a witness v(i) ∈ {0, 1}n of h for Xi. That is, for every i ∈ I, h(v(i)) ̸= h(0Xi ◦ v
(i)

Xi
). If f ∈ C, then

h ∈ C and, whp, for each i ∈ I, h(xXi ◦ v
(i)

Xi
) is a literal. ApproxTarget makes Õ(k/ϵ) queries.

11

In the second stage, the tester calls the procedure TestSets, in Figure 4. TestSets verifies,

whp, that for every i ∈ I, h(xXi ◦ v
(i)

Xi
) is (1/30)-close to some literal in {xτ(i), xτ(i)} for some

τ(i) ∈ Xi, with respect to the uniform distribution. If f ∈ C, then h ∈ C and, whp, for each

i ∈ I, h(xXi ◦ v
(i)

Xi
) is a literal and therefore TestSets does not reject. Notice that if f ∈ C, then,

whp, Γ := {xτ(i)}i∈I are the relevant variables of h. This test does not give τ(i) but the fact that

h(xXi ◦ v
(i)

Xi
) is close to xτ(i) or xτ(i) can be used to find the value of uτ(i) in every assignment

u ∈ {0, 1}n without knowing τ(i). The latter is done, whp, by the procedure RelVarValues. See
Figure 5. Both procedures make Õ(k) queries.

Recall that for ξ ∈ {0, 1}, ξX is the all ξ vector in {0, 1}X . Then the tester defines the Boolean
function F = h(0X ◦ ◦i∈I(xτ(i))Xi) on the variables {xτ(j)}j∈I , that is, the function F is obtained
by substituting in h for every i ∈ I and every xj ∈ x(Xi) the variable xτ(i). Since C ⊆ k-Junta and
C is closed under variable and zero projections, τ(i) ∈ Xi and, whp, Γ = {xτ(i)}i∈I are the relevant
variables of h we have:

• If the function f is in C then, whp, F = h ∈ C and F depends on all the variables in
Γ = {xτ(j)}j∈I .

If h is (2ϵ/3)-far from every function in C with respect to D then either h is (ϵ/3)-far from F with
respect to D or F is (ϵ/3)-far from every function in C(Γ) with respect to D where C(Γ) is the set
of all functions in C that depends on all the variables in Γ. Therefore,

• If the function f is ϵ-far from every function in C then, whp, either

1. h is (ϵ/3)-far from F with respect to D or

2. F is (ϵ/3)-far from every function in C(Γ) with respect to D.

Therefore, it remains to do two tests. The first is testing whether h = F given that h is either
(ϵ/3)-far from F with respect to D or h = F . The second is testing whether F ∈ C given that F
is either (ϵ/3)-far from every function in C(Γ) with respect to D or f ∈ C(Γ).

The former test, h = F , can be done, whp, by choosing O(1/ϵ) strings u ∈ {0, 1}n according to
the distribution D and testing whether F (u) = h(u). To compute F (u) we need to find {uτ(i)}i∈I ,
which can be done by the procedure RelVarValues. Therefore, each query to F requires one call
to the procedure RelVarValues that uses Õ(k) queries to f . Thus, the first test can be done using
Õ(k/ϵ) queries. This is done in the procedure ClosefF in Figure 6.

Notice that, thus far, all the above procedures run in polynomial time and make Õ(k/ϵ) queries.
Testing whether F ∈ C can be done, whp, by choosing O((log |C(Γ)|)/ϵ) strings u ∈ {0, 1}n

according to the distribution D and testing whether F (u) = g(u) for every g ∈ C(Γ). Notice here
that the time complexity is poly(|C(Γ)|) which is polynomial only when C(Γ) contains polynomial
number of functions.

If the distribution is uniform, we do not need to use RelVarValues to find {uτ(i)}i∈I because
when the distribution of u is uniform the distribution of {uτ(i)}i∈I is also uniform. Therefore we
can just test whether F (u) = g(u) for every g ∈ C(Γ) for uniform {uτ(i)}i∈I . Then computing F (u)
for random uniform string u can be done in one query to h. Thus, for the uniform distribution, the
algorithm makes Õ((log |C(Γ)|)/ϵ) queries to f . This is the procedure CloseFCU in Figure 7.

If the distribution is unknown then each computation of F (u) for a random string u according to
the distribution D requires choosing u according to the distribution D, then extracting {uτ(i)}i∈I

12

from u and then substituting the values {uτ(i)}i∈I in F . This can be done by the procedure

RelVarValues using Õ(k) queries to h. Therefore, for unknown distribution the algorithm makes
Õ((k log |C(Γ)|)/ϵ) queries to f . This is the procedures CloseFCD in Figure 7.

As we mentioned before the time complexity of CloseFCU and CloseFCD is polynomial only
if |C(Γ)| is polynomial. When |C(Γ)| is exponential, we solve the problem via learning theory. We
find a proper learning algorithm A for C(Γ). We run A to learn F . If the algorithm fails, runs
more time than it should, asks more queries than it should or outputs a hypothesis g ̸∈ C then we
know that, whp, F ̸∈ C(Γ). Otherwise, it outputs a function g ∈ C(Γ) and then, as above, we test
whether g = F given that g is (ϵ/3)-far from F or g = F .

Therefore, for the uniform distribution, if the proper learning algorithm for C makes m MQs
and q ExQs then the tester makes m+ q+O(1/ϵ) queries. If the distribution is unknown, then the
tester makes m+ Õ(kq + k/ϵ) queries.

2.5.2 Testing Classes that are Close to k-Junta

To understand the intuition behind the second technique, we demonstrate it for testing s-term
DNF.

The tester first runs the procedure ApproxC in Figure 11. This procedure is similar to the pro-
cedure ApproxTarget. It randomly uniformly partitions the variables to r = 4c2(c+ 1)s log(s/ϵ)
disjoint sets X1, . . . , Xr and finds relevant sets {Xi}i∈I . Here c is a large constant. To find a new
relevant set, it chooses two random uniform strings u, v ∈ {0, 1}n and verifies if f(uX ◦ vX) ̸= f(u)
where X is the union of the relevant sets that it has found thus far. If f(uX ◦ vX) ̸= f(u) then the
binary search finds a new relevant set.

In the binary search for a new relevant set, the procedure defines a set X ′ that is equal to
the union of half of the sets in {Xi}i ̸∈I . Then either f(uX∪X′ ◦ vX′) ̸= f(u) or f(uX∪X′ ◦ vX′) ̸=
f(uX ◦ vX). Then it recursively does the above until it finds a new relevant set Xℓ.

It is easy to show that if f is s-term DNF then, whp, for all the terms T in f of size at least
c2 log(s/ϵ), for all the random uniform strings u, v chosen in the algorithm and for all the strings w
generated in the binary search, T (uX ◦ vX) = T (u) = T (w) = 0. Therefore, when f is s-term DNF,
the procedure, whp, runs as if there are no terms of size greater than c2 log(s/ϵ) in f . This shows
that, whp, each relevant set that the procedure finds contains at least one variable that belongs to
a term of size at most c2 log(s/ϵ) in f . Therefore, if f is s-term DNF, the procedure, whp, does not
generate more than c2s log(s/ϵ) relevant sets. If the procedure finds more than c2s log(s/ϵ) relevant
sets then, whp, f is not s-term DNF and therefore it rejects.

Let R be the set of all the variables that belong to the terms in f of size at most c2 log(s/ϵ). The
procedure returns h = f(xX ◦wX) for random uniform w where X is the union of the relevant sets
X = ∪i∈IXi that is found by the procedure. If f is s-term DNF then since r = 4c2(c+1)s log(s/ϵ)
and the number of relevant sets is at most c2s log(s/ϵ), whp, at least (1/2)c log(s/ϵ) variables in
each term of f that contains at least c log(s/ϵ) variables not in R falls outside X in the partition of
[n]. Therefore, for random uniform w, whp, terms T in f that contains at least c log(s/ϵ) variables
not in R satisfies T (xX ◦ wX) = 0 and therefore, whp, are vanished in h = f(xX ◦ wX). Thus,
whp, h contains all the terms that contains variables in R and at most cs log(s/ϵ) variables not in
R. Therefore, whp, h contains at most c(c + 1)s log(s/ϵ) relevant variables. From this, and using
similar arguments as for the procedure ApproxTarget in the previous subsection, we prove that,
ApproxC makes at most Õ(s/ϵ) queries and

13

1. If f is s-term DNF then, whp, the procedure outputs X and w such that

• h = f(xX ◦ wX) is s-term DNF.

• The number of relevant variables in h = f(xX ◦ wX) is at most O(s log(s/ϵ)).

2. If f is ϵ-far from every s-term DNF then the procedure either rejects or outputs X and w
such that, whp, h = f(xX ◦ wX) is (3ϵ/4)-far from every s-term DNF.

We can now run TesterC (with 3ϵ/4) on h from the previous subsection for testing C∗ where C∗ is
the set of s-term DNF with k = O(s log(s/ϵ)) relevant variables. All the procedures makes Õ(s/ϵ)
queries except CloseFCU that makes Õ(s2/ϵ) queries. This is because that the size of the class

C∗(Γ) is 2Õ(s2) and therefore CloseFCU makes Õ(s2/ϵ) queries. This gives a tester that makes
Õ(s2/ϵ) queries which is not optimal.

Instead, we consider the class C ′ of s-term DNF with O(s log(s/ϵ)) variables and terms of size
at most c log(s/ϵ) and show that, in CloseFCU , whp, all the terms T of size greater than c log(s/ϵ)
and all the random strings u chosen in the procedure satisfies T (u) = 0 and therefore it runs as
if the target function h has only terms of size at most c log(s/ϵ). This gives a tester that makes
Õ(s/ϵ) queries.

As in the previous section, all the procedures run in polynomial time except CloseFCU . For
some classes, we replace CloseFCU with polynomial time learning algorithms and obtains poly-
nomial time testers.

3 Preparing the Target for Accessing the Relevant Variables

In this Section we give the three procedures ApproxTarget, TestSets and RelVarValues.

3.1 Preliminaries

In this subsection, we give some known results that will be used in the sequel.
The following lemma is straightforward

Lemma 1. If {Xi}i∈[r] is a partition of [n] then for any Boolean function f the number of relevant
sets Xi of f is at most the number of relevant variables of f .

We will use the following folklore result that is formally proved in [46].

Lemma 2. Let {Xi}i∈[r] be a partition of [n]. Let f be a Boolean function and u,w ∈ {0, 1}n. If
f(u) ̸= f(w) then a relevant set Xℓ of f with a string v ∈ {0, 1}n that satisfies f(v) ̸= f(wXℓ

◦ vXℓ
)

can be found using ⌈log2 r⌉ queries.

The following is from [8]

Lemma 3. There exists a one-sided adaptive algorithm, UniformJunta(f, k, ϵ, δ), for ϵ-testing
k-junta that makes O(((k/ϵ) + k log k) log(1/δ)) queries and rejects f with probability at least 1− δ
when it is ϵ-far from every k-junta with respect to the uniform distribution.

Moreover, it rejects only when it has found k + 1 pairwise disjoint relevant sets and a witness
of f for each one.

14

3.2 Approximating the Target

In this subsection we give the procedureApproxTarget that returns (X = ∪i∈IXi, V = {v(i)}i∈I , I),
X ⊆ [n], V ⊆ {0, 1}n and I ⊆ [r] where, whp, each x(Xi), i ∈ I, contains at least one relevant
variable of h := f(xX ◦ 0X) and exactly one if f is k-junta. Each v(i), i ∈ I, is a witness of
f(xX ◦ 0X) for the relevant set Xi. Also, whp, f(xX ◦ 0X) is (ϵ/c)-close to the target with respect
to the distribution D.

ApproxTarget(f,D, ϵ, c)
Input: Oracle that accesses a Boolean function f and

an oracle that draws x ∈ {0, 1}n according to the distribution D.
Output: Either “reject” or (X,V, I)

Partition [n] into r sets
1. Set r = 2k2.
2. Choose uniformly at random a partition X1, X2, . . . , Xr of [n]

Find a close function and relevant sets
3. Set X = ∅; I = ∅; V = ∅; t(X) = 0.
4. Repeat M = ck ln(15k)/ϵ times
5. Choose u ∈ D.
6. t(X)← t(X) + 1
7. If f(uX ◦ 0X) ̸= f(u) then
8. W ← ∅.
9. Binary Search to find a new relevant set from (u, uX ◦ 0X)→ ℓ;

10. and a string w(ℓ) ∈ {0, 1}n such that f(w(ℓ)) ̸= f(w
(ℓ)

Xℓ
◦ 0Xℓ

);

11. X ← X ∪Xℓ; I ← I ∪ {ℓ}.
12. If |I| > k then Output(“reject”).

13. W = W ∪ {w(ℓ)}.
14. Choose w(r) ∈W .

15. If f(w
(r)
X ◦ 0X) ̸= f(w

(r)
X\Xr

◦ 0X∪Xr
) then

W ←W\{w(r)}; v(r) ← w
(r)
X ◦ 0X ;V ← V ∪ {v(r)};

If W ̸= ∅ then Goto 14

16. Else If f(w
(r)
X ◦ 0X) ̸= f(w(r)) then u← w(r); Goto 9

17. Else u← w
(r)

Xr
◦ 0Xr ; Goto 9

18. t(X) = 0.
19. If t(X) = c ln(15k)/ϵ then Output(X,V, I).

Figure 2: A procedure that finds relevant sets {Xi}i∈I of f and a witness v(i) for each relevant
set Xi for h := f(xX ◦ 0X) where X = ∪i∈IXi. Also, whp, h is (ϵ/c)-close to the target.

Consider the procedure ApproxTarget in Figure 2. In steps 1-2 the procedure partitions the
set [n] into r = 2k2 disjoint sets X1, X2, . . . , Xr. In step 3 it defines the variables X, I, V and t(X).

15

At each iteration of the procedure, I contains the indices of some relevant sets of f(xX ◦ 0X) where
X = ∪i∈IXi, i.e., each Xi, i ∈ I is relevant set of f(xX ◦ 0X). The set V contains, for each i ∈ I, a

string v(i) ∈ {0, 1}n that satisfies f(v
(i)
X ◦0X) ̸= f(v

(i)
X\Xi

◦0Xi ◦0X). That is, a witness of f(xX ◦0X)
for the relevant set Xi, i ∈ I.

The procedure in steps 4-19 tests if f(uX ◦ 0X) = f(u) for at least c ln(15/k)/ϵ, independently
and at random, chosen u according to the distribution D. The variable t(X) counts the number
of such u. If this happens then, whp, f(xX ◦ 0X) is (ϵ/c)-close to f with respect to D and the
procedure returns (X,V, I). If not then f(uX ◦ 0X) ̸= f(u) for some u and then a new relevant set
is found. If the number of relevant sets is greater than k, it rejects. This is done in steps 8-18.

In steps 9-10, the procedure uses Lemma 2 to (binary) searches for a new relevant set. The search

gives an index ℓ of the new relevant set Xℓ and a witness w(ℓ) that satisfies f(w(ℓ)) ̸= f(0Xℓ
◦w(ℓ)

Xℓ
).

Then ℓ is added to I and X is extended to X ∪ Xℓ. The binary search gives a witness that Xℓ

is relevant set of f , but not a witness that it is relevant set of f(xX ◦ 0X). This is why we need
steps 14-17. In those steps the procedure adds w(ℓ) to W . Then for each w(r) ∈W (at the beginning
r = ℓ) it checks if w(r) is a witness of f(xX ◦ 0X) for Xr. If it is then it adds it to V . If it isn’t
then we show in the discussion below that a new relevant set can be found. The procedure rejects
when it finds more than k relevant sets.

If the procedure does not reject then it outputs (X,V, I) where I contains the indices of some
relevant sets of f(xX ◦0X), X = ∪i∈IXi and the set V contains for each i ∈ I a string v(i) ∈ {0, 1}n

that is a witness of f(xX ◦ 0X) for Xi, i.e., f(v
(i)
X ◦ 0X) ̸= f(v

(i)
X\Xi

◦ 0Xi ◦ 0X). We will also show

in Lemma 9 that, whp, PrD[f(xX ◦ 0X) ̸= f(x)] ≤ ϵ/c.
We first prove

Lemma 4. Consider steps 1-2 in the ApproxTarget. If f is a k-junta then, with probability at
least 2/3, for each i ∈ [r], the set x(Xi) = {xj |j ∈ Xi} contains at most one relevant variable of f .

Proof. Let xi1 and xi2 be two relevant variables in f . The probability that xi1 and xi2 are in the
same set is equal to 1/r. By the union bound, it follows that the probability that some relevant
variables xi1 and xi2 , i1 ̸= i2, in f are in the same set is at most

(
k
2

)
/r ≤ 1/3.

X(j) =
⋃j

i=1Xℓi X(j)

X(j)\Xr Xr
⋃q

i=j+1Xℓi X(q)

v(r) *********** ***** 00000000000 000000

w(r) *********** ***** *********** ******

w
(r)

X(j) ◦ 0X(j) = v(r) *********** ***** 00000000000 000000

w
(r)

Xr
◦ 0Xr *********** 00000 *********** ******

w
(r)

X(j)\Xr
◦ 0

X(j)∪Xr
*********** 00000 00000000000 000000

Figure 3: The value of v(r), w(r), w
(r)

X(j) ◦ 0X(j) , w
(r)

Xr
◦ 0Xr and w

(r)

X(j)\Xr
◦ 0

X(j)∪Xr
where * indicates

any value.

Recall that after the binary search in step 9 the procedure has a witness w(ℓ) that satisfies

f(w(ℓ)) ̸= f(w
(ℓ)

Xℓ
◦ 0Xℓ

) that is not necessarily a witness of f(xX ◦ 0X) for Xℓ, i.e., does not

16

necessarily satisfies f(w
(ℓ)
X ◦ 0X) ̸= f(w

(ℓ)
X\Xℓ

◦ 0Xℓ
◦ 0X). This is why we first add w(ℓ) to W and

not to V . We next will show that an element w(r) in W is either a witness of f(xX ◦ 0X) for Xℓ, in
which case we add it to V and remove it from W , or, this element generates another new relevant
set and then another witness of f is added to W .

Suppose the variable ℓ in the procedure takes the values ℓ1, . . . , ℓq. Then Xℓ takes the values
Xℓ1 , . . . , Xℓq and X takes the values X(i) where X(i) = X(i−1) ∪ Xℓi and X(0) = ∅. Notice that

X(0) ⊂ X(1) ⊂ · · · ⊂ X(q).
Suppose, at some iteration, the procedure chooses, in step 14, w(r) ∈ W where r = ℓi. By

step 10, f(w(r)) ̸= f(w
(r)

Xr
◦ 0Xr). Suppose at this iteration X = X(j). Then r ≤ j, Xℓ1 , . . . , Xℓj are

the relevant sets that are discovered so far and Xℓj+1
, . . . , Xℓq ⊆ X(j). Since w(r) ∈W , by step 11,

Xr ⊆ X(j). See the table in Figure 3. If in step 15, f(w
(r)

X(j) ◦ 0X(j)) ̸= f(w
(r)

X(j)\Xr
◦ 0

X(j)∪Xr
)

then v(r) = w
(r)

X(j) ◦ 0X(j) is added to the set V . This is the only step that adds an element to V .

Since v(r) = w
(r)

X(j) ◦ 0X(j) and X(j) ⊆ X(q) we have v
(r)

X(q)
= 0 and f(v(r)) = f(w

(r)

X(j) ◦ 0X(j)) ̸=

f(w
(r)

X(j)\Xr
◦ 0

X(j)∪Xr
) = f(v

(r)

Xr
◦ 0Xr).

Therefore

Lemma 5. If the procedure outputs (X(q), V, I) then for every v(ℓ) ∈ V we have v
(ℓ)

X(q)
= 0 and

f(v(ℓ)) ̸= f(v
(ℓ)

Xℓ
◦ 0Xℓ

). That is, v(ℓ) ∈ V is a witness of f(xX(q) ◦ 0
X(q)) for Xℓ.

We now show that if, in step 15, f(w
(r)
X ◦ 0X) = f(w

(r)
X\Xr

◦ 0X∪Xr
) then the procedure finds a

new relevant set.

Lemma 6. Consider step 15 in the procedure in the iteration where X = X(j). If w(r) is not a

witness of f(xX(j) ◦0
X(j)) for Xr, i.e., f(w

(r)

X(j) ◦0X(j)) = f(w
(r)

X(j)\Xr
◦0

X(j)∪Xr
), then a new relevant

set is found.

Proof. See the table in Figure 3 throughout the proof. Since by step 10, f(w(r)) ̸= f(w
(r)

Xr
◦ 0Xr),

then either f(w(r)) ̸= f(w
(r)

X(j) ◦ 0X(j)) or f(w
(r)

X(j)\Xr
◦ 0

X(j)∪Xr
) ̸= f(w

(r)

Xr
◦ 0Xr). If f(w(r)) ̸=

f(w
(r)

X(j) ◦ 0X(j)) then the procedure in step 16 assign u = w(r) and goes to step 9 to find a relevant

set in X(j). Step 9 finds a new relevant set because w(r) and w
(r)

X(j) ◦ 0X(j) are equal on X(j). If

f(w
(r)

X(j)\Xr
◦ 0

X(j)∪Xr
) ̸= f(w

(r)

Xr
◦ 0Xr) then the procedure in step 17 assign u = w

(r)

Xr
◦ 0Xr and goes

to step 9 to find a relevant set in X(j). Step 9 finds a new relevant set because w
(r)

X(j)\Xr
◦ 0

X(j)∪Xr

and w
(r)

Xr
◦ 0Xr are equal on X(j).

Therefore, for every w(r) ∈ W the procedure either finds v(r) that satisfies the condition in
Lemma 5 or finds a new relevant set. If the number of relevant sets is greater than k, then the
procedure rejects. This is because each relevant set contains a relevant variable, and the relevant
sets are disjoint. So the function, in this case, is not k-junta and therefore not in C. If the number
of relevant sets is less than or equal to k, then the algorithm eventually finds, for each ℓ ∈ I, a
witness v(ℓ) of f(xX ◦ 0X) for Xiℓ . This implies

17

Lemma 7. If ApproxTarget does not reject then it outputs (X = X(q), V = {v(ℓ1), . . . , v(ℓq)}, I =
{ℓ1, . . . , ℓq}) that satisfies

1. q = |I| ≤ k.

2. For every ℓ ∈ I, v
(ℓ)

X
= 0 and f(v(ℓ)) ̸= f(0Xℓ

◦ v(ℓ)
Xℓ

). That is, v(ℓ) ∈ V is a witness of

f(xX ◦ 0X) for Xℓ .

3. Each x(Xℓ), ℓ ∈ I, contains at least one relevant variable of f(xX ◦ 0X).

Lemma 8. If f is k-junta and each x(Xi) contains at most one relevant variable of f then

1. ApproxTarget outputs (X,V, I).

2. Each x(Xℓ), ℓ ∈ I, contains exactly one relevant variable in f(xX ◦ 0X).

3. For every ℓ ∈ I, f(xXℓ
◦ v(ℓ)

Xℓ
) is a literal.

Proof. By 3 in Lemma 7, x(Xℓ), ℓ ∈ I, contains exactly one relevant variable. Thus, for every

ℓ ∈ I, f(xXℓ
◦ v(ℓ)

Xℓ
) is a literal.

Since f contains at most k relevant variables, by Lemma 1, the number of relevant sets |I| is at
most k. Therefore, ApproxTarget does not halt in step 12.

The following lemma shows that

Lemma 9. If ApproxTarget outputs (X,V, I) then |I| ≤ k and with probability at least 14/15

Pru∈D[f(uX ◦ 0X) ̸= f(u)] ≤ ϵ/c.

Proof. If |I| > k then, from step 12, ApproxTarget outputs “reject”. Therefore, the probabil-
ity that ApproxTarget fails to output (X,V, I) with Pru∈D[f(uX ◦ 0X) ̸= f(u)] ≤ ϵ/c is the
probability that for some X(ℓ), Pru∈D[f(xX(ℓ) ◦ 0

X(ℓ)) ̸= f(x)] > ϵ/c and f(uX(ℓ) ◦ 0
X(ℓ)) = f(u)

for c ln(15k)/ϵ strings u chosen independently at random according to the distribution D. This
probability is at most

k
(
1− c

ϵ

)c ln(15k)/ϵ
≤ 1

15
.

We now give the query complexity

Lemma 10. The procedure ApproxTarget makes O((k log k)/ϵ) queries.

Proof. The condition in step 7 requires two queries and is executed at most M = ck ln(15k)/ϵ times.
This is 2M = O((k log k)/ϵ) queries. Steps 9-17 are executed at most k + 1 times. This is because
each time it is executed, the value of |I| is increased by one, and when |I| = k + 1 the procedure
rejects. By Lemma 2, to find a new relevant set the procedure makes O(log r) = O(log k) queries.
This gives another O(k log k) queries. Therefore, the query complexity is O((k log k)/ϵ).

18

TestSets(X,V, I)
Input: Oracle that accesses a Boolean function f and (X,V, I).
Output: Either “reject” or “OK”

1. For every ℓ ∈ I do

2. If UniformJunta(f(xXℓ
◦ v(ℓ)

Xℓ
), 1, 1/30, 1/15)=“reject”

3. then Output(“reject”)
4. Choose b ∈ U

5. If f(bXℓ
◦ v(ℓ)

Xℓ
) = f(bXℓ

◦ v(ℓ)
Xℓ

) then Output(“reject”)

6. Return “OK”

Figure 4: A procedure that tests if for all ℓ ∈ I, f(xXℓ
◦ v(ℓ)

Xℓ
) is (1/30)-close to some literal with

respect to the uniform distribution.

3.3 Testing the Relevant Sets

In this subsection we give the procedureTestSets that takes as an input (X,V = {v(ℓ1), . . . , v(ℓq)}, I =

{ℓ1, . . . , ℓq}) and tests if for all ℓ ∈ I, f(xXℓ
◦ v(ℓ)

Xℓ
) is (1/30)-close to some literal with respect to

the uniform distribution.
We first prove

Lemma 11. If f is k-junta and each x(Xi) contains at most one relevant variable of f then
TestSets returns “OK”.

Proof. By Lemma 8, for every ℓ ∈ I, f(xXℓ
◦ v(ℓ)

Xℓ
) is a literal.

If TestSets rejects in step 3 then, by Lemma 3, for some Xℓ, ℓ ∈ I, f(xXℓ
◦ v(ℓ)

Xℓ
) is not 1-Junta

(literal or constant function) and therefore x(Xℓ) contains at least two relevant variables. If it

rejects in step 5, then f(bXℓ
◦ v(ℓ)

Xℓ
) = f(bXℓ

◦ v(ℓ)
Xℓ

) and then f(xXℓ
◦ v(ℓ)

Xℓ
) is not a literal. In all cases

we get a contradiction.

In the following lemma we show that if TestSets returns “OK” then, whp, each f(xXℓ
◦ v(ℓ)

Xℓ
)

is close to a literal with respect to the uniform distribution.

Lemma 12. If for some ℓ ∈ I, f(xXℓ
◦ v(ℓ)

Xℓ
) is (1/30)-far from every literal with respect to the

uniform distribution then, with probability at least 1− (1/15), TestSets rejects.

Proof. If f(xXℓ
◦v(ℓ)

Xℓ
) is (1/30)-far from every literal with respect to the uniform distribution then it

is either (case 1) (1/30)-far from every 1-Junta (literal or constant) or (case 2) (1/30)-far from every
literal and (1/30)-close to 0-Junta. In case 1, by Lemma 3, with probability at least 1 − (1/15),

UniformJunta (f(xXℓ
◦ v(ℓ)

Xℓ
), 1, 1/30, 1/15) = “reject” and then the procedure rejects. In case 2,

if f(xXℓ
◦ v(ℓ)

Xℓ
) is (1/30)-close to some 0-Junta then it is either (1/30)-close to 0 or (1/30)-close

19

to 1. Suppose it is (1/30)-close to 0. Let b be a random uniform string chosen in steps 4. Then b

is random uniform and for g(x) = f(xXℓ
◦ v(ℓ)

Xℓ
) we have

Pr[The procedure does not reject] = Pr
[
g(b) ̸= g(b)

]
= Pr[g(b) = 1 ∧ g(b) = 0] +Pr[g(b) = 0 ∧ g(b) = 1]

≤ Pr[g(b) = 1] +Pr[g(b) = 1]

≤ 1

15
.

Lemma 13. The procedure TestSets makes O(k) queries.

Proof. Steps 2 and 5 are executed |I| ≤ k times, and by Lemma 3, the total number of queries
made is O(1/(1/30) log(15))k + 2k = O(k).

3.4 Determining the Values of the Relevant Variables

RelVarValues(w,X, V, I, δ)
Input: Oracle that accesses a Boolean function f , (X,V, I) and w ∈ {0, 1}n.
Output: Either “reject” or for every ℓ ∈ I, the value, zℓ = wτ(ℓ) where xτ(ℓ) is one of the

relevant variables of f(xX ◦ 0X) in x(Xℓ)

1. For every ℓ ∈ I do
2. For ξ ∈ {0, 1} set Yℓ,ξ = {j ∈ Xℓ|wj = ξ}.
3. Set Gℓ,0 = Gℓ,1 = 0;
4. Repeat h = ln(k/δ)/ ln(4/3) times
5. Choose b ∈ U ;

6. If f(bYℓ,0
◦ bYℓ,1

◦ v(ℓ)
Xℓ

) ̸= f(bYℓ,0
◦ bYℓ,1

◦ v(ℓ)
Xℓ

) then Gℓ,0 ← Gℓ,0 + 1

7. If f(bYℓ,1
◦ bYℓ,0

◦ v(ℓ)
Xℓ

) ̸= f(bYℓ,1
◦ bYℓ,0

◦ v(ℓ)
Xℓ

) then Gℓ,1 ← Gℓ,1 + 1

8. If ({Gℓ,0, Gℓ,1} ≠ {0, h}) then Output(“reject”)
9. If Gℓ,0 = h then zℓ ← 0 else zℓ ← 1
10. Output(“{zℓ}ℓ∈I”)

Figure 5: A procedure that takes as input (X,V, I) and a string w ∈ {0, 1}n and, with probability

at least 1 − δ, returns the values of wτ(i), i ∈ I, where f(xXi ◦ v
(i)

Xi
) is (1/30)-close to one of the

literals in {xτ(i), xτ(i)} with respect to the uniform distribution.

In this subsection we give a procedure RelVarValue that for an input (w ∈ {0, 1}n, X, V, I, δ)
where (X,V, I) satisfies all the properties in the previous two subsections, the procedure, with

probability at least 1 − δ, returns the values of wτ(i), i ∈ I, where f(xXi ◦ v
(i)

Xi
) is (1/30)-close to

one of the literals in {xτ(i), xτ(i)} with respect to the uniform distribution. When f is k-junta and

20

each x(Xi) contains at most one relevant variable then {xτ(i)}i∈I is the set of the relevant variables
of f(xX ◦0X) and wτ(i), i ∈ I are the values of the relevant variables. The procedure is in Figure 5.

We first prove

Lemma 14. If f is k-Junta and each x(Xi) contains at most one relevant variable of f then
RelVarValues outputs z such that zℓ = wτ(ℓ) where f(xXℓ

◦ 0Xℓ
) ∈ {xτ(ℓ), xτ(ℓ)}.

Proof. Since Yℓ,0, Yℓ,1 is a partition of Xℓ, ℓ ∈ I and, by Lemma 8, x(Xℓ) contains exactly one
relevant variable xτ(ℓ) of f(xX ◦ 0X), this variable is either in x(Yℓ,0) or in x(Yℓ,1) but not in both.

Suppose w.l.o.g. it is in x(Yℓ,0) and not in x(Yℓ,1). Then wτ(ℓ) = 0, f(xYℓ,0
◦ bYℓ,1

◦ v(ℓ)
Xℓ

) is a literal

and f(xYℓ,1
◦ bYℓ,0

◦ v(ℓ)
Xℓ

) is a constant function. This implies that for any b, f(bYℓ,0
◦ bYℓ,1

◦ v(ℓ)
Xℓ

) ̸=

f(bYℓ,0
◦ bYℓ,1

◦ v(ℓ)
Xℓ

) and f(bYℓ,1
◦ bYℓ,0

◦ v(ℓ)
Xℓ

) = f(bYℓ,1
◦ bYℓ,0

◦ v(ℓ)
Xℓ

). Therefore, by steps 6-7 in the

procedure, Gℓ,0 = h and Gℓ,1 = 0 and the procedure does not output reject in step 8. Thus, by
step 9, zℓ = wτ(ℓ).

We now prove

Lemma 15. If for every ℓ ∈ I the function f(xXℓ
◦ v(ℓ)

Xℓ
) is (1/30)-close to a literal in {xτ(ℓ), x̄τ(ℓ)}

with respect to the uniform distribution, where τ(ℓ) ∈ Xℓ, and in RelVarValues, for every ℓ ∈ I,
{Gℓ,0, Gℓ,1} = {0, h} then, with probability at least 1− δ, we have: For every ℓ ∈ I, zℓ = wτ(ℓ).

Proof. Fix some ℓ. Suppose f(xXℓ
◦ v(ℓ)

Xℓ
) is (1/30)-close to xτ(ℓ) with respect to the uniform

distribution. The case when it is (1/30)-close to xτ(ℓ) is similar. Since Xℓ = Yℓ,0 ∪ Yℓ,1 and
Yℓ,0 ∩ Yℓ,1 = ∅ we have that τ(ℓ) ∈ Yℓ,0 or τ(ℓ) ∈ Yℓ,1, but not both. Suppose τ(ℓ) ∈ Yℓ,0. The case

where τ(ℓ) ∈ Yℓ,1 is similar. Define the random variable Z(xXℓ
) = 1 if f(xXℓ

◦ v(ℓ)
Xℓ

) ̸= xτ(ℓ) and

Z(xXℓ
) = 0 otherwise. Then

ExXℓ
∈U [Z(xXℓ

)] ≤ 1

30
.

Therefore

ExYℓ,1
∈UExYℓ,0

∈U [Z(xYℓ,0
◦ xYℓ,1

)] ≤ 1

30

and by Markov’s bound

PrxYℓ,1
∈U

[
ExYℓ,0

∈U [Z(xYℓ,0
◦ xYℓ,1

)] ≥ 2

15

]
≤ 1

4
.

That is, for a random uniform string b ∈ {0, 1}n, with probability at least 3/4, f(xYℓ,0
◦ bYℓ,1

◦ v(ℓ)
Xℓ

)

is (2/15)-close to xτ(ℓ) with respect to the uniform distribution. Now, given that f(xYℓ,0
◦bYℓ,1

◦v(ℓ)
Xℓ

)

is (2/15)-close to xτ(ℓ) with respect to the uniform distribution the probability that Gℓ,0 = 0 is the

probability that f(bYℓ,0
◦ bYℓ,1

◦ v(ℓ)
Xℓ

) = f(bYℓ,0
◦ bYℓ,1

◦ v(ℓ)
Xℓ

) for h random uniform strings b ∈ {0, 1}n.

Let b(1), . . . , b(h) be h random uniform strings in {0, 1}n, V (b) be the event f(bYℓ,0
◦ bYℓ,1

◦ v(ℓ)
Xℓ

) =

f(bYℓ,0
◦ bYℓ,1

◦ v(ℓ)
Xℓ

) and A the event that f(xYℓ,0
◦ bYℓ,1

◦ v(ℓ)
Xℓ

) is (2/15)-close to xτ(ℓ) with respect

21

to the uniform distribution. Let g(xYℓ,0
) = f(xYℓ,0

◦ bYℓ,1
◦ v(ℓ)

Xℓ
). Then

Pr[V (b)|A] = Pr[g(bYℓ,0
) = g(bYℓ,0

)|A]

= Pr[(g(bYℓ,0
) = bτ(ℓ) ∧ g(bYℓ,0

) = bτ(ℓ)) ∨ (g(bYℓ,0
) = bτ(ℓ) ∧ g(bYℓ,0

) = bτ(ℓ))|A]
≤ Pr[g(bYℓ,0

) ̸= bτ(ℓ) ∨ g(bYℓ,0
) ̸= bτ(ℓ))|A]

≤ Pr[g(bYℓ,0
) ̸= bτ(ℓ)|A] +Pr[g(bYℓ,0

) ̸= bτ(ℓ))|A] ≤
4

15
.

Since τ(ℓ) ∈ Yℓ,0, we have wτ(ℓ) = 0. Therefore, by step 9 and since τ(ℓ) ∈ Xℓ,

Pr[zℓ ̸= wτ(ℓ)] = Pr[zℓ = 1]

= Pr[Gℓ,0 = 0 ∧Gℓ,1 = h]

≤ Pr[Gℓ,0 = 0] = Pr[(∀j ∈ [h])V (b(j))]

= (Pr[V (b)])h ≤
(
Pr[V (b)|A] +Pr[A]

)h ≤ (4/15 + 1/4)h ≤ (3/4)h

Therefore, the probability that zℓ ̸= wτ(ℓ) for some ℓ ∈ I is at most k(3/4)h ≤ δ.

The following is obvious

Lemma 16. The procedure RelVarValues makes O(k log(k/δ)) queries.

4 Testing Subclasses of k-Junta

In this section, we give testers for subclasses of k-Junta that are closed under variable and zero
projections.

Our tester will start by running the two procedures ApproxTarget and TestSets and there-
fore, by Lemmas 4, 8 and 11, if f ∈ C (and therefore is k-junta) then, with probability at least 2/3,
both procedures do not reject and item 1 in the following Assumption happens. By Lemmas 7,
9, and 12, if f is ϵ-far from every function in C and both procedures do not reject then, with
probability at least 13/15, item 2 in the following Assumption happens. Obviously, the above two
probabilities can be changed to 1 − δ for any constant δ without changing the asymptotic query
complexity.

Assumption 17. Throughout this section we assume that there are X, q ≤ k, I = {ℓ1, . . . , ℓq}
and V = {v(ℓ1), . . . , v(ℓq)} such that: For every ℓ ∈ I, v

(ℓ)

X
= 0 and f(v(ℓ)) ̸= f(0Xℓ

◦ v(ℓ)
Xℓ

). That is,

v(ℓ) ∈ V is a witness of f(xX ◦ 0X) for Xℓ and

1. If f ∈ C (and therefore is k-junta)

• f(xX ◦ 0X) ∈ C.

• Each x(Xℓ), ℓ ∈ I contains exactly one relevant variable.

• For every ℓ ∈ I, f(xXℓ
◦ v(ℓ)

Xℓ
) is a literal in {xτ(ℓ), xτ(ℓ)}.

2. If f is ϵ-far from every function in C then

22

• f(xX ◦ 0X) is (ϵ/3)-close to f with respect to D and therefore f(xX ◦ 0X) is (2ϵ/3)-far
from every function in C with respect to D.

• For every ℓ ∈ I, f(xXℓ
◦ v(ℓ)

Xℓ
) is (1/30)-close to a literal in {xτ(ℓ), x̄τ(ℓ)} with respect to

the uniform distribution.

We will also use the set of indices Γ := {τ(ℓ1), . . . , τ(ℓq)}. Notice that if f is k-junta then x(Γ) are
the relevant variables of f .

We remind the reader that for a projection π : X → X the string x(π) is defined as x(π)j = xπ(j)
for every j ∈ X. Define the projection πf,I : X → X that satisfies: For every ℓ ∈ I and every
j ∈ Xℓ, πf,I(j) = τ(ℓ). Define the function F (xΓ) = F (xτ(ℓ1), . . . , xτ(ℓq)) := f(x(πf,I) ◦ 0X). That
is, F is the function that results from substituting in f(xX ◦ 0X) for every ℓ ∈ I and every xi,
i ∈ Xℓ, the variable xτ(ℓ). Note here that the tester does not know τ(ℓ1), . . . , τ(ℓq).

We now show how to query F by querying f

Lemma 18. For the function F we have

1. Given (y1, . . . , yq), computing F (y1, . . . , yq) can be done with one query to f .

2. Given x ∈ {0, 1}n and δ, there is an algorithm that makes O(k log(k/δ)) queries and, with
probability at least 1 − δ, either discovers that some Xi, i ∈ I contains at least two rel-
evant variables in f (and therefore, whp, f is not k-junta) and then rejects or computes
z = (xτ(ℓ1), . . . , xτ(ℓq)) and F (z).

Proof. 1 is immediate. To prove 2 we use Lemma 15. We run RelVarValues(x,X, V, I, δ). If
it rejects then {Gℓ,0, Gℓ,1} ≠ {0, h} for some ℓ ∈ I and therefore Gℓ,0, Gℓ,1 > 0. This implies

that for some b, b′ ∈ {0, 1}n, f(bYℓ,0
◦ bYℓ,1

◦ v(ℓ)
Xℓ

) ̸= f(bYℓ,0
◦ bYℓ,1

◦ v(ℓ)
Xℓ

) and f(b′Yℓ,1
◦ b′Yℓ,0

◦ v(ℓ)
Xℓ

) ̸=

f(b′Yℓ,1
◦ b′Yℓ,0

◦ v(ℓ)
Xℓ

). Since Xℓ = Yℓ,0 ∪ Yℓ,1 and Yℓ,0 ∩ Yℓ,1 = ∅, the set x(Xℓ) contains at least two

relevant variables in f .
If for every ℓ we have {Gℓ,0, Gℓ,1} = {0, h} then, by Lemma 15, with probability at least 1− δ,

the procedure outputs z where for every ℓ, zℓ = xτ(ℓ). Then using 1 we compute F (z). Since by
Lemma 16, RelVarValue makes O(k log(k/δ)) queries, the result follows.

We now give the key lemma for the first tester

Lemma 19. Let C ⊆ k−Junta be a class that is closed under variable and zero projections and f
be any Boolean function. Let F (xΓ) = f(x(πf,I) ◦ 0X) where Γ = {τ(ℓ)|ℓ ∈ I} and C(Γ) be the set
of all functions in C that their relevant variables are x(Γ). If Assumption 17 is true, then

1. If f ∈ C then f(xX ◦ 0X) = F ∈ C(Γ).

2. If f is ϵ-far from every function in C with respect to D then either

(a) f(xX ◦ 0X) is (ϵ/3)-far from F with respect to D,
or

(b) F is (ϵ/3)-far from every function in C(Γ) with respect to D.

23

Proof. We first prove 1. If f ∈ C, then since C is closed under variable and zero projection
f(xX ◦ 0X) ∈ C. We have f(xX ◦ 0X) = f(◦ℓ∈IxXℓ

◦ 0X) and, by Assumption 17, every x(Xℓ),
ℓ ∈ I, contains exactly one relevant variable xτ(ℓ) of f(xX ◦0X). Therefore, f(xX ◦0X) is a function
that depends only on the variables xτ(ℓ), ℓ ∈ I. By the definition of x(πf,I) and since τ(ℓ) ∈ Xℓ we
have x(πf,I)τ(ℓ) = xτ(ℓ) and therefore f(xX ◦ 0X) = f(x(πf,I) ◦ 0X) = F .

We now prove 2. Suppose, for the contrary, f(xX ◦ 0X) is (ϵ/3)-close to F with respect to D
and F is (ϵ/3)-close to some function g ∈ C(Γ) with respect to D. Then f(xX ◦ 0X) is (2ϵ/3)-close
to g with respect to D. Since, by Assumption 17, f(xX ◦ 0X) is (ϵ/3)-close to f with respect to D
we get that f is ϵ-close to g ∈ C with respect to D. A contradiction.

In the following two subsections we discuss how to test the closeness of f(xX ◦ 0X) to F and F
to C(Γ). We will assume all the procedures in the following subsections have access to X,V, I that
satisfies Assumption 17.

4.1 Testing the Closeness of f(xX ◦ 0X) to F

ClosefF (f,D, ϵ, δ)
Input: Oracle that accesses a Boolean function f and D.
Output: Either “reject” or “OK”

1. Define F ≡ f(x(πf,I) ◦ 0X).
2. Repeat t = (3/ϵ) ln(2/δ) times
3. Choose u ∈ D.
4. z ←RelVarValue(u,X, V, I, δ/(2t)) .
5. If f(uX ◦ 0X) ̸= F (z) then Output(“reject”)
6. Return “OK”.

Figure 6: A procedure that tests whether f(xX ◦ 0X) is (ϵ/3)-far from F with respect to D.

We now give the procedure ClosefF that tests whether f(xX ◦ 0X) is (ϵ/3)-far from F with
respect to D. See Figure 6.

Lemma 20. For any ϵ, a constant δ, and (X,V, I) that satisfies Assumption 17, procedure ClosefF
makes O((k/ϵ) log(k/ϵ)) queries and

1. If f ∈ C then ClosefF returns OK.

2. If f(xX ◦ 0X) is (ϵ/3)-far from F with respect to D then, with probability at least 1 − δ,
ClosefF rejects.

Proof. ClosefF draws t = (3/ϵ) ln(2/δ) random u(i) ∈ {0, 1}n, i = 1, . . . , t according to the

distribution D. It finds z(i) = u
(i)
Γ and if F (u

(i)
Γ) = f(u

(i)
X ◦ 0X) for all i then it returns “OK”.

Otherwise it rejects.

24

If f ∈ C then, by 1 in Lemma 19, F (u
(i)
Γ) = f(u

(i)
X ◦ 0X) for every i. By Lemma 14 and

Assumption 17, z(i) = u
(i)
Γ for all i, and therefore ClosefF returns OK.

Suppose now f(xX◦0X) is (ϵ/3)-far from F with respect to D. By 2 in Lemma 18, RelVarValue

makes O(k log((kt)/δ)) queries and computes F (u
(i)
Γ), i = 1, . . . , t, with failure probability at most

δ/2. Then the probability that it fails to reject is at most (1− ϵ/3)t ≤ δ/2. This gives the result.
Therefore, ClosefF makes O((k/ϵ) log(k/ϵ)) queries and satisfies 1 and 2.

4.2 Testing the Closeness of F to C(Γ)

CloseFCD(f,D, ϵ, δ)
Input: Oracles that access a Boolean function f and D.
Output: Either “reject” or “OK”

1. C∗ ← C(Γ)
2. Repeat τ = (12/ϵ) ln(2|C∗|/δ) times
3. Choose u ∈ D.
4. z ←RelVarValue(u,X, V, I, 1/2) .
5. For every g ∈ C∗

6. If g(z) ̸= F (z) then C∗ ← C∗\{g}.
7. If C∗ = ∅ then Output(“Reject”)
8. Return “OK”
———————————————————————-
CloseFCU(f, ϵ, δ)
Input: Oracle that accesses a Boolean function f .
Output: Either “reject” or “OK”

1. C∗ ← C(Γ)
2. Repeat τ = (3/ϵ) ln(2|C∗|/δ)) times
3. Choose (z1, . . . , zq) ∈ U .
4. For every g ∈ C∗

5. If g(z) ̸= F (z) then C∗ ← C∗\{g}.
6. If C∗ = ∅ then Output(“Reject”)
7. Return “OK”

Figure 7: Two procedures that test whether F is (ϵ/3)-far from every function in C(Γ) with respect
to D and the uniform distribution, respectively.

In this section, we give the procedures CloseFCD and CloseFCU that test whether F is
(ϵ/3)-far from every function in C(Γ) with respect to D and the uniform distribution, respectively.
We prove

Lemma 21. For any ϵ and any constant δ and (X,V, I) that satisfies Assumption 17, the pro-
cedures CloseFCD and CloseFCU make O((k log |C(Γ)|)/ϵ) and O((log |C(Γ)|)/ϵ) queries to f ,
respectively, and

25

1. If f ∈ C then CloseFCD and CloseFCU output OK.

2. If F is (ϵ/3)-far from every function in C(Γ) with respect to D then, with probability at least
1− δ, CloseFCD rejects.

3. If F is (ϵ/3)-far from every function in C(Γ) with respect to the uniform distribution, then
with probability at least 1− δ, CloseFCU rejects.

Both procedures run in time poly(n, |C(Γ)|, 1/ϵ).

Proof. The proof for CloseFCU is similar to the proof of Lemma 20 with union bound.
For CloseFCD, notice that it calls RelVarValue(u,X, V, I, 1/2), and therefore at each itera-

tion, with probability 1/2, z = uΓ. By Chernoff’s bound ((9) in Lemma 60), with probability at
least 1 − δ/2, (3/ϵ) ln(2|C∗|/δ) of the chosen us in the procedures satisfy z = uΓ. Then again, by
union bound, the result follows.

4.3 Testing the Closeness of F to C(Γ) via Learning C(Γ)

In this subsection, we show how proper learning implies testing the closeness of F to C(Γ). The
proofs are similar to the proof of Proposition 3.1.1 in [39].

Let (X,V, I) be as in Assumption 17 and q = |I| ≤ k. Let Y = {y1, . . . , yq} be a set of Boolean
variables and C(Y) be the set of all functions in C that depend on all the variables of Y . Notice
that instead of using C(Y) we could have used C({x1, . . . , xq}) but here we use the new Boolean
variables yi to avoid confusion with the variables xi of f .

Remark 22. In all the lemmas in this subsection and the following one, in addition to the fact
that F depends on all the variables of Y , the learning algorithms can also make use of (X,V, I) that
satisfies Assumption 17. This may help for some classes. For example7, if the target function is a
unate monotone function, then from the witnesses in V , we can know if F is positive or negative
unate in yi, for each variable yi.

The following is an immediate result that follows from the two procedures CloseFCD and
CloseFCU in the previous subsection

Lemma 23. If there is a polynomial time algorithm that given a set

Y = {(y(1), ξ1), . . . , (y(t), ξt)} ⊆ {0, 1}q × {0, 1}

decides whether there is a function F ∈ C(Y) that is consistent with Y, i.e., F (y(i)) = ξi for all
i = 1, . . . , t, then there is a polynomial time algorithm BD (resp. BU) that makes O((k log |C(Γ)|)/ϵ)
queries (resp. O((log |C(Γ)|)/ϵ) queries) to f and

1. If f ∈ C then BD and BU output OK.

2. If F is (ϵ/3)-far from every function in C(Γ) with respect to D then, with probability at least
1− δ, BD rejects.

3. If F is (ϵ/3)-far from every function in C(Γ) with respect to the uniform distribution then,
with probability at least 1− δ, BU rejects.

7See the definition of unate in Subsection 5.4

26

We now give the reduction from exact learning

Lemma 24. If there is a polynomial time algorithm A that, given as an input any constant δ,
properly exactly learns C(Y) with confidence parameter δ and makes M(δ) membership queries to
F then there is a polynomial time algorithm B that, given as an input ϵ, any constant δ, makes
M(δ/3) +O((k/ϵ) log(1/ϵ)) (resp. M(δ/3) +O(1/ϵ)) queries to f and

1. If f ∈ C then, with probability at least 1− δ, B outputs OK.

2. If F is (ϵ/3)-far from every function in C(Γ) with respect to D (resp. with respect to the
uniform distribution) then, with probability at least 1− δ, B rejects.

Proof. Algorithm B runs A with confidence parameter δ/3 to learn F (y1, . . . , yq). By Lemma 18,
each membership query to F can be simulated by one membership query to f . If algorithm A
runs more than it should, asks more than M(δ/3) membership queries or outputs h ̸∈ C(Y) then
B rejects.

If A outputs h ∈ C(Y) then the algorithm needs to distinguish whether h(xΓ) is equal to F (xΓ)
or (ϵ/3)-far from F (xΓ) with respect to the distribution D (resp. uniform distribution). When the
distribution is uniform, the algorithm chooses t = (3/ϵ) ln(3/δ) strings v(1), . . . , v(t) ∈ {0, 1}q and
if F (v(i)) = h(v(i)) for all i then it outputs “OK”; otherwise it rejects.

In the distribution-free model, B chooses t = (12/ϵ) ln(2/δ) strings u(i) ∈ {0, 1}n according to
the distribution D. Then runs RelValValue(u(i), X, V, I, 1/2) to find, with probability 1/2 the

value of u
(i)
Γ , i = 1, . . . , t. If F (u

(i)
Γ) = h(u

(i)
Γ) for all i, then it outputs “OK”; otherwise it rejects.

The analysis and correctness of the algorithm are the same as in the above proofs and Propo-
sition 3.1.1 in [39].

We now give the reduction from learning from MQ and ExQD

Lemma 25. If there is a polynomial time algorithm A that, given as an input a constant δ, any
ϵ, learns C(Y) with respect to the distribution D (resp. uniform distribution), with confident δ,
accuracy ϵ, makes M(ϵ, δ) MQ to F and Q(ϵ, δ) ExQD (resp. ExQU) queries to F then there is a
polynomial time algorithm BD (resp. BU) that asks

O

(
M(ϵ/12, δ/3) + kQ(ϵ/12, δ/3) log(kQ(ϵ/12, δ/3)) +

k

ϵ
log

1

ϵ

)
queries (resp.

O

(
M(ϵ/12, δ/3) +Q(ϵ/12, δ/3) +

1

ϵ

)
queries) to f and

1. If f ∈ C then with probability at least 1− δ, BD and BU output OK.

2. If F is (ϵ/3)-far from every function in C(Γ) with respect to D then, with probability at least
1− δ, BD rejects.

3. If F is (ϵ/3)-far from every function in C(Γ) with respect to the uniform distribution then,
with probability at least 1− δ, BU rejects.

27

Proof. Algorithm B runs A with confidence parameter δ/3 and accuracy ϵ/12. By Lemma 18,
every membership query to F (y) can be simulated with one membership query to f . Every ExQD′

(resp. ExQ) for the induced distribution D′ of D on the coordinates Γ, can be simulated with one
ExQD and k log(3kQ(ϵ/12, δ/3)/δ) membership queries (resp. one ExQ) with failure probability
δ/(3Q(ϵ/12, δ/3)), and therefore, with failure probability δ/3 for all the ExQD′ queries asked in the
learning algorithm.

If algorithm A runs more than it should, asks more than Q(ϵ/12, δ/3) ExQD′ , asks more than
M(ϵ/12, δ/3) MQ or outputs h ̸∈ C(Y) then BD rejects. If A outputs h ∈ C(Y) then, with
probability at least 1− (2δ/3),

1. If F ∈ C(Γ) then F is (ϵ/12)-close to h

2. If F is (ϵ/3)-far from every function in C(Γ) then F is (ϵ/4)-far from h.

Now, using Chernoff’s bound in Lemma 60, algorithm B, can estimate the distance between F
and h with accuracy ϵ/24 and confidence δ/6 using O((log(1/δ))/ϵ) strings chosen according to
the distribution D′. This can be done using O((log(1/δ))/ϵ) queries in the uniform model and
O((k/ϵ)(log(1/δ) log(1/(ϵδ))) with confidence δ/6 in the distribution-free model.

Define the oracle WExQD (Weak ExQD) that returns with probability 1/2 a x ∈ {0, 1}n ac-
cording to the distribution D and with probability 1/2 an arbitrary x ∈ {0, 1}n. In some of the
learning algorithms given in the sequel, the algorithms still work if we replace the oracle ExQD with
WExQD. In that case, we can save the factor of log(3kQ(ϵ/12, δ/3)/δ) in the query complexity of
Lemma 25 in the distribution-free setting. We will discuss this in Section ??.

4.4 The First Tester

We are now ready to give the first tester.
Consider the testerTesterC in Figure 8. Note that the tester rejects if any one of the procedures

called by the tester rejects. We prove

Theorem 26. Let C ⊆ k−Junta that is closed under zero and variable projections. Then

1. There is a poly(|C(Γ)|, n, 1/ϵ) time two-sided adaptive algorithm, TesterC, for ϵ-testing C
that makes Õ((1/ϵ)(k + log |C(Γ)|)) queries. That is

(a) If f ∈ C then, with probability at least 2/3, TesterC accepts.

(b) If f is ϵ-far from every function in C with respect to the uniform distribution then, with
probability at least 2/3, TesterC rejects.

2. There is a poly(|C(Γ)|, n, 1/ϵ) time two-sided distribution-free adaptive algorithm, TesterC,
for ϵ-testing C that makes Õ((k/ϵ) log(2|C(Γ)|)) queries. That is

(a) If f ∈ C then, with probability at least 2/3, TesterC accepts.

(b) If f is ϵ-far from every function in C with respect to the distribution D then, with
probability at least 2/3, TesterC rejects.

28

TesterC(f,D, ϵ)
Input: Oracle that accesses a Boolean function f and D.
Output: If any one of the procedures reject

then “reject” or “accept”

1. (X,V, I)←ApproxTarget(f,D, ϵ, 1/3).
2. TestSets(X,V, I).
3. Define F ≡ f(x(πf,I) ◦ 0X)
4. ClosefF (f,D, ϵ, 1/15)

For any distribution
5. CloseFCD(f,D, ϵ, 1/15)
6. Return “accept”

For the uniform distribution
5. CloseFCU(f, ϵ, 1/15)
6. Return “accept”

Figure 8: A tester for subclasses C of k-Junta

Proof. We prove 1a and 2a. Let f ∈ C. Consider step 1 in TesterC. By Lemma 4 and 8, with
probability at least 2/3, ApproxTarget outputs (X,V, I) that satisfies Assumption 17. Now with
this assumption we have: By Lemma 11, TestSets in step 2 does not reject. By Lemma 20,
ClosefF in step 4 does not reject. By Lemma 21, CloseFCD and CloseFCU in step 5 do not
reject. Therefore, with probability at least 2/3 the tester accepts.

We now prove 1b and 2b. Suppose f is ϵ-far from every function in C with respect to D. The
proof for the uniform distribution is similar. If in step 1 ApproxTarget outputs (X,V, I) then by
Lemma 9, with probability at least 14/15, f(xX ◦ 0X) is (ϵ/3)-close to f . If in step 2 TestSets

does not reject then, by Lemma 12, with probability at least 14/15, for all ℓ ∈ I, f(xXℓ
◦ v(ℓ)

Xℓ
) is

(1/30)-close to a literal {xτ(ℓ), xτ(ℓ)}. Therefore with probability at least 13/15, Assumption 17 is
true. Then by Lemma 19, either f(xX ◦ 0X) is (ϵ/3)-far from F with respect to D, or F is (ϵ/3)-far
from every function in C(Γ) with respect to D. If f(xX ◦ 0X) is (ϵ/3)-far from F with respect to D
then by Lemma 20, with probability at least 14/15, ClosefF rejects. If F is (ϵ/3)-far from every
function in C(Γ) with respect to D then by Lemma 21, with probability at least 14/15, CloseFC
rejects. By the union bound the probability that the tester rejects is at least 2/3.

The query complexity follows from Lemmas 10, 13, 20 and 21.

If we replace CloseFCD and CloseFCU with the testers in Lemma 23, 24 and 25, we get the
following results

Theorem 27. If there is a polynomial time algorithm that given a set

Y = {(y(1), ξ1), . . . , (y(t), ξt)} ⊆ {0, 1}q × {0, 1}

decides whether there is a function F ∈ C(Y) that is consistent with Y, then

29

1. There is a polynomial time two-sided adaptive algorithm for ϵ-testing C that makes Õ((1/ϵ)(k+
log |C(Γ)|)) queries.

2. There is a polynomial time two-sided distribution-free adaptive algorithm for ϵ-testing C that
makes Õ((k/ϵ) log(2|C(Γ)|)) queries.

Theorem 28. If there is a polynomial time algorithm A that, given as an input any constant δ,
properly exactly learns C(Y) with confidence parameter δ and makes M(δ) membership queries then

1. There is a polynomial time two-sided adaptive algorithm for ϵ-testing C that makes M(1/24)+
Õ(k/ϵ) queries.

2. There is a polynomial time two-sided distribution-free adaptive algorithm for ϵ-testing C that
makes M(1/24) + Õ(k/ϵ) queries.

Theorem 29. If there is a polynomial time algorithm A that, given as an input a constant δ and
any ϵ, learns C(Y), with confident δ, accuracy ϵ, makes M(ϵ, δ) MQ and Q(ϵ, δ) ExQU (resp.
ExQD) then

1. There is a polynomial time two-sided adaptive algorithm for ϵ-testing C that makes

Õ

(
M(ϵ/12, 1/24) +Q(ϵ/12, δ/3) +

k

ϵ

)
queries.

2. There is a polynomial time two-sided distribution-free adaptive algorithm for ϵ-testing C that
makes

Õ

(
M(ϵ/12, 1/24) + kQ(ϵ/12, 1/24) +

k

ϵ

)
queries.

Finally, one trivial but useful result is

Theorem 30. If there is a polynomial time algorithm A that, given as an input any constant δ and
any ϵ makes M(ϵ, δ) MQs and Q(ϵ, δ) ExQU (resp. ExDD) and distinguish between F ∈ C(Y) and
F ϵ-far from every function in C(Y) with respect to the uniform distribution (resp. with respect to
the distribution D) then

1. There is a polynomial time two-sided adaptive algorithm for ϵ-testing C that makes

Õ

(
M(ϵ/12, 1/24) +Q(ϵ/12, 1/24) +

k

ϵ

)
queries.

2. There is a polynomial time two-sided distribution-free adaptive algorithm for ϵ-testing C that
makes

Õ

(
M(ϵ/12, 1/24) + kQ(ϵ/12, 1/24) +

k

ϵ

)
queries.

30

5 Results

In this section we define the classes and give the results for the classes k-Junta, k-Linear, k-Term,
s-Term Monotone r-DNF, size-s Decision Tree, size-s Branching Program, Functions with Fourier
Degree at most d, Length-k Decision List and s-Sparse Polynomial of Degree d.

We will use words that are capitalized for classes and non-capitalized words for functions. For
example, k-Junta is the class of all k-juntas.

5.1 Testing k-Junta

For k-Junta in uniform distribution framework, Ficher et al. [33] introduced the junta testing
problem and gave a non-adaptive algorithm that makes Õ(k2)/ϵ queries. Blais in [7] gave a non-
adaptive algorithm that makes Õ(k3/2)/ϵ queries and in [8] an adaptive algorithm that makes
O(k log k+k/ϵ) queries. On the lower bounds side, Fisher et al. [33] gave an Ω(

√
k) lower bound for

non-adaptive testing. Chockler and Gutfreund [28] gave an Ω(k) lower bound for adaptive testing
and, recently, Sağlam in [56] improved this lower bound to Ω(k log k). For the non-adaptive testing
Chen et al. [24] gave the lower bound Ω̃(k3/2)/ϵ.

For testing k-junta in the distribution-free model, Chen et al. [46] gave a one-sided adaptive
algorithm that makes Õ(k2)/ϵ queries and proved a lower bound Ω(2k/3) for any non-adaptive
algorithm. The result of Halevy and Kushilevitz in [42] gives a one-sided non-adaptive algorithm
that makes O(2k/ϵ) queries. The adaptive Ω(k log k) uniform-distribution lower bound from [56]
trivially extends to the distribution-free model. Bshouty [15] gave a two-sided adaptive algorithm
that makes Õ(1/ϵ)k log k queries.

Our algorithm in this paper gives

Theorem 31. For any ϵ > 0, there is a polynomial time two-sided distribution-free adaptive algo-
rithm for ϵ-testing k-Junta that makes Õ(k/ϵ) queries.

Proof. We use Theorem 30. Since every F (Y) is in k-Junta(Y), the algorithm A always accepts.
Therefore, we have M = Q = 0, and the algorithm makes Õ(k/ϵ) queries.

5.2 Testing k-Linear

The function is linear if it is a sum (over the binary field F2) of variables. The class Linear is the
class of all linear functions. The class k-Linear is Linear∩k-Junta. That is, the class of functions
that are the sum of at most k variables.

Blum et al. [13] showed that there is an algorithm for testing Linear under the uniform dis-
tribution that makes O(1/ϵ) queries. For testing k-Linear under the uniform distribution, Fisher,
et al. [33] gave a tester that makes O(k2/ϵ) queries. They also gave the lower bound Ω(

√
k) for

non-adaptive algorithms. Goldreich [35], proved the lower bound Ω(k) for non-adaptive algorithms
and Ω(

√
k) for adaptive algorithms. Then Blais et al. [9] proved the lower bound Ω(k) for adaptive

algorithms. Blais and Kane, in [10], gave the lower bound k − o(k) for adaptive algorithms and
2k − o(k) for non-adaptive algorithms.

Testing k-Linear can be done by first testing if the function is k-Junta and then testing if
it is Linear. Therefore, there is an adaptive algorithm for ϵ-testing k-Linear under the uniform
distribution that makes Õ(k/ϵ) queries.

In this paper we prove

31

Theorem 32. For any ϵ > 0, there is a polynomial time two-sided distribution-free adaptive algo-
rithm for ϵ-testing k-Linear that makes Õ(k/ϵ) queries.

Proof. We use Theorem 29. Here C(Y) = {y1 + · · · + yq} contains one function and therefore the
learning algorithm just outputs y1 + · · ·+ yq. Therefore M = Q = 0 and the result follows.

5.3 Testing k-Term

A term (or monomial) is a conjunction of literals and Term is the class of all terms. A k-term is a
term with at most k literals and k-Term is the class of all k-terms.

In the uniform distribution model, Pernas et al. [51], gave a tester for k-terms that makes
O(1/ϵ) queries in the uniform model. We give the same result in the next section. In this paper we
prove the following result for the distribution-free model. When k = n, better results can be found
in [34, 32].

Theorem 33. For any ϵ > 0, there is a polynomial time two-sided distribution-free adaptive algo-
rithm for ϵ-testing k-Term that makes Õ(k/ϵ) queries.

Proof. Recall that x0i = xi and x1i = xi. Here C(Y) = {yξ11 ∧ · · · ∧ y
ξq
q |ξ ∈ {0, 1}q} contains 2q

functions. We use Theorem 29 with Remark 22. Since V contains witnesses for each variable it
follows that ξi are known. Just take any string a that satisfies F (a) = 1 and then ξi = ai. Therefore
M = Q = 0 and the result follows.

5.4 Testing s-Term Monotone r-DNF

A DNF is a disjunction of terms. An r-DNF is a disjunction of r-terms. The class s-Term r-DNF
is the class of all r-DNFs with at most s terms. The class s-Term Monotone r-DNF is the class of
all r-DNFs with at most s terms with no negated variables. A DNF f is called unate DNF if there
is ξ ∈ {0, 1}n such that f(xξ11 , . . . , xξnn) is monotone DNF. If ξi = 0 then we say that f is positive
unate in xi; otherwise we say that f is negative unate in xi. Similarly, one can define the classes
Unate DNF, Unate s-DNF etc.

We first give a learning algorithm for s-Term Monotone r-DNF. The algorithm is in Figure 9.
In the algorithm, we use P1/r for the probability distribution over the strings b ∈ {0, 1}n where
each coordinate bi is chosen randomly and independently to be 1 with probability 1 − 1/r and
0 with probability 1/r. For two strings x, y ∈ {0, 1}n we denote x ∗ y = (x1y1, . . . , xnyn) where
xiyi = xi ∧ yi. The procedure FindMinterm(f, a) flips bits that are one in a to zero as long as
f(a) = 1.

We now show

Lemma 34. If the target function f is s-term monotone r-DNF then for any constant δ, algorithm
LearnMonotone asks O(s/ϵ) ExQD and O(sr log(ns)) MQ and, with probability at least 1 − δ,
learns an s-term monotone r-DNF, h, that satisfies PrD[h ̸= f] ≤ ϵ.

Proof. We first show that if in the mth iteration of the algorithm (steps 3-11) the function h
contains ℓ terms of f and f(a) = 1 and h(a) = 0 then, with probability at least 1 − δ/(2s), steps
5 to 11 adds to h a new term of f . This implies that in the (m + 1)th iteration h contains ℓ + 1
terms of f . Then, since the number of terms of f is at most s, with probability at least 1− δ/2, all

32

LearnMonotone(f,D, ϵ, δ, s, r)
Input: Oracle that accesses a Boolean function f

that is s-term monotone r-DNF and D.
Output: h that is s-term monotone r-DNF

1. h← 0.
2. Repeat 4(s/ϵ) log(1/δ) times.
3. Choose a ∈ D.
4. If f(a) = 1 and h(a) = 0 then
5. t← 0
6. While t ≤ α := 4r ln(2ns/δ) and wt(a) > r do
7. t← t+ 1; If t = α+ 1 Output “fail”
8. Choose y ∈ P1/r

9. If f(a ∗ y) = 1 then a← a ∗ y
10. a←FindMinterm(f, a)
11. h← h ∨

∏
ai=1 xi

12. Output h

Figure 9: A learning algorithm for s-Term Monotone r-DNF

the terms in h are terms in f . We then show that, with probability at least 1− δ/2, the procedure
outputs h that satisfies PrD[h ̸= f] ≤ ϵ.

First notice that if f(a) = 1 and h(a) = 0 then for every y ∈ {0, 1}n, h(a ∗ y) = 0. This follows
from the fact that h is monotone and a ∗ y ≤ a. Therefore if a receives the values a(1), . . . , a(τ) in
the While loop then f(a(i)) = 1 and h(a(i)) = 0 for all i = 1, . . . , τ . We also have a(i+1) = a(i) if
f(a(i)∗y) = 0 and a(i+1) = a(i)∗y if f(a(i)∗y) = 1. Consider the random variable Wi = wt(a(i))−r.
We will now compute E[Wi+1|Wi]. Since f(a(i)) = 1 and h(a(i)) = 0, there is a term T in f that is

not in h that satisfies T (a(i)) = 1. Suppose T = xj1xj2 · · ·xjr′ , r
′ ≤ r. Then a

(i)
j1

= · · · = a
(i)
jr′

= 1.

Consider another r − r′ entries in a(i) that are equal to 1, a
(i)
jr′+1

= · · · = a
(i)
jr

= 1. Such entries

exist because of the condition wt(a) > r of the While command. Note that wt(a(i)) = Wi + r.
Let jr+1, . . . , jr+Wi be the other entries of a(i) that are equal to 1. Let A be the event that, for
the y ∈ P1/r chosen at this stage, yj1 = · · · = yjr = 1. Notice that if event A happens then

T (a(i+1)) = f(a(i+1)) = 1 and a(i+1) = a(i) ∗ y. Then

E[Wi+1|Wi] = E[Wi+1|Wi, A]Pr[A] +E[Wi+1|Wi, Ā]Pr[Ā]

≤ E[Wi+1|Wi, A]

(
1− 1

r

)r

+Wi

(
1−

(
1− 1

r

)r)
(1)

= Wi

(
1− 1

r

)r+1

+Wi

(
1−

(
1− 1

r

)r)
(2)

= Wi

(
1− 1

r

(
1− 1

r

)r)
≤Wi

(
1− 1

4r

)
.

The inequality in (1) follows from the fact that Wi+1 ≤ Wi and (2) follows from the fact that the

33

expected number of ones in yjr+1ajr+1 , . . . , yjr+Wi
ajr+Wi

is (1− 1/r)Wi.

Therefore E[Wi] ≤ n(1 − 1/(4r))i. The probability that the algorithm fails is the probability
that t = 4r ln(2ns/δ). By Markov’s Bound, Lemma 58, this is bounded by

Pr[wt(a(t)) > r] = Pr[Wt > 1] ≤ E[Wt] ≤ n

(
1− 1

4r

)t

≤ δ

2s
.

This completes the first part of the proof.
Now we show that, with probability at least 1 − δ/2, the procedure outputs h that satisfies

PrD[f ̸= h] ≤ ϵ. Let h(i) be the function h at iteration i = 1, 2, . . . , w. Since h(1) =⇒ h(2) =⇒
· · · =⇒ h(w) = h =⇒ f , if PrD[f ̸= h] > ϵ then PrD[f ̸= h(i)] > ϵ for all i. Therefore, the
probability that PrD[f ̸= h] > ϵ is less than the probability that for v = 4s log(1/δ)/ϵ strings
a(1), . . . , a(v) chosen independently at random according to the distribution D, less than s of them
satisfies gi(a

(i)) ̸= f(a(i)) for Boolean functions gi that satisfy PrD[gi ̸= f] ≥ ϵ. By Chernoff’s
bound, Lemma 60, this probability is less than δ/2.

The algorithm asks at most 4s log(1/δ)/ϵ = O(s/ϵ) ExQD and at most s · 4r ln(2ns/δ) =
O(sr log(ns)) MQ.

Now we show

Theorem 35. For any ϵ > 0, there is a polynomial time two-sided distribution-free adaptive algo-
rithm for ϵ-testing s-Term Monotone r-DNF that makes Õ(rs2/ϵ) queries.

Proof. The number of relevant variables in any s-term monotone r-DNF is at most q ≤ k =
sr. By Lemma 34, C(Y) can be learned with constant confidence δ and accuracy ϵ in M =
Õ(sr log(qs)) = Õ(sr) MQ and O(s/ϵ) ExQD. By Theorem 29, there is a distribution-free tester
for s-Term Monotone r-DNF that makes Õ(s2r/ϵ) queries.

Theorem 36. For any ϵ > 0, there is a polynomial time two-sided distribution-free adaptive algo-
rithm for ϵ-testing s-Term Unate r-DNF that makes Õ(rs2/ϵ) queries.

Proof. The set of witnesses tells us, for every variable xi, if f is positive unate in xi or negative

unate. If f(v(ℓ)) = 1, f(0Xℓ
◦ v(ℓ)

Xℓ
) = 0 then f is positive unate in xτ(ℓ) and if f(v(ℓ)) = 0,

f(0Xℓ
◦ v(ℓ)

Xℓ
) = 1 then f is negative unate in xτ(ℓ). Then the result immediately follows from

Theorem 35.

5.5 Testing Size-s Decision Tree and Size s Branching Program

A decision tree is a rooted binary tree in which each internal node is labeled with a variable xi
and has two children. Each leaf is labeled with an output from {0, 1}. A decision tree computes a
Boolean function in an obvious way: given an input x ∈ {0, 1}n, the value of the function on x is
the output in the leaf reached by starting at the root and going left or right at each internal node
according to whether the variable’s value in x is 0 or 1, respectively. The size of a decision tree is
the number of leaves of the tree. The class size-s Decision Tree is the class of all decision trees of
size s.

A branching program is a rooted directed acyclic graph with two sink nodes labeled 0 and 1.
As in the decision tree, each internal node is labeled with a variable xi and has two children. The

34

two edges to the children are labeled with 0 and 1. Given an input x, the value of the branching
program on x is the label of the sink node that is reached as described above. The size of a
branching program is the number of nodes in the graph. The class size-s Branching Program is the
class of all Branching Program of size s.

Diakonikolas et al. [30], gave a tester for size-s Decision Tree and size s Branching Program
under the uniform distribution that makes Õ(s4/ϵ2) queries. Chakraborty et al. [21] improved the
query complexity to Õ(s/ϵ2). In this paper we prove

Theorem 37. For any ϵ > 0, there is a two-sided adaptive algorithm for ϵ-testing size-s Decision
Tree and size-s Branching Program that makes Õ(s/ϵ) queries.

There is a two-sided distribution-free adaptive algorithm for ϵ-testing size-s Decision Tree and
size s Branching Program that makes Õ(s2/ϵ) queries.

Proof. For decision tree, C(Y) contains the decision trees with q = |Y | ≤ k = s relevant variables.
It is shown in [30] that |C(Y)| ≤ (8s)s. For branching programs |C(Y)| ≤ (s + 1)3s. Now by
Theorem 26 the result follows.

5.6 Functions with Fourier Degree at most d

For convenience here we take the Boolean functions to be f : {−1, 1}n → {−1, 1}. Then every
Boolean function has a unique Fourier representation f(x) =

∑
S⊆[n] f̂S

∏
i∈S xi where f̂S are the

Fourier coefficients of f . The Fourier degree of f is the largest d = |S| with f̂S ̸= 0.
Let C be the class of all Boolean functions over {−1, 1}n with Fourier degree at most d. Nisan

and Szegedy, [50], proved that any Boolean function with Fourier degree d must have at most
k := d2d relevant variables. Diakinikolas et al. [30], show that every nonzero Fourier coefficient
of f ∈ C is an integer multiple of 1/2d−1. Since

∑
S⊆[n] f̂

2
S = 1, there are at most 22d−2 nonzero

Fourier coefficients in f ∈ C.
Diakonikolas et al. [30], gave an exponential time tester for Boolean functions with Fourier

degree at most d under the uniform distribution that makes Õ(26d/ϵ2) queries. Chakraborty et
al. [21] improved the query complexity to Õ(22d/ϵ2). In this paper we prove

Theorem 38. For any ϵ > 0, there is a poly(2d, n) time two-sided distribution-free adaptive al-
gorithm for ϵ-testing for the class of Boolean functions with Fourier degree at most d that makes
Õ(22d + 2d/ϵ) queries.

Proof. Bshouty gives in [16] an exact learning algorithm for such class8 that asks M = Õ(22d log n)
membership queries for any constant confidence parameter δ. Now since q = |Y | ≤ k = d2d, by
Theorem 28 the result follows.

5.7 Testing Length k Decision List

A decision list is a sequence f = (xi1 , ξ1, a1), . . . , (xis , ξs, as) for any s where ξi, ai ∈ {0, 1}. This
sequence represents the following function: f(x) := If xi1 = ξ1 then output(a1) else if xi2 = ξ2 then
output(a2) else if · · · else if xis = ξs then output(as). Length-k decision list is a decision list with
s ≤ k. The class Decision List is the class of all decision lists and the class Length-k Decision List
is the class of all length-k decision lists.

8The class in [16] is the class of decision trees of depth d but the analysis is the same for the class of functions
with Fourier degree at most d

35

It is known that this class is learnable under any distribution with O((k log n + log(1/δ))/ϵ)
ExQD, [14, 52]. This implies

Theorem 39. For any ϵ > 0, there is a polynomial time two-sided distribution-free adaptive algo-
rithm for ϵ-testing Length-k Decision List that makes Õ(k2/ϵ) queries.

Proof. The result follows from Theorem 29.

5.8 Testing s-Sparse Polynomial of Degree d

A polynomial (over the field F2) is a sum (in the binary field F2) of monotone terms. An s-sparse
polynomial is a sum of at most s monotone terms. We say that the polynomial f is of degree d
if its terms are monotone d-terms. The class s-Sparse Polynomial of Degree d is the class of all
s-sparse polynomials of degree d. The class Polynomial of Degree d is the class of all polynomials
of degree d.

In the uniform distribution model, Diakonikolas et al. [30], gave the first testing algorithm for the
class s-Sparse Polynomial that runs in exponential time and makes Õ(s4/ϵ2) queries. Chakraborty
et al. [21] improved the query complexity to Õ(s/ϵ2). Diakonikolas et al. gave in [31] the first
polynomial time testing algorithm that makes poly(s, 1/ϵ) queries. In [1], Alon et al. gave a testing
algorithm for Polynomial of Degree d that makes O(1/ϵ+ d22d) queries. They also show the lower
bound Ω(1/ϵ + 2d) for the number of queries. Combining those results we get a polynomial time
testing algorithm for s-Sparse Polynomial of Degree d that makes poly(s, 1/ϵ) + Õ(22d) queries.
Just run the Alon et al. algorithm in [1] and then run Diakonikolas et al. algorithm in [31] and
accept if both algorithms accept.

Here we prove the following Theorem.

Theorem 40. For any ϵ > 0, there is a two-sided adaptive algorithm for ϵ-testing s-Sparse Poly-
nomial of Degree d that makes Õ(s/ϵ+ s2d) queries.

For any ϵ > 0, there is a two-sided distribution-free adaptive algorithm for ϵ-testing s-Sparse
Polynomial of Degree d that makes Õ(s2/ϵ+ s2d) queries.

We first give a learning algorithm LearnPolynomial for s-sparse polynomial of degree d. See
Figure 10.

Lemma 41. Let f be an s-sparse polynomial of degree d. For any constant δ, algorithm Learn-
Polynomial asks O((s/ϵ) log s) ExQD and O(s2d log(ns)) MQ and, with probability at least 1− δ,
learns an s-sparse polynomial of degree d, h, that satisfies PrD[h ̸= f] ≤ ϵ.

Proof. Suppose f =
∑

M∈F M , where F are the set of monotone d-terms of f and |F | = s′ ≤ s.
Suppose, at some stage of the algorithm h =

∑
M∈F ′ M where F ′ ⊂ F . Then f+h =

∑
M∈F\F ′ M .

Notice that F ′ is the set of terms of f that is found by the algorithm up to this stage and F\F ′ is
the set of terms that is yet to be found. Since the number of terms of f is at most s, all we need
to show is that:

1. Each time the algorithm executes steps 6-14, with probability at least 1 − δ/(2s), it finds a
term of f + h, and therefore, a new term of f .

2. Assuming 1., the algorithm, with probability at least 1− δ/2, outputs an s-sparse polynomial
of degree d, h that satisfies PrD[f ̸= h] ≤ ϵ.

36

LearnPolynomial(f,D, ϵ, δ, s, d)
Input: Oracle that accesses an s-sparse polynomial f

of degree d and D.
Output: An s-sparse polynomial of degree d, h, or “fail”

1. h← 0, t(h)← 0.
2. Repeat (s/ϵ) ln(3s/δ) times.
3. Choose a ∈ D.
4. t(h)← t(h) + 1.
5. If (f + h)(a) = 1 then
6. m← 0;
7. While m ≤ α := 16 · 2d(2 ln(s/δ) + lnn) and wt(a) > d do
8. m← m+ 1;
9. Choose y ∈ U
10. If (f + h)(a ∗ y) = 1 then a← a ∗ y
11. If wt(a) > d then “fail”
12. M ← Find a monotone term in (f + h)(a ∗ x)
13. h← h+M
14. t(h)← 0.
15. If t(h) = (1/ϵ) ln(3s/δ) then Output h

Figure 10: A learning algorithm for s-sparse polynomial of degree d

Then, by the union bound, the success probability of the algorithm is at least 1− δ and the result
follows.

We first prove 1. Let g = f +h. Suppose that the algorithm finds a string a such that g(a) = 1.
Then a satisfies at least one term in g. Let M ′ ∈ F\F ′ be one of them and let d′ ≤ d be the degree
of M ′ . Then g(a ∗ x) =

∑
M∈F\F ′,M(a)=1M contains M ′ and therefore g(a ∗ x) is not zero.

We first show that the probability that after α1 := 16 · 2d ln(sn/δ) iterations of steps 7-10, the
weight of a does not drop below 24d is less than δ/(4s). Then we show that, if the weight of a is less
than or equal to 24d then the probability that after α2 := α− α1 more iterations of steps 7-10 the
weight of a does not drop below d+ 1 is less than δ/(4s). If these two facts are true then after the
algorithm finishes executing the While command, with probability at least 1 − δ/(2s), the weight
of a is less than d+ 1.

It is known that for any non-zero polynomialH of degree at most d, PrU [H(x) = 1] ≥ 1/2d, [18].
Since g(a ∗ x) is of degree at most d, for a random uniform string y we get Pr[g(a ∗ y) = 1] ≥ 1/2d.
Now suppose wt(a) ≥ 24d. By Chernoff’s bound, Lemma 60, the probability that wt(a ∗ y) >
(3/4)wt(a) is at most e−wt(a)/24 ≤ 2−d−1. Therefore, by the union bound,

Pr[g(a ∗ y) = 1 and wt(a ∗ y) ≤ (3/4)wt(a)] ≥ 1−
(
1− 1

2d
+

1

2d+1

)
≥ 1

2d+1
. (3)

The probability that after α1 = 16 · 2d ln(sn/δ) iterations of steps 7-10, the weight of a does not
drop below 24d is less than the probability that for α1 = 16 · 2d ln(sn/δ) random uniform strings y,

37

less than log(n)/ log(4/3) of them satisfies g(a ∗ y) = 1 and wt(a ∗ y) ≤ (3/4)wt(a) given that a
satisfies wt(a) ≥ 24d and g(a ∗ x) ̸= 0. By (3) and Chernoff’s bound this probability is less than
δ/(4s).

We now show that if wt(a) < 24d, then after α2 = α−α1 = 16 · 2d ln(s/δ) iterations of steps 7-
10, with probability at least 1 − δ/(4s), the weight of a drops below d + 1. Take a that satisfies
d+ 1 ≤ wt(a) < 24d. Then

Pr[g(a ∗ y) = 1 and wt(a ∗ y) < wt(a)] ≥ Pr[g(a ∗ y) = 1]−Pr[wt(a ∗ y) = wt(a)]

≥ 1

2d
− 1

2d+1
=

1

2d+1
.

Then as before, with an additional α2 iterations of steps 7-10, with probability at least 1− δ/(4s),
the weight of a drops below d+ 1.

Once the weight of a is less or equal to d, the algorithm finds in step 12 a monotone term in
g(a ∗ x) by building a truth table of g(a ∗ x) using at most 2d queries and learning one of its terms.
This term is in g because all the terms of g(a ∗ x) are terms of g(x).

The proof that the algorithm, with probability at least 1− δ/2, outputs h such that PrD[f ̸=
h] ≤ ϵ is identical to the proof in Lemma 9 for the output of ApproxTarget.

We are now ready to prove Theorem 40.

Proof. By Lemma 41, Theorem 29 and since n = |Y | = sd, Q = (s/ϵ) log s and M = s2d log(sd)
the result follows.

6 Testing Classes that are Close to k-Junta

In this section, we show the result for s-term DNF in the uniform distribution model. Then in the
following section, we show how to extend it to other classes.

The main idea is the following. We first run the procedure ApproxC in Figure 11 that finds
X ⊂ [n] and w ∈ {0, 1}n such that, with high probability,

1. The projection xX ◦ wX removes variables from f that appear only in terms of f of size at
least c log(s/ϵ) for some large constant c.

2. h = f(xX ◦ wX) is (ϵ/8)-close to f .

From (1) we conclude that the terms of size at most c log(s/ϵ) in f contain all the variables of h.
Since the number of terms in f is at most s the number of variables that remain in h is at most
k := cs log(s/ϵ). From (2) we conclude that if f is ϵ-far from every s-term DNF then h is (7ϵ/8)-
far from every s-term DNF and therefore h is (7ϵ/8)-far from every s-term DNF with at most
k variables. Therefore, it is enough to distinguish whether h is an s-term DNF with at most k
variables or (7ϵ/8)-far from every s-term DNF with at most k variables. This can be done by the
algorithm TesterC in the previous section

Note that removing variables that only appears in large size terms does not necessarily remove
large terms in f . Therefore, h may still contain large terms even after running ApproxTarget in
TesterC. To handle large terms, we can use any learning algorithm that learns h with accuracy
ϵ/12 and use Theorem 29.

38

This gives a tester for s-term DNF that makes Õ(s2/ϵ) queries, which is not optimal. This
is because the number of s-term DNF with at most k variables is m := 2O(ks) (and therefore the
number of queries in TesterC is at least O((logm)/ϵ) = Õ(s2/ϵ)). To get an optimal query tester,
we do the following. We build a tester that uses only random uniform queries for the class s-term
DNF with at most k variables and terms of size at most r = c′ log(s/ϵ) where c′ is a large constant
and show that this tester, with high probability, works well for h. The reason for that is that when
the algorithm uses random uniform queries, with high probability, all the terms of h that are of size
greater than r are zero for every query. Since the number of s-term DNF with at most k variables
and terms of size at most r is at most m = 2O(rs log k) the number of queries in TesterC is at most
O(k/ϵ+ (logm)/ϵ) = Õ(s/ϵ).

In the next subsection, we give the procedureApproxC that removes variables that only appear
in large size terms, and in Subsection 6.2, we give the tester for s-Term DNF. Then in Section 7,
we extend the above to other classes.

6.1 Removing Variables that only Appears in Large Size Terms

Algorithm ApproxC(f, ϵ, λ)
Input: Oracle that accesses a Boolean function f and
Output: Either “X ⊆ [n], w ∈ {0, 1}n” or “reject”

Partition [n] into r sets
1. Set m = c log(s/ϵ); r = 8ms.
2. Choose uniformly at random a partition X1, X2, . . . , Xr of [n]

Find a close function and relevant sets
3. Set X = ∅; I = ∅; t(X) = 0; k = 3ms
4. Repeat M = 100λk ln(100k)/ϵ times
5. Choose u, v ∈ U .
6. t(X)← t(X) + 1
7. If f(uX ◦ vX) ̸= f(u) then
8. Binary Search to find a new relevant set Xℓ; X ← X ∪Xℓ; I ← I ∪ {ℓ}.
9. If |I| > k then output “reject” and halt.
10. t(X) = 0.
11. If t(X) = 100λ ln(100k)/ϵ then
12. Choose a random uniform w;
13. Output(X,w, f(xX ◦ wX)).

Figure 11: A procedure that removes variables from f that only appears in large size terms.

We explain our technique by proving the result for s-term DNF.
We remind the reader that for a term T , the size of T is the number of variables that are in it.

For a variable x and ξ ∈ {0, 1}, xξ = x if ξ = 0 and xξ = x if ξ = 1. For a term T = xc1i1 ∧ · · · ∧ x
cv
iv

we denote by Va(T) = {xi1 , . . . , xiv}, the set of variables that appears in T . For a set of terms T

39

we denote Va(T) = ∪T∈T Va(T). Here λ > 1 is any constant and we use c = O(log λ) to denote a
large constant.

Consider the procedure ApproxC in Figure 11. We will prove the following two Lemmas

Lemma 42. Let f be an s-term DNF. ApproxC makes Õ(s/ϵ) queries and, with probability at
least 9/10, outputs X and w such that

1. f(xX ◦ wX) is s-term DNF.

2. The number of relevant variables in f(xX ◦ wX) is at most 3cs log(s/ϵ) = O(s log(s/ϵ)).

Lemma 43. Let f be ϵ-far from every s-term DNF. ApproxC makes Õ(s/ϵ) queries and either
rejects, or with probability at least 9/10, outputs X and w such that f(xX ◦ wX) is (1 − 1/λ)ϵ-far
from every s-term DNF.

We first prove Lemma 42

Proof. Consider an s-term DNF, f = T1 ∨ T2 ∨ · · · ∨ Ts′ , where s′ ≤ s. Let T = {T1, . . . , Ts′}. Let
T1 = {T ∈ T : |Va(T)| ≤ m} be the set of terms in T of size at most m := c log(s/ϵ) and let R1 =
Va(T1) be the set of variables that appear in the terms in T1. Let T2 = {T ∈ T : |Va(T)\R1| ≤ m}
be the set of terms T ∈ T that contain at most m variables not in R1. Let R2 = R1∪Va(T2) be the
variables in R1 and of the terms in T2. Let T3 = {T ∈ T : |Va(T)\R1| > m} be the set terms T ∈ T
that contain more than m variables that are not in R1. Let T4 = {T ∈ T : |Va(T)\R2| ≥ m} be
the set of terms in T ∈ T that contain at least m variables not in R2. Let R3 = R2 ∪Va(T3\T4) be
the set of variables in R2 and of the terms in T3\T4. Then

|R1| ≤ ms, |R2| ≤ 2ms, |R3| ≤ 3ms and T4 ⊆ T3.

In steps 1-2, procedure ApproxC uniformly at random partitions [n] into r = 8ms sets
X1, . . . , Xr. Suppose that the variables in R2 are distributed to the sets Xj1 , . . . , Xjq , q ≤ |R2| ≤
2ms.

For each T ∈ T4, the expected number of variables in Va(T)\R2 that are not distributed to
one of the sets Xj1 , . . . , Xjq is greater or equal to (1− q/r)m = (3/4)m. By Hoeffding’s bound,
Lemma 61, and the union bound, the probability that it is greater than m/2 in every term T ∈ T4
is at least 1− s · exp(−m/8) ≥ 99/100.

In steps 5-7 procedure ApproxC are repeated M times and it finds relevant sets using two
random uniform strings u and v. If f(uX ◦ vX) ̸= f(u) then a new relevant set is found. Consider

any T ∈ T3. The size of T is at least m. Suppose T = xξ1a1 ∧ · · · ∧ x
ξm′
am′ , m

′ ≥ m. For random
uniform u, v ∈ {0, 1}n, the probability that there is no j ∈ [m′] such that uaj = (uX ◦ vX)aj = ξj
is at most (3/4)m. The probability that this happens for at least one T ∈ T3 and at least one of
the M randomly uniformly chosen u and v in the procedure is at most (3/4)msM ≤ 1/100. Notice
that if uaj = (uX ◦ vX)aj = ξj then T (u) = T (uX ◦ vX) = 0 and T (w) = 0 for every string w
in the binary search that is made to find a new relevant set. Therefore, with probability at least
99/100, the procedure runs as if f contains no terms in T3. Let f ′ = ∨T∈T \T3T . With probability
at least 99/100 the procedure runs as if f = f ′. The number of relevant variables in f ′ is at most
|R2| ≤ 2ms and all those variables are distributed to Xj1 , . . . , Xjq . Therefore, with probability at
least 99/100, the procedure generates at most 2ms < k relevant sets and therefore, by step 9, it
does not reject and those relevant sets are from Xj1 , . . . , Xjq .

40

The output of the procedure is X ⊆ Xj1 ∪ · · · ∪Xjq and a random uniform w. We now show
that with high probability f(xX ◦ wX) contains at most k = 3ms relevant variables.

We have shown above that with probability at least 99/100 every term T ∈ T4 contains at least
m/2 variables that are not distributed to Xj1 , . . . , Xjq . Therefore, for a fixed term T ∈ T4 and for

a random uniform w, the probability that T (xX ◦wX) = 0 is at least 1− (1/2)m/2. The probability
that T (xX ◦ wX) = 0 for every T ∈ T4 is at least 1 − s(1/2)m/2 ≥ 99/100. Therefore, when we
randomly uniformly choose w ∈ {0, 1}n, with probability at least 99/100, the function f(xX ◦wX)
does not contain terms from T4. Thus, with probability at least 99/100, f(xX ◦ wX) contains at
most |R3| ≤ 3ms variables.

Now as in the proof of Lemma 10, the query complexity is 2M + k log r = Õ(s/ϵ).

We now prove Lemma 43.

Proof. As in the proof of Lemma 9, the probability that the algorithm fails to output X that
satisfies Prx,y∈U [f(xX ◦ yX) = f(x)] ≤ ϵ/(100λ) is at most

k
(
1− ϵ

100λ

)(100λ ln(100/k))/ϵ
=

1

100
.

If Prx,y∈U [f(xX ◦ yX) = f(x)] ≤ ϵ/(100λ) then, by Markov’s inequality, Lemma 58, for a random
uniform w, with probability at least 99/100, Prx∈U [f(xX ◦ wX) = f(x)] ≤ ϵ/λ.

Now as in the proof of Lemma 10, the query complexity is 2M + k log r = Õ(s/ϵ).

In the next subsection, we give the result for s-term DNF, and then we show how to use the
above technique to other classes.

6.2 Testing s-term DNF

We have shown in Lemma 42 and 43 that, using Õ(s/ϵ) queries, the problem of testing s-Term DNF
can be reduced to the problem of testing s-Term DNF with k = O(s log(s/ϵ)) relevant variables.
We then can use TesterC for the latter problem. This gives a tester for s-term DNF that makes
Õ(s2/ϵ). This is because the number of s-term DNF with k = O(s log(s/ϵ)) relevant variables is

2Õ(s2). We will now show how to slightly change the tester TesterC and get one that makes Õ(s/ϵ)
queries.

In TesterC the procedures ApproxTarget, TestSet and ClosefF make O(k log k), O(k) and
O((k/ϵ) log(k/ϵ)) queries, respectively. This is Õ(s/ϵ) queries. Therefore, the only procedure that
makes Õ(s2/ϵ) queries in TesterC is CloseFCU . So we will change this procedure.

Let h be an s-term DNF. Notice that in step 3 in CloseFCU , for a random uniform z =
(z1, . . . , zq) ∈ {0, 1}q, the probability that z satisfies a term T in h of size at least c log(s/ϵ) (i.e.,
T (z) = 1), is at most (ϵ/s)c. Therefore, if in CloseFCU we define C∗ to be the class of all s-
term DNF with terms of size at most c log(s/ϵ), then the probability that for at least one of the
τ = (3/ϵ) log(|C∗|/δ) random uniform z = (z1, . . . , zq) and at least one of the terms T in h of size
at least c log(s/ϵ), T satisfies z, is at most sτ(ϵ/s)c ≤ 1/100. Therefore, with probability at least
99/100 the algorithm runs as if h is s-term DNF with terms of size at most c log(s/ϵ) and then
accept. Since log |C∗| = Õ(s) we get

Theorem 44. For any ϵ > 0, there is a two-sided adaptive algorithm for ϵ-testing s-Term DNF
that makes Õ(s/ϵ) queries.

41

For completeness we wrote the tester. See TesterApproxC in Figure 12. In the tester
C({y1, . . . , yq}, c log(s/ϵ)) is the class of all s-term DNFs with terms of size at most c log(s/ϵ)
over q variables.

7 Results

In this section, we extend the technique used in the previous section to other classes.

TesterApproxC(f,D, ϵ)
Input: Oracle that access a Boolean function f and D.
Output: Either “reject” or “accept”

1. (X,w)←ApproxC(f, ϵ, 1/6).
2. h := f(xX ◦ wX).
3. (X,V, I)←ApproxTarget(h, U, ϵ, 1/6).
4. TestSets(X,V, I).
5. ClosefF (f, U, ϵ, 1/15)
6. C∗ ← C({y1, . . . , yq}, c log(s/ϵ)) where q = |V |
Test closeness to C∗

7. Repeat τ = (3/ϵ) log(30|C∗|) times
8. Choose (z1, . . . , zq) ∈ U .
9. For every g ∈ C∗

10. If g(z) ̸= F (z) then C∗ ← C∗\{g}.
11. If C∗ = ∅ then “reject”
12. Return “accept”

Figure 12: A procedure for testing s-Term DNF

7.1 Testing s-Term Monotone DNF

We first use the algorithm LearnMonotone in Figure 9 to show

Lemma 45. Let f : {0, 1}n → {0, 1} be an s-term Monotone DNF. For constant δ, algorithm
LearnMonotone(f, U, ϵ/2, δ/2, s, 2(log(s/ϵ)+log(1/δ))) asks O(s/ϵ) ExQU and O(s(log n+log s)·
log(s/ϵ)) MQ and, with probability at least 1− δ, learns an s-term monotone DNF h that satisfies
PrU [h ̸= f] ≤ ϵ.

Proof. Let f̂ be the function f without the terms of size greater than 2(log(s/ϵ) + log(1/δ)). Then

PrU [f ̸= f̂] ≤ s2−2(log(s/ϵ)+log(1/δ))) ≤ ϵ

2
.

In the algorithm LearnMonotone the probability that one of the assignments in step 3 (that
is, a where a ∈ U) satisfies one of the terms in f of size greater than 2(log(s/ϵ) + log(1/δ)) is less
than

(4s/ϵ)(log(1/δ))s2−2(log(s/ϵ)+log(1/δ)) ≤ δ

2
.

42

Also for a monotone term T , if T (a) = 0 then for any y, T (a ∗ y) = 0. Therefore, with probability
at least 1− δ/2, the algorithm runs as if f is f̂ (which is s-term monotone (2(log(s/ϵ)+ log(1/δ)))-
DNF). By Lemma 34, if the target is f̂ then, with probability at least 1− δ/2, LearnMonotone
outputs h that is (ϵ/2)-close to f̂ . Since f̂ is (ϵ/2)-close to f and h is (ϵ/2)-close to f̂ we have that
h is ϵ-close to f . This happens with probability at least 1− δ.

The number of queries follows from Lemma 34.

We now prove

Theorem 46. For any ϵ > 0, there is a polynomial time two-sided adaptive algorithm for ϵ-testing
s-Term Monotone DNF that makes Õ(s/ϵ) queries.

Proof. We first run ApproxC and get an s-term monotone DNF h with O(s log(s/ϵ)) variables
that is (ϵ/6)-close to f . We then use Theorem 29 with Lemma 45.

We also have

Theorem 47. For any ϵ > 0, there is a polynomial time two-sided adaptive algorithm for ϵ-testing
s-Term Unate DNF that makes Õ(s/ϵ) queries.

Proof. The proof is similar to the proof of Theorem 36.

7.2 Testing Size-s Boolean Formula and Size-s Boolean Circuit

A Boolean formula is a rooted tree in which each internal node has arbitrarily many children and
is labeled with AND or OR. Each leaf is labeled with a Boolean variable xi or its negation x̄i. The
size of a Boolean formula is the number of AND/OR gates it contains. The class size-s Boolean
Formula is the class of all Boolean formulas of size at most s.

A Boolean circuit is a rooted directed acyclic graph with internal nodes labeled with an AND,
OR or NOT gate. Each AND/OR gate is allowed to have arbitrarily many descendants. Each
directed path from the root ends in one of the nodes x1, x2, . . . , xn, 0, 1.

The same analysis that we did for s-term DNF also applies to size-s Boolean formulas and size-s
Boolean circuit. Analogous to the size of terms, we take the number of distinct literals a gate has.
If the gate is labeled with AND (respectively, OR) and the number of distinct literals it has is more
than c log(s/ϵ), then we replace the gate with a node labeled with 0 (respectively, 1) and remove
all the edges to its children.

Therefore we have

Lemma 48. Lemma 42 and 43 are also true for size-s Boolean formulas and size-s Boolean circuit.

We now prove

Theorem 49. For any ϵ > 0, there is a two-sided adaptive algorithm for ϵ-testing size-s Boolean
Formula that makes Õ(s/ϵ) queries.

Proof. Similar to testing s-term DNF, we can ignore gates that have more than c log(s/ϵ) distinct
literals. Just replace it with 0 if its label is AND and with 1 if it is OR.

The number of Boolean formulas of size s that have at most c log(s/ϵ) distinct literal in each

gate and at most k = O(s log(s/ϵ)) variables is 2Õ(s), [30]. The rest of the proof goes along with
the proof of testing s-term DNF.

43

The number of Boolean circuits of size s that have at most c log(s/ϵ) distinct literals in each

gate and at most k = O(s log(s/ϵ)) variables is 2Õ(s2), [30]. Then similar to the above proof one
can show

Theorem 50. For any ϵ > 0, there is a two-sided adaptive algorithm for ϵ-testing size-s Boolean
Circuit that makes Õ(s2/ϵ) queries.

7.3 Testing s-Sparse Polynomial

In the literature, the first testing algorithm for the class s-Sparse Polynomial runs in exponential
time [30] and makes Õ(s4/ϵ2) queries. Chakraborty et al., [21], then gave another exponential time
algorithm that makes Õ(s/ϵ2) queries. Diakonikolas et al. gave in [31] the first polynomial time
testing algorithm that makes poly(s, 1/ϵ) queries. Here we prove

Theorem 51. For any ϵ > 0, there is a two-sided adaptive algorithm for ϵ-testing s-Sparse Poly-
nomial that makes Õ(s2/ϵ) queries.

LearnPolyUnif(f, ϵ, δ, s)
Input: Oracle that accesses a Boolean function f that is s-sparse polynomial.
Output: h that is s-sparse polynomial

1. h← 0, t(h)← 0, w ← 0.
2. Repeat (s/ϵ) ln(3s/δ) log(3s/δ) times.
3. Choose a ∈ U .
4. t(h)← t(h) + 1.
5. If (f + h)(a) = 1 then
6. m← 0, w ← w + 1
7. If w = log(3s/δ) then Output h
8. While m ≤ α := 16 · (8s/ϵ)(2 ln(s/δ) + lnn) and wt(a) > log(s/ϵ) + 3 do
9. m← m+ 1;
10. Choose y ∈ U
11. If (f + h)(a ∗ y) = 1 then a← a ∗ y
12. If wt(a) > log(s/ϵ) + 3 then Goto 16
13. w ← 0.
14. a← Find a monotone term in (f + h)(a ∗ x)
15. h← h+

∏
ai=1 xi

16. t(h)← 0.
17. If t(h) = (1/ϵ) ln(3s/δ) then Output h

Figure 13: A learning algorithm for s-sparse polynomial under the uniform distribution

We have shown in Lemma 42 and 43 that the problem of testing s-Term DNF can be reduced to
the problem of testing s-Term DNF with k = O(s log(s/ϵ)) relevant variables. The same reduction
and analysis show that the problem of testing s-sparse polynomials can be reduced to the problem
of testing s-sparse polynomials with k = O(s log(s/ϵ)) relevant variables. The reduction makes
Õ(s/ϵ) queries. Thus

44

Lemma 52. Lemma 42 and 43 are also true for s-Sparse Polynomials.

We can then use TesterC for the latter problem. Therefore, all we need to do in this section
is to find a learning algorithm for the class of s-sparse polynomials with k = O(s log(s/ϵ)) relevant
variables.

Consider the algorithm LearnPolyUnif in Figure 13. We prove

Lemma 53. Let f be a s-sparse polynomial with n variables. For constant δ, algorithm Learn-
PolyUnif asks Õ(s/ϵ) ExQU and Õ((s2/ϵ) log n) MQ and, with probability at least 1− δ, learns an
s-sparse polynomial h that satisfies PrU [h ̸= f] ≤ ϵ.

Proof. Let f = M1 +M2 + · · · +Ms′ , s
′ ≤ s, where deg(M1) ≤ · · · ≤ deg(Ms′′) ≤ log(s/ϵ) + 3 <

deg(Ms′′+1) ≤ · · · ≤ deg(Ms′). Let f1 = M1 + · · · + Ms′′ and f2 = Ms′′+1 + · · · + Ms′ . Then
f = f1 + f2 and PrU [f2 = 1] ≤ s2− log(s/ϵ)−3 = ϵ/8. If f(a) ̸= f1(a) then f2(a) = 1 and therefore
PrU [f ̸= f1] ≤ PrU [f2 = 1] ≤ ϵ/8 and PrU [f = f1] ≥ 1 − ϵ/8. In fact, if A(x) is the event that
Ti(x) = 0 for all i > s′′ then PrU [A] ≥ 1− ϵ/8.

The algorithm LearnPolyUnif is similar to the algorithm LearnPolynomial with d = log(s/ϵ)+
3 with the changes that is described below.

First notice that in the algorithm the hypothesis h contains only terms from f1, that is, terms
of size at most log(s/ϵ)+ 3. This is because in step 12 the algorithm skips the command that adds
a term to h when wt(a) ≥ log(s/ϵ) + 3. Suppose at some stage of the algorithm, h =

∑
i∈B⊆[s′′]Mi

contains some terms of f1 and let g = f + h =
∑

i∈[s′]\B Mi. Suppose PrU [f ̸= h] ≥ ϵ. Then
PrU [g = 1] ≥ ϵ. We want to compute the probability that the algorithm finds a term in f1 + h =∑

i∈[s′′]\B Mi and not in f2. That is, the probability that it finds a term of f of degree at most
log(s/ϵ) + 3. We first have

Pra∈U [(f1 + h)(a) = 1 ∧A|(f + h)(a) = 1] = Pra∈U [g(a) = 1 ∧A|g(a) = 1]

=
Pra∈U [g(a) = 1 ∧A]

Pra∈U [g(a) = 1]

≥ Pra∈U [g(a) = 1]−Pra∈U [A]

Pra∈U [g(a) = 1]

≥ 1− ϵ/8

ϵ
≥ 7

8
.

That is, if PrU [f ̸= h] ≥ ϵ and (f + h)(a) = 1 then with probability at least 7/8, (f1 + h)(a) = 1
and for every term T in f2, T (a) = 0. If the event A(a) happens then for any y and for every term
T in f2, T (a ∗ y) = 0, and therefore, for such a, the algorithm runs as if the target is f1.

When the algorithm reaches step 5 and finds a string a ∈ {0, 1}n such that (f + h)(a) = 1, we
have three cases:

1. The event B ≡ [((f1 + h)(a) = 1 and A(a)] happens.

2. PrU [f ̸= h] ≥ ϵ and B.

3. PrU [f ̸= h] < ϵ and B.

Case 1. Notice that steps 8-11 are identical to steps 7-10 in LearnPolynomial in Figure 10 with
d = log(s/ϵ) + 3. Therefore, as in the proof of Lemma 41, with probability at least 1 − δ/3 every
assignment a that satisfies B gives a term in f1 that is not in h.

45

Case 2. This case can happen with probability at most 1/8. So the probability that it happens
log(3s/δ) consecutive times is at most δ/(3s). The probability that it does happen for some of the
at most s different hypothesis h generated in the algorithm is at most δ/3. Notice that w counts
the number of consecutive times that this case happens and step 7 outputs h when it does happen
log(3s/δ) consecutive times. Therefore, with probability at most δ/3 the algorithm halts in step 7
and output h that satisfies Pr[f ̸= h] ≥ ϵ. This is also the reason that the algorithm repeats the
search for a in step 2, (s/ϵ) ln(3s/δ) log(3s/δ) times which is log(3s/δ) times more than in algorithm
LearnPolynomial.

When this case happens, the algorithm either ends up with a string a of weight that is greater
than ℓ := log(s/ϵ) + 3 and then it ignores this string, or, it ends up with a string of weight less
than or equal to ℓ and then, Step 14 finds a new term in f1. This is because that a string of weight
less than or equal to ℓ cannot satisfy a term of degree more than ℓ.
Case 3. This case cannot happen more than log(3s/δ) consecutive times because if it does step 7
outputs h which is a good hypothesis.

8 A General Method for Other Testers

In this section, we generalize the method we have used in the previous section and then prove some
more results

Algorithm ApproxGeneralC(f, ϵ, δ)
Input: Oracle that accesses a Boolean function f
Output: Either “X ⊆ [n], w ∈ {0, 1}n” or “reject”

Partition [n] into r sets
1. Set r = kc+1.
2. Choose uniformly at random a partition X1, X2, . . . , Xr of [n]

Find a close function and relevant sets
3. Set X = ∅; I = ∅; t(X) = 0
4. Repeat M = (4c1k/(δϵ)) ln(4k/δ) times
5. Choose u, v ∈ U .
6. t(X)← t(X) + 1
7. If f(uX ◦ vX) ̸= f(u) then
8. Find a new relevant set Xℓ; X ← X ∪Xℓ; I ← I ∪ {ℓ}.
9. If |I| > k then Output “reject”
10. t(X) = 0.
11. If t(X) = (4c1/(δϵ)) ln(4k/δ) then
12. Choose a random uniform w;
13. Output(X,w).

Figure 14: An algorithm that removes variables from f that have a small influence.

We define the distribution D[p] to be over
∏n

i=1{0, 1, xi} where each coordinate i is chosen to

46

be xi with probability p, 0 with probability (1 − p)/2 and 1 with probability (1 − p)/2. We will
denote by |f | the size of f in C which is the length of the representation of the function f in C.

Consider the algorithm ApproxGeneralC in Figure 14. We start with the following result

Lemma 54. Let δ < 1/2, c1 ≥ 1, λ > 1 and c ≥ 1 be any constants, k := k(ϵ, δ, |f |) be an
integer and M = (4c1k/(δϵ)) ln(4k/δ). Let C be a class of functions where for every f ∈ C there is
h ∈ (C ∩ k-Junta) with relevant variables x(Y) = {xi|x ∈ Y }, Y ⊆ [n], and h′ ∈ (C ∩ (λk)-Junta)
that satisfy the following:

1. Prz∈D[1/2][f(z) ̸= h(z)] ≤ δ/(4M).

2. Pry∈D[1/kc][f(xY ◦ yY) ̸= h′(y)] ≤ δ/4.

The algorithm ApproxGeneralC makes Õ(k/ϵ) queries and,

1. If f ∈ C then, with probability at least 1− δ, the algorithm does not reject and outputs X and
w such that f(xX ◦ wX) ∈ C has at most λk relevant variables.

2. For any f , if the algorithm does not reject then, with probability at least 1 − δ, Pr[f(x) ̸=
f(xX ◦ wX)] ≤ ϵ/c1.

Proof. Let f ∈ C. Let h ∈ C ∩ k−Junta and h′ ∈ (C ∩ (λk)-Junta) be functions that satisfies 1
and 2. The algorithm in step 5 chooses two random uniform strings u and v. Define z = (z1, . . . , zn)
such that zi = 0 if ui = vi = 0, zi = 1 if ui = vi = 1, and zi = xi if ui ̸= vi. Since u and v are chosen
uniformly at random we have that z ∈ D[1/2] and therefore, with probability at least 1− δ/(4M),
f(z) = h(z). If f(z) = h(z) then f(u) = h(u) and f(uX ◦ vX) = h(uX ◦ vX) for any X ⊆ [n].
In Step 8 ApproxGeneral does a binary search to find a new relevant set. In the binary search
it queries strings a that satisfy ai = zi = ui = vi for all i that satisfies zi ∈ {0, 1}. Therefore,
f(a) = h(a) for all the strings a generated in the binary search for finding a relevant set. Therefore,
with probability at least 1− δ/(4M), f(a) = h(a) for all the queries used in one iteration and, with
probability at least 1 − δ/4, f(a) = h(a) for all the queries used in the algorithm. That is, with
probability at least 1− δ/4, the algorithm runs as if the target is h.

Therefore, if f ∈ C, then with probability at least 1−δ/4, each one of the relevant sets discovered
in the algorithm contains at least one relevant variable of h. Then since h ∈ k-Junta, the algorithm
does not reject in Step 9, that is, |I| ≤ k.

Now we show that, if f ∈ C then with probability at least 1− δ/4, f(xX ◦wX) contains at most
λk relevant variables. Consider the partition in steps 1-2 in the algorithm and let Xi1 , . . . , Xik′ ,
k′ ≤ k, be the sets where the indices of the relevant variables x(Y) of h are distributed. Let
X ′ = Xi1 ∪ · · · ∪ Xik′ . Notice that for a random uniform w ∈ {0, 1}n, (xX′ ◦ wX′) = (xY ◦ yY)
where y ∈ D[k′/kc+1]. That is, given that the relevant variables of h are distributed to k′ different
sets that their union is X ′, the probability distributions of (xX′ ◦ wX′) and of (xY ◦ yY) are
identical. Choosing a string in D[k′/kc+1] can be done by first choosing a string b in D[1/kc]
and then substitute in each variable xi, i ̸∈ Y , in b, 0, 1 or xi with probability 1/2 − k′/(2k),
1/2− k′/(2k) or k′/k, respectively. Therefore, since Pry∈D[1/kc][f(xY ◦ yY) ̸= h′(y)] ≤ δ/4, we have
Pry∈D[k′/kc+1][f(xY ◦ yY) ̸= h′(y)] ≤ δ/4 and, thus, with probability at least 1− δ/4, we have that
f(xX′ ◦wX′) = h′(x). In particular, with probability at least 1− δ/4, f(xX′ ◦wX′) has at most λk
relevant variables. Since X ⊆ X ′ we also have with the same probability f(xX ◦ wX) has at most
λk relevant variables. This completes the proof of 1.

47

Now let f be any boolean function. If the algorithm does not reject then |I| ≤ k. Since for
the final X, f(uX ◦ vX) ̸= f(u) for (4c1/(δϵ)) ln(4k/δ) random uniform u and v, we have that the
probability that the algorithm fails to outputX that satisfiesPrx,y∈U [f(xX◦yX) ̸= f(x)] ≤ δϵ/(4c1)
is at most

k

(
1− δϵ

4c1

)(4c1/(δϵ)) ln(4k/δ)

=
δ

4
.

If Prx,y∈U [f(xX ◦ yX) ̸= f(x)] ≤ δϵ/(4c1) then, by Markov’s inequality, for a random uniform w,
with probability at least 1 − δ/4, Prx∈U [f(xX ◦ wX) ̸= f(x)] ≤ ϵ/c1. This completes the proof
of 2.

In the next subsections, we give some results that follow from Lemma 54.

8.1 Testing Decision List

In [30], Diakonikolas et al. gave a polynomial time tester for Decision List that makes Õ(1/ϵ2)
queries. In this paper, we give a polynomial time tester that makes Õ(1/ϵ) queries.

We show

Theorem 55. For any ϵ > 0, there is a two-sided adaptive algorithm for ϵ-testing Decision List
that makes Õ(1/ϵ) queries.

Proof. Let f = (xi1 , ξ1, a1), . . . , (xis , ξs, as) be any decision list. We first use Lemma 54.
Define k = min(s, c′ log(1/(ϵδ))) for some large constant c′ and h = (xi1 , ξ1, a1), . . . , (xik , ξk, ak).

For the distribution D[1/2], the probability that f(z) = h(z) is 1 when k = s and at least 1 −
(3/4)k ≥ 1 − 1/(3M) where M = (4c1k/(δϵ)) ln(4k/δ). For the distribution D[1/k2] and Y =
{i1, . . . , ik}, the probability that f(xY ◦yY) has more than 2k relevant variables is less than (3/4)k ≤
δ/3.

The query complexity of ApproxGeneral is Õ(k/ϵ) = Õ(1/ϵ). Therefore all we need to do to
get the result is to give a tester for decision list of size k = O(log(1/ϵ)) that makes Õ(1/ϵ) queries.
The learnability of this class with Õ(1/ϵ) ExQs follows from [52, 14].

8.2 Testing r-DNF and r-Decision List for Constant r

An r-decision list is a sequence f = (T1, ξ1, a1), . . . , (Ts, ξs, as) for any s where ξi, ai ∈ {0, 1} and Ti

are r-terms. This sequence represents the following function: f(x) :=“If T1 = ξ1 then output(a1)
else if T2 = ξ2 then output(a2) else if · · · else if Ts = ξs then output(as)”. The class r-Decision
List is the class of all r-decision lists and the class of Length-s r-Decision List is the class of all
r-decision lists f = (T1, ξ1, a1), . . . , (Tm, ξm, am) with m ≤ s.

In this subsection, we show

Theorem 56. Let r be any constant. For any ϵ > 0, there is a two-sided adaptive algorithm for
ϵ-testing r-Decision List and r-DNF that makes Õ(1/ϵ) queries.

It is known that the class Length-s r-Decision List is learnable under any distribution in time
O(nr) using O((sr log n + log(1/δ))/ϵ) ExQD, [14, 52]. Also we may assume that T1, . . . , Ts are
distinct and therefore s is less than

∑r
i=1

(
n
i

)
2i , the number of terms of size at most r. Thus, for

constant r, it is enough to prove that r-Decision List and r-DNF satisfies 1 and 2 in Lemma 54
with k = poly(log(1/ϵ)).

48

We now prove the result for r-Decision List when r is constant. The same analysis shows that
the result is also true for r-DNF.

Consider an r-decision list f = (T1, ξ1, a1) · · · (Ts, ξs, as). If ξi = 0 then we change (Ti, 0, ai) to

the equivalent expression (x
1−ci1
i1

, 1, ai) · · · (x
1−ciℓ
iℓ

, 1, ai) where Ti = xc1i1 · · ·x
cℓ
iℓ
. Therefore we may

assume that ξj = 1 for all j. In that case we just write f = (T1, a1) · · · (Ts, as).
For an r-decision list f = (T1, a1) · · · (Ts, as), a sublist of f is an r-decision list g = (Ti1 , ai1) · · ·

(Tiℓ , aiℓ) such that 1 ≤ i1 < i2 < · · · < iℓ ≤ s.
We first prove

Lemma 57. Let r be a constant. For any r-decision list f there is a kr := O(logr(1/ϵ))-length
r-decision list h that is a sublist of f and satisfies 1 and 2 in Lemma 54.

Proof. We show that it satisfies 1 in Lemma 54. The proof that it also satisfies 2 is similar.
We give a stronger result as long as r is constant. We prove by induction that for any r-

decision list f there is a kr = O(logr(1/ϵ))-length r-decision list h that is a sublist of f and satisfies
Prz∈D[1/2][f(z) ̸= h(z)] ≤ poly(ϵ).

The proof is by induction on r. For r = 1, the result follows from the proof of Theorem 55 in
the previous subsection. Assume the result is true for r-decision list. We now show the result for
(r + 1)-decision list.

Let c be a large constant. Let f = (T1, a1) · · · (Ts, as) be (r + 1)-decision list. Let s1 = 1 and
Ts1 , . . . , Tsw be a sequence of terms such that s1 < s2 < · · · < sw ≤ s and for every i, si is the
minimal integer that is greater than si−1 such that the variables in Tsi do not appear in any one of
the terms Ts1 , Ts2 , . . . , Tsi−1 . Define h0 = (T1, a1)(T2, a2) · · · (Tsw′ , asw′) if w′ := c2r+1 ln(1/ϵ) ≤ w
and h0 = f if w′ > w. Then

Prz∈D[1/2][f(z) ̸= h0(z)] ≤ Pr[T1(z) = 0 ∧ T2(z) = 0 ∧ · · · ∧ Tsw′ (z) = 0]

≤ Pr[Ts1(z) = 0 ∧ Ts2(z) = 0 ∧ · · · ∧ Tsw′ (z) = 0]

≤
(
1− 1

2r+1

)w′

≤ poly(ϵ).

Let S = {xj1 , . . . , xjt} be the set of the variables in Ts1 , . . . , Tsw′ . Then t ≤ (r + 1)w′ = c(r +
1)2r+1 ln(1/ϵ) and every term Ti in h0 contains at least one variable in S. Consider all the terms that
contains the variable xj1 , Ti1 = xj1T

′
i1
, Ti2 = xj1T

′
i2
, . . . , Tiℓ = xj1T

′
iℓ
, i1 < i2 < · · · < iℓ. Consider

the r-decision list g := (T ′
i1
, a1)(T

′
i2
, a2) · · · (T ′

iℓ
, aℓ). By the induction hypothesis there is an r-

decision list g′ that is a sublist of g of length at most kr = O(logr(1/ϵ)) such that Prz∈D[1/2][g(z) ̸=
g′(z)] ≤ poly(ϵ). Let h1 be h0 without all the terms (Tiw , aiw) that correspond to the terms (T ′

iw
, aiw)

that do not occur in g′. It is easy to see that Prz∈D[1/2][h0(z) ̸= h1(z)] ≤ poly(ϵ). We do the same
for all the other variables xj2 , . . . , xjt of S and get a sequence of r-decision lists h2, h3, . . . , ht that
satisfies Prz∈D[1/2][hw(z) ̸= hw+1(z)] ≤ poly(ϵ). Therefore Prz∈D[1/2][f(z) ̸= ht(z)] ≤ t · poly(ϵ) =
poly(ϵ) and the length of ht is at most tkr = O(logr+1(1/ϵ)) = kr+1.

Acknowledgements

The author would like to express heartfelt gratitude to Oded Goldreich for his invaluable con-
tributions to this paper. Goldreich’s insightful discussions, thoughtful comments, and generosity

49

in allowing the inclusion of his overview of the first tester (Section 2) have greatly improved the
exposition and presentation of the technique employed in this paper.

References

[1] Noga Alon, Tali Kaufman, Michael Krivelevich, Simon Litsyn, and Dana Ron. Testing low-
degree polynomials over GF(2). In Approximation, Randomization, and Combinatorial Op-
timization: Algorithms and Techniques, 6th International Workshop on Approximation Al-
gorithms for Combinatorial Optimization Problems, APPROX 2003 and 7th International
Workshop on Randomization and Approximation Techniques in Computer Science, RAN-
DOM 2003, Princeton, NJ, USA, August 24-26, 2003, Proceedings, pages 188–199, 2003.
doi:10.1007/978-3-540-45198-3_17.

[2] Noga Alon, Tali Kaufman, Michael Krivelevich, Simon Litsyn, and Dana Ron. Testing reed-
muller codes. IEEE Trans. Information Theory, 51(11):4032–4039, 2005. doi:10.1109/TIT.
2005.856958.

[3] Dana Angluin. Queries and concept learning. Machine Learning, 2(4):319–342, 1987.

[4] Roksana Baleshzar, Meiram Murzabulatov, Ramesh Krishnan S. Pallavoor, and Sofya
Raskhodnikova. Testing unateness of real-valued functions. CoRR, abs/1608.07652, 2016.
URL: http://arxiv.org/abs/1608.07652, arXiv:1608.07652.

[5] Aleksandrs Belovs and Eric Blais. A polynomial lower bound for testing monotonicity. In Pro-
ceedings of the 48th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2016,
Cambridge, MA, USA, June 18-21, 2016, pages 1021–1032, 2016. doi:10.1145/2897518.

2897567.

[6] Arnab Bhattacharyya, Swastik Kopparty, Grant Schoenebeck, Madhu Sudan, and David Zuck-
erman. Optimal testing of reed-muller codes. In Property Testing - Current Research and
Surveys, pages 269–275. 2010. doi:10.1007/978-3-642-16367-8_19.

[7] Eric Blais. Improved bounds for testing juntas. In Approximation, Randomization and Com-
binatorial Optimization. Algorithms and Techniques, 11th International Workshop, APPROX
2008, and 12th International Workshop, RANDOM 2008, Boston, MA, USA, August 25-27,
2008. Proceedings, pages 317–330, 2008. doi:10.1007/978-3-540-85363-3_26.

[8] Eric Blais. Testing juntas nearly optimally. In Proceedings of the 41st Annual ACM Symposium
on Theory of Computing, STOC 2009, Bethesda, MD, USA, May 31 - June 2, 2009, pages
151–158, 2009. doi:10.1145/1536414.1536437.

[9] Eric Blais, Joshua Brody, and Kevin Matulef. Property testing lower bounds via commu-
nication complexity. In Proceedings of the 26th Annual IEEE Conference on Computational
Complexity, CCC 2011, San Jose, California, USA, June 8-10, 2011, pages 210–220, 2011.
doi:10.1109/CCC.2011.31.

50

https://doi.org/10.1007/978-3-540-45198-3_17
https://doi.org/10.1109/TIT.2005.856958
https://doi.org/10.1109/TIT.2005.856958
http://arxiv.org/abs/1608.07652
http://arxiv.org/abs/1608.07652
https://doi.org/10.1145/2897518.2897567
https://doi.org/10.1145/2897518.2897567
https://doi.org/10.1007/978-3-642-16367-8_19
https://doi.org/10.1007/978-3-540-85363-3_26
https://doi.org/10.1145/1536414.1536437
https://doi.org/10.1109/CCC.2011.31

[10] Eric Blais and Daniel M. Kane. Tight bounds for testing k-linearity. In Approximation,
Randomization, and Combinatorial Optimization. Algorithms and Techniques - 15th Interna-
tional Workshop, APPROX 2012, and 16th International Workshop, RANDOM 2012, Cam-
bridge, MA, USA, August 15-17, 2012. Proceedings, pages 435–446, 2012. doi:10.1007/

978-3-642-32512-0_37.

[11] Avrim Blum. Learning a function of r relevant variables. In Computational Learning Theory
and Kernel Machines, 16th Annual Conference on Computational Learning Theory and 7th
Kernel Workshop, COLT/Kernel 2003, Washington, DC, USA, August 24-27, 2003, Proceed-
ings, pages 731–733, 2003. doi:10.1007/978-3-540-45167-9_54.

[12] Avrim Blum and Pat Langley. Selection of relevant features and examples in machine learning.
Artif. Intell., 97(1-2):245–271, 1997. doi:10.1016/S0004-3702(97)00063-5.

[13] Manuel Blum, Michael Luby, and Ronitt Rubinfeld. Self-testing/correcting with applications to
numerical problems. J. Comput. Syst. Sci., 47(3):549–595, 1993. doi:10.1016/0022-0000(93)
90044-W.

[14] Anselm Blumer, Andrzej Ehrenfeucht, David Haussler, and Manfred K. Warmuth. Occam’s
razor. Inf. Process. Lett., 24(6):377–380, 1987. doi:10.1016/0020-0190(87)90114-1.

[15] Nader H. Bshouty. Almost optimal distribution-free junta testing. CoRR, abs/1901.00717,
2018.

[16] Nader H. Bshouty. Exact learning from an honest teacher that answers membership queries.
Theor. Comput. Sci., 733:4–43, 2018. doi:10.1016/j.tcs.2018.04.034.

[17] Nader H. Bshouty and Areej Costa. Exact learning of juntas from membership queries. Theor.
Comput. Sci., 742:82–97, 2018. doi:10.1016/j.tcs.2017.12.032.

[18] Nader H. Bshouty and Yishay Mansour. Simple learning algorithms for decision trees
and multivariate polynomials. SIAM J. Comput., 31(6):1909–1925, 2002. doi:10.1137/

S009753979732058X.

[19] Deeparnab Chakrabarty and C. Seshadhri. A o(n) monotonicity tester for boolean functions
over the hypercube. In Symposium on Theory of Computing Conference, STOC’13, Palo Alto,
CA, USA, June 1-4, 2013, pages 411–418, 2013. doi:10.1145/2488608.2488660.

[20] Deeparnab Chakrabarty and C. Seshadhri. A Õ(n) non-adaptive tester for unateness. CoRR,
abs/1608.06980, 2016. URL: http://arxiv.org/abs/1608.06980, arXiv:1608.06980.

[21] Sourav Chakraborty, David Garćıa-Soriano, and Arie Matsliah. Efficient sample extractors
for juntas with applications. In Automata, Languages and Programming - 38th International
Colloquium, ICALP 2011, Zurich, Switzerland, July 4-8, 2011, Proceedings, Part I, pages
545–556, 2011. doi:10.1007/978-3-642-22006-7_46.

[22] Xi Chen, Anindya De, Rocco A. Servedio, and Li-Yang Tan. Boolean function monotonicity
testing requires (almost) n1/2 non-adaptive queries. In Proceedings of the Forty-Seventh Annual
ACM on Symposium on Theory of Computing, STOC 2015, Portland, OR, USA, June 14-17,
2015, pages 519–528, 2015. doi:10.1145/2746539.2746570.

51

https://doi.org/10.1007/978-3-642-32512-0_37
https://doi.org/10.1007/978-3-642-32512-0_37
https://doi.org/10.1007/978-3-540-45167-9_54
https://doi.org/10.1016/S0004-3702(97)00063-5
https://doi.org/10.1016/0022-0000(93)90044-W
https://doi.org/10.1016/0022-0000(93)90044-W
https://doi.org/10.1016/0020-0190(87)90114-1
https://doi.org/10.1016/j.tcs.2018.04.034
https://doi.org/10.1016/j.tcs.2017.12.032
https://doi.org/10.1137/S009753979732058X
https://doi.org/10.1137/S009753979732058X
https://doi.org/10.1145/2488608.2488660
http://arxiv.org/abs/1608.06980
http://arxiv.org/abs/1608.06980
https://doi.org/10.1007/978-3-642-22006-7_46
https://doi.org/10.1145/2746539.2746570

[23] Xi Chen, Rocco A. Servedio, and Li-Yang Tan. New algorithms and lower bounds for mono-
tonicity testing. CoRR, abs/1412.5655, 2014. URL: http://arxiv.org/abs/1412.5655,
arXiv:1412.5655.

[24] Xi Chen, Rocco A. Servedio, Li-Yang Tan, Erik Waingarten, and Jinyu Xie. Settling the query
complexity of non-adaptive junta testing. In 32nd Computational Complexity Conference, CCC
2017, July 6-9, 2017, Riga, Latvia, pages 26:1–26:19, 2017. doi:10.4230/LIPIcs.CCC.2017.
26.

[25] Xi Chen, Erik Waingarten, and Jinyu Xie. Beyond talagrand functions: new lower bounds
for testing monotonicity and unateness. In Proceedings of the 49th Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2017, Montreal, QC, Canada, June 19-23, 2017,
pages 523–536, 2017. doi:10.1145/3055399.3055461.

[26] Xi Chen, Erik Waingarten, and Jinyu Xie. Boolean unateness testing with Õ(n3/4) adaptive
queries. In 58th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2017,
Berkeley, CA, USA, October 15-17, 2017, pages 868–879, 2017. doi:10.1109/FOCS.2017.85.

[27] Xi Chen and Jinyu Xie. Tight bounds for the distribution-free testing of monotone con-
junctions. In Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Dis-
crete Algorithms, SODA 2016, Arlington, VA, USA, January 10-12, 2016, pages 54–71, 2016.
doi:10.1137/1.9781611974331.ch5.

[28] Hana Chockler and Dan Gutfreund. A lower bound for testing juntas. Inf. Process. Lett.,
90(6):301–305, 2004. doi:10.1016/j.ipl.2004.01.023.

[29] Peter Damaschke. Adaptive versus nonadaptive attribute-efficient learning. Machine Learning,
41(2):197–215, 2000. doi:10.1023/A:1007616604496.

[30] Ilias Diakonikolas, Homin K. Lee, Kevin Matulef, Krzysztof Onak, Ronitt Rubinfeld, Rocco A.
Servedio, and Andrew Wan. Testing for concise representations. In 48th Annual IEEE Sym-
posium on Foundations of Computer Science (FOCS 2007), October 20-23, 2007, Providence,
RI, USA, Proceedings, pages 549–558, 2007. doi:10.1109/FOCS.2007.32.

[31] Ilias Diakonikolas, Homin K. Lee, Kevin Matulef, Rocco A. Servedio, and Andrew Wan.
Efficiently testing sparse GF (2) polynomials. Algorithmica, 61(3):580–605, 2011. doi:

10.1007/s00453-010-9426-9.

[32] Elya Dolev and Dana Ron. Distribution-free testing for monomials with a sublinear number
of queries. Theory of Computing, 7(1):155–176, 2011. doi:10.4086/toc.2011.v007a011.

[33] Eldar Fischer, Guy Kindler, Dana Ron, Shmuel Safra, and Alex Samorodnitsky. Testing jun-
tas. In 43rd Symposium on Foundations of Computer Science (FOCS 2002), 16-19 November
2002, Vancouver, BC, Canada, Proceedings, pages 103–112, 2002. doi:10.1109/SFCS.2002.
1181887.

[34] Dana Glasner and Rocco A. Servedio. Distribution-free testing lower bound for basic boolean
functions. Theory of Computing, 5(1):191–216, 2009. doi:10.4086/toc.2009.v005a010.

52

http://arxiv.org/abs/1412.5655
http://arxiv.org/abs/1412.5655
https://doi.org/10.4230/LIPIcs.CCC.2017.26
https://doi.org/10.4230/LIPIcs.CCC.2017.26
https://doi.org/10.1145/3055399.3055461
https://doi.org/10.1109/FOCS.2017.85
https://doi.org/10.1137/1.9781611974331.ch5
https://doi.org/10.1016/j.ipl.2004.01.023
https://doi.org/10.1023/A:1007616604496
https://doi.org/10.1109/FOCS.2007.32
https://doi.org/10.1007/s00453-010-9426-9
https://doi.org/10.1007/s00453-010-9426-9
https://doi.org/10.4086/toc.2011.v007a011
https://doi.org/10.1109/SFCS.2002.1181887
https://doi.org/10.1109/SFCS.2002.1181887
https://doi.org/10.4086/toc.2009.v005a010

[35] Oded Goldreich. On testing computability by small width obdds. In Approximation,
Randomization, and Combinatorial Optimization. Algorithms and Techniques, 13th Inter-
national Workshop, APPROX 2010, and 14th International Workshop, RANDOM 2010,
Barcelona, Spain, September 1-3, 2010. Proceedings, pages 574–587, 2010. doi:10.1007/

978-3-642-15369-3_43.

[36] Oded Goldreich, editor. Property Testing - Current Research and Surveys, volume 6390 of
Lecture Notes in Computer Science. Springer, 2010. doi:10.1007/978-3-642-16367-8.

[37] Oded Goldreich. Introduction to Property Testing. Cambridge University Press, 2017.
URL: http://www.cambridge.org/us/catalogue/catalogue.asp?isbn=9781107194052,
doi:10.1017/9781108135252.

[38] Oded Goldreich, Shafi Goldwasser, Eric Lehman, Dana Ron, and Alex Samorodnitsky. Testing
monotonicity. Combinatorica, 20(3):301–337, 2000. doi:10.1007/s004930070011.

[39] Oded Goldreich, Shafi Goldwasser, and Dana Ron. Property testing and its connection to
learning and approximation. J. ACM, 45(4):653–750, 1998. doi:10.1145/285055.285060.

[40] Parikshit Gopalan, Ryan O’Donnell, Rocco A. Servedio, Amir Shpilka, and Karl Wimmer.
Testing fourier dimensionality and sparsity. SIAM J. Comput., 40(4):1075–1100, 2011. doi:

10.1137/100785429.

[41] David Guijarro, Jun Tarui, and Tatsuie Tsukiji. Finding relevant variables in PAC model
with membership queries. In Algorithmic Learning Theory, 10th International Conference,
ALT ’99, Tokyo, Japan, December 6-8, 1999, Proceedings, page 313, 1999. doi:10.1007/

3-540-46769-6_26.

[42] Shirley Halevy and Eyal Kushilevitz. Distribution-free property-testing. SIAM J. Comput.,
37(4):1107–1138, 2007. doi:10.1137/050645804.

[43] Subhash Khot, Dor Minzer, and Muli Safra. On monotonicity testing and boolean isoperimetric
type theorems. In IEEE 56th Annual Symposium on Foundations of Computer Science, FOCS
2015, Berkeley, CA, USA, 17-20 October, 2015, pages 52–58, 2015. doi:10.1109/FOCS.2015.
13.

[44] Subhash Khot and Igor Shinkar. An Õ(n) queries adaptive tester for unateness. CoRR,
abs/1608.02451, 2016. URL: http://arxiv.org/abs/1608.02451, arXiv:1608.02451.

[45] Richard J. Lipton, Evangelos Markakis, Aranyak Mehta, and Nisheeth K. Vishnoi. On the
fourier spectrum of symmetric boolean functions with applications to learning symmetric jun-
tas. In 20th Annual IEEE Conference on Computational Complexity (CCC 2005), 11-15 June
2005, San Jose, CA, USA, pages 112–119, 2005. doi:10.1109/CCC.2005.19.

[46] Zhengyang Liu, Xi Chen, Rocco A. Servedio, Ying Sheng, and Jinyu Xie. Distribution-free
junta testing. In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2018, Los Angeles, CA, USA, June 25-29, 2018, pages 749–759, 2018.
doi:10.1145/3188745.3188842.

53

https://doi.org/10.1007/978-3-642-15369-3_43
https://doi.org/10.1007/978-3-642-15369-3_43
https://doi.org/10.1007/978-3-642-16367-8
http://www.cambridge.org/us/catalogue/catalogue.asp?isbn=9781107194052
https://doi.org/10.1017/9781108135252
https://doi.org/10.1007/s004930070011
https://doi.org/10.1145/285055.285060
https://doi.org/10.1137/100785429
https://doi.org/10.1137/100785429
https://doi.org/10.1007/3-540-46769-6_26
https://doi.org/10.1007/3-540-46769-6_26
https://doi.org/10.1137/050645804
https://doi.org/10.1109/FOCS.2015.13
https://doi.org/10.1109/FOCS.2015.13
http://arxiv.org/abs/1608.02451
http://arxiv.org/abs/1608.02451
https://doi.org/10.1109/CCC.2005.19
https://doi.org/10.1145/3188745.3188842

[47] Kevin Matulef, Ryan O’Donnell, Ronitt Rubinfeld, and Rocco A. Servedio. Testing ±1-weight
halfspace. In Approximation, Randomization, and Combinatorial Optimization. Algorithms
and Techniques, 12th International Workshop, APPROX 2009, and 13th International Work-
shop, RANDOM 2009, Berkeley, CA, USA, August 21-23, 2009. Proceedings, pages 646–657,
2009. doi:10.1007/978-3-642-03685-9_48.

[48] Kevin Matulef, Ryan O’Donnell, Ronitt Rubinfeld, and Rocco A. Servedio. Testing halfspaces.
SIAM J. Comput., 39(5):2004–2047, 2010. doi:10.1137/070707890.

[49] Elchanan Mossel, Ryan O’Donnell, and Rocco A. Servedio. Learning functions of k relevant
variables. J. Comput. Syst. Sci., 69(3):421–434, 2004. doi:10.1016/j.jcss.2004.04.002.

[50] Noam Nisan and Mario Szegedy. On the degree of boolean functions as real polynomials. In
Proceedings of the 24th Annual ACM Symposium on Theory of Computing, May 4-6, 1992,
Victoria, British Columbia, Canada, pages 462–467, 1992. doi:10.1145/129712.129757.

[51] Michal Parnas, Dana Ron, and Alex Samorodnitsky. Testing basic boolean formulae. SIAM J.
Discrete Math., 16(1):20–46, 2002. URL: http://epubs.siam.org/sam-bin/dbq/article/
40744.

[52] Ronald L. Rivest. Learning decision lists. Machine Learning, 2(3):229–246, 1987. doi:10.

1007/BF00058680.

[53] Dana Ron. Property testing: A learning theory perspective. Foundations and Trends in
Machine Learning, 1(3):307–402, 2008. doi:10.1561/2200000004.

[54] Dana Ron. Algorithmic and analysis techniques in property testing. Foundations and Trends
in Theoretical Computer Science, 5(2):73–205, 2009. doi:10.1561/0400000029.

[55] Ronitt Rubinfeld and Madhu Sudan. Robust characterizations of polynomials with ap-
plications to program testing. SIAM J. Comput., 25(2):252–271, 1996. doi:10.1137/

S0097539793255151.

[56] Mert Saglam. Near log-convexity of measured heat in (discrete) time and consequences. In 59th
IEEE Annual Symposium on Foundations of Computer Science, FOCS 2018, Paris, France,
October 7-9, 2018, pages 967–978, 2018. doi:10.1109/FOCS.2018.00095.

[57] Leslie G. Valiant. A theory of the learnable. Commun. ACM, 27(11):1134–1142, 1984. doi:

10.1145/1968.1972.

9 Appendix A

In this Appendix, we give some bounds used in the paper.

Lemma 58. Markov’s Bound. Let X ≥ 0 be a random variable with a finite expected value
µ = E[X]. Then for any real numbers κ,K > 0,

Pr(X ≥ κ) ≤ E[X]

κ
. (4)

Pr(X ≥ KE[X]) ≤ 1

K
. (5)

54

https://doi.org/10.1007/978-3-642-03685-9_48
https://doi.org/10.1137/070707890
https://doi.org/10.1016/j.jcss.2004.04.002
https://doi.org/10.1145/129712.129757
http://epubs.siam.org/sam-bin/dbq/article/40744
http://epubs.siam.org/sam-bin/dbq/article/40744
https://doi.org/10.1007/BF00058680
https://doi.org/10.1007/BF00058680
https://doi.org/10.1561/2200000004
https://doi.org/10.1561/0400000029
https://doi.org/10.1137/S0097539793255151
https://doi.org/10.1137/S0097539793255151
https://doi.org/10.1109/FOCS.2018.00095
https://doi.org/10.1145/1968.1972
https://doi.org/10.1145/1968.1972

Lemma 59. Chebyshev’s Bound. Let X be a random variable with a finite expected value
µ = E[X] and finite non-zero variance Var[X] = E[X2] − E[X]2. Then for any real numbers
κ,K > 0,

Pr(|X − µ| ≥ κ
√

Var[X]) ≤ 1

κ2
. (6)

Pr(|X − µ| ≥ K) ≤ Var[X]

K2
. (7)

Lemma 60. Chernoff’s Bound. Let X1, . . . , Xm be independent random variables taking values
in {0, 1}. Let X =

∑m
i=1Xi denotes their sum, and let µ = E[X] denotes the sum’s expected value.

Then

Pr[X > (1 + λ)µ] ≤
(

eλ

(1 + λ)(1+λ)

)µ

≤ e−
λ2µ
2+λ ≤

{
e−

λ2µ
3 if 0 < λ ≤ 1

e−
λµ
3 if λ > 1

. (8)

For 0 ≤ λ ≤ 1 we have

Pr[X < (1− λ)µ] ≤
(

e−λ

(1− λ)(1−λ)

)µ

≤ e−
λ2µ
2 . (9)

Lemma 61. Hoeffding’s Bound. Let X1, . . . , Xm are independent random variables taking values
in {0, 1}. Let X =

∑m
i=1Xi denote their sum and let µ = E[X] denote the sum’s expected value.

Then for 0 ≤ λ ≤ 1 we have

Pr[X > µ+ λm] ≤ e−2λ2m (10)

and

Pr[X < µ− λm] ≤ e−2λ2m (11)

55

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

