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Abstract

We give a direct product theorem for the entanglement-assisted interactive quantum com-
munication complexity of an l-player predicate V. In particular we show that for a distri-
bution p that is product across the input sets of the l players, the success probability of any
entanglement-assisted quantum communication protocol for computing n copies of V, whose
communication is o(log(eff∗(V, p)) · n), goes down exponentially in n. Here eff∗(V, p) is a
distributional version of the quantum efficiency or partition bound introduced by Laplante,
Lerays and Roland (2014), which is a lower bound on the distributional quantum communi-
cation complexity of computing a single copy of V with respect to p. For a two-input boolean
function f , the best result for interactive quantum communication complexity known so far is
due to Sherstov (2012), who showed a direct product theorem in terms of the generalized dis-
crepancy, which is a lower bound on communication. Our lower bound on non-distributional
communication complexity is in terms of maxproduct p eff∗(V, p), and there is no known rela-
tionship between this and the generalized discrepancy. But we define a distributional version
of the generalized discrepancy bound and can show that for a given p, eff∗(V, p) upper bounds
it. Moreover, unlike Sherstov’s result, our result works for two-input functions or relations
whose outputs are non-boolean as well, and is a strong direct product theorem for functions
or relations whose quantum communication complexity is characterized by eff∗(V f , p) for a
product p.

As an application of our result, we show that it is possible to do device-independent quan-
tum key distribution (DIQKD) without the assumption that devices do not leak any informa-
tion after inputs are provided to them. We analyze the DIQKD protocol given by Jain, Miller
and Shi (2017), and show that when the protocol is carried out with devices that are compatible
with n copies of the Magic Square game, it is possible to extract Ω(n) bits of key from it, even
in the presence of O(n) bits of leakage. Our security proof is parallel, i.e., the honest parties can
enter all their inputs into their devices at once, and works for a leakage model that is arbitrar-
ily interactive, i.e., the devices of the honest parties Alice and Bob can exchange information
with each other and with the eavesdropper Eve in any number of rounds, as long as the total
number of bits or qubits communicated is bounded.

1 Introduction

Communication complexity is an important model of computation with connections to many
parts of theoretical computer science [KN96]. In this paper, we consider the communication com-
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plexity of computing a predicate V on (A1 × . . .×Al)× (X 1 × . . .× X l) by l(≥ 2) players who
receive inputs x1 . . . xl ∈ X 1× . . .×X l , and after communicating interactively, are required to pro-
duce outputs a1 . . . al such that V(a1 . . . al , x1 . . . xl) is satisfied. The l players cooperate and wish to
minimize the total number of bits (in the classical model) or qubits (in the quantum model) com-
municated. The communication complexity of predicates generalizes the communication com-
plexity of (total or partial) functions and relations that are most often considered in the literature.

In any model of computation, a fundamental question is: if we know how to do one copy of
a task, what is the best way to do n independent copies of it? One possible way is to simply each
copy independently; if we have an algorithm that successfully does a single copy of the task with
probability 1− ε, the success probability of this product strategy is (1− ε)n and its cost is n times
the cost of doing a single copy. For many tasks, this is the best one can do, and a direct product
theorem for the task proves so. That is, a direct product theorem proves that any protocol for
doing n copies of the task that has cost at most cn, where c is some lower bound on the cost of
doing one copy with success probability less than 1, has success probability exponentially small in
n. When c is the exact cost of doing a single copy of the task, we call such a result a strong direct
product theorem.

Direct product theorems are known in a number of computational models. In classical com-
munication complexity, there is a long line of works showing direct product and weaker direct
sum theorems (which show that the success probability of a protocol that uses cn resources is at
most constant, instead of exponentially small) in the two-party setting [Raz92, CSWY01, BYJKS02,
JRS05, KŠdW07, VW08, LSŠ08, HJMR10, BR11, JY12, BBCR13, BRWY13a, BRWY13b, JPY16].

For quantum communication, a direct sum theorem for one-way quantum communication for
general functions was shown by [JRS05], and [JK20] showed a direct product theorem for the same.
In the interactive quantum setting however, direct product theorems are known only for special
classes of functions, for example [Kla10] showed a direct product theorem for symmetric func-
tions. [She18] showed a direct product theorem for the generalized discrepancy method, which
is one of the strongest lower bound techniques on quantum communication complexity — this
gives a strong direct product theorem for functions whose quantum communication complexity
is exactly characterized by the generalized discrepancy method.

Direct product theorems in communication are related to parallel repetition theorems for non-
local games. A non-local game with l players is defined by a predicate V and a distribution p. The
players are given inputs x1 . . . xl from distribution p on X 1 × . . . × X l , and they are required to
produce outputs a1 . . . al in A1 × . . .×Al so that V(a1 . . . al , x1 . . . xl is satisfied, without commu-
nicating. In the classical model, the players are allowed to share randomness, and in the quantum
model they are allowed to share entanglement. The maximum winning probability of the game
over all strategies is called the value of the game, which may be quantum or classical. A par-
allel repetition theorem shows that the value of n independent instances of a non-local game is
(1− ε)Ω(n), if the value a single instance is (1− ε).

A parallel repetition theorem for the classical value of general two-player non-local games was
first shown by Raz [Raz95], and the proof was subsequently simplified by Holenstein [Hol07]. A
strong parallel repetition theorem for the quantum value of a general two-player non-local game
is not known. Parallel repetition theorems were shown for special classes of two-player games
such as XOR games [CSUU08], unique games [KRT10] and projection games [DSV15]. When the
type of game is not restricted but the input distribution is, parallel repetition theorems have been
shown under product distributions [JPY14] and anchored distributions [BVY17] — both of these
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results can be extended to l players. For general two-player games, the best current result is due
to Yuen [Yue16], which shows that the quantum value of n parallel instances of a general game
goes down polynomially in n, if the quantum value of the original game is strictly less than 1. The
situation for more than 2 players is much less understood.

Device-independent cryptography. Quantum cryptography lets us do a number of tasks with
information theoretic security, i.e., security without any computational assumptions, that are not
possible classically. One such example is quantum key distribution (QKD) [BB84]. In a key dis-
tribution scenario, two honest parties Alice and Bob want to share a key, i.e., a uniformly random
string of a given length, which is secret from a third party eavesdropper Eve. If Alice and Bob
have access to secure private randomness and an authenticated classical channel, it is possible to
do the key distribution task quantumly with information theoretic security, but not classically. In
a conventional security proof for QKD (or any other quantum cryptographic protocol), one needs
to have a complete description of the quantum devices, i.e., the states and measurements used
by Alice and Bob. However, in practice quantum devices are often not fully characterized, and
protocols that rely on complete characterization of quantum devices often have loopholes.

A way around this problem is the framework of device-independent cryptography, which tries
to give quantum protocols for cryptographic tasks that are secure even when the devices used by
the honest parties are not fully characterized, and in fact can be arbitrarily manipulated by dis-
honest parties. All known device-independent protocols with information theoretic security use
non-local games and rely on the property of self-testing or rigidity displayed by some non-local
games. Suppose we play a non-local game with devices implementing some unknown state and
measurements, and in fact even the dimension of the systems are unspecified. If these state and
measurements regardless achieve a winning probability for the game that is close to its optimal
winning probability, then self-testing tells us that the state and measurements are close to the
ideal state and measurements for that game, up to trivial isometries. For device-independent
QKD (DIQKD), this means in particular that the measurement outputs of the devices given the
inputs are random, i.e., they cannot be predicted by a third party even if they have access to the
inputs used. This lets us use the outputs of the devices to produce a secret key.

A number of protocols and security proofs for DIQKD have been given over the years, in
the sequential [PAB+09, AFDF+18, VV19] as well as parallel setting [JMS20, Vid17]. Aside from
assuming that Alice and Bob’s devices are modelled by quantum mechanics however, all these
proofs require the assumpion that Alice and Bob’s devices do not leak any information, i.e., do
not communicate with each other or with Eve, unbeknownst to Alice and Bob. Although there
have been some works studying non-local games in the presence of communication [TZCBB+20,
TZCWP20], and and argument showing device-independent may be possible in the presence of a
specific model of information leakage in [SPM13], none of these approaches have been developed
into a full-fledged proof of security when there is leakage.

1.1 Our results

1.1.1 Direct product theorem

Let V(a1 . . . al , x1 . . . , xl) be a predicate on (A1 × . . . × Al) × (X 1 × . . . × X l). We shall use
Vn(a1

1 . . . al
1 . . . a1

n . . . al
n, x1

1 . . . xl
1 . . . x1

n . . . xl
n) to denote n independent copies of V, i.e., the predicate

which is satisfied when all n (a1
i . . . al

i , x1
i . . . xl

i)-s satisfy V.
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For a probability distribution p on X 1 × . . . × X l , a (quantum) communication protocol be-
tween l parties that takes inputs from X 1 × . . .×X l and produces outputs in A1 × . . .×An, pro-
duces a conditional probability distribution on A1 × . . .×Al conditioned on X 1 × . . .× X l , and
along with p there is an induced distribution on (A1 × . . .×Al)× (X 1 × . . .X l). Let suc(p,V,P)
be the probability that the predicate V is satisfied according to this distribution.

Let eff∗ε (V, p) denote the distributional quantum partition bound with error ε for V with respect
to input distribution p, which we shall define formally in Section 4. eff∗ε (V, p) is a lower bound on
the quantum communication complexity of V. Let ω∗(G(p,V)) denote the quantum value of the
non-local game G = (p,X 1 × . . .×X l ,A1 × . . .×Al ,V).

With this notation, our direct product theorem is stated below.

Theorem 1. For any ε, ζ > 0, any predicate V on (A1 × . . . ×Al) × (X 1 × . . . × X l) and any prod-
uct probability distribution p on X 1 × . . . × X l , if P is an interactive entanglement-assisted quantum
communication protocol between l parties which has total communication cn.

(i) If c < 1, then

suc(pn,Vn,P) ≤
(

1− ν

2
+ 4
√

lc
)Ω(ν2n/(l2·log(|A1|·...·|Al |)))

where ν = 1−ω∗(G(p,V)).

(ii) If 1 ≤ c = O
(

ζ2

l3 eff∗ε+ζ(V, p)
)

, then

suc(pn,Vn,P) ≤ (1− ε)Ω(n/(log(|A1|·...·|Al |))).

The two cases in Theorem 1 should be interpreted as follows: c < 1 means there is less than
one qubit of communication per copy of V, and we are close to the non-local game situation where
there is no communication. Therefore we get an upper bound on the success probability for com-
puting Vn in terms of the winning probability of the corresponding game. The theorem in this
case is essentially saying that parallel-repeated non-local games under product distributions are
resistant to communication, i.e., if the winning probability of n copies of the game goes does
exponentially in n, then it also goes down exponentially in n if there is a small amount of com-
munication. We also remark that in case (i), a corresponding theorem can also be proved if p is
an anchored distribution, which was introduced in [BVY17], instead of a product distribution. We
expand on this more in Section 2.

The case c ≥ 1 means on average at least one qubit is communicated per copy of V. This
corresponds to the true communication scenario, and thus if c is less than a lower bound on the
per copy communication complexity of V, we get that the probability of success for computing Vn

goes down exponentially in n. By Yao’s Lemma, case (ii) of Theorem 1 has the following corollary
for communication complexity.

Corollary 2. For a predicate V on (A1 × . . . × Al) × (X 1 × . . . × X l), let Qε(V) denote the interac-
tive entanglement-assisted quantum communication complexity of computing it, and eff∗ε+ζ(V, p) be its
distributional quantum partition bound for distribution p, and any ε, ζ > 0. Then,

Q
1−(1−ε)Ω(n/(log(|A1 |·...·|Al |)))(V

n) = Ω
(

ζ2n
l3

(
max

product p
log eff∗ε+ζ(V, p)

))
.

Corollary 2 is a strong direct product theorem for predicates whose interactive entanglement-
assisted communication complexity is characterized by maxproduct p eff∗ε (V, p).
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1.1.2 Applications in two-party communication complexity of functions

In the communication complexity setting for a two-input function or relation f ⊆ X ×Y ×Z ,
we normally require that only one party gives an output. Nevertheless, we can define a predicate
V f for it in which one party has a singleton output set, say {>}, and the other party’s output set
is Z . We define

V f (>z, xy) = 1 ⇐⇒ z ∈ f (x, y).

It is clear then that the two-party communication complexity of f is equal to the communication
complexity of V f .

In [ABJO21], it is shown that a large class of functions exists, whose quantum communication
complexity is characterized by eff∗ε (V f , p) for a product p. In particular, they show that a class
of functions known as two-wise independent functions, eff∗ε (V f , p) takes the maximum possible
value of the uniform distribution, which is product.

Fact 1 ([ABJO21]). Let f : X × Y → Z be a two-wise independent function with |X | = |Y|, and let pU
be the uniform distribution on X ×Y . Then for any ε > 0,

eff∗ε (V f , pU) ≥
|X |
|Z|

(
1− γ− 1

|Z|

)2

.

An example of a two-wise independent function is the generalized inner product IPn
q : Fn

q ×
Fn

q → Fq defined by:

IPn
q (x, y) =

n

∑
i=1

xiyi mod q.

This makes our result the first strong direct product theorem for generalized inner product that
we are aware of. The direct product theorem in terms of the generalized discrepancy method
by Sherstov [She18] works only for boolean-output functions, and gives a strong direct product
theorem for quantum communication of IPn

2 .

For further comparison between our direct product theorem and Sherstov’s, we prove Theo-
rem 3. For a total function f : X ×Y → {−1,+1}, let F denote the |X |× |Y|matrix whose [x, y]-th
entry is given by f (x, y). The generalized discrepancy method lower bounds communication in
terms of log γα

2(F), where γα
2(M) is the α-approximate factorization norm of a matrix M. For a

function f , γα
2(F) can be expressed as maxp γα

2(F, p) where γα
2(F, p) is a distributional version of

γα
2(F) with respect to p over X ×Y .

Theorem 3. For a total function f : X ×Y → {−1,+1}, let V f denote the predicate on ({−1,+1})2 ×
(X ×Y) given by

V(ab, xy) = 1 ⇐⇒ a · b = f (x, y).

Then for any distribution p on X ×Y ,

eff∗ε (V f , p) ≥ (1− 2ε)γα
2(F, p)

with α = 1+2ε
1−2ε .

This shows that eff∗ε (V f , p) is a stronger lower bound technique than γ2(F, p) for boolean f .
However, since our direct product theorem is in terms of maxproduct p log eff∗ε (V f , p), and Sher-
stov’s in terms of maxp log γ2(F, p), the two results cannot be directly compared. We also note
that we are only able to show the relationship between eff∗ε (V f , p) and γα

2(F, p) for total f , whereas
Sherstov’s direct product result works for partial functions as well.
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1.1.3 DIQKD secure against leakage

Leakage model. In the device-independent setting, each honest party’s device is modelled as a
black box, into which the party provides inputs and from which they get outputs to play a non-
local game. Ideally the boxes play n independent copies of the non-local game, although they
may do so noisily, i.e., each game is won with probability δ-close to its optimal quantum value.
For DIQKD, the honest parties are Alice and Bob and we assume their boxes are supplied by the
eavesdropper Eve. The states and measurements implemented by these boxes may be very far
from those corresponding to the two-player non-local game that each of Alice and Bob’s boxes
ideally play. In fact, instead of Alice and Bob sharing an entangled state that is uncorrelated with
anything else, Eve may hold a purification of Alice and Bob’s state, which we also model as a box.

As mentioned before, known DIQKD protocols rely on the assumption that Alice and Bob and
Eve’s boxes do not communicate with each other. We relax the assumption in a strong way: we
assume Alice, Bob and Eve’s boxes can all send classical messages to each other (since they share
entanglement, this means they can also effectively exchange quantum states via teleportation)
after Alice and Bob have entered their inputs into their boxes and before they receive their outputs.
The communication between Alice, Bob and Eve’s boxes may be arbitrarily interactive: we do not
put any bound on the number of rounds of communication, only on the total number of bits
communicated.

For the sake of concreteness, we analyze the parallel DIQKD protocol given by [JMS20] under
this leakage model, but in principle the same analysis could be applied to any DIQKD protocol
that is based on a non-local game that has: (i) a product input distribution, and (ii) a common bit
that Alice and Bob can ideally both know given their outputs a and b, and both parties’ inputs
x and y (and this bit is their shared key). Using case (i) of Theorem 1, we prove the following
theorem.

Theorem 4. There are universal constants 0 < δ0 < 1 and 0 < c0 < 1 such that for any 0 ≤ δ ≤ δ0,
and 0 ≤ c ≤ c0, if the [JMS20] DIQKD protocol (given in Protocol 1) is carried out with boxes that
play n copies of the Magic Square game δ-noisily, it is possible to extract r(δ, c)n bits of secret key in the
interactive leakage model, with the total communication between Alice, Bob and Eve’s boxes being cn bits,
for some r(δ, c) > 0.

Remark 1. In practice Alice and Bob’s boxes can also continue sending messages after their outputs are
produced (so can Eve’s, but the keyrate depends on Eve’s probability of guessing Alice and Bob’s outputs,
which cannot change due to her box sending messages to Alice and Bob’s boxes after they have produced their
outputs, so we ignore that at this time). But as far as security analysis is concerned, this communication
is equivalent to communication between Alice and Bob over public channels after they have obtained their
outputs, which is a standard part of QKD protocols and can be handled by standard DIQKD proof tech-
niques. Using standard techniques, the amount of communication after the outputs are produced would just
be subtracted from the key rate, and after a certain threshold of communication, key rate would just be zero.
Communication before Alice and Bob’s outputs are produced cannot be handled by standard techniques,
however, and hence we focus on this in the above theorem.

We also note that though we give a specific proof only for DIQKD with leakage, our proof
technique can be seen as a general framework for making device-independent protocols that use
parallel repetition theorems in their security proofs, secure against leakage. For example, this
technique can also be applied to the device-independent protocol for encryption with certified
deletion given by [KT20]. The security proof for that protocol uses a parallel repetition theorem for
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an anchored two-round game (where players receive two rounds of inputs and give two rounds
of outputs). As we have already said, a version of Theorem 1 in case (i) also applies to anchored
distributions for one-round games, and it is not difficult to generalize to two-round games by
considering an appropriate round-by-round leakage model.

1.2 Organization of the paper

In Section 2 we give an overview of our proofs. In Section 3 we provide definitions and known
results about the quantities used in our proofs. In Section 4, we introduce variants of the quantum
partition bound, prove that they lower bound communication and also Theorem 3. In Section 5,
we prove a lemma called the Substate Perturbation Lemma, which is a main tool for our direct
product theorem. In Section 6, we give the proof of our main direct product theorem. Finally, in
Section 7 we show the application of our direct product theorem to prove security of DIQKD with
leakage.

2 Proof overview

2.1 Direct product theorem

We follow the information-theoretic framework for parallel repetition and direct product the-
orems introduced by [Raz95] and [Hol07]. The idea is this: take a protocol P for Vn that is “too
good”. We condition on the success in some t coordinates in this protocol, and show that either
the probability of success in these coordinates is already small, or there is an i in the other n− t
coordinates such that the probability of success of i conditioned on success event E is bounded
away from 1. This is done by showing that if the probability of E and the probability of success in
i conditioned on E are both large, we can give a protocol P ′ for V that is “too efficient”. Now our
lower bound in the c ≥ 1 case is in terms of eff∗ε (V, p), which intuitively speaking, corresponds
to the inverse of the maximum probability of not aborting in a zero-communication protocol in
which the l parties either abort, or produce outputs that satisfy V with probability at least 1− ε
(conditioned on not aborting). Therefore, P ′ for us will be a zero-communication protocol with
aborts that computes V with high probability conditioned on not aborting, whose probability of
not aborting is too high.

For simplicity, we shall give an overview of the proof with only two parties Alice and Bob; the
proof for l parties follows similarly. When Alice and Bob’s inputs are xi and yi respectively at the i-
th coordinates inP , we define a state |ϕ〉xiyi

that represents the state at the end ofP conditioned on
E . Considering the state at the end instead of round by round is the same approach as that taken
in [JRS05], who use it to show a direct sum theorem. On input (xi, yi) in P ′, Alice and Bob will try
to either abort, or get a shared state close to |ϕ〉xiyi

. Once they have this state, they can perform
measurements on the i-th output registers to give their outputs (ai, bi). Their output distribution
will be close to the output distribution in the i-th coordinate of P conditioned on E ; hence if the
probability of success on i conditioned on E is too large, the probability of Alice and Bob correctly
computing V in P ′ conditioned on not aborting is also large. Hence our proof mainly consists of
showing how Alice and Bob can get the shared state close to |ϕ〉xiyi

with probability of aborting

2−O(c), where cn is the communication in P . Since the probability of aborting in P ′ cannot be
smaller than eff∗, this gives the desired lower bound on the communication of P in terms of eff∗.
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In the c < 1 case, our proof is very similar to the proof of a parallel repetition theorem for non-
local games with product distributions due to [JPY14]. The main difference between that c ≥ 1
case and the parallel repetition of c < 1 case is that in the latter, we need to show that Alice and
Bob can get the shared state |ϕ〉 by local unitaries (without aborting). We briefly describe their
proof below.

Parallel repetition for games under product distribution. Let |ϕ〉xi
be the superposition of

|ϕ〉xiyi
over the distribution of Yi, |ϕ〉yi

be the superposition over the distribution of Xi, and |ϕ〉 be
the superposition over both. If the probability of E is large, then conditioning on it, the following
can be shown:

1. By chain rule of mutual information, there is an Xi whose mutual information with Bob’s
registers in |ϕ〉 is small. Hence by Uhlmann’s theorem, there exist unitaries Uxi acting on
Alice’s registers that take |ϕ〉 close to |ϕ〉xi

.

2. Similarly, the mutual information between Yi and Alice’s registers in |ϕ〉 is small, and hence
there exist unitaries Vyi acting on Bob’s registers that take |ϕ〉 close to |ϕ〉yi

.

3. By applying the quantum operation that measures the Xi register and records the outcome,
it can be shown that Vyi also takes |ϕ〉xi

to |ϕ〉xiyi
.

4. Since Uxi and Vyi act on disjoint registers, Uxi ⊗Vyi then takes |ϕ〉 close to |ϕ〉xiyi
.

Alice and Bob can thus share |ϕ〉 as entanglement, and get close to |ϕ〉xiyi
by local unitariess Uxi

and Vyi . In case (i) of our proof, everything is similar to this, except that the distance between
|ϕ〉 and |ϕ〉xi

also accounts for cA, cAn being Alice’s total communication to Bob, and the distance
between |ϕ〉 and |ϕ〉yi

also accounts for cB, cBn being Bob’s communication.

If we wish a give a proof for case (i) with anchored distributions instead of product distribu-
tions, we would need to follow the equivalent steps in the proof of the parallel repetition theorem
for anchored games given in [BVY17] or the alternative proof given in [JK20] instead, and account
for communication there.

Direct product for communication under product distribution. In case c ≥ 1, we cannot use
Uhlmann unitaries to go from |ϕ〉 to |ϕ〉xi

and |ϕ〉yi
, as there is a lot of dependence between Alice’s

registers and Bob’s registers due to communication. But we can use a compression scheme due to
[JRS02, JRS05] which says that if the mutual information between Xi and Bob’s registers is c, then
there exist projectors Πxi acting on Alice’s registers which succed on |ϕ〉with probability 2−c, and
on success take it close to |ϕ〉xi

. Following parallel repetition proof we can show:

1. If the total communication from Alice to Bob in P is cAn, then the mutual information be-
tween X1 . . . Xn and Bob’s registers in |ϕ〉 is O(cAn). By chain rule of mutual information,
there exists an i such that the mutual information between Xi and Bob’s registers is O(cA),
and hence there exist projectors Πxi acting on Alice’s registers which succeed with probabil-
ity 2−O(cA) on |ϕ〉 and on success take |ϕ〉 close to |ϕ〉xi

.

2. Similarly, if the total communication from Bob to Alice in P is cBn, then there exist projectors
Πyi acting on Bob’s registers which succeed with probability 2−O(cB) on |ϕ〉 and on success
take |ϕ〉 close to |ϕ〉yi

.
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3. By applying the same argument with the operation measuring the Xi register and recording
the outcome, it can be shown that Πyi succeeds on |ϕ〉xi

with probability 2−O(cB) and on
success takes it close to |ϕ〉xiyi

.

However, unlike in the case of unitaries, even though Πxi and Πyi commute, there is a problem in
combining items 2 and 3 above to say that Πxi ⊗Πyi succeed on |ϕ〉 with probability 2−O(cA+cB)

and on success take it close to |ϕ〉xiyi
. Since

√
1

2−O(cA)
Πxi |ϕ〉 (i.e., the normalized state on success of

Πxi on |ϕ〉) is only close to |ϕ〉xi
rather than exactly equal to it, acting Πyi on this state cannot take

it close to |ϕ〉xiyi
, unless the distance between

√
1

2−O(cA)
Πxi |ϕ〉 and |ϕ〉xi

is of the same order as the

success probability of Πyi on |ϕ〉xi
. This distance figures in the exponent in the success probability

2−O(cA), so we cannot afford to make it that small.

Instead we shall directly try to get projectors Π′yi
that succeed with high probability on |ρ〉,

which is we what we call the superposition over Xi of
√

1
2−O(cA)

Πxi |ϕ〉, and on success take it close

to |ϕ〉yi
(these will also take |ρ〉xi

close to |ϕ〉xiyi
). Since we do not have a bound on the mutual

information between Yi and Alice’s registers in ρ, we prove what we call the Substate Perturbation
Lemma in order to do this. The quantity that is actually of relevance in the [JRS05] compression
scheme is the smoothed relative min-entropy Dε

∞ between ϕYi A and ϕYi ⊗ ϕA (A being Alice’s
registers), which is O(cB/ε2) if the mutual information between Yi and A is O(cB), due to the
Quantum Substate Theorem [JRS02, JRS09, JN12]. In the Substate Perturbation Lemma, which is
one of our main technical contributions, we show that if Dε

∞(ϕYi A‖ϕYi ⊗ ϕA) is c′ and ρA and ϕA
are δ-close, then D3ε+δ

∞ (ϕYi A‖ϕYi ⊗ ρA) is O(c′). Using the [JRS05] compression scheme, this lets us
get projectors Π′yi

on Bob’s registers that succeed with probability 2−O(cB) on |ρ〉 and on success
take it close to |ϕ〉yi

.

The protocol P ′ will thus involve the following: Alice and Bob share |ϕ〉 as entanglement and
on inputs (xi, yi), apply the measurements {Πxi ,1− Πxi} and {Π′yi

,1− Π′yi
} on it. They abort

if the Πxi or Π′yi
projector does not succeed. Since Πxi ⊗ Π′yi

succeeds on |ϕ〉 with probability

2−O(cA+cB) = 2−O(c), P ′ does not abort with probability 2−O(c) and on not aborting, gets a state
close to |ϕ〉xiyi

.

2.2 Security of DIQKD with leakage

The [JMS20] protocol is based on the Magic Square non-local game. In a single copy of the
Magic Square game, henceforth denoted by MS, Alice and Bob receive trits x and y and are re-
quired to output 3-bit strings a and b which respectively have even and odd parity; they win the
game if their outputs satisfy the condition a[y] = b[x]. In the [JMS20] protocol, Alice and Bob
have boxes which are compatible with n copies of MS. Using trusted private randomness, Alice
and Bob generate i.i.d. inputs xi, yi for each game and generate outputs ai, bi. The inputs xi, yi
are then publicly communicated. Alice and Bob select a small random subset of [n] to test the MS
winning condition on, i.e., they check if ai[yi] = bi[xi] for i in that subset (up to error tolerance). If
the test passes, they select KA = (ai[yi])i and KB = (bi[xi])i as their raw secret keys ; otherwise the
protocol aborts. Due to error correction and privacy amplification, we can get a linear amount of
secret key from this scheme if we can show

Hε
∞(K

A|Ẽ′)ρ −Hε
0(K

A|KB)ρ = Ω(n),

9



where Hε
∞ is the ε-smoothed conditional min-entropy and Hε

0 is the ε-smoothed conditional Hartley
entropy, ρ is the shared state of Alice, Bob and Eve conditioned on not aborting, and Ẽ′ is every-
thing Eve holds at the end of the protocol, including a quantum purification of Alice and Bob’s
systems and also the classical information XiYi that Alice and Bob have communicated publicly.

Challenges in a sequential security proof. Most security proofs for DIQKD work in the sequen-
tial setting, where Alice and Bob have to enter their inputs into their boxes and get their outputs
one by one; in particular the sequential security proofs require the assumption that the (i− 1)-th
output is recorded before the box receives the i-th input. Sequential security proofs generally give
better parameters than parallel ones, but we do not how to apply techniques for sequential proofs
in the setting with leakage without fairly unnatural assumptions.

For example, one tool widely used in sequential security proofs is the Entropy Accumulation
Theorem [DFR20, AFRV19]. Suppose the information released to Eve in the i-th round (in the
sequential setting we call each time Alice and Bob enter inputs xi, yi into their box, a round) is
Ti, and Eve’s quantum register is Ẽ. Then in order to apply the Entropy Accumulation Theorem
to bound Hε

∞(KA|T1 . . . TnẼ)ρ, we require the Markov condition (A1 . . . Ai−1)− (T1 . . . Ti−1Ẽ)− Ti
for all i, i.e., the information leaked in the i-th round is independent of the Alice’s outputs of the
rounds before i, given Eve’s side information before the i-th round. In the setting without leakage,
Ti is just Alice and Bob’s inputs XiYi for the i-th round, which are picked with trusted private
randomness, and thus can be made independent of everything else. In the setting with leakage
however, Ti would include the information leaked by Alice and Bob’s boxes in the i-th round as
well. Once we allow the boxes to leak information, there is nothing stopping them from leaking
information about the outputs of the (i− 1)-th round in the i-th round. Thus imposing the Markov
condition here feels fairly unnatural, and closes off the possibility of using Entropy Accumulation
in the model with leakage.

Parallel security proof. Instead we closely follow the approach of [JMS20] in giving a parallel
security proof for their protocol. Here “parallel” means that their security proof works when Alice
and Bob enter all their inputs into their boxes at once, and no Markov condition is required. The
security proof of [JMS20] is based on the parallel repetition theorem for non-local games under
product distributions [JPY14]. Since we are working in the setting with leakage, instead of a par-
allel repetition theorem for games, we use our direct product theorem for communication. The
communication setting with 3 players exactly corresponds to the leakage model between the par-
ties Alice, Bob and Eve in QKD. Case (i) of our direct product theorem says that if communication
is cn for for sufficiently small c < 1, then the probability of computing n copies of a non-local
game’s predicate correctly goes down exponentially in n.

The game we consider is a three-player version of MS, which is a hybrid of the games consid-
ered by [JMS20] and [Vid17], which gives a simplified version of the [JMS20] proof. In this game
which we call MSE, Alice and Bob play MS between them, and in addition Eve, who has no input,
has to guess both their inputs x, y, and Alice’s output bit a[y].1 The winning probability of this
game is strictly smaller than 1

9 (which is Eve’s probability of correctly guessing x, y). Due to our
direct product result, in the presence of a bounded amount of communication before the outputs

are produced, the winning probability of n copies of this game is
( 1

9 (1− ν)
)Ω(n)

for some ν > 0.

Since Alice and Bob have performed the test to see that ai[yi] = bi[xi] on a random subset,

1Due to technical reasons, we also need to include the following feature in the game: Alice gets an additional input
bit z, and Alice and Bob’s winning condition a[y] = b[x] not being satisfied is forgiven if Eve is able to guess z.
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this condition is satisfied in most locations with high probability conditioned on not aborting.
Therefore, MSE is won if Eve can correctly guess xi, yi, ai[yi]. Now, suppose ϕKAKBX1...XnY1 ...Yn Ẽ is the
shared quantum state before x1 . . . xn, y1 . . . yn are communicated, conditioned on not aborting2,
with Ẽ being Eve’s quantum register. Operationally Hε

∞(X1 . . . XnY1 . . . YnKA|Ẽ)ϕ is the negative
logarithm of Eve’s probability of guessing x1 . . . xny1 . . . ynkA, which is the probability of winning
n instances of MSE, since Alice and Bob’s winning condition is satisfied with high probability.
Hence by the direct product theorem, in the presence of a bounded amount of communication,
Hε

∞(X1 . . . XnY1 . . . YnKA|Ẽ)ϕ is Ω(n(log 9 + log(1/(1− ν))). By the chain rule of conditional min-
entropy, this means that Hε

∞(KA|XYẼ)ϕ is Ω(n log(1/(1− ν))). We remark that since our direct
product theorem is not “perfect”, i.e., the exponent we have is Ω(n) instead of n, we can only have
Alice and Bob communicate a subset of x1 . . . xny1 . . . yn here instead of all of them (and XY in the
notation refers to the subset), and use those for key generation, so as not to make Hε

∞(KA|XYẼ)ϕ

negative.

In the actual state ρ after xy is released, Eve can do some local operations on XYẼ, but these
do not change Hε

∞(KA|XYẼ)ϕ, and hence we have the same lower bound for Hε
∞(KA|XYẼ)ρ. In

order to upper bound Hε
0(K

B|KA)ρ, we use the operational interpretation of Hε
0(K

B|KA)ρ as the
maximum number of possible values of KB given KA. As mentioned before, conditioned on not
aborting, KA and KB differ in very few locations with high probability, and hence we can bound
this quantity.

Remark 2. An alternate security proof of the [JMS20] protocol was given in [Vid17] by using the parallel
repetition of anchored games instead of product games. A version of case (i) of Theorem 1 with anchored
games could also be used to follow this proof instead, to prove security against leakage.

3 Preliminaries

3.1 Probability theory

We shall denote the probability distribution of a random variable X on some set X by PX.
For any event E on X , the distribution of X conditioned on E will be denoted by PX|E . For joint
random variables XY, PX|Y=y(x) is the conditional distribution of X given Y = y; when it is clear
from context which variable’s value is being conditioned on, we shall often shorten this to PX|y.
We shall use PXYPZ|X to refer to the distribution

(PXYPZ|X)(x, y, z) = PXY(x, y) · PZ|X=x(z).

For two distributions PX and PX′ on the same set X , the `1 distance between them is defined as

‖PX − PX′‖1 = ∑
x∈X
|PX(x)− PX′(x)|.

Fact 2. For joint distributions PXY and PX′Y′ on the same sets,

‖PX − PX′‖1 ≤ ‖PXY − PX′Y′‖1.
2Alice and Bob cannot actually check the abort condition before x1 . . . xn, y1 . . . yn are communicated, but the abort-

ing condition is a well-defined event on KAKBXY and thus can be conditioned on before this.
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Fact 3. For two distributions PX and PX′ on the same set and an event E on the set,

|PX(E)− PX′(E)| ≤
1
2
‖PX − PX′‖1.

The following result is a consequence of the well-known Serfling bound.

Fact 4 ([TL17]). Let Z = Z1 . . . Zn be n binary random variables with an arbitrary joint distribution, and
let T be a random subset of size γn for 0 ≤ γ ≤ 1, picked uniformly among all such subsets of [n] and
independently of Z. Then,

Pr

[(
∑
i∈T

Zi ≥ (1− ε)γn

)
∧
(

∑
i∈[n]

Zi < (1− 2ε)n

)]
≤ 2−2ε2γn.

3.2 Quantum information

The `1 distance between two quantum states ρ and σ is given by

‖ρ− σ‖1 = Tr
√
(ρ− σ)†(ρ− σ) = Tr|ρ− σ|.

The fidelity between two quantum states is given by

F(ρ, σ) = ‖√ρ
√

σ‖1 = max
U

Tr(U
√

ρ
√

σ).

The purified distance based on fidelity is given by

∆(ρ, σ) =
√

1− F(ρ, σ)2.

`1 distance and ∆ are both metrics that satisfy the triangle inequality.

Fact 5 (Uhlmann’s theorem). Suppose ρ and σ are states on register X which are purified to |ρ〉XY and
|σ〉XY′ with Y ad Y′ not necessarily being of the same dimension, then it holds that

F(ρ, σ) = max
U
|〈ρ|1X ⊗U|σ〉|

where the maximization is over isometries taking Y′ to Y.

Fact 6 (Fuchs-van de Graaf inequality). For any pair of quantum states ρ and σ,

2(1− F(ρ, σ)) ≤ ‖ρ− σ‖1 ≤ 2
√

1− F(ρ, σ)2.

For two pure states |ψ〉 and |φ〉, we have

‖ |ψ〉〈ψ| − |φ〉〈φ| ‖1 =

√
1− F (|ψ〉〈ψ| , |φ〉〈φ|)2 =

√
1− |〈ψ|φ〉|2.

Fact 7 ([Tom16]). The square of the fidelity is jointly concave in both arguments, i.e.,

F(ερ + (1− ε)ρ′, εσ + (1− ε)σ′)2 ≥ εF(ρ, σ)2 + (1− ε)F(ρ′, σ′)2.
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Fact 8 (Data-processing inequality). For a quantum channel O and states ρ and σ,

‖O(ρ)−O(σ)‖1 ≤ ‖ρ− σ‖1 and F(O(ρ),O(σ)) ≥ F(ρ, σ).

The entropy of a quantum state ρ on a register Z is given by

H(ρ) = −Tr(ρ log ρ).

We shall also denote this by H(Z)ρ. For a state ρYZ on registers YZ, the entropy of Y conditioned
on Z is given by

H(Y|Z)ρ = H(YZ)ρ −H(Z)ρ

where H(Z)ρ is calculated w.r.t. the reduced state ρZ. The relative entropy between two states ρ
and σ of the same dimensions is given by

D(ρ‖σ) = Tr(ρ log ρ)− Tr(ρ log σ).

The relative min-entropy between ρ and σ is defined as

D∞(ρ‖σ) = min{λ : ρ ≤ 2λσ}.

It is easy to see that for all ρ and σ,

0 ≤ D(ρ‖σ) ≤ D∞(ρ‖σ).

Fact 9 (Pinsker’s inequality). For any two states ρ and σ,

‖ρ− σ‖2
1 ≤ 2 ln 2 ·D(ρ‖σ) and 1− F(ρ, σ) ≤ ln 2 ·D(ρ‖σ).

Fact 10. For any unitary U, and states ρ, σ, D(UρU†‖UσU†) = D(ρ‖σ), and D∞(UρU†‖UσU†) =
D∞(ρ‖σ).

Fact 11. If σ = ερ + (1− ε)ρ′, then D∞(ρ‖σ) ≤ log(1/ε).

Fact 12. For any three quantum states ρ, σ, ϕ such that supp(ρ) ⊆ supp(ϕ) ⊆ supp(σ),

D∞(ρ‖σ) ≤ D∞(ρ‖ϕ) +D∞(ϕ‖σ).

The conditional min-entropy of Y given Z is defined as

H∞(Y|Z)ρ = inf{λ : ∃σZ s.t. ρYZ ≤ 2−λ
1Y ⊗ σZ}.

The conditional Hartley entropy of Y given Z is defined as

H0(Y|Z)ρ = log

(
sup

σZ

Tr(supp(ρYZ)(1Y ⊗ σZ))

)

where supp(ρYZ) is the projector on to the support of ρYZ. For a classical distribution PYZ, this
reduces to

H0(Y|Z)PYZ = log
(

sup
z
|{y : PYZ(y, z) > 0}|

)
.
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Fact 13. If ρYZ = (1Y ⊗U)σYZ(1Y ⊗U), then

H∞(Y|Z)σ = H∞(Y|Z)ρ and H0(Y|Z)σ = H0(Y|Z)ρ.

For any distance measure (not necessarily a metric) d between states, the ε-smoothed relative
min-entropy between ρ and σ w.r.t. d is defined as

Dε,d
∞ (ρ‖σ) = inf

ρ′ :d(ρ,ρ′)≤ε
D∞(ρ

′‖σ).

When d is the `1 distance, we often omit the superscript.

Fact 14 (Quantum Substate Theorem, [JRS02, JRS09, JN12]). For any two states ρ and σ such that the
support of ρ is contained in the support of σ, and any ε > 0,3

Dε,F
∞ (ρ‖σ) ≤ D(ρ‖σ) + 1

ε
+ log

(
1

1− ε

)
.

Consequently,

Dε
∞(ρ‖σ) ≤

4D(ρ‖σ) + 1
ε2 + log

(
1

1− ε2/4

)
.

Fact 15 ([JRS02]). For two states ρX and σX, if Dε,∆
∞ (ρX‖σX) = c, then for any purifications |ρ〉XY and

|σ〉XY′ , there exists a measurement operator M taking Y′ to Y, such that 1⊗M succeeds on |σ〉XY′ with
probability 2−c, and

∆
(

2c(1⊗M) |σ〉〈σ|XY′ (1⊗M†), |ρ〉〈ρ|XY

)
≤ ε.

Fact 16. For any quantum state ρYZ,

inf
σZ

D∞(ρYZ‖ρY ⊗ σZ) ≤ 2 min{log |Y|, log |Z|}.

The ε-smoothed versions of the conditional entropies are defined as

Hε
∞(Y|Z)ρ = sup

ρ′ :‖ρ−ρ′‖1≤ε

H∞(Y|Z)ρ′ and Hε
0(Y|Z)PYZ = inf

ρ′ :‖ρ′−ρ‖1≤ε
H0(Y|Z)ρ′ .

Fact 17. For any state ρXYZ,

Hε
∞(Y|Z)ρ ≥ Hε

∞(Y|XZ)ρ ≥ Hε
∞(YX|Z)ρ − log |X |.

The mutual information between Y and Z with respect to a state ρ on YZ can be defined in the
following equivalent ways:

I(Y : Z)ρ = D(ρYZ‖ρY ⊗ ρZ) = H(Y)ρ −H(Y|Z)ρ = H(Z)ρ −H(Z|Y)ρ.

The conditional mutual information between Y and Z conditioned on X is defined as

I(Y : Z|X)ρ = H(Y|X)ρ −H(Y|XZ)ρ = H(Z|X)ρ −H(Z|XY)ρ.

Mutual information can be seen to satisfy the chain rule

I(XY : Z)ρ = I(X : Z)ρ + I(Y : Z|X)ρ.
3Since 1− F is the distance measure rather than F itself, the closeness condition for Dε,F

∞ (ρ‖σ) is F(ρ, ρ′) ≥ 1− ε.
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Fact 18 (Quantum Gibbs’ inequality, see e.g. - [BVY17]). For any three states ρXY, σX, ϕY,

D(ρXY‖σX ⊗ ϕY) ≥ D(ρXY‖σX ⊗ ρY) ≥ I(X : Y)ρ.

A state of the form
ρXY = ∑

x
PX(x) |x〉〈x|X ⊗ ρY|x

is called a CQ (classical-quantum) state, with X being the classical register and Y being quantum.
We shall use X to refer to both the classical register and the classical random variable with the
associated distribution. As in the classical case, here we are using ρY|x to denote the state of the
register Y conditioned on X = x, or in other words the state of the register Y when a measurement
is done on the X register and the outcome is x. Hence ρXY|x = |x〉〈x|X ⊗ ρY|x. When the registers
are clear from context we shall often write simply ρx.

For CQ states where X is the classical register, relative entropy has the chain rule

D(ρXY‖σXY) = D(ρX‖σX) + E
ρX

D(ρY|x‖σY|x).

Using this, the following fact follows by expanding out the relative entropies.

Fact 19. For CQ states ρXY and σXY,

E
ρX

D(ρY|x‖σY)−D(ρY‖σY) = E
ρX

D(ρY|x‖ρY) ≥ 0.

Fact 20 ([KRS09]). For a CQ state ρXY where X is the classical register, H∞(X|Y)ρ is equal to the negative
logarithm of the maximum probability of guessing X from the quantum system ρY|x, i.e.,

H∞(X|Y)ρ = − log

(
sup
{Mx}x

∑
x
PX(x)Tr(MxρY|x)

)
where the maximization is over the set of POVMs with elements indexed by x.

3.3 Quantum communication & non-local games

An interactive entanglement-assisted quantum communication protocol P between l parties
goes as follows: before the start of the protocol, the l parties share a joint entangled state, and at
the start parties 1 through l receive inputs x1, . . . , xl respectively from X 1 × . . .×X l . We assume
that only the j-th party communicates in rounds {j, j + l, j + 2l, . . .}, and sends messages to all the
other parties. For i ∈ {j, j + l, . . . , }, in the i-th round the j-th party has a memory register Ei−l
from the previous round in which they communicated (when i = j, this is just the j-th party’s part
of the initial shared entangled state), as well as message registers Mj

i−l+1, . . . , Mj
i−1 that they have

received from all the other parties in the (i− l + 1)-th to (i− 1)-th rounds. The j-th party applies
a unitary depending on their input xj on all these registers, to generate a register Ei that they keep
as memory, and a message Mi = M1

i . . . Mj−1
i Mj+1

i . . . Ml
i , where Mj′

i is sent to the j′-th party in
this round. After all the communication rounds are done, the j-th party applies a final unitary on
the memory and message registers they currently have, and then measures in the computational
basis to produce their answer aj ∈ Aj. We shall denote the outputs of P on inputs x1 . . . xl to P by
P(x1 . . . xl) — this is a random variable, as P ’s outputs are not necessarily deterministic.

The following lemma about the final state of a quantum communication protocol is proved in
Appendix A.
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Lemma 5. Let |σ〉A1 ...Al |x1 ...xl be the pure state shared by the l parties at the end of a quantum communi-
cation protocol, on inputs x1, . . . xl , with party j holding register Aj. For any product input distribution
PX1 ...Xl on X 1 × . . .×X l , define

|σ〉X1X̃1 ...Xl X̃l A1...Al = ∑
x1 ...xl

√
PX1 ...Xl (x1 . . . xl) |x1x1 . . . xlxl〉X1X̃1 ...Xl X̃l |σ〉A1...Al |x1...xl .

If cj is the total communication from the j-th party in the protocol, then there for all j ∈ [l], there exists a
state ρ

j
X jX̃ j Aj such that

D∞
(
σX jX−jX̃−j A−j

∥∥σX j ⊗ ρX−jX̃−j A−j

)
≤ 2cj

where X−j denotes X1 . . . X j−1X j+1 . . . Xl , and X̃−j and A−j are defined analogously.

Definition 1. For a predicate V on (A1 × . . . × Al) × (X 1 × . . . × X l), its entanglement-assisted l-
party quantum communication complexity with error 0 < ε < 1, denoted by Qε(V), is the minimum
total communication in an interactive entanglement-assisted quantum protocol such that for all x1 . . . xl ∈
X 1 × . . .×X l ,

Pr
[
V
(
P(x1 . . . xl), x1 . . . xl

)
= 1

]
≥ 1− ε.

Definition 2. For a predicate V on (A1 × . . . ×Al)× (X 1 × . . . × X l) and a distribution p on X 1 ×
. . .× X l , the distributional entanglement-assisted l-party quantum communication complexity of V with
error 0 < ε < 1 w.r.t. distribution p, denoted by Qε(V, p), is the minimum total communication in an
interactive entanglement-assisted quantum protocol such that,

Pr
[
V
(
P(x1 . . . xl), x1 . . . xl

)
= 1

]
≥ 1− ε

where the probability is taken over the distribution p for x1 . . . xl , as well as the internal randomness of P .

Fact 21 (Yao’s Lemma, [Yao77]). For any 0 < ε < 1, and any predicate V, Qε(V) = maxp Qε(V, p).

An l-player non-local game G is described as (p,X 1 × . . .×X l ,A1 × . . .×Al ,V) where p is a
distribution over the input setX 1× . . .×X l ,A1× . . .×Al is the output set, and V is a predicate on
the outputs and inputs. In an entangled strategy for a non-local game, the players are allowed to
share an l-partite entangled state. Player j gets input xj and performs a measurement depending
on their input on their part of the entangled state, to give their output aj. The value achieved
by a strategy on G is the probability over p and the internal randomness of the strategy that
V(a1 . . . al , x1 . . . xl) = 1.

Definition 3. The entangled value of a game G = (p,X 1 × . . . × X l ,A1 × . . . × Al ,V), denoted by
ω∗(G), is the maximum value achieved by any strategy for G.

4 Quantum partition bound

For sets X 1, . . . ,X l andA1, . . . ,Al , letQ(A1× . . .×Al ,X 1× . . .×X l) denote the set of condi-
tional probability distributions q(a1 . . . al |x1 . . . xl) that can be obtained by l parties who share an
l-partite entangled state, receive inputs xj ∈ X j respectively, and perform measurements on their
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parts of the entangled state to obtain outputs aj, without communicating. That is, Q(A1 × . . .×
Al ,X 1 × . . .×X l) is the following set:{(

〈ψ|M1
a1|x1 ⊗ . . .⊗Ml

al |xl |ψ〉
)

a1 ...al ,x1...xl

∣∣∣∣∣|ψ〉 is a state, ∀aj, xj, j, ∑
aj∈Aj

Mj
aj|xj = 1, Mj

aj|xj ≥ 0

}
.

We state definitions for three variants of the quantum partition bound, the first of which is
non-distributional and was given by [LLR12]. The second two are distributional modifications
which we shall use.

Definition 4. For a predicate V on (A1× . . .×Al)× (X 1× . . .×X l), and 0 < ε < 1, let⊥ be a special
symbol not in any Aj. The quantum partition bound for V with ε error, denoted by eff∗ε (V), is defined as
the optimal value of the following optimization problem:

min
1
η

s.t. ∑
a1 ...al :V(a1 ...al ,x1 ...xl)=1

q(a1 . . . al |x1 . . . xl) ≥ (1− ε)η ∀x1 . . . xl ∈ X 1 × . . .×X l

∑
a1 ...al∈A1×...×Al

q(a1 . . . al |x1 . . . xl) = η ∀ x1 . . . xl ∈ X 1 × . . .×X l

q(a′1 . . . a′l |x1 . . . xl) ∈ Q
(
(A1 ∪ {⊥})× . . .× (Al ∪ {⊥}),X 1 × . . .×X l

)
.

Definition 5. For a predicate V on (A1 × . . . ×Al) × (X 1 × . . . × X l), a distribution p(x1 . . . xl) on
X 1 × . . .× X l , and 0 < ε < 1, let ⊥ be a special symbol not in any Aj. The quantum partition bound
for V with ε error with respect to p, denoted by ẽff∗ε(V, p), is defined as the optimal value of the following
optimization problem:

min
1
η

s.t. ∑
x1 ...xl∈X 1×...×X l

p(x1 . . . xl) ∑
a1...al :V(a1...al ,x1 ...xl)=1

q(a1 . . . al |x1 . . . xl) ≥ (1− ε)η

∑
a1 ...al∈A1×...×Al

q(a1 . . . al |x1 . . . xl) = η ∀ x1 . . . xl ∈ X 1 × . . .×X l

q(a′1 . . . a′l |x1 . . . xl) ∈ Q
(
(A1 ∪ {⊥})× . . .× (Al ∪ {⊥}),X 1 × . . .×X l

)
.

Definition 6. For a predicate V on (A1 × . . . ×Al) × (X 1 × . . . × X l), a distribution p(x1 . . . xl) on
X 1 × . . .×X l , and 0 < ε < 1, let ⊥ be a special symbol not in any Aj. The average quantum partition
bound for V with ε error with respect to p, denoted by eff∗ε (V, p), is defined as the optimal value of the
following optimization problem:

min
1
η

s.t. ∑
x1 ...xl∈X 1×...×X l

p(x1 . . . xl) ∑
a1...al :V(a1...al ,x1 ...xl)=1

q(a1 . . . al |x1 . . . xl) ≥ (1− ε)η

∑
x1...xl∈X 1×...×X l

p(x1 . . . xl) ∑
a1 ...al∈A1×...×Al

q(a1 . . . al |x1 . . . xl) = η

q(a′1 . . . a′l |x1 . . . xl) ∈ Q
(
(A1 ∪ {⊥})× . . .× (Al ∪ {⊥}),X 1 × . . .×X l

)
.
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Operationally, eff∗ε (V), ẽff∗ε(V, p) and eff∗ε (V, p) are connected to zero-communication protocol
(with aborts) to compute V. A zero-communication protocol is one which any player is allowed
to abort (indicated by them outputting the ⊥ symbol), but if nobody aborts they need to compute
V correctly. A zero-communication protocol for V is basically a strategy for a non-local game
version of V, with the output alphabet extended to A1 ∪ {⊥})× . . .× (Al ∪ {⊥}). Now we can
have different conditions on the abort and success probability conditioned on not aborting for
such protocols.

• Suppose the protocol is required to not abort on every input x1 . . . xl with the same probabil-
ity η, and conditioned on not aborting, every input is required to compute V correctly with
probability (1− ε). eff∗ε (V) corresponds to the efficiency, i.e., the inverse of the maximum
probability of not aborting, in such a protocol.

• Suppose the protocol is required to not abort with the same probability η on every input
x1 . . . xl , but conditioned on not aborting, the probability of computing V correctly, averaged
over the inputs from p, is at least (1− ε). ẽff∗ε(V) is the inverse of the maximum probability
of not aborting in such a protocol.

• Suppose the protocol aborts on input x1 . . . xl with probability ηx1...xl , and we require that the
average over x1 . . . xl from p is η. Moreover, we require that the average probability of com-
puting V correctly is at least (1− ε)η, i.e., the average probability of correctness conditioned
on not aborting is at least (1− ε). eff∗ε (V, p) is the inverse of the maximum probability of not
aborting in such a protocol.

Because the requirements from the protocols are successively relaxed, it is easy to see that for any
p,

eff∗ε (V) ≥ ẽff∗ε(V, p) ≥ eff∗ε (V, p).

The following lemma shows that ẽff∗(V, p), and hence eff∗ε (V, p) lower bounds communica-
tion. The proof of this is a slight modification the proof in [LLR12] which lower bounded Qε( f )
by eff∗ε (V). We provide the proof in Appendix B for completeness.

Lemma 6. For any predicate V on (A1× . . .×Al)× (X 1× . . .×X l), any distribution p on X 1× . . .×
X l and error ε,

Qε(V, p) ≥ 1
2

log ẽff∗ε(V, p).

Yao’s Lemma and Lemma 6 imply that for any p, log ẽff∗ε(V, p) and therefore log eff∗ε (V, p) are
lower bounds on Qε(V).

4.1 Relationship between eff∗ and the generalized discrepancy method

In this section we shall prove Theorem 3, recalled below.

Theorem 3. For a total function f : X ×Y → {−1,+1}, let V f denote the predicate on ({−1,+1})2 ×
(X ×Y) given by

V(ab, xy) = 1 ⇐⇒ a · b = f (x, y).
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Then for any distribution p on X ×Y ,

eff∗ε (V f , p) ≥ (1− 2ε)γα
2(F, p)

with α = 1+2ε
1−2ε .

We shall not define γα
2 and its dual norm γ∗2 for general matrices. Instead, we shall use an exact

characterization of γ∗2(F) for a boolean f in terms of non-local games given by Tsirelson, and then
use a duality relation to express γα

2 in terms of γ∗2 .

Fact 22 ([Tsi87]). For total f : X ×Y → {−1,+1}, let Vf denote its corresponding predicate as given in
the statement of Theorem 3, and let p be any distribution on X ×Y . Then,

ω∗(G(p,V f )) =
1
2
(1 + γ∗2(F ◦ p)).

Fact 23 (see e.g. - Theorem 64 in [LS09]). For any matrix A, α ≥ 1, γα
2(A) and γ∗2(A) are related as

γα
2(A) = max

M

(α + 1) 〈A, M〉 − (α− 1)‖M‖1

2γ∗2(M)
.

When A is the matrix corresponding to a boolean function f , this can also be expressed as

γα
2(F) = max

F′,p

(α + 1) 〈F, F′ ◦ p〉 − (α− 1)
2γ∗2(F′ ◦ p)

where the maximization is taken over matrices F′ with ±1 entries, and distributions p.

Using this characterization, we give the following definition of γα
2(F, p).

Definition 7. For matrix F with ±1 entries, γα
2(F, p) with respect to distribution p is defined as

γα
2(F, p) = max

F′

(α + 1) 〈F, F′ ◦ p〉 − (α− 1)
2γ∗2(F′ ◦ p)

.

Proof of Theorem 3. Our proof closely follows the lower bound for Qε( f ) in terms of log γα
2 as de-

scribed in Section 5.3.2 of [LS09], which is credited to Harry Buhrman.

Suppose eff∗ε (V f , p) = 1
η for some η. Let P be a zero-communication protocol for Vf with

constraints as required in the definition of eff∗ε (V f , p). Let ηxy denote the probability of the protocol
aborts on input (x, y). Let O(x, y) denote the average (over internal randomness) output given by
P conditioned on not aborting on inputs x, y. Here we are calling a · b the output of the protocol,
if Alice outputs a and Bob outputs b, which means O(x, y) is some number in [−1, 1]. Note that
O(x, y) is defined conditioned on not aborting, so it is in fact normalized by the quantity η. From
the definition of eff∗ε (V f , p), the following condition holds

∑
x,y

p(x, y) f (x, y)O(x, y) ≥ 1− 2ε.

The above expression is actually the difference between the probability of computing f correctly
and the probability of computing it incorrectly, which is why we get 1− 2ε.

Now let f ′ : X ×Y → {−1,+1} be an arbitrary boolean function, and define V f ′ the same way
as V f . We shall give a strategy S for the game G(p,V f ′) using the zero-communication protocol
P . S works as follows:
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• On inputs x, y for G(p,V f ′), Alice and Bob run the protocol P on x, y.

• If P gives output ⊥ for either player, they output ±1 uniformly at random.

• If P does not abort, then Alice and Bob both output according to P .

Note that conditioned on P not aborting, the average output produced by Alice and Bob on inputs
x, y is also O(x, y). Strategy S thus wins with probability 1

2 (1 + δ) (δ may be negative), where

δ = η ∑
x,y

p(x, y) f ′(x, y)O(x, y).

f (x, y), f ′(x, y) are in {−1,+1}, and O(x, y) is in [−1, 1]. For three numbers α, β ∈ {−1,+1},
θ ∈ [−1, 1], the following condition is true, and can be checked by putting in the four possible
values of (α, β):

βθ ≥ αβ + αθ − 1.

Using the above on f (x, y), f ′(x, y), O(x, y) we get,

∑
x,y

p(x, y) f ′(x, y)O(x, y) ≥∑
x,y

p(x, y)
(

f (x, y) f ′(x, y) + f (x, y)O(x, y)− 1
)

≥∑
x,y

p(x, y) f (x, y) f ′(x, y) + (1− 2ε)− 1

=
〈

F, F′ ◦ p
〉
− 2ε.

By Fact 22 we have,

γ∗2(F′ ◦ p) ≥ δ ≥ η(
〈

F, F′ ◦ p
〉
− 2ε)

which gives us
1
η
≥ max

F

〈F, F′ ◦ p〉 − 2ε

γ∗2(F′ ◦ p)
= (1− 2ε)γα

2(F, p)

with α = 1+2ε
1−2ε .

5 Substate Perturbation Lemma

To prove the Substate Perturbation Lemma, we use the following result due to [ABJT20]. This
result is stated in terms of Imax for general states in [ABJT20], where some of the states involved
are optimized over. However, for the purposes of the proof this does not matter, so we state in the
form below. Our proof of the Substate Perturbation Lemma is also heavily inspired by their proof
of this result.

Fact 24 ([ABJT20], Theorem 2). Suppose there are states σXB, σ′XB and ψX satisfying ∆(σXB, σ′XB) ≤ ε
and

σ′XB ≤ 2c(ψX ⊗ σB).

Then for any δ > 0, there exists a state σ′′XB satisfying ∆(σXB, σ′′XB) ≤ 2ε + δ, σ′′B = σB, and

σ′′XB ≤ 2c
(

1 +
8
δ2

)
ψX ⊗ σB.
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Lemma 7 (Substate Perturbation Lemma). Suppose there are three states σXB, σ′XB and ψX satisfying
∆(σXB, σ′XB) ≤ ε,

σ′XB ≤ 2c(ψX ⊗ σB)

and a state ρB satisfying ∆(σB, ρB) ≤ δ1. Then for any δ0 < 0, there exists state ρ′XB satisfying ∆(ρ′XB, σXB) ≤
2ε + δ0 + δ1, and

ρ′XB ≤ 2c+1
(

1 +
4
δ2

0

)
ψX ⊗ ρB.

Proof. First we use Fact 24 to get a state σ′′XB satisfying

σ′′XB ≤ 2c
(

1 +
8
δ2

0

)
ψX ⊗ σB

such that ∆(σXB, σ′′XB) ≤ 2ε + δ0 and σ′′B = σB.

Let U be the unitary such that

F (ρB, σB) = Tr
(

Uρ1/2
B σ1/2

B

)
.

Define

ρ′XB = (1⊗ ρ1/2
B Uσ−1/2

B )σ′′XB(1⊗ σ−1/2
B U†ρ1/2

B )︸ ︷︷ ︸
ϕ̃XB

+ σX ⊗ ρ1/2
B (1−UΠU†)ρ1/2

B︸ ︷︷ ︸
ψ̃XB

where all the inverses are generalized and Π is the projector onto the support of σB. Note that

(1⊗ ρ1/2
B Uσ−1/2

B )σ′′XB(1⊗ σ−1/2
B U†ρ1/2

B ) ≤ 2c
(

1 +
8
δ2

0

)
ψX ⊗ ρ1/2

B Uσ−1/2
B σBσ−1/2

B U†ρ1/2
B ,

and hence

ρ′XB ≤ 2c
(

1 +
8
δ2

0

)
ψX ⊗ ρ1/2

B UΠU†ρ1/2
B + ψX ⊗ ρ1/2

B (1−UΠU†)ρ1/2
B

≤ 2c+1
(

1 +
4
δ2

0

)
ψX ⊗ ρB.

Now we only have to show that ∆(ρ′XB, σXB) ≤ 2ε + δ0 + δ1. In order to do this, we note that

∆(ρ′XB, σXB) ≤ ∆
(
ρ′XB, σ′′XB

)
+ ∆(σ′′XB, σXB). (1)

Using Fact 7,

F
(
ρ′XB, σ′′XB

)2 ≥ Tr(ϕ̃XB) · F
(

ϕ̃XB

Tr(ϕ̃XB)
, σ′′XB

)2

+ Tr(ψ̃XB) · F
(

ψ̃XB

Tr(ψ̃XB)
, σ′′XB

)2

≥ Tr(ϕ̃XB) · F
(

ϕ̃XB

Tr(ϕ̃XB)
, σ′′XB

)2

≥ Tr(ϕ̃XB) · F
(
|ϕ〉〈ϕ|XBC , |σ′′〉〈σ′′|XBC

)2 (2)

where in the last step |ϕ〉XBC and |σ′′〉XBC are arbitrary purifications of ϕXB = ϕ̃XB/Tr(ϕ̃XB) and
σ′′XB, and we have used Fact 8 with the tracing out operation. Note that ϕBC is obtained from σ′′BC
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by doing an operation OB only on B, which is akin to applying a measurement and conditioning
on success. In particular this operation preserves purity of states. We let |ϕ〉XBC be the state we
get by applying OB on |σ′′〉XBC. Now let |σ′′1 〉BB̃ be the canonical purification of σ′′B and |ϕ1〉BB̃ be
the state we get by applying OB on |σ′′1 〉BB̃. These are given by

|σ′′1 〉BB̃ = ((σ′′B )
1/2 ⊗ 1)∑

i
|i〉B |i〉B̃ = (σ1/2

B ⊗ 1)∑
i
|i〉B |i〉B̃

|ϕ1〉BB̃ =
ρ1/2

B Uσ−1/2
B ⊗ 1

Tr(ϕ̃XB)1/2 |σ′′〉BB̃ =
ρ1/2

B UΠ⊗ 1

Tr(ϕ̃XB)1/2 ∑
i
|i〉B |i〉B̃ .

Since |σ′′〉XBC is also a purification of σ′′B , there exists an isometry V acting only on B̃ such that
1B ⊗V |σ′′〉XBC = |σ′′1 〉BB̃. Hence,

F
(
|ϕ〉〈ϕ|XBC , |σ′′〉〈σ′′|XBC

)
= F

(
OB(|σ′′〉〈σ′′|XBC), |σ′′〉〈σ′′|XBC

)
= F

(
1B ⊗V

(
OB(|σ′′〉〈σ′′|XBC)

)
1B ⊗V†,1B ⊗V |σ′′〉〈σ′′|XBC 1B ⊗V†

)
= F

(
OB

(
1B ⊗V |σ′′〉〈σ′′|XBC)1B ⊗V†

)
,1B ⊗V |σ′′〉〈σ′′|XBC 1B ⊗V†

)
= F

(
|σ′′1 〉〈σ′′1 |BB̃ , |ϕ1〉〈ϕ1|BB̃

)
.

Putting this in (2) gives us

F
(
ρ′XB, σ′′XB

)2 ≥
∣∣∣∣∣∑i

∑
j

(
〈ii| (ΠUρ1/2

B ⊗ 1)
) (

(σ1/2
B ⊗ 1) |jj〉

)∣∣∣∣∣
2

=

∣∣∣∣∣∑i
〈i|ΠUρ1/2

B σ1/2
B |i〉

∣∣∣∣∣
2

=
∣∣∣Tr(ΠUρ1/2

B σ1/2
B )

∣∣∣2
=
∣∣∣Tr(Uρ1/2

B σ1/2
B )

∣∣∣2 = F (ρB, σB)
2

where we have used the fact that σ1/2
B Π = σ1/2

B , and the definition of U. Putting this in (1) we get,

∆(ρ′XB, σXB) ≤ ∆ (ρB, σB) + ∆(σ′′XB, σXB) ≤ δ1 + 2ε + δ0.

6 Proof of the direct product theorem

In this section, we prove Theorem 1, whose statement is recalled below.

Theorem 1. For any ε, ζ > 0, any predicate V on (A1 × . . . ×Al) × (X 1 × . . . × X l) and any prod-
uct probability distribution p on X 1 × . . . × X l , if P is an interactive entanglement-assisted quantum
communication protocol between l parties which has total communication cn.

(i) If c < 1, then

suc(pn,Vn,P) ≤
(

1− ν

2
+ 4
√

lc
)Ω(ν2n/(l2·log(|A1|·...·|Al |)))

where ν = 1−ω∗(G(p,V)).
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(ii) If 1 ≤ c = O
(

ζ2

l3 eff∗ε+ζ(V, p)
)

, then

suc(pn,Vn,P) ≤ (1− ε)Ω(n/(log(|A1|·...·|Al |))).

6.1 Setup

We consider an interactive quantum protocol P for n copies of V with player j having input
registers X j = X j

1 . . . X j
n, and communicating cjn bits. The total communication of the protocol is

cn, where c = ∑l
j=1 cj. In the case c ≥ 1, we shall also assume each cj ≥ 1; if some cj is smaller

than 1, we can pad extra bits to it, and this increases total communication by a factor of at most l.
Hence we have, ∑l

j=1 cj ≤ cl.

We define the following pure state

|ψ〉X1X̃1...Xl X̃l E1...El A1 ...Al = ∑
xy

√
PX1 ...Xl (x1 . . . xl) |x1x1 . . . xlxl〉X1X̃1 ...Xl X̃l |ψ〉E1...El A1 ...Al |x1 ...xl

where PX1 ...Xl is the distribution pn on (X 1 × . . .×X l)n, and |ψ〉E1 ...El A1...Al |x1...xl being the state at

the end of the protocol on inputs x1, . . . , xl . In |ψ〉E1 ...El A1 ...Al |x1...xl , Aj = Aj
1 . . . Aj

n are the output
registers of player j, and Ej is some quantum register they have that they don’t measure. We
use PX1...Xl A1 ...Al to denote the distribution of X1 . . . Xl A1 . . . Al in |ψ〉. We shall use X to denote
X1 . . . Xl , Xi to denote X1

i . . . Xl
i , X−j to denote X1 . . . X j−1X j+1 . . . Xl , and X≤j to denote X1 . . . X j.

Similar notation will be used for X̃ j, Ej, Aj. Also for a subset C ⊆ [n], we shall use use XC to denote
(Xi)i∈C.

We shall show the following lemma, which can be applied inductively to get Theorem 1.

Lemma 8. For i ∈ [k], let Ti = V(A1
i . . . Al

i , X1
i . . . Xl

i ) in P , and let E denote the event ∏i∈C Ti = 1 for
some C ⊆ [n] such that |C| ≤ n/2,

(i) If c < 1,

E
i∈C̄

Pr[Ti = 1|E ] ≤ ω∗(G(p,V)) + 4
√

lc +
7l + 1

2

√
2δ,

(ii) If 1 ≤ c < ζ2

270l3 eff∗ε+ζ(V, p), and if δ < 1, there exists an i ∈ C̄ such that

Pr[Ti = 1|E ] ≤ 1− ε,

where

δ =
|C| log(|A1| · . . . · |Al |) + log(1/ Pr[E ])

n
.

In order to get the statement of case (i) of Theorem 1 from case (i) of Lemma 8, we start with
C = ∅, and find some i ∈ [n] such that Pr[Ti = 1] ≤ 1 − ν + 4

√
lc + ν

2 . As long as 7l+1
2

√
2δ

is at most ν
2 we can do this. When we have built up a non-empty set C this way, if either

|C| = Ω
(

ν2n
l2 log(|A1|·...·|Al |)

)
, or Pr[Πi∈CTi = 1] ≤ exp

(
−Ω

(
ν2n

l2 log(|A1|·...·|Al |)

))
, we are already done.

Otherwise, 7l+1
2

√
2δ < ν

2 , and we can continue the process.
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The bound on Pr[Ti = 1|E ] in case (ii) of Lemma 8 does not depend on δ, but it requires
δ < 1 as a precondition. Hence following the same process there, we can go up to C of size
|C| = Θ

(
n

log(|A1|·...·|Al |)

)
, or Pr[Πi∈CTi = 1] = exp

(
− n

log(|A1|·...·|Al |)

)
.

Since in case (i) Lemma 8 gives us a bound on Ei∈C̄ Pr[Ti = 1|E ] rather than showing just that
there exists an i for which Pr[Ti = 1|E ] is bounded, we can use it to show the following corollary,
which we shall later use in our DIQKD application. See Appendix C of [JMS20] for a proof of how
this follows from the lemma.

Corollary 9. Let Vt/n
rand be the randomized predicate which is satisfied if V is satisfied on a random subset

of size t of [n]. If the communication cost of P is cn < n, then4

suc(pn,Vt/n
rand,P) ≤

(
ω∗(G(p,V)) + O

(
√

lc + l

√
t · log(|A1| · . . . · |Al |)

n

))t

.

6.2 Proof of Lemma 8

We define the following state which is |ψ〉 conditioned on success event E in C:

|ϕ〉XX̃EA =
1√
γ ∑

xCxC̄

√
PX(xCxC̄) |xCxC̄xCxC̄〉XX̃ ⊗ ∑

aC :V|C|(aC ,xC)=1

|aC〉AC
|ϕ̃〉EAC̄ |xCxC̄aC

where |ϕ̃〉EAC̄ |xCxC̄aC
is a subnormalized state satisfying ‖ |ϕ̃〉EAC̄ |xCxC̄aC

‖2
2 = PAC |xCxC̄

(aC), and γ =

Pr[E ].
We shall use the following lemma, whose proof we give later.

Lemma 10. Letting R = XC AC, the following conditions hold:

1. Ei∈C̄
∥∥PXi R|E − PXiPR|E

∥∥
1
≤
√

2δ.

2. In case (i): c < 1, for every i ∈ C̄ and j ∈ [l], there exist unitaries
{

U j

i,xj
i r

}
i,xj

i r
acting only on the

registers X j
C̄X̃ j

C̄Ej Aj
C̄ such that

E
i∈C̄

E
PXi R|E

∥∥∥∥(⊗
j∈[l]

U j

i,xj
i r

)
|ϕ〉〈ϕ|XC̄X̃C̄EAC̄ |r

(⊗
j∈[l]

(U j

i,xj
i r
)†
)
− |ϕ〉〈ϕ|XC̄X̃C̄EAC̄ |xir

∥∥∥∥
1
≤ 8
√

lc + 7l
√

2δ.

3. In case (ii): 1 ≤ c < ζ2

270l3 eff∗ε+ζ(V, p) and δ < 1, there exists an i ∈ C̄ such that for every j ∈ [l],

there exist measurement operators Mj
i taking registers X j

i X̃
j
C̄Ej Aj

C̄ to X̃ j
C̄Ej Aj

C̄ (with Mj
i(Mj

i)
† being

the POVM element), such that each
⊗

j∈[l] Mj
i succeeds on |ψ〉X′i Xi

⊗ |ϕ〉X̃C̄EAC̄ R with probability

αi ≥ 2
− 270l3c

ζ2 , and∥∥∥∥ 1
αi

(⊗
j∈[l]

Mj
i

) (
|ψ〉〈ψ|X′i Xi

⊗ |ϕ〉〈ϕ|X̃C̄EAC̄ R

) (⊗
j∈[l]

(Mj
i)

†
)
− |ϕ〉〈ϕ|X′i X̃C̄EAC̄ R

∥∥∥∥
1
≤ 2ζ

where |ψ〉X′i Xi
= ∑xi

√
PXi(xi) |xixi〉X′i Xi

, |ϕ〉X′i X̃C̄EAC̄ R is the same state as |ϕ〉X′i X̃C̄EAC̄ R with the
Xi register replaced by the X′i register.

4Note that suc(pn,Vt/n
rand,P) accounts for the randomness inherent in Vt/n

rand in addition to pn and the protocol.
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6.2.1 Case (i): c < 1

Using conditions 1 and 2 of Lemma 10, we can give a quantum strategy S for the non-local
game G(p,V) whose winning probability is at least

E
i∈C̄

Pr[Ti = 1|E ]− 4
√

lc− 7l + 1
2

√
2δ.

By the definition of ω∗(G(p,V)), S cannot have success probability more than ω∗(G(p,V)). This
gives the required upper bound on Ei∈C̄ Pr[Ti = 1|E ].

On input x1
i . . . xl

i , P ′ works as follows:

• The l players share log(|C̄|) uniformly random bits and r according to the distribution PR|E .

• For every r, the players also share |ϕ〉XC̄X̃C̄EAC̄ |r
as entanglement, with player j holding reg-

isters X j
C̄X̃ j

C̄Ej Aj
C̄.

• The players jointly select a uniform i ∈ C̄ and r from PR|E .

• Player j applies the U j

i,xj
i r

unitary according to their input xj
i and the shared randomness, on

their part of the shared entangled state |ϕ〉X̃C̄EAC̄ |r
. Then they measure the Aj

i register of the
resulting state to give their output.

Due to 2, the players produce an output distribution (8
√

lc+ 7l
√

2δ)/2-close to that of |ϕ〉XC̄X̃C̄EAC̄ |xir
,

when averaged over i and (xi, r) from PXi R|E . |ϕ〉xir gives the correct answer with probability
Pr[Ti = 1|E ] over PXi R|E . Hence S gives the correct answer with probability at least

E
i∈C̄

Pr[Ti = 1|E ]− 4
√

lc− 7l + 1
2

√
2δ

when averaged over i and (xi, r) from PXiPR|E .

6.2.2 Case (ii): c ≥ 1

Using condition 3 of Lemma 10, we can give a zero-communication protocol P ′ for V whose

average probability of not aborting is at least 2
− 270l3c

ζ2 > 1/eff∗ε+ζ(V, p) (by the condition on cn),
and conditioned on not aborting, is correct with probability at least

Pr[Ti = 1|E ]− ζ

(with the i provided by this condition) averaged on inputs from p. By the definition of eff∗ε+ζ(V, p),
P ′ cannot be correct conditioned on not aborting with probability more than 1 − (ε + ζ) when
inputs come from p. This gives the required upper bound on Pr[Ti = 1|E ].

For this case, it will be helpful to think of the joint state of the inputs and entangled state
in a zero-communication protocol quantumly. If the player receive inputs from a distribution
PY = PY1...Yl , we can think of them as receiving registers Y1, . . . , Yl respectively of a pure state

|σ〉Y′Y = ∑
y

√
PY(y) |yy〉Y′Y
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with say a referee holding the Y′ registers. The players hold a shared entangled state |ρ〉EA =
|ρ〉E1 ...E′l A1...Al , with player j holding Ej Aj, Al being the answer register. Player j now applies some
measurement on registers Y jEj Aj to determine their output. Strictly speaking, this measurement
should only use Y j as a control register, since it is classical. But player j can always copy over Y j

to a different register Ỹ j and apply a general measurement on Ỹ jEj Aj — the effect of this will be
the same as applying a general measurement on Y jEj Aj that does not use Y j as a control register.
So we shall assume that player j can in fact apply a general measurement on Y jEj Aj.

We shall also assume that in the protocol, the players first apply a measurement to decide
whether they will abort or not abort, and conditioned on not aborting, do another measurement
to give outputs in A1 × . . .×Al (in general they can do a single measurement to decide their out-
put, which may be abort, or some element of Aj, but the protocol P ′ we describe will have two
measurements). In fact they do not need to actually do this last measurement in order for us to
determine the average success probability: we can assume that the state conditioned on not abort-
ing already has the correlations they want between the registers Y′ and A (the Y j registers may
have been modified by the measurement), and the average success probability is determined by
computing V on Y′A of the state conditioned on not aborting. That is, suppose the measurement
operator corresponding to not abort for player j is Mj. Then the average probability of not abort-
ing in the protocol is the success probability α of

⊗
j∈[l] Mj on |σ〉Y′Y ⊗ |ρ〉EA. And the average

success probability of the protocol conditioned on not aborting is determined by computing V on
the Y′A registers of 1√

α

(⊗
j∈[l] Mj

)
|σ〉Y′Y ⊗ |ρ〉EA.

Now we shall describe the actual protocol P ′. In P ′:

• The players share |ϕ〉X̃C̄EAC̄ R as shared entanglement, with player j holding the registers

X̃ j
C̄Ej Aj

C̄ (the extra R register can go to any player, say the first, but they won’t need to do
anything on it).

• The players receive inputs as the X j
i register of |ψ〉X′i Xi

(note that the distribution in this state
is the correct one, p).

• Player j applies measurements {Mj
i(Mj

i)
†,1−Mj

i(Mj
i)

†} on the registers X j
i X̃

j
C̄Ej Aj

C̄ and de-

clares not abort if the Πj
i measurement succeeds.

• Conditioned on not aborting, player j provides Aj
i as their answer register.

By our description above, and condition 3, the average probability of not aborting in this protocol

is αi ≥ 2
− 270l3c

ζ2 > 1
eff∗ε+ζ (V,p) by the condition on c. Now note that if V is computed in the X′i Ai

register of |ϕ〉X′i X̃C̄EAC̄
, the average success probability is by definition Pr[Ti = 1|E ]. Since by

condition 3,∥∥∥∥ 1
αi

(⊗
j∈[l]

Mj
i

) (
|ψ〉〈ψ|X′i Xi

⊗ |ϕ〉〈ϕ|X̃C̄EAC̄ R

) (⊗
j∈[l]

(Mj
i)

†
)
− |ϕ〉〈ϕ|X′i X̃C̄EAC̄ R

∥∥∥∥
1
≤ 2ζ

the average success probability on 1√
αi

(⊗
j∈[l] Mj

i

)
|ψ〉X′i Xi

⊗ |ϕ〉X̃C̄EAC̄ R, that is, the average success

probability of P ′ conditioned on not aborting, is at least Pr[Ti = 1|E ]− ζ.
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6.3 Proof of Lemma 10

The first part of the proof goes the same way for both cases (i) and (ii). We shall proceed with
a common proof and then diverge when required.

Since player j’s communication in P is cjn bits, by Lemma 5 for the final state |ψ〉 of P , there
exists a state ρ

j
X−jX̃−jE−j A−j such that

D∞

(
ψX jX−jX̃−jE−j A−j

∥∥∥ψX j ⊗ ρ
j
X−jX̃−jE−j A−j

)
≤ 2cjn.

Using Facts 11 and 12, this gives us

E
PR|E

D

(
ϕX j

C̄X−j
C̄ X̃−j

C̄ E−j A−j
C̄ |r

∥∥∥∥ψX j
C̄
⊗ ρ

j

X−j
C̄ X̃−j

C̄ E−j A−j
C̄

)
= E

PXC AC |E
D

(
ϕX j

C̄X−j
C̄ X̃−j

C̄ E−j A−j
C̄ |xCaC

∥∥∥∥ψX j
C̄
⊗ ρ

j

X−j
C̄ X̃−j

C̄ E−j A−j
C̄

)
≤ E

PAC |E
D
(

ϕX jX−jX̃−jE−j A−j|aC

∥∥∥ψX j ⊗ ρ
j
X−jX̃−jE−j A−j

)
≤ E

PAC |E
D∞

(
ϕX jX−jX̃−jE−j A−j|aC

∥∥∥ψX j ⊗ ρ
j
X−jX̃−jE−j A−j

)
≤ E

PXC AC |E

[
D∞

(
ϕX jX−jX̃−jE−j A−j|aC

∥∥∥ϕX jX−jX̃−jE−j A−j

)
+D∞

(
ϕX jX−jX̃−jE−j A−j

∥∥ψX jX−jX̃−jE−j A−j

)
+D∞

(
ψX jX−jX̃−jE−j A−j

∥∥∥ψX j ⊗ ρ
j
X−jX̃−jE−j A−j

)]
≤ E

PXC AC |E

[
log(1/PAC |E (aC)) + log(1/ Pr[E ]) + 2cjn

]
≤ E

PXC AC |E

[
|C| · log

(
|A1| · . . . · |Al |

)
+ log(1/ Pr[E ]) + 2cjn

]
= (δ + 2cj)n. (3)

Similarly we also have,

D
(

ϕXC̄ R
∥∥ψXC̄

⊗ ϕR
)
= E

PR|E
D
(

ϕXC̄ |r

∥∥∥ψXC̄

)
≤ δn. (4)

Now using Pinsker’s inequality on this, and Jensen’s inequality along with the convexity of the
square function,

E
i∈C̄

∥∥PXi R|E − PXiPR|E
∥∥

1
≤
√

E
i∈C̄

∥∥PXi R − PXiPR|E
∥∥2

1
≤
√

1
n− |C|n · δ ≤

√
2δ. (5)

This already shows item 1 of the lemma. For further calculations, we shall also upper bound for
any j ∈ [l]

E
i∈C̄

∥∥∥PX≤j
i R|E − PX j

i R|EPX<j
i |E ,R

∥∥∥
1
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≤ E
i∈C̄

(∥∥∥PX≤j
i R|E − PX≤j

i
PR|E

∥∥∥
1
+
∥∥∥PX≤j

i
PR|E − PX j

i
PX<j

i R|E

∥∥∥
1
+
∥∥∥PX j

i
PX<j

i R|E − PX j
i R|EPX<j

i |E ,R

∥∥∥
1

)
= E

i∈C̄

(∥∥∥PX≤j
i R|E − PX≤j

i
PR|E

∥∥∥
1
+
∥∥∥PX j

i

(
PX<j

i
PR|E − PX<j

i R|E

)∥∥∥
1
+
∥∥∥(PX j

i
PR|E − PX j

i R|E

)
PX<j

i |E ,R

∥∥∥
1

)
= E

i∈C̄

(∥∥∥PX≤j
i R|E − PX≤j

i
PR|E

∥∥∥
1
+
∥∥∥PX<j

i
PR|E − PX<j

i R|E

∥∥∥
1
+
∥∥∥PX j

i
PR|E − PX j

i R|E

∥∥∥
1

)
≤ 3
√

2δ (6)

where in the last step we have used (5), tracing out the X>j
i X≥j

i and X−j
i registers respectively in

the three terms.

6.3.1 Case (i): c < 1

This case follows the proof in [JPY14] closely, so we shall only give a brief sketch. Let C̄<i
denote the set of coordinates in C̄ which are less than i. By Quantum Gibbs’ inequality on (3) and
chain rule of relative entropy, we get for all j ∈ [l],

2cj + δ ≥ E
PR|E

D

(
ϕX j

C̄X−j
C̄ X̃−j

C̄ E−j A−j
C̄ |r
‖ψX j

C̄
⊗ ϕX−j

C̄ X̃−j
C̄ E−j A−j

C̄ |r

)
= ∑

i∈C̄
E
PR|E

E
P

Xj
C̄<i
|r

D

(
ϕX j

i X−j
C̄ X̃−j

C̄ E−j A−j
C̄ |x

j
C̄<i

r‖ψX j
i
⊗ ϕX−j

C̄ X̃−j
C̄ E−j A−j

C̄ |r

)
(a)
≥ ∑

i∈C̄
E
PR|E

D

(
ϕX j

i X−j
C̄ X̃−j

C̄ E−j A−j
C̄ |r
‖ψX j

i
⊗ ϕX−j

C̄ X̃−j
C̄ E−j A−j

C̄ |r

)
≥ ∑

i∈C̄
E
PR|E

D

(
ϕX j

i X−j
C̄ X̃−j

C̄ E−j A−j
C̄ |r
‖ϕX j

i
⊗ ϕX−j

C̄ X̃−j
C̄ E−j A−j

C̄ |r

)
where in (a) we have used Fact 19. Using Pinsker’s inequality on this, it follows for any j ∈ [l]
that

1− E
i∈C̄

E
PXi R|E

F

(
ϕX−j

C̄ X̃−j
C̄ E−j A−j

C̄ |x
j
i r

, ϕX−j
C̄ X̃−j

C̄ E−j A−j
C̄ |r

)
≤ 4cj + 2δ.

Let U j

i,xj
i r

be the unitary from Uhlmann’s theorem such that

F

(
|ϕ〉〈ϕ|XC̄X̃C̄EAC̄ |x

j
i r

,
(

U j

i,xj
i r
⊗ 1

)
|ϕ〉〈ϕ|XC̄X̃C̄EAC̄ |r

(
(U j

i,xj
i r
)† ⊗ 1

))
= F

(
ϕX−j

C̄ X̃−j
C̄ E−j A−j

C̄ |x
j
i r

, ϕX−j
C̄ X̃−j

C̄ E−j A−j
C̄ |r

)
.

Using the Fuchs-van de Graaf inequality and Jensen’s inequality for the square root function, then
we have,

E
i∈C̄

E
PXi R|E

∥∥∥∥(U j

i,xj
i r
⊗ 1

)
|ϕ〉〈ϕ|XC̄X̃C̄EAC̄ |r

(
(U j

i,xj
i r
)† ⊗ 1

)
− |ϕ〉〈ϕ|XC̄X̃C̄EAC̄ |x

j
i r

∥∥∥∥
1
≤ 4

√
4cj + 2δ

≤ 8
√

cj + 4
√

2δ. (7)
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Defining OX<k
i

as the quantum channel that measures the X<k
i registers and records the outcome,

this gives us

E
i∈C̄

E
PXi R|E

∥∥∥∥∥∥⊗j∈[l] U j

i,xj
i r
|ϕ〉〈ϕ|XC̄X̃C̄EAC̄ |r

⊗
j∈[l]

(U j

i,xj
i r
)† − |ϕ〉〈ϕ|XC̄X̃C̄EAC̄ |xir

∥∥∥∥∥∥
1

≤
l

∑
k=1

E
i∈C̄

E
PXi R|E

∥∥∥∥∥∥⊗j>k

U j

i,xj
i r

(
Uk

i,xk
i r |ϕ〉〈ϕ|XC̄X̃C̄EAC̄ |x<k

i r (U
k
i,xk

i r)
† − |ϕ〉〈ϕ|XC̄X̃C̄EAC̄ |x

≤k
i r

)⊗
j>k

U j

i,xj
i r

∥∥∥∥∥∥
1

≤
l

∑
k=1

E
i∈C̄

E
P

X≤k
i R|E

∥∥∥Uk
i,xk

i r |ϕ〉〈ϕ|XC̄X̃C̄EAC̄ |x<k
i r (U

k
i,xk

i r)
† − |ϕ〉〈ϕ|XC̄X̃C̄EAC̄ |x

≤k
i r

∥∥∥
1

≤
l

∑
k=1

E
i∈C̄

E
PXi R|E

(∥∥∥OX<k
i

(
Uk

i,xk
i r |ϕ〉〈ϕ|XC̄X̃C̄EAC̄ |r

(Uk
i,xk

i r)
† − |ϕ〉〈ϕ|XC̄X̃C̄EAC̄ |xk

i r

)∥∥∥
1

+
∥∥∥PX<k

i |E ,xk
i r − PX<k

i |E ,r

∥∥∥
1

)

≤
l

∑
k=1

E
i∈C̄

(
E

PXi R|E

∥∥∥Uk
i,xk

i r |ϕ〉〈ϕ|XC̄X̃C̄EAC̄ |r
(Uk

i,xk
i r)

† − |ϕ〉〈ϕ|XC̄X̃C̄EAC̄ |xk
i r

∥∥∥
1

+
∥∥∥PX≤k

i R|E − PXk
i R|EPX<k

i |E ,R

∥∥∥
1

)
(b)
≤

l

∑
k=1

(8
√

ck + 4
√

2δ + 3
√

2δ)

(c)
≤ 8

√√√√l
l

∑
k=1

ck + 7l
√

2δ = 8
√

lc + 7l
√

2δ

where for (b) we have used (7) and (6), and for (c) we have used the Cauchy-Schwarz inequality.
This proves condition 2 of Lemma 10.

6.3.2 Case (ii): c ≥ 1

Using the Quantum Gibb’s inequality on (3) we have,

E
P

Xj
C̄

R|E

D

(
ϕX−j

C̄ X̃−j
C̄ E−j A−j

C̄ |x
j
C̄r

∥∥∥∥ϕX−j
C̄ X̃−j

C̄ E−j A−j
C̄ |r

)
≤ E

PR|E
D

(
ϕX j

C̄X−j
C̄ X̃−j

C̄ E−j A−j
C̄ |r

∥∥∥∥ψX j
C̄
⊗ ϕX−j

C̄ X̃−j
C̄ E−j A−j

C̄ |r

)
≤ (2cj + δ)n.

From (4) we have,

D

(
ϕX j

C̄ R

∥∥∥∥ψX j
C̄
⊗ ϕR

)
≤ δn.

Hence by the chain rule of relative entropy,

D

(
ϕX j

C̄X−j
C̄ X̃−j

C̄ E−j A−j
C̄ R

∥∥∥∥ψX j
C̄
⊗ ϕX−j

C̄ X̃−j
C̄ E−j A−j

C̄ R

)
≤ 2(cj + δ)n.
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By the chain rule of relative entropy again,

4(cj + δ) ≥ E
i∈C̄

E
P

Xj
C̄<i

D

(
ϕX j

i X−j
C̄ X̃−j

C̄ E−j A−j
C̄ R|xC̄<i

∥∥∥∥ψX j
i
⊗ ϕX−j

C̄ X̃−j
C̄ E−j A−j

C̄ R

)

≥ E
i∈C̄

D

(
ϕX j

i X−j
C̄ X̃−j

C̄ E−j A−j
C̄ R

∥∥∥∥ψX j
i
⊗ ϕX−j

C̄ X̃−j
C̄ E−j A−j

C̄ R

)
where we have used Fact 19. Using the Quantum Substate Theorem on the above and tracing out
X−j

C̄ we get for all j ∈ [l],

E
i∈C̄

D
√

2ζ ′,∆
∞

(
ϕX j

i X̃−j
C̄ E−j A−j

C̄ R

∥∥∥∥ψX j
i
⊗ ϕX̃−j

C̄ E−j A−j
C̄ R

)
≤ 4cj + 4δ + 1

ζ ′
+ log

(
1

1− ζ ′

)
for some ζ ′ to be fixed later. Now since X′ji as used in |ψ〉X′ji X j

i
and |ϕ〉X′ji X̃C̄EAC̄ R in the statement of

item 3 in Lemma 10, is identical to X j
i , we also have,

E
i∈C̄

D
√

2ζ ′,∆
∞

(
ϕX′ji X̃−j

C̄ E−j A−j
C̄ R

∥∥∥∥ψX′ji
⊗ ϕX̃−j

C̄ E−j A−j
C̄ R

)
≤ 4cj + 4δ + 1

ζ ′
+ log

(
1

1− ζ ′

)
(8)

To find the measurement operators Mj
i , we shall do induction on the number of players. In

particular we shall prove the following lemma.

Lemma 11. Suppose we have measurement operators
{

Mj
i

}
i
for j ∈ [k], i ∈ C̄, 0 ≤ k < l, taking registers

X j
i X̃

j
C̄Ej Aj

C̄ to X̃ j
C̄Ej Aj

C̄ respectively, such that
⊗

j∈[k] Mj
i,r succeeds on

(⊗
j∈[k] |ψ〉X′ji X j

i

)
⊗ |ϕ〉X̃C̄EAC̄ R

with probability α≤k
i = 2−∑k

j=1 c̃j
i where

E
i∈C̄

c̃j
i ≤

15cj

ζ ′
,

and for all i ∈ C̄,

∆

(
1

α≤k
i

(⊗
j∈[k]

Mj
i ⊗ 1

)(⊗
j∈[k]
|ψ〉〈ψ|X′ji X j

i
⊗ |ϕ〉〈ϕ|X̃C̄EAC̄ R

)(⊗
j∈[k]

(Mj
i)

† ⊗ 1

)
,

|ψ〉〈ψ|X′>k
i X>k

i
⊗ |ϕ〉〈ϕ|X′≤k

i X̃C̄EAC̄ R

)
≤ (3k− 2)

√
2ζ ′. (9)

Then there are measurement operators
{

Mk+1
i

}
i

taking registers Xk+1
i X̃k+1

C̄ Ek+1Ak+1
C̄ to X̃k+1

C̄ Ek+1Ak+1
C̄ ,

such that
⊗

j∈[k+1] Mj
i succeeds on

(⊗
j∈[k+1] |ψ〉X′ji X j

i

)
⊗ |ϕ〉X̃C̄EAC̄ R with probability α

≤(k+1)
i = αk+1

i α≤k
i

where αk+1
i = 2−c̃k+1

i , with

E
i∈C̄

c̃k+1
i ≤ 15ck+1

ζ ′
,

and for all i ∈ C̄

∆

(
1

α
≤(k+1)
i

( ⊗
j∈[k+1]

Mj
i ⊗ 1

)( ⊗
j∈[k+1]

|ψ〉〈ψ|X′ji X j
i
⊗ |ϕ〉〈ϕ|X̃C̄EAC̄ R

)( ⊗
j∈[k+1]

(Mj
i)

† ⊗ 1

)
,
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|ψ〉〈ψ|
X′>(k+1)

i X>(k+1)
i

⊗ |ϕ〉〈ϕ|
X′≤(k+1)

i X̃C̄EAC̄ R

)
≤ (3k + 1)

√
2ζ ′.

We also clarify that if the distance in (9) is ∆[k], then the way we pick our parameters in the
proof of the lemma gives us ∆[k + 1] = ∆[k] + 3

√
2ζ ′. The expression (3k− 2)

√
2ζ ′ is obtained by

setting ∆[1] =
√

2ζ ′.

Proof of Lemma 11. Let

|ρ〉X′i X>k
i X̃C̄EAC̄ R =

1√
α≤k

i

(⊗
j∈[k]

Mj
i ⊗ 1

)(⊗
j∈[k]
|ψ〉X j

i X′ji
⊗ |ϕ〉X̃C̄EAC̄ |r

)
.

Note that |ρ〉 has an i dependence, but we are not writing it explicitly. By (9),

E
i∈C̄

∆
(

ρ
X̃−(k+1)

C̄ E−(k+1)A−(k+1)
C̄ R

, ϕ
X̃−(k+1)

C̄ E−(k+1)A−(k+1)
C̄ R

)
≤ ∆[k].

Moreover, since none of the operators Mj
i for j ∈ [k] act on the Xk+1

i register,

ρ
X′k+1

i X̃−(k+1)
C̄ E−(k+1)A−(k+1)

C̄ R
= ρX′k+1

i
⊗ ρ

X̃−(k+1)
C̄ E−(k+1)A−(k+1)

C̄ R
= ψX′k+1

i
⊗ ρ

X̃−(k+1)
C̄ E−(k+1)A−(k+1)

C̄ R
.

Using the Substate Perturbation Lemma on the above and (8) with j = k + 1, picking parameters
ε = δ0 =

√
2ζ ′, δ1 = ∆[k] we get,

E
i∈C̄

D
∆[k+1],∆
∞

(
ϕ

X′k+1
i X̃−(k+1)

C̄ E−(k+1)A−(k+1)
C̄ R

∥∥∥∥ρ
X′k+1

i X̃−(k+1)
C̄ E−(k+1)A−(k+1)

C̄ R

)
= E

i∈C̄
D

3
√

2ζ ′+∆[k],∆
∞

(
ϕ

X′k+1
i X̃−(k+1)

C̄ E−(k+1)A−(k+1)
C̄ R

∥∥∥∥ψX′k+1
i
⊗ ρ

X′k+1
i X̃−(k+1)

C̄ E−(k+1)A−(k+1)
C̄ R

)
≤ 4ck+1 + 4δ + 1

ζ ′
+ log

(
1

1− ζ ′

)
+ 1 + log

(
1 +

2
ζ ′

)
≤ 4ck+1 + 4δ + 1

ζ ′
+ 3ζ ′ + 1 +

2
ζ ′
≤ 15ck+1

·ζ ′ .

Now note that |ψ〉
X′>(k+1)

i X>(k+1)
i

⊗ |ϕ〉
X′≤(k+1)

i X̃C̄EAC̄ R
is a purification of the state in the first argu-

ment in the above smoothed entropy, and |ρ〉X′i XiX̃C̄EAC̄ R is obviously a purification of the state

in the second. Therefore, by Fact 15, there exist measurement operators
{

Mk+1
i

}
i

taking regis-

ters Xk+1
i X̃k+1

C̄ Ek+1Ak+1
C̄ to X̃k+1

C̄ Ek+1Ak+1
C̄ , that succeed on |ρ〉X′i X>k

i X̃C̄EAC̄ R with probability αk+1
i =

2−c̃k+1
i , where

E
i∈C̄

c̃k+1
i ≤ 15ck+1

ζ ′
,

and for all i,

∆

(
1

αk+1
i α≤k

i

( ⊗
j∈[k+1]

Mj
i ⊗ 1

)( ⊗
j∈[k+1]

|ψ〉〈ψ|X′ji X j
i
⊗ |ϕ〉〈ϕ|X̃C̄EAC̄ R

)( ⊗
j∈[k+1]

(Mj
i)

† ⊗ 1

)
,
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|ψ〉〈ψ|
X′>(k+1)

i X>(k+1)
i

⊗ |ϕ〉〈ϕ|
X′≤(k+1)

i X̃C̄EAC̄ R

)

= ∆

(
1

αk+1
i

Mk+1
i ⊗ 1

(
|ρ〉〈ρ|X′i X>k

i X̃C̄EAC̄ R

)
(Mk+1

i )† ⊗ 1, |ψ〉〈ψ|
X′>(k+1)

i X>(k+1)
i

⊗ |ϕ〉〈ϕ|
X′≤(k+1)

i X̃C̄EAC̄ R

)
≤ ∆[k + 1].

This proves the lemma.

After the induction process, we have measurement operators
{

Mj
i

}
i

for j ∈ [l] and the con-

ditions in the statement of Lemma 11 hold with k = l. Therefore, by the Fuchs-van de Graaf
inequality, ∥∥∥∥ 1

αi

(⊗
j∈[l]

Mj
i

) (
|ψ〉〈ψ|X′i Xi

⊗ |ϕ〉〈ϕ|X̃C̄EAC̄ R

) (⊗
j∈[l]

(Mj
i)

†
)
− |ϕ〉〈ϕ|X′i X̃C̄EAC̄ R

∥∥∥∥
1

≤ 2(3l − 2)
√

2ζ ′.

Setting (3l − 2)
√

2ζ ′ = ζ we get, ζ ′ ≥ ζ2

18l2 . This gives us

E
i∈C̄

l

∑
j=1

c̃j
i ≤

270l2

ζ2

l

∑
j=1

cj ≤ 270l3c
ζ2 .

Since 2−x is a convex function, by Jensen’s inequality we have,

E
i∈C̄

αi = E
i∈C̄

2−∑l
j=1 c̃j

i ≥ 2−Ei∈C̄ ∑l
j=1 c̃j

i ≥ 2−270l3c/ζ2
.

Therefore there exists an i ∈ C̄ such that αi ≥ 2−270l3c/ζ2
. This proves condition 3 in Lemma 10.

7 DIQKD with leakage

In this section, we prove Theorem 4, whose statement is recalled below.

Theorem 4. There are universal constants 0 < δ0 < 1 and 0 < c0 < 1 such that for any 0 ≤ δ ≤ δ0,
and 0 ≤ c ≤ c0, if the [JMS20] DIQKD protocol (given in Protocol 1) is carried out with boxes that
play n copies of the Magic Square game δ-noisily, it is possible to extract r(δ, c)n bits of secret key in the
interactive leakage model, with the total communication between Alice, Bob and Eve’s boxes being cn bits,
for some r(δ, c) > 0.

Protocol 1 is given below. It makes use of the following equipment:

(i) Boxes (BA,BB) with Alice and Bob respectively, whose honest behaviour is to play n i.i.d.
instances of MS δ-noisily, i.e., each copy of MS is won with probability 1− δ;

(ii) Private sources of randomness for both Alice and Bob;

(iii) A public authenticated channel between Alice and Bob.
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Protocol 1 DIQKD protocol (with parameters α, γ, δ)

1: Alice chooses x1 . . . xn ∈ {0, 1, 2}n uniformly at random from private randomness, inputs it
into her box BA, and records the output a1 . . . an

2: Bob chooses y1 . . . yn ∈ {0, 1, 2}n uniformly at random from private randomness, inputs it into
his box BB, and records the output b1 . . . bn

3: Alice chooses S ⊆ [n] of size αn, T ⊆ S of size γ|S| uniformly at random from private ran-
domness

4: Alice sends (S, T, xS, aT) to Bob using the public channel
5: Bob sends yS to Alice using the public channel
6: Bob tests if ai[yi] = bi[xi] for at least (1− 2δ)|T|many i-s in T
7: if the test fails then
8: Bob aborts the protocol
9: else

10: Alice sets (KA)i∈S = ai[yi] and Bob sets (KB)i∈S = bi[xi] as their respective keys

We shall prove the following theorem about Protocol 1, which implies Theorem 4.

Theorem 12. Let ρKAKBXSYS ATSTẼ be the state of Alice’s and Bob’s raw keys and Eve’s side information
conditioned on not aborting in Protocol 1 carried out with parameters α, γ, δ (where Ẽ is Eve’s quantum
register and XSYS ATST is the communication through the public channel which she also has access to). If
the total communication in the interactive leakage model is cn for some c < 1, then the state ρ satisfies

Hε
∞(K

A|XSYS ATSTẼ)ρ −Hε
0(K

A|KB)ρ ≥ α
(
ν− β(

√
c +
√

α)− 2h2(4δ)− γ
)

n− log(1/ Pr[E ]),

where E is the event that the protocol does not abort, ε′ = 2·2−8δ2αn

Pr[E ] , β, ν are constants in (0, 1), and
h2 is the binary entropy function. Moreover, when (BA,BB) have their honest δ-noisy behaviour, then
Pr[E ] ≥ 1− 2−2δ2γαn.

We are free to pick the parameters α, γ in Protocol 1; δ is also a parameter in the Protocol, which
is picked according to the noise level expected in honest boxes. The constant ν is the one provided
by Fact 25. For c, δ such that ν > β

√
c + 2h2(4δ), there exist choices of α, γ and values of Pr[E ] for

which the above quantity is positive. Hence we get a positive key rate for c, δ in this region.

7.1 Properties of the Magic Square game

Definition 8. The 2-player Magic Square game, denoted by MS, is as follows:

• Alice and Bob receive respective inputs x ∈ {0, 1, 2} and y ∈ {0, 1, 2} independently and uniformly
at random.

• Alice outputs a ∈ {0, 1}3 such that a[0]⊕ a[1]⊕ a[2] = 0 and Bob outputs b ∈ {0, 1}3 such that
b[0]⊕ b[1]⊕ b[2] = 1.

• Alice and Bob win the game iff a[y] = b[x].

The classical value of the magic square game is ω(MS) = 8/9, whereas the quantum value is
ω∗(MS) = 1.
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Definition 9. The 3-player variant of the Magic Square game, denoted by MSE, is as follows:

• Alice receives inputs x ∈ {0, 1, 2}, z ∈ {0, 1} and Bob receives input y ∈ {0, 1, 2} independently
and uniformly at random; Eve receives no input.

• Alice outputs a ∈ {0, 1}3 such that a[0] ⊕ a[1] ⊕ a[2] = 0, Bob outputs b ∈ {0, 1}3 such that
b[0]⊕ b[1]⊕ b[2] = 1, and Eve outputs x′ ∈ {0, 1, 2}, y′ ∈ {0, 1, 2}, z′ ∈ {0, 1} and c ∈ {0, 1}.

• Alice, Bob and Eve win the game iff

(x = x′) ∧ (y = y′) ∧ (a[y] = c) ∧ ((a[y] = b[x]) ∨ (z = z′)).

Fact 25 ([JMS20]). There is a constant 0 < ν < 1 such that ω∗(MSE) = 1
9 (1− ν).

The above fact is a consequence of Proposition 4.1 in [JMS20]. The game considered in the
statement of this proposition in [JMS20] is different: they consider a 6-player game between Alice,
Bob, Alice′, Bob′, Charlie and Charlie′. Here we have given Charlie’s role to Alice, and merged
Alice′, Bob′ and Charlie′ into Eve (this is later done in the analysis in [JMS20] anyway). Doing
this makes no difference in the proof of the game’s winning probability as given in [JMS20].5

Alternatively, the fact can be seen as a consequence of Lemma 2 in [Vid17]. The game considered in
[Vid17] does not include Eve having to produce guesses x′, y′, z′ for x, y, z. Suppose the probability
of winning Vidick’s game is (1− ν′). Since by no-signalling Eve’s best probability of guessing z is
1
2 , the probability of winning the version of the game where Eve has to produce z′ but not x′, y′ is
(1− ν′

2 ). Further, since Eve’s probability of guessing x and y are both 1
3 the probability of winning

MSE where she has to produce x′, y′ is 1
9 (1−

ν′

2 ).

Now Corollary 9 has the following consequence for the parallel-repeated MSE game in the
interactive leakage model.

Corollary 13. There exists a constant β > 0 such that if the total communication in the interactive leakage
model is at most cn for some c < 1, with ν being the constant from Fact 25, then the probability of winning
MSE in a random subset of size t out of n instances is at most(

1− ν + β(
√

c +
√

t/n)
9

)t

.

7.2 Security proof with leakage

We introduce some notation for states. Note that we have defined E to be the abort event, but
we can equivalently define it to be the event that ai[yi] = bi[xi] for at least (1− 2δ)|T| many i-s
in T. This way we can condition states of the protocol before Alice and Bob have communicated
on E as well, even though they cannot abort at this point. For the variable KV that is defined in
Lemma 14, we use:

ρKAKBXSYS ATSTẼ : state conditioned on E at the end of Protocol 1
σKAKBKVXSYS ATSTẼ : state after step 3 in Protocol 1
ϕKAKBKVXSYS ATSTẼ : state after step 3 in Protocol 1 conditioned on E .

5In [JMS20], z′ is the input of Charlie′ rather than an output. For the application perspective, we think it makes
more sense to make it an output, since we consider the probability of Eve guessing z. However, due to no-signalling
the probability that z = z′ is 1

2 regardless, and this change makes no difference.
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First we shall prove some lemmas about the states σ and ϕ, and then use them to get the final
min-entropy bound on ρ.

Lemma 14. Define the variable

(KV)i∈S =

{
0 if ai[yi] = bi[xi]

0/1 w.p. 1
2 otherwise.

If the total communication in the interactive leakage model is at most cn for some c < 1, then

H∞(KAKV|XSYSSẼ)σ ≥ α
(
ν− β(

√
c +
√

α)
)

n

where β, ν are the constants from Corollary 13.

The extra bit KV
i in the statement of this lemma takes nontrivial value when ai[yi] 6= bi[yi], and

Eve can potentially guess this. This will take the role of Alice’s extra input bit z in the definition
of MSE, so that it is possible to win MSE on all coordinates in S, even if ai[yi] 6= bi[xi]. In order to
use Corollary 13 for our security proof, it is important that it is possible to win MSE on all these
coordinates. Using Corollary 13 on Protocol 1 will give us a min-entropy bound including the
extra KV

i bits, but these can be taken away later as conditioned on the not-aborting event, KV
i takes

non-trivial value on very few coordinates.

Proof of Lemma 14. Consider the MSEαn/n
rand game being played on the state shared by Alice, Bob

and Eve (with S being the random subset of size αn, and MSEαn/n
rand being won if the instances in

the random subset S are won) in Protocol 1. Here KV
i is being interpreted as Alice’s input Zi when

Ai[Yi] 6= Bi[Xi]; when Ai[Yi] = Bi[Xi], Zi is irrelevant to the winning condition of MSE, so it does
not matter that KV

i is trivial here. Let Ui be the indicator variable of the event that Eve guesses
XiYi Ai[Yi] correctly, Vi be the indicator variable for the event Eve guesses KV

i correctly and Wi be
the indicator variable for the event that Ai[Yi] = Bi[Xi] for i ∈ S. From Fact 20,

H∞(KAKVXSYS|SẼ)σ ≥ log
(

1
Pr[∏i∈S Ui ∧ (¬Wi =⇒ Vi)]

)
= log

(
1

Pr[Win MSEαn/n
rand ]

)

≥ αn · log
(

9
1− ν + β(

√
c +
√

α)

)
where we have used Corollary 13 along with the upper bound on communication in the last line.

Since XiYi are uniformly random on a set of support size 9 we then have by Fact 17,

H∞(KAKV|XSYSSẼ)σ ≥ αn · log
(

9
1− ν + β(

√
c +
√

α)

)
− log |XSYS|

≥ αn · log
(

9
1− ν + β(

√
c +
√

α)

)
− αn · log 9

= αn · log
(

1
1− ν + β(

√
c +
√

α)

)
≥ α

(
ν− β(

√
c +
√

α)
)

n.
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Lemma 15. f the total communication in the interactive leakage model is at most cn for some c < 1, then

Hε
∞(K

A|XSYSSẼ)ϕ ≥ α
(
ν− β(

√
c +
√

α)− 4δ
)

n− log(1/ Pr[E ])

for ε = 2 · 2−8δ2αγn/ Pr[E ].

Proof. Firstly, since ϕ is σ conditioned on an event of probability Pr[E ], by Fact 11 and the previous
lemma we have,

H∞(KAKV|XSYSSẼ)ϕ ≥ α
(
ν− β(

√
c +
√

α)
)

n− log(1/ Pr[E ]).

Let Wi denote the indicator variable for the event Ai[Yi] = Bi[Xi] and let ϕ′ denote σ conditioned
on the following event which we call E ′:(

∑
i∈T

Wi ≥ (1− 2δ)|T|
)
∧
(

∑
i∈S

Wi ≥ (1− 4δ)|S|
)

.

By Fact 4, Pr[E ′] ≥ 1− 2−8δ2αγn, which gives us ‖ϕ− ϕ′‖1 ≤ 2·2−8δ2αγn

Pr[E ] . In ϕ′, Ai[Yi] and Bi[Xi] differ

in at most 4δ|S| many places in S, and KV is a uniformly random bit only in these places. Hence
by Fact 17,

H∞(KA|XSYSSẼ)ϕ′ ≥ α
(
ν− β(

√
c +
√

α)
)

n− log(1/ Pr[E ])− 4δαn,

which gives us the ε-smoothed bound for ϕ from `1 bound between ϕ and ϕ′.

Proof of Theorem 12. First we shall condition the conditional min-entropy bound from Lemma 15
further on (T, AT). Among these, T is independent of KA, so conditioning on them makes no
difference. AT is contained in KA, and uniformly random in {0, 1, 2}|T|. Hence,

Hε
∞(K

A|XSYS ATSTẼ)ϕ ≥ α
(
ν− β(

√
c +
√

α)− 4δ
)

n− log(1/ Pr[E ])− αγn.

Now notice that in ρ, XSYSSTAT is revelaed to Eve, so she may do some operations on her side
depending on these. ρ is thus related to ϕ by some local operations on the registers XSYSSTAT Ẽ.
Hence by Fact 13,

Hε
∞(K

A|XSYS ATSTẼ)ρ ≥ α
(
ν− β(

√
c +
√

α)− 4δ− γ
)

n− log(1/ Pr[E ]).

Finally, to bound Hε
0(K

A|KB)ρ, we consider the state ρ′, which is conditioned on the event E ′

as defined in the proof of Lemma 15 instead of E like ρ. They satisfy ‖ρ− ρ′‖1 ≤ 2·2−8δ2αγn

Pr[E ] . The

number of strings KB of length that can differ from a given value of KA in at most 4δ|S| places is
at most 2h2(4δ)|S|, which gives us H0(KB|KA)ρ′ ≤ h2(4δ)αn. Putting everything together we get,

Hε
∞(K

A|XSYS ATSTẼ)ρ −Hε
0(K

B|KA)ρ ≥ α
(
ν− 2β(

√
c +
√

α)− 4δ− γ− h2(4δ)
)

n− log(1/ Pr[E ])
≥ α

(
ν− β(

√
c +
√

α)− 2h2(4δ)− γ
)

n− 1/ Pr([E ])

for δ ≤ 1
2 .

To lower bound Pr[E ] in the honest case when each instance of MS is won with probability
1− δ, we use the Chernoff bound. Letting Wi denote the indicator variable for Ai[Yi] = Bi[Xi], the
Wi-s are i.i.d. in this case, and the expected value of each Wi is 1− δ. Hence

Pr[¬E ] = Pr

[
∑
i∈T

Wi < (1− 2ε)|T|
]
≤ 2−2δ2γαn.
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A Proof of Lemma 5

We shall do induction on the number of rounds. Let ci be the communication in the i-th round
and Rj = {j, j + l, . . .} denote the set of rounds in which the j-th player communicates, so that
∑i∈Rj ci = cj. Let Mi be the message register of the i-th round, Ei be the memory register the party
who communicates in the i-th round holds after sending their message. For i ∈ Rj, the registers
held by the j-th party at the beginning of the i-th round are messages Mj

i−l+1 . . . Mj
i−1 from other

parties in the (i− l + 1)-th to (i− 1)-th rounds, which we shall jointly denote by N j
i−1, and their

memory register Ei−l which they have retained from the (i− l)-th round. We shall denote all other
(non-input) registers held by parties other than the j-th party at the beginning of the I-th round
by F−j

i−1. Since i ∈ Rj, clearly F−j
i = F−j

i−1Mi. Using X to denote X1 . . . Xl and similar notation for
X̃, we shall call the shared state including the input purifications at the beginning of the the i-th
round

|σi〉XX̃N j
i−1Ei−l F

−j
i−1

= ∑
x

√
PX(x) |xx〉XX̃ |σ

i〉N j
i−1Ei−l F

−j
i−1

.
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For the base case i = 1, communication is zero. Since PX1 ...Xl is a product distribution, σ1
X jX−jX̃−jF−j

0

is product between X j and the other registers, F−j
0 being simply the other parties’ parts of the ini-

tial shared entangled state, which is independent of the inputs. So the condition trivially holds.
For the induction step, we shall assume the condition

D∞

(
σi

X jX−jX̃−jF−j
i−1

∥∥∥∥σi
X j ⊗ ρi

X−jX̃−jF−j
i−1

)
≤ 2 ∑

i′∈Rj,
i′<i

ci′

holds at the beginning of the i-th round, where i ∈ Rj, for some state ρi
X−jX̃−j F−j

i−1

, and see how it

changes in the i-th to (i + l − 1)-th rounds.

In the i-th round, the j-th party applies a unitary on the X jN j
i−1Ei−l registers, getting registers

X j MiEi. By Fact 16, there exists a state ρ̃i+1
Mi

such that

D∞

(
σi+1

X jX−jX̃−jF−j
i−1 Mi

∥∥∥∥σi+1
X jX−jX̃−jF−j

i−1

⊗ ρ̃i+1
Mi

)
≤ 2ci.

Now note that the marginal states σi
X jX−jX̃−jF−j

i−1

and σi+1
X jX−jX̃−jF−j

i−1

are exactly the same, since the

unitary relating |σi〉 and |σi+1〉 does not act on X−jX̃−jF−j
i−1 at all, and only uses X j as a control

register. Hence we have,

D∞

(
σi+1

X jX−jX̃−jF−j
i−1

⊗ ρ̃i+1
Mi

∥∥∥∥σi+1
X j ⊗ ρi

X−jX̃−jF−j
i−1
⊗ ρ̃i+1

Mi

)
= D∞

(
σi

X jX−jX̃−j F−j
i−1
⊗ ρ̃i+1

Mi

∥∥∥∥σi
X j ⊗ ρi

X−jX̃−jF−j
i−1
⊗ ρ̃i+1

Mi

)
= D∞

(
σi

X jX−jX̃−j F−j
i−1

∥∥∥∥σi
X j ⊗ ρi

X−jX̃−j F−j
i−1

)
≤ 2 ∑

i′∈Rj,
i′<i

ci′ .

Now using Fact 12 we can say,

D∞

(
σi+1

X jX−jX̃−j F−j
i−1 Mi

∥∥∥∥σi+1
X j ⊗ ρi

X−jX̃−j F−j
i−1
⊗ ρ̃i+1

Mi

)
≤ D∞

(
σi+1

X jX−jX̃−jF−j
i−1 Mi

∥∥∥∥σi+1
X jX−jX̃−j F−j

i−1

⊗ ρ̃i+1
Mi

)
+D∞

(
σi+1

X jX−jX̃−jF−j
i−1

⊗ ρ̃i+1
Mi

∥∥∥∥σi+1
X j ⊗ ρi

X−jX̃−jF−j
i−1
⊗ ρ̃i+1

Mi

)
≤ 2ci + 2 ∑

i′∈Rj,
i′<i

ci′

= 2 ∑
i′∈Rj,

i′≤i

ci′ .

Hence the condition holds at the beginning of the (i+ 1)-th round with ρi+1
X−jX̃−j F−j

i−1 Mi
= ρi

X−jX̃−j F−j
i−1

⊗

ρ̃i+1
Mi

.
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In the (i + 1)-th round, the (j + 1)-th player applies a unitary on the X j+1N j+1
i Ei−l+1 registers,

getting registers X j M1
i+1 . . . Mj

i+1 . . . Ml
i+1Ei+1, of which they send Mj

i+1 to the j-th player. So after

this round, the registers held by the j-th player are Ei M
j
i+1, and F−j

i+1 does not include Mj
i+1. By

Fact 10 we have that,

D∞

(
σi+2

X jX−jX̃−j Mj
i+1F−j

i

∥∥∥∥σi+2
X j ⊗ ρi+2

X−jX̃−j Mj
i+1F−j

i

)
= D∞

(
σi+1

X jX−jX̃−jF−j
i−1 Mi

∥∥∥∥σi+1
X j ⊗ ρi+1

X−jX̃−jF−j
i−1 Mi

)
≤ 2 ∑

i′∈Rj,
i′≤i

ci′

where ρi+2 is the state obtained by applying the (j + 1)-th player’s unitary in the (i + 1)-th round
to ρi+1. From this we can trace out the Mj

i+1-th register to show that

D∞

(
σi+2

X jX−jX̃−jF−j
i+1

∥∥∥∥σi+2
X j ⊗ ρi+2

X−jX̃−jF−j
i+1

)
≤ 2 ∑

i′∈Rj,
i′≤i

ci′ .

The bound is similarly unchanged in the rounds i + 2, . . . , i + l − 1. Hence we can say that at
the beginning of the next round i + l in which the j-th party communicates, it holds that

D∞

(
σi+l

X jX−jX̃−jF−j
i+l−1

∥∥∥∥σi+l
X j ⊗ ρi+l

X−jX̃−jF−j
i+l−1

)
≤ 2 ∑

i′∈Rj,
i′<i+l

ci′ .

B Proof of Lemma 6

We shall show that if there is a quantum interactive protocol P for V with c qubits of communi-
cation and error probability at most ε, over input distribution p, then there is a zero-communication
quantum protocol P ′′ which does not abort with probability 2−2c worst case over all inputs, and
when it does not abort it computes V with the same error probability over p.

Firstly, we can use entanglement and teleportation to get a protocol P ′ from P , which only in-
volves at most 2c bits of classical communication (with the players doing measurements according
to the classical messages they receive and their inputs, on their parts of a shared entangled state).
We assume that the number of bits communicated in P ′ is of some fixed length every round for
every input, with the total communication being 2c (this can be done by padding dummy bits if
necessary).

Now in the zero-communication protocol P ′′, the players will share the same initial entangled
state as in P ′, and also 2c uniformly random classical bits. If player j communicates in the i-th
round, let ri = r1

i . . . rj−1
i rj+1

i . . . rl
i denote the portion of the shared randomness that corresponds

to the bits in the i-th round of communication in P ′, with rk
i corresponding to the message to the

k-th player. On inputs x1 . . . xl , the players do the following in P ′′:

• For each round i, if player j is the one communicating in that round, player j assumes
rj

i−l+1 . . . rj
i−1 are the classical messages she has received from the other l− 1 players between

the (i− l)-th and the i-th round. They do a measurement on their part of the entangled state
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as she does in the i-th round of P ′, depending on xj, their previous measurement outcomes,
and messages from the other players. If ri is not compatible with her input and these mea-
surement outcomes and previous messages, then player j outputs ⊥.

• At the end, if a player has not output ⊥ yet, they output according to P ′.

Once the outputs of the measurements are fixed, the protocol is deterministic. So a transcript that
is separately compatible for all the players, is compatible for all of them, and there is exactly one
such transcript. {ri}i is equal to this transcript with probability 2−2c, and hence no player outputs
⊥with probability 2−2c. When they do not output⊥, the trancript is correct for input x1 . . . xl , and
hence P ′′ is correct with probability at least 1− ε over the distribution p on x1 . . . xl , due to the
correctness of P ′.
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