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Abstract

We study the pseudorandomness of random walks on expander graphs against tests computed
by symmetric functions and permutation branching programs. These questions are motivated
by applications of expander walks in the coding theory and derandomization literatures. A line
of prior work has shown that random walks on expanders with second largest eigenvalue λ fool
symmetric functions up to a O(λ) error in total variation distance, but only for the case where
the vertices are labeled with symbols from a binary alphabet, and with a suboptimal dependence
on the bias of the labeling. We generalize these results to labelings with an arbitrary alphabet,
and for the case of binary labelings we achieve an optimal dependence on the labeling bias. We
extend our analysis to unify it with and strengthen the expander-walk Chernoff bound. We
then show that expander walks fool permutation branching programs up to a O(λ) error in `2-
distance, and we prove that much stronger bounds hold for programs with a certain structure.
We also prove lower bounds to show that our results are tight. To prove our results for symmetric
functions, we analyze the Fourier coefficients of the relevant distributions using linear-algebraic
techniques. Our analysis for permutation branching programs is likewise linear-algebraic in
nature, but also makes use of the recently introduced singular-value approximation notion for
matrices (Ahmadinejad et al. 2021).
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1 Introduction

Random walks on expander graphs have numerous applications in computer science due to their
pseudorandom properties (see e.g. [HLW06] for a survey). Typically, an expander random walk is
used to provide a randomness-efficient means for generating a sequence of vertices v0, . . . , vt−1. In
a given application, this expander walk will be used to “fool” certain desired test functions f , in
the sense that the distribution of f(v0, . . . , vt−1) is approximately the same whether the vertices
v0, . . . , vt−1 are sampled from a random walk on an expander, or independently and uniformly at
random (which is equivalent to using a random walk on a complete graph with self loops). In this
paper, we prove tight bounds on the extent to which expander graph random walks fool certain
functions f of interest, namely, symmetric functions as well as functions computable by permutation
branching programs. These results improve on a recent line of work [GK21, CPTS21, CMP+21].
Our results also yield further implications, including a strengthening of the expander-walk Chernoff
bound [Gil98, Hea08].

An expander graph is a graph that is sparse but well connected. In this paper we consider regular
λ-spectral expanders, which are constant-degree graphs for which all nontrivial eigenvalues of the
random walk matrix have absolute value at most λ. Intuitively, the spectrum of an expander graph
approximates that of the complete graph, so an expander provides a sparsification of the complete
graph. Random walks on expander graphs therefore provide a derandomized approximation for
random walks on complete graphs. A major aim of this paper is to obtain tight bounds on the
error in this approximation.

Many explicit constructions of λ-spectral expanders are known for arbitrarily small λ > 0
(e.g. [Mar73, LPS88, RVW02, BATS11]). Random walks on such expanders have many appli-
cations, such as in randomness-efficient error reduction, error-correcting codes, and small-space
derandomization (see the surveys [HLW06, Vad12, Gur04]). Randomness-efficient error reduction
uses the ability of expander random walks to fool threshold functions, while Ta-Shma’s recent
breakthrough construction of ε-balanced codes [TS17] uses their ability to fool the parity func-
tion. Meanwhile, work on small-space derandomization starting from [INW94] uses the ability of
expander walks to fool branching programs. In this paper, we prove new bounds on the extent to
which expander walks fool symmetric functions (which include the threshold and parity functions),
as well as (permutation) branching programs.

Specifically, we strengthen and generalize a result of Cohen et al. [CMP+21], which shows that
a random walk on a sequence of λ-spectral expanders fools symmetric functions up to a O(λ) error
in total variation distance. Our result extends the result of Cohen et al. [CMP+21] to labelings of
the vertices by symbols from an arbitrary alphabet and, in the binary case, achieves the optimal
dependence on the bias of the labeling; the Cohen et al. [CMP+21] result only applies to binary
labelings, and has a suboptimal dependence on the labeling bias. We also unite this total variation
bound with a tail bound, which yields a strengthening of the expander-walk Chernoff bound. We
furthermore show that expander random walks fool width-w permutation branching programs up
to a O(λ) error in `2-distance and a O(

√
w · λ) error in total variation distance, which extends a

result of [AKM+20, HPV21] to walks of length > 2, and also strengthens the O(w4 ·
√
λ) total

variation bound of Cohen et al. [CPTS21]. For programs possessing a certain structure, we prove
much stronger bounds. We also present several lower bounds that show our upper bounds to be
tight.
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1.1 Problem overview

For a sequence G = (G1, . . . , Gt−1) of graphs on a shared vertex set V , let RWt
G denote the random

variable taking values in V t that is given by taking a length-t random walk on V , where the ith
step is taken in the graph Gi. If all Gi = G then we write RWt

G = RWt
G.

For some fixed integer d ≥ 2, we are given a labeling val : V → [d] = {0, . . . , d − 1}, which
we extend to act on sequences componentwise, that is, val(v0, . . . , vt−1) = (val(v0), . . . , val(vt−1)).
We let the tuple p = (p0, . . . , pd−1) ∈ [0, 1]d specify the weights of the labels, so that pb equals the
fraction of vertices with label b ∈ [d].

In this paper, we study the distribution of val(RWt
G) for a sequence G of λ-spectral expanders. In

particular, letting J denote the complete graph with self-loops, we will compare the distributions of
f(val(RWt

G)) and f(val(RWt
J)) for certain test functions f on [d]t. Specifically, we study functions

f that are either symmetric or computable by a permutation branching program.
Let Σ : [d][t] → [t + 1][d] be the histogram function, so that (Σa)b = |{i ∈ [t] : ai = b}| denotes

the number of copies of b in the sequence a. All symmetric functions factor through Σ, so to study
symmetric functions we restrict attention to Σ.

1.2 Contributions

This section describes our main results. The theorem statements below are informal; the reader is
referred to the later sections for precise statements with explicit constants.

1.2.1 Symmetric functions

A major objective of this paper is to study the extent to which expander walks fool symmetric
functions. In our notation, for a sequence G of λ-spectral expanders, we would like to bound the
distance between the distributions of Σ val(RWt

G) and Σ val(RWt
J) as a function of λ, regardless of

the choice of G. Rather than directly comparing these distributions, in the following theorem we
bound the change in Σ val(RWt

G) when one of the graphs Gu in the sequence G is changed, for the
case of d = 2 possible labels. We then apply a hybrid argument by changing the graphs in G to J
one at a time.

Thus the consideration of arbitrary expander sequences G is inherent in our proof. Yet as a
side benefit, we are able to show fine-grained bounds on the distance between Σ val(RWt

G) and
Σ val(RWt

G′) when G and G′ only differ at a few steps. Such bounds are used in a follow-up work
[Gol22] to prove a new Berry-Esseen theorem for expander walks.

In a slight abuse of notation below, we let G both denote a graph and its random walk matrix.
We use ‖ · ‖ to denote the spectral norm of a matrix.

Theorem 1 (Informal statement of Theorem 18). Fix positive integers u < t. Let G = (Gi)1≤i≤t−1

and G′ = (G′i)1≤i≤t−1 be sequences of regular 1/100-spectral expanders on a shared vertex set V
such that Gi = G′i for all i 6= u. Fix a labeling val : V → [2] that assigns each label b ∈ [2] to
pb-fraction of the vertices. Then for every c ≥ 0,∑

j∈[t+1]:|j−p1t|≥c

∣∣Pr
[
Σ val(RWt

G′) = (t− j, j)
]
− Pr

[
Σ val(RWt

G) = (t− j, j)
]∣∣

= O

(
‖G′u −Gu‖ · e−c

2/8t

t

)
.
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Theorem 1 bounds the change in the distribution of Σ val(RWt
G) when the graph at a single

step in G is changed. A key point is that the bound decays linearly in t. That is, the longer the
walk, the less effect changing one of the graphs has. By changing all the graphs to the complete
graph with self loops J one step at a time, we obtain the following corollary.

Corollary 2 (Informal statement of Corollary 19). For all positive integers t and all 0 ≤ λ ≤ 1/100,
let G = (Gi)1≤i≤t−1 be a sequence of regular λ-spectral expanders on a shared vertex set V with
labeling val : V → [2]. Then for every c ≥ 0,∑

j∈[t+1]:|j−p1t|≥c

∣∣Pr
[
Σ val(RWt

G) = (t− j, j)
]
− Pr

[
Σ val(RWt

J) = (t− j, j)
]∣∣

= O(λ · e−c2/8t).

The bounds in Theorem 1 and Corollary 2 both provide unified bounds for two different notions
of distance, namely total variation distance and tail bounds. Specifically, when c = 0 then the
results above bound total variation distance, while as c grows large they provide tail bounds, as
p1t is the expected value of (Σ val(RWt

G))1.
Both the total variation and tail bounds above are novel, to the best of our knowledge. Our

tails bounds can be viewed as strengthening the expander-walk Chernoff bound [Gil98, Hea08],
and indeed our proof of Theorem 1 draws on similar techniques as used in Healy’s [Hea08] proof
of the expander-walk Chernoff bound. Recall that for a sequence G of λ-spectral expanders with λ
bounded away from 1, the expander-walk Chernoff bound states that∑

j∈[t+1]:|j−p1t|≥c

Pr
[
Σ val(RWt

G) = (t− j, j)
]

= O(e−Ω(c2/t)),

that is, the tails of Σ val(RWt
G) decay approximately as quickly as the tails of the binomial distribu-

tion as c2/t→∞. Corollary 2 shows the stronger statement that as λ→ 0, the tails of Σ val(RWt
G)

converge to the tails of the binomial distribution Σ val(RWt
J), even when c2/t = O(1).

The c = 0 case of Corollary 2 shows a O(λ) bound on the total variation distance between
Σ val(RWt

G) and Σ val(RWt
J). Equivalently, this result shows that every symmetric function f :

{0, 1}t → {0, 1} satisfies |E[f(val(RWt
G))] − E[f(val(RWt

J))]| = O(λ), that is, random walks on λ-
spectral expanders O(λ)-fool symmetric functions. This bound improves upon a line of prior work
[GK21, CPTS21, CMP+21]. Guruswami and Kumar [GK21] initiated this line of work by showing
a O(λ) bound on the total variation distance between Σ val(RWt

G) and Σ val(RWt
J) for the special

case where G is the 2-vertex sticky random walk (see Section 5.1). Cohen et al. [CPTS21] then
showed a O(λ(log(1/λ))3/2) bound on this total variation distance for arbitrary expanders G with
a balanced labeling, that is, when p0 = p1 = 1/2. A follow-up paper of Cohen et al. [CMP+21]
generalized to arbitrary p, and improved the total variation distance bound to O(λ/

√
min(p)),

where min(p) = min{p0, p1}. In contrast, the c = 0 case of Corollary 2 strengthens this bound to
O(λ) regardless of p. Our results also allow for sequences G of λ-spectral expanders with different
graphs at different steps, whereas the prior work [CPTS21, CMP+21] assumed that the graph was
the same at each step.

Theorem 1, Corollary 2, and all of the prior work [GK21, CPTS21, CMP+21] assumes a binary
labeling val : V → {0, 1} on the expander graph’s vertices. Jalan and Moshkovitz [JM21] asked
whether these results generalize to labelings val : V → [d] for d > 2. We provide an affirmative
answer to this question in the following results, which generalizing the total variation distance
bounds in Theorem 1 and Corollary 2 to arbitrary d ≥ 2. Below, we let min(p) = minb∈[d] pb.

3



Theorem 3 (Informal statement of Theorem 20). For every integer d ≥ 2 and every distribution
p ∈ [0, 1]d over the labels [d], there exists a constant λ0 = λ0(d, p) > 0 such that the following holds.
For all positive integers u < t, let G = (Gi)1≤i≤t−1 and G′ = (G′i)1≤i≤t−1 be sequences of λ0-spectral
expanders on a shared vertex set V , such that for all i 6= u we have Gi = G′i. Let val : V → [d] be
any labeling that assigns each label b ∈ [d] to pb-fraction of the vertices. Then

dTV

(
Σ val(RWt

G′),Σ val(RWt
G)
)

= O

((
d

min(p)

)O(d)

· ‖G
′
u −Gu‖
t

)
.

Corollary 4 (Informal statement of Corollary 21). For all integers t ≥ 1 and d ≥ 2, let G =
(Gi)1≤i≤t−1 be a sequence of λ-spectral expanders on a shared vertex set V with labeling val : V → [d]
that assigns each label b ∈ [d] to pb-fraction of the vertices. Then

dTV

(
Σ val(RWt

G),Σ val(RWt
J)
)

= O

((
d

min(p)

)O(d)

· λ

)
.

In the results above, it is helpful to think of d and p as fixed, so that Corollary 4 gives a
O(λ) bound on total variation distance. When d = 2, Theorem 1 and Corollary 2 with c = 0
show that the factor of (d/min(p))O(d) in the bounds above can be removed. We suspect that this
(d/min(p))O(d) dependence for d > 2 is not tight, and we leave the determination of the optimal
dependence on d and p as an open question.

To show that the O(λ) upper bounds on total variation distance described above are tight, we
present the following lower bound.

Theorem 5 (Informal statement of Theorem 47). For every p = (p0, p1) and 0 < λ < 1, there exists
a sufficiently large t0 = t0(p, λ) ∈ N and a λ-spectral expander G with vertex labeling val : V → [2]
that has label weights given by p, such that for every t ≥ t0,

dTV(Σ val(RWt
G),Σ val(RWt

J)) = Ω(λ).

Theorem 5 generalizes a similar result of Guruswami and Kumar [GK21] for the special case of
p0 = p1 = 1/2, and indeed our proof method is similar to theirs. Cohen et al. [CMP+21] showed a
similar Ω(λ) lower bound for all t but only when p0 = p1 = 1/2. Their result is incomparable to
ours, as Theorem 5 considers all p but only sufficiently large t.

1.2.2 Permutation branching programs

This section describes our main results on the extent to which expander walks fool permutation
branching programs. The reader is referred to Section 4 for background on permutation branching
programs.

We first present a bound that makes no assumptions on the structure of the program.

Theorem 6 (Informal statement of Theorem 32). For integers t ≥ 1, w ≥ 2, and d ≥ 2, let G be
a λ-spectral expander with λ < .1, and assign some vertex labeling val : V → [d]. Let B : [d]t → [w]
be computed by a permutation branching program B of length t, width w, and degree d. Then

d`2(B(val(RWt
G)), B(val(RWt

J))) = O(λ).

4



Note that the bound in Theorem 6 has no dependence on the width w of the branching program,
but only bounds `2 rather than total variation distance. Applying the Cauchy-Schwartz inequality
to this `2-bound gives the total variation bound

dTV(B(val(RWt
G)), B(val(RWt

J))) = O(
√
w · λ).

This bound improves upon the work of Cohen et al. [CPTS21], who showed a O(w4 ·
√
λ) bound

on dTV(B(val(RWt
G)), B(val(RWt

J))) for the special case where d = 2 and p0 = p1 = 1/2.
Theorem 6 is closely related to the analysis of the Impagliazzo-Nisan-Wigderson [INW94] pseu-

dorandom generator studied by Hoza et al. [HPV21], which also uses expander walks to fool per-
mutation branching programs. Both Theorem 6 and the results of Hoza et al. [HPV21] are also
proven using similar matrix approximation notions. However, Hoza et al. [HPV21] consider many
length-2 expander walks, whereas we consider a single longer walk.

Although we show in Section 5.3 that Theorem 6 is tight in general, much stronger bounds
hold for certain permutation branching programs. Theorem 38 in Section 4.2 presents a class of
such permutation branching programs B for which B(val(RWt

G)) approaches a uniform distribution
exponentially quickly. For illustrative purposes here, we simply present one implication of this
result.

Theorem 7 (Informal statement of Corollary 41). For integers t ≥ 1, w ≥ 2, and d ≥ 2, let G
be a sequence of λ-spectral expanders on a shared vertex set V with labeling val : V → [d]. Let
Bt : [d]t → [w] denote the sum modulo w, that is Bt(a) =

∑
i∈[t] ai (mod w). Then there exists a

constant c = c(d,w, p, λ) < 1 such that

dTV(Bt(val(RWt
G)), Bt(val(RWt

J))) ≤
√
w · ct.

That is, expander walks fool the small modular functions Bt, which are naturally computed by
permutation branching programs, up to an exponentially small error. This result can be viewed
as a generalization of the previously known fact that expander walks fool the parity function up
to an exponentially small error, as can be recovered by letting w = 2 and d = 2 Theorem 7. This
fact that expander walks are good parity samplers played a pivotal role in Ta-Shma’s breakthrough
construction of almost optimal ε-balanced codes [TS17].

For arbitrary w ≥ 2, Guruswami and Kumar [GK21] showed that the total variation distance
between Bt(val(RWt

G)) and Bt(val(RWt
J)) is exponentially small in t when G is the 2-vertex sticky

random walk (see Section 5.1). Theorem 7 generalizes this exponential decay bound to arbitrary
expander walks.

1.3 Proof overview for symmetric functions

In this section, we outline the proof of Theorem 1, which contains many of the key technical insights
in our paper. In particular, the proof of Theorem 3 follows the same general argument, so for the
exposition in this section we focus on Theorem 1. All of the proof details can be found in Section 3.1
and Appendix B.

As in Theorem 1, for some u < t let G = (Gi)1≤i≤t−1 and G′ = (G′i)1≤i≤t−1 be sequences
of 1/100-spectral expanders that agree at all positions i 6= u, and again fix a vertex labeling
val : V → [2]. Define g ∈ [−1, 1][t+1] ⊆ [−1, 1]Z to be the difference between the probability mass
functions of (Σ val(RWt

G′))1 and (Σ val(RWt
G))1, that is,

gj = Pr
[
Σ val(RWt

G′) = (t− j, j)
]
− Pr

[
Σ val(RWt

G) = (t− j, j)
]
.

5



In this notation, the c = 0 case of Theorem 1 states that g has `1-norm ‖g‖1 = O(‖G′u − Gu‖/t),
which is bounded by O(λ/t) if G′u and Gu are λ-spectral expanders.

We first show that the `2-norm of g satisfies

‖g‖ = O

(
‖G′u −Gu‖

t
· 1

(p0p1t)1/4

)
. (1)

The proof of this bound is sketched below in Section 1.3.1. We will then explain in Section 1.3.2 how
to go from this `2-bound to the desired `1-bound. We compare our techniques to those of prior work
in Section 1.3.3, and in particular we draw connections with Healy’s proof of the expander-walk
Chernoff bound [Hea08].

1.3.1 Bounding the `2-distance ‖g‖

In this section, we sketch the proof of the `2-bound (1) (which is the r = 0 case of Theorem 22).
Because the Fourier transform preserves `2-norms, we will bound the `2-norm ‖ĝ‖ = ‖g‖ of the
Fourier transform ĝ of g. Recall that here the Fourier transform is given by ĝ(θ) =

∑
j∈Z e

−iθjgj ,

and has `2-norm ‖ĝ‖ =
√∫ π

θ=−π |ĝ(θ)|2dθ/2π.

To motivate this shift to the Fourier basis, recall that the Fourier transform interchanges con-
volution and multiplication, so that addition of independent random variables translates to multi-
plication of the Fourier transforms of their probability density functions (i.e. multiplication of their
characteristic functions). Such products can be easier to analyze than convolutions, so the Fourier
transform is a natural tool for analyzing sums of independent random variables, as is exemplified in
proofs of the central limit theorem. Theorem 1 and Corollary 2 intuitively show that the expander
walk distribution (Σ val(RWt

G))1 is close to the sum of independent variables, so it is also natural
to analyze this distribution with the Fourier transform.

Whereas we apply the Fourier transform over the group Z to the random variable Σ val(RWt
G)

(which is distributed over Z), the prior work of Cohen et al. [CPTS21] and Cohen et al. [CMP+21]
applied the Fourier transform over the group (Z/2)t to the random variable val(RWt

G) (which
is distributed over {0, 1}t ∼= (Z/2)t). As described above, our approach seems well suited for
symmetric functions, and it generalizes naturally to give Theorem 3 and Corollary 4 for alphabet
sizes d > 2. In contrast, Cohen et al. [CPTS21] only consider d = 2, but they are able to apply their
techniques to other classes of functions such as bounded-depth circuits, which we do not consider.
More comparisons to prior techniques are provided in Section 1.3.3.

To begin, we express ĝ(θ) linear-algebraically. Specifically, let ~1 = (1/
√
|V |, . . . , 1/

√
|V |) denote

the uniform unit vector, and define the diagonal matrix Pθ = diag(xθ) ∈ CV×V , where xθ ∈ CV is
the vector with (xθ)v = e−iθ(val(v)−p1). Then it can be verified that

eiθp1t · ĝ(θ) = ~1>

(
t∏

i=u+1

GiPθ

)
(G′u −Gu)

(
u−1∏
i=0

PθGi

)
~1,

where the products above multiply from right-to-left, and we take G0 = Gt = J . This equality can
be seen by expanding the right hand side above as a sum over all length-t walks v0, . . . , vt−1 on V
(see Lemma 26). Therefore because G′u −Gu annihilates ~1 from both sides, we have

|ĝ(θ)| ≤

∥∥∥∥∥∥
(
~1>

(
t∏

i=u+1

GiPθ

))⊥∥∥∥∥∥∥ · ‖G′u −Gu‖ ·
∥∥∥∥∥∥
((

u−1∏
i=0

PθGi

)
~1

)⊥∥∥∥∥∥∥ , (2)

6



where the notation x⊥ denotes the projection of a vector x onto the orthogonal complement of ~1.
We will also use x‖ to denote the projection of x onto ~1.

We bound the rightmost factor above by induction on u. Splitting off a factor of PθGu−1 gives∥∥∥∥∥∥
((

u−1∏
i=0

PθGi

)
~1

)⊥∥∥∥∥∥∥
≤ ‖(Pθ~1)⊥‖ ·

∥∥∥∥∥∥
((

u−2∏
i=0

PθGi

)
~1

)‖∥∥∥∥∥∥+ ‖Pθ‖ · λ(Gu−1) ·

∥∥∥∥∥∥
((

u−2∏
i=0

PθGi

)
~1

)⊥∥∥∥∥∥∥
≤ ‖(Pθ~1)⊥‖ ·

∥∥∥∥∥∥
((

u−2∏
i=0

PθGi

)
~1

)‖∥∥∥∥∥∥+
1

100
·

∥∥∥∥∥∥
((

u−2∏
i=0

PθGi

)
~1

)⊥∥∥∥∥∥∥ ,
(3)

where the last inequality follows because ‖Pθ‖ = 1 and Gu−1 is a 1/100-spectral expander. Thus
if we can bound the first term on the right hand side of (3) by some B(u) that decays less rapidly
than 100−u (i.e. B(u) = Θ(β−u) for β < 100), we can inductively bound the left hand side by
B(u) + B(u − 1)/100 + B(u − 2)/1002 + · · · = O(B(u)). Specifically, we will show this bound
for B(u) = Θ(

√
p0p1 · θ · e−Ω(p0p1(u−1)θ2)). Intuitively, it suffices to bound what happens to the

component parallel to ~1, because the component orthogonal to ~1 is shrunk by a factor of 100 with
each application of PθGi.

Letting F = J + (1/10)(I − J) be the matrix that preserves ~1 and scales its orthogonal com-
plement by 1/10, then because by assumption all i 6= u have λ(Gi) ≤ 1/100, it follows that
‖F−1GiF

−1‖ ≤ 1. Thus∥∥∥∥∥∥
((

u−2∏
i=0

PθGi

)
~1

)‖∥∥∥∥∥∥ =

∥∥∥∥∥~1>
(
u−2∏
i=0

FPθF · F−1GiF
−1

)
~1

∥∥∥∥∥ ≤ ‖FPθF‖u−1.

Next via some technical calculations (Lemma 27), we show that for all −π < θ ≤ π,

‖(Pθ~1)⊥‖ =
‖x⊥θ ‖√
|V |

= Θ(
√
p0p1 · θ). (4)

For intuition, observe that if p0p1 or θ equals 0, then all entries of xθ are the same, so x⊥θ = 0.
Using (4), we also deduce (Lemma 28) that

‖FPθF‖ ≤ 1− Ω((‖(Pθ~1)⊥‖2) = e−Ω(p0p1θ2).

Here for intuition, as F is a 1/10-spectral expander, we should expect ‖FPθF‖ to be close to

‖JPθJ‖ = ‖(Pθ~1)‖‖ =
√

1− ‖(Pθ~1)⊥‖2 = 1− Ω(‖(Pθ~1)⊥‖2). Thus (3) becomes∥∥∥∥∥∥
((

u−1∏
i=0

PθGi

)
~1

)⊥∥∥∥∥∥∥ ≤ O
(√

p0p1 · θ · e−Ω(p0p1(u−1)θ2)
)

+
1

100
·

∥∥∥∥∥∥
((

u−2∏
i=0

PθGi

)
~1

)⊥∥∥∥∥∥∥ .
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Recursively applying this inequality to bound the last term on its right hand side then gives∥∥∥∥∥∥
((

u−1∏
i=0

PθGi

)
~1

)⊥∥∥∥∥∥∥ = O
(√

p0p1 · θ · e−Ω(p0p1u·θ2)
)
.

We now apply the above bound on ‖((
∏u−1
i=0 PθGi)

~1)⊥‖, along with an analogous bound on
‖(~1>(

∏t
i=u+1GiPθ))

⊥‖, in (2) to give

|ĝ(θ)| = O
(
p0p1 · θ2 · e−Ω(p0p1t·θ2) · ‖G′u −Gu‖

)
.

We then obtain the desired `2-bound (1) by squaring and integrating this bound with the substi-
tution q = c

√
p0p1t · θ for a sufficiently small constant c > 0:

‖g‖ = ‖ĝ‖ = O

(
p0p1 · ‖G′u −Gu‖ ·

√∫ π

−π
θ4e−Ω(p0p1t·θ2)

dθ

2π

)

= O

(
‖G′u −Gu‖
t · (p0p1t)1/4

·

√∫ ∞
−∞

q4e−q2dq

)

= O

(
‖G′u −Gu‖
t · (p0p1t)1/4

)
.

1.3.2 Going from an `2 to `1 bound

In this section, we show how to extend the techniques for bounding ‖g‖ described above to bound
‖g‖1, and more generally to prove Theorem 1.

First observe that by the expander-walk Chernoff bound, Σ val(RWt
G) and Σ val(RWt

G′) are
mostly supported in an interval of length ` ≈ O(

√
t) about their mean. Applying the Cauchy-

Schwartz inequality to (1) on this interval (which costs a factor of
√
` ≈ O(t1/4) to convert from

`2 to `1), and the expander-walk Chernoff bound on the tails lying outside of the interval, yields a
total variation bound of

‖g‖1 = O

(
‖G′u −Gu‖

t
·
(

log(‖G′u −Gu‖/t)
p0p1

)1/4
)
.

However, the above `1-bound does not help us prove Theorem 1 when c2/t is large. Furthermore,
even to prove the c = 0 case Theorem 1, we need to remove the factor (log(‖G′u −Gu‖/t)/p0p1)1/4

from the bound above.
To obtain these improvements, we first generalize (1) to bound the `2-norm of the vector g(sr) =

(esr(j−p1t)gj)j∈[t+1] for s = ±1 and various values of r ≥ 0. The proof of this bound on ‖g(sr)‖ for
general r (Theorem 22) simply generalizes the argument presented in Section 1.3.1. The special case
r = 0 recovers g = g(0), while when r > 0 then the sum of the elements of g(sr) equals the difference

between the moment generating functions E[esr((Σ val(RWt
G))1−p1t)] and E[esr((Σ val(RWt

G′ ))1−p1t)] that
are used in the proofs of Chernoff bounds.

We then partition [t + 1] ⊆ Z into intervals of length approximately
√
p0p1t, and we bound

the `1-norm of g restricted to each interval by applying the Cauchy-Schwartz inequality with our
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`2-bound on g(sr) for appropriately chosen s, r. Summing these bounds over all intervals lying at
least some distance c from p1t yields Theorem 1.

Intuitively, as Σ val(RWt
G) and Σ val(RWt

G′) have standard deviation Θ(
√
p0p1t), we would ex-

pect these distributions to be somewhat evenly distributed across an interval of length
√
p0p1t. This

is the regime where Cauchy-Schwartz is tight. Appropriately choosing s, r allows us to “isolate” a
given length-

√
p0p1t interval, by ensuring that the components of g(sr) in that interval dominate

components outside that interval.

1.3.3 Comparison with techniques in prior work

Our techniques described above to prove Theorem 1 are closely related to Healy’s [Hea08] proof
of the expander-walk Chernoff bound. In some sense, Healy’s proof [Hea08] makes up “half” of

our proof: Healy’s proof bounds the moment-generating function E[esr((Σ val(RWt
G))1−p1t)], but does

not bound the characteristic function E[e−iθ((Σ val(RWt
G))1−p1t)] as described in Section 1.3.1 (as the

Fourier coefficient ĝ(θ) by definition equals the difference between the characteristic functions of
(Σ val(RWt

G))1 and (Σ val(RWt
G′))1). Intuitively, our proof combines the moment generating and

characteristic function bounds, as in order to bound ‖g(sr)‖, we bound the difference eiθp1t · ĝ(sr)(θ)

between the generating functions E[e(sr−iθ)((Σ val(RWt
G))1−p1t)] and E[e(sr−iθ)((Σ val(RWt

G′ ))1−p1t)].
Although Cohen et al. [CPTS21] and Cohen et al. [CMP+21] also studied the extent to which

expander walks fool symmetric functions, their proofs are less similar to ours. Most notably, both
of these papers use Fourier analysis over the group (Z/2Z)t by viewing val(RWt

G) as a distribution
on (Z/2Z)t. In contrast, we use Fourier analysis over Zd−1 by viewing Σ val(RWt

G) as a distribution
on Zd (or Zd−1, if we drop the first component). This explains why our results generalize more
naturally to the case d > 2, which is not considered in [CPTS21, CMP+21]. We could also do
our analysis using discrete Fourier analysis over (Z/m)d−1 instead, for any m ≥ t, but then the
modulus m is superfluous (as it is cleaner to avoid modular reduction) and only makes the notation
more cumbersome.

1.4 Proof overview for permutation branching programs

In this section, we outline the proof of Theorem 6, which uses singular-value approximations as
described below. We do not outline the proof of our other results for permutation branching
programs, specifically Theorem 7, and instead refer the reader to Section 4.2, as this latter result
uses techniques somwhat similar to those described above in Section 1.3.

For the purpose of this paper, a branching program B of length t, width w, and degree d is
a program with w possible states of memory, that reads an input in [d]t and outputs a value in
[w]. Thus each branching program B computes a specific function B : [d]t → [w]. More formally,
B begins with an initial state 0 ∈ [w], and sequentially reads in t inputs a0, . . . , at−1 ∈ [d]. Upon
receiving each input ai, then B updates its state according to a specified function Bi(ai) : [w]→ [w].
We restrict attention to permutation branching programs, meaning that all functions Bi(ai) are
permutations.

1.4.1 Proof outline

We now describe the proof of Theorem 6. As in the theorem statement, for arbitrary integers t ≥ 1,
w ≥ 2, and d ≥ 2, let B be a permutation branching program of length t, width w, and degree
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d that computes some function B : [d]t → [w]. Let G be a λ-spectral expander with λ < .1, and
assign some vertex labeling val : G→ [d]. We again let g ∈ [−1, 1][w] denote the difference between
the distributions B(val(RWt

G)) and B(val(RWt
J)) of interest, that is,

gj = Pr
[
B(val(RWt

G)) = j
]
− Pr

[
B(val(RWt

J)) = j
]
.

In this notation, Theorem 6 states that ‖g‖ = O(λ).
As in the proof of Theorem 1, we begin by expressing g linear-algebraically. Let P̃ be the

operator on the vector space RV ⊗ Rt ⊗ Rw given by

P̃ =
∑

v∈V,i∈[t]

δvδ
>
v ⊗ δi+1δ

>
i ⊗Bi(val(v)),

where i + 1 is taken (mod t) above, and by abuse of notation Bi(val(v)) ∈ Rw×w refers to the
permutation matrix associated to the permutation Bi(val(v)) : [w] → [w]. Also for W = G or J ,
let W̃ = W ⊗ I ⊗ I. Then for every j ∈ [w],

g = (~1⊗ δ0 ⊗ I)>((G̃P̃ )t − (J̃ P̃ )t)(~1⊗ δ0 ⊗ δ0). (5)

This equality can again be seen by expanding the right hand side above as a sum over all length-t
walks on V (see Lemma 36).

We will bound the right hand side using singular-value approximations [Ahm20, APSV21]. A
matrix W ′ ∈ CN×N is a singular-value ε-approximation of another matrix W ∈ CN×N , written

W ′
sv
≈ε W , if for all x, y ∈ CN ,

|x∗(W ′ −W )y| ≤ ε

2
(‖x‖2 + ‖y‖2 − ‖x∗W‖2 − ‖Wy‖2),

where x∗ denotes the conjugate transpose of x. The following properties were shown by Ahmadine-
jad et al. [Ahm20, APSV21] (see Section 2.3 for details):

1. G̃
sv
≈λ J̃ .

Assume that W ′
sv
≈ε W . Then:

2. For every matrix X with spectral norm ‖X‖ ≤ 1, then W ′X
sv
≈ε WX.

3. If ε < .1, then (W ′)t
sv
≈ε+5ε2 W

t. (Importantly, the bound ε+O(ε2) does not grow with t.)

4. ‖W ′ −W‖ ≤ ε.

We now bound the right hand side of (5) using singular value approximations. Because by

definition ‖P̃‖ = 1, property 1 and property 2 above imply that G̃P̃
sv
≈λ J̃ P̃ . Then property 3

implies that (G̃P̃ )t
sv
≈λ+5λ2 (J̃ P̃ )t, and property 4 then gives that ‖(G̃P̃ )t − (J̃ P̃ )t‖ ≤ λ + 5λ2, so

‖g‖ ≤ λ+ 5λ2 = O(λ).
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1.4.2 Comparison with techniques in prior work

The proof of Theorem 6 described above is closely related to the analysis of the Impagliazzo-Nisan-
Wigderson (INW) [INW94] pseudorandom generator in Hoza et al. [HPV21]. Hoza et al. [HPV21]
use unit-circle approximations [AKM+20] to show that length-2 walks on λ-spectral expanders fool
permutation branching programs up to a O(λ) `2-error; the INW generator they study recursively
applies many such length-2 walks. We generalize this O(λ) bound to walks of arbitrary length,
and simplify the analysis by replacing the unit-circle approximations with singular-value approx-
imations. We obtain these improvements because the unit-circle approximations, though similar
in nature to singular-value approximations, do not satisfy property 2 described above. Although
our results do not directly translate to an improved pseudorandom generator, it is an interesting
question whether longer walks could somehow be used to improve the seed length.

As described in Section 1.2.2, Theorem 6 implies a O(
√
w · λ) total variation distance bound,

which improves upon the O(w4 ·
√
λ) total variation bound of Cohen et al. [CPTS21]. However,

Cohen et al. [CPTS21] prove their result using bounds on the Fourier tails over (Z/2Z)t of permu-
tation branching programs with alphabet size d = 2, differing significantly from our proof using
singular-value approximations, which generalizes readily to d > 2.

2 Preliminaries

This section describes the basic notation and problem setup that is used throughout the paper.

2.1 Notation

For N ∈ N, let [N ] = {0, . . . , N − 1}. For the field F = R or C, let ~1N =
(
1/
√
N . . . 1/

√
N
)> ∈

FN denote the normalization of the all 1’s vector. When the dimension N is clear from context,
this vector will simply be denoted ~1. The vector δi ∈ FN denotes the ith standard basis vector,
which has a 1 in the ith component and 0s elsewhere. For a matrix A ∈ FN×N , the spectral norm
of A is defined to be ‖A‖ = maxx∈FN\{0} ‖Ax‖/‖x‖. For A ∈ CN×M , the conjugate transpose is

denoted A∗ = A
>

.
A matrix W ∈ [0, 1]N×N is a random walk matrix on N vertices if the columns of W sum to

1, so that Wj,i denotes the transition probability from vertex i to vertex j. The N × N identity
matrix is denoted I, while the matrix J = ~1~1> refers to the N × N matrix with all entries 1/N ,
where N will be understood from context. Thus J is the random walk matrix for the complete
graph with self-loops. The random walk matrix for the directed cycle on N vertices is denoted CN ,
so that CN (y1, y2, . . . , yN ) = (yN , y1, y2, . . . , yN−1).

2.2 Distance between probability distributions

We will use total variation, `1, `2, and Kolmogorov distances between probability distributions,
defined below.

Definition 8. Let Ω be a sample space with σ-algebra A. The total variation distance between
probability measures µ1, µ2 : F → R is

dTV(µ1, µ2) = sup
A∈A
|µ1(A)− µ2(A)|

11



Definition 9. Let Ω be a sample space with σ-algebra A. The `1-distance between probability
measures µ1, µ2 : F → R is equal to twice the total variation distance, that is,

d`1(µ1, µ2) = 2dTV(µ1, µ2)

In particular, when Ω is countable and A = 2Ω, then

d`1(µ1, µ2) =
∑
a∈Ω

|µ1(a)− µ2(a)|.

Definition 10. Let Ω be a countable sample space. The `2-distance between probability measures
µ1, µ2 : 2Ω → R is

d`2(µ1, µ2) =

√∑
a∈Ω

(µ1(a)− µ2(a))2.

Definition 11. The Kolmogorov distance between real Borel probability measures µ1, µ2 :
B(R)→ R is

dKol(µ1, µ2) = sup
a∈R
|µ1(−∞, a]− µ2(−∞, a]|.

That is, the Kolmogorov distance between two probability distributions on R equals the sup-norm
of the difference between their cumulative distribution functions.

2.3 Singular-value approximation

We will make use of singular-value spectral approximations for matrices:

Definition 12 ([Ahm20, APSV21]). A matrix W̃ ∈ CN×N is a singular-value ε-approximation

of another matrix W ∈ CN×N , written W̃
sv
≈ε W , if for all x, y ∈ CN ,

|x∗(W̃ −W )y| ≤ ε

2
(‖x‖2 + ‖y‖2 − ‖x∗W‖2 − ‖Wy‖2).

Some properties of this approximation notion are given below.

Lemma 13 ([Ahm20, APSV21]). If W̃
sv
≈ε W and X is any matrix with ‖X‖ ≤ 1, then W̃X

sv
≈ε WX

and XW̃
sv
≈ε XW .

Lemma 14 ([Ahm20, APSV21]). For 0 ≤ ε < .1 and k ≥ 1, if W̃
sv
≈ε W , then W̃ k sv

≈ε+5ε2 W
k.

Lemma 15 ([Ahm20, APSV21]). If W̃
sv
≈ε W , then W̃ ⊗ I

sv
≈ε W ⊗ I, where I denotes the identity

matrix over any complex vector space CM .

Lemma 16 ([Ahm20, APSV21]). If G is the random walk matrix for a λ-spectral-expander (see

Section 2.4), then G
sv
≈λ J .
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2.4 Problem setup

For a regular digraph G = (V,E) on n vertices, the spectral expansion is defined as

λ(G) = ‖G|~1⊥‖ = max
x⊥~1

‖x>G‖
‖x‖

= max
x,x′⊥~1

|x>Gx′|
‖x‖‖x′‖

= max
x′⊥~1

‖Gx′‖
‖x′‖

,

where by abuse of notation G also denotes the random walk matrix of G. For some integer d ≥ 2,
let V have an associated labeling val : V → [d], and let p = (p0, . . . , pd−1) be the vector with
pb = | val−1(b)|/n equal to the fraction of vertices in V with label b. Assume without loss of
generality that all labels are used, so that pb > 0 for all b ∈ [d]. For t ∈ N, we extend the label
function component-wise to val : V t → [d]t.

Given t ∈ N and a sequence of random walk matrices W = (W1, . . . ,Wt−1) on shared vertex
set V , let RWt

W denote the probability distribution over V t obtained by taking a t-step random
walk on V , where the ith step is taken according to the transition probabilities in Wi. Formally, to
sample (v0, . . . , vt−1) ∼ RWt

W , the initial vertex v0 ∈ V is chosen uniformly at random, and then
for 1 ≤ i ≤ t− 1 the vertex vi is sampled given vi−1 according to Pr[vi = v] = (Wi)v,vi−1 . If all Wi

equal some matrix W , we let RWt
W = RWt

W .
Our goal in this paper is to study the probability distribution of val(RWt

G) for a sequence
G = (G1, . . . , Gt1) of λ-spectral expanders. In particular, as J is the optimal (0-spectral) expander,
it is natural to study the distance between the distributions val(RWt

G) and val(RWt
J), for appro-

priate distance metrics. Intuitively, this distance measures the cost of replacing truly random steps
in J with expander random walks; note that val(RWt

J) is simply t iid copies of the probability
distribution p over [d].

In particular, we will study the distance (i.e. total variation distance) between the distributions
f(val(RWt

G)) and f(val(RWt
J)) for specific classes of functions f on [d]t, namely symmetric functions

and functions computable by permutation branching programs. We are interested in distance
bounds that depend on G only through λ. Equivalently, this problem can be formulated as studying
which functions f are fooled by all λ-spectral expanders G.

3 Symmetric functions

In this section, we address the following question: for an arbitrary symmetric function f on [d]t,
how similar are the distributions of f(val(RWt

G)) and f(val(RWt
G′)), for certain graph sequences

G,G′ of interest? In particular, to study how well symmetric functions are fooled by expander
walks, we may let G be a sequence of λ-spectral expanders and G′ = (J, . . . , J) (though our results
apply more generally). To measure the “similarity” of the distributions, we will prove both total
variation distance bounds and tail bounds.

To begin, without loss of generality we restrict our attention from the class of all symmetric
functions to the symmetric function Σ defined below.

Definition 17. For a string a ∈ [d][t], let Σa ∈ [t + 1][d] be the vector counting the number of
occurences of each b ∈ [d] in a. That is, for b ∈ [d], let (Σa)b = |{i ∈ t : ai = b}|.

Remark. The output of Σ : [d]t → [t+ 1]d is slightly redundant, as
∑

b∈[d](Σa)b = t.

By definition, every symmetric function f on [d]t factors through Σ, in the sense that the value
f(a) can be computed given only f and Σa. Thus for every pair of sequencesW,W ′ of random walk
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matrices, the total variation distance between f(val(RWt
W)) and f(val(RWt

W ′)) is bounded above
by the total variation distance between Σ val(RWt

W) and Σ val(RWt
W ′). Conversely, by definition

there always exists a symmetric function f : [d]t → {0, 1} such that the total variation distance
between f(val(RWt

W)) and f(val(RWt
W ′)) equals the total variation distance between Σ val(RWt

W)
and Σ val(RWt

W ′), as if the subset A ⊆ [t+ 1]d maximizes the variation between Σ val(RWt
W) and

Σ val(RWt
W ′), then f may simply be defined as the indicator function for the event Σa ∈ A. Thus

to prove upper bounds on total variation distance that hold over all symmetric functions, we may
restrict attention to the function Σ : [d]t → [t+ 1]d.

Because Σ is supported inside Zd, we may study the difference between the tails as well as the
total variation distance between Σ(val(RWt

G)) and Σ(val(RWt
G′)). The following result provides a

unified bound for these two objectives when d = 2.

Theorem 18. Fix integers t ≥ 1 and 1 ≤ u ≤ t− 1. Let G = (Gi)1≤i≤t−1 and G′ = (G′i)1≤i≤t−1 be
sequences of regular graphs on a shared vertex set V such that for all i 6= u we have Gi = G′i with
λ(Gi) = λ(G′i) ≤ 1/100. Fix a labeling val : V → [2] that assigns each label b ∈ [2] to pb-fraction of
the vertices. Then for every c ≥ 0,∑

j∈[t+1]:|j−p1t|≥c

∣∣Pr
[
Σ val(RWt

G′) = (t− j, j)
]
− Pr

[
Σ val(RWt

G) = (t− j, j)
]∣∣

≤ 4000 · ‖G
′
u −Gu‖ · e−c

2/8t

t
.

(6)

To interpret Theorem 18, it is useful to consider the following corollary. This corollary bounds
the total variation distance between Σ val(RWt

G) and the binomial distribution, and simultaneously
provides a tail bound that strengthens the expander-walk Chernoff bound.

Corollary 19. Fix an integer t ≥ 1. Let λ ≤ 1/100, and let G = (Gi)1≤i≤t−1 be a sequence of
regular λ-spectral expanders on shared vertex set V . Fix a labeling val : V → [2] that assigns each
label b ∈ [2] to pb-fraction of the vertices. Then for every c ≥ 0,∑

j∈[t+1]:|j−p1t|≥c

∣∣Pr
[
Σ val(RWt

G) = (t− j, j)
]
− Pr

[
Σ val(RWt

J) = (t− j, j)
]∣∣

≤ 4000 · λ · e−c2/8t.

Proof. For 0 ≤ i ≤ t − 1, define G(i) = (G1, . . . , Gi, J, . . . , J) to be the sequence consisting of the
first i elements of G followed by t − 1 − i copies of J . Then because ‖Gi − J‖ = λ(Gi) for all i,
applying Theorem 18 to each pair of sequences G(u),G(u−1) for 1 ≤ u ≤ t − 1 and summing the
resulting bounds with the triangle inequality gives∑

j∈[t+1]:|j−p1t|≥c

∣∣∣Pr
[
Σ val(RWt

G(t−1)) = (t− j, j)
]
− Pr

[
Σ val(RWt

G(0)) = (t− j, j)
]∣∣∣

≤
t−1∑
u=1

4000 · λ(Gu) · e−c2/8t

t

≤ 4000 · λ · e−c2/8t.
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When c = 0, Corollary 19 implies that for a sequence G of λ-spectral expanders, the total
variation distance between Σ val(RWt

G) and Σ val(RWt
J) is at most O(λ), where the big-O con-

stant does not depend on p. In contrast, the best previously known upper bound on this to-
tal variation distance, shown by Cohen et al. [CMP+21], was O(λ/

√
min(p)), which weakens as

min(p) = min{p0, p1} falls. Cohen et al. [CMP+21] also assumed that all graphs in the sequence G
are identical, whereas we allow the graph to change at each step.

When we consider c > 0, our bounds have further new implications. In particular, Corollary 19
strengthens the expander-walk Chernoff bound [Gil98, Hea08]. The expander-walk Chernoff bound
shows that when λ is bounded away from 1 and G is a sequence of λ-spectral expanders, then∑

j∈[t+1]:|j−p1t|≥c

Pr
[
Σ val(RWt

G) = (t− j, j)
]

= Pr
[
|(Σ val(RWt

G))1 − p1t| ≥ c
]

= O(e−Ω(c2/t)),

that is, that the tails of Σ val(RWt
G) decay approximately as quickly as the tails of the binomial

distribution Σ val(RWt
J). In contrast, our tail bound in Corollary 19 shows the stronger statement

that as λ→ 0, the tails of Σ val(RWt
G) converge to the tails of Σ val(RWt

J).
While Corollary 18 compares RWt

G with RWt
J , Theorem 18 provides bounds for comparing RWt

G
with RWt

G′ for any two sequences G,G′ of 1/100-spectral expanders. Thus if the sequences G and G′
agree at all but a few steps, then Theorem 18 gives stronger bounds on the resulting distributions.
More generally, as demonstrated in the proof of Corollary 19, Theorem 18 suggests that the total
variation distance between Σ val(RWt

G) and Σ val(RWt
G′) increases somewhat “smoothly” as the

distance between the sequences G amd G′ increases.
Below, we present an analogue of Theorem 18 for arbitrary d ≥ 2, although without a tail

bound. The d = 2 case of the theorem below is simply the c = 0 case of Theorem 18. We prove
the d > 2 case in Appendix B, as the proof closely resembles the proof of Theorem 18 given in
Section 3.1 below.

Theorem 20. Fix integers t ≥ 1 and 1 ≤ u ≤ t− 1. For some integer d ≥ 2, let V be a finite set
of vertices with labeling val : V → [d] that assigns each label b ∈ [d] to pb-fraction of the vertices.
Then there exist constants `d,p, cd,p > 0 depending only on d and p such that the following holds.
Let G = (Gi)1≤i≤t−1 and G′ = (G′i)1≤i≤t−1 be sequences of regular graphs on the shared vertex set
V such that for all i 6= u we have Gi = G′i with λ(Gi) = λ(G′i) ≤ `d,p. Then

dTV

(
Σ val(RWt

G′),Σ val(RWt
G)
)
≤ cd,p ·

‖G′u −Gu‖
t

.

In particular, for d = 2 and all p = (p0, p1) we may take

`d,p = 1/100 and cd,p = 2000,

while for d > 2, letting min(p) = minb∈[d] pb, we may take

`d,p = min(p)/400 and cd,p =
29d/4+13dd/2+3

min(p)(d+3)/4
.

The following direct application of Theorem 20 follows by an argument that is analogous to the
proof of Corollary 19.
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Corollary 21. Fix an integer t ≥ 1. For some integer d ≥ 2, let V be a finite set of vertices with
labeling val : V → [d] that assigns each label b ∈ [d] to pb-fraction of the vertices. Define constants
`d,p, cd,p as in Theorem 20. Let λ ≤ `d,p, and let G = (Gi)1≤i≤t−1 be a sequence of regular λ-spectral
expanders on shared vertex set V . Then

dTV

(
Σ val(RWt

G),Σ val(RWt
J)
)
≤ cd,p · λ.

Corollary 21 provides an affirmative answer to a question of Jalan and Moshkovitz [JM21], who
asked whether the bound of Cohen et al. [CPTS21] extends to d > 2. However, we suspect that
the dependence on p in Theorem 20 and Corollary 21 is not tight, and we leave the determination
of the optimal dependence as an open question.

3.1 Proof of Theorem 18

In this section, we restrict attention to the case where d = 2, and we prove Theorem 18. Define

g =
(
Pr
[
Σ val(RWt

G′) = (t− j, j)
]
− Pr

[
Σ val(RWt

G) = (t− j, j)
])
j∈[t+1]

∈ [−1, 1][t+1] (7)

to denote the difference between the distributions of (Σ val(RWt
G′))1 and (Σ val(RWt

G))1.

3.1.1 Reduction to bounding an `2-norm

In this section, we show how to prove Theorem 18 given Theorem 22 below, which bounds the norm
of the vector

g(sr) = (esr(j−p1t)gj)j∈Z ∈ RZ (8)

for s = ±1 and 0 ≤ r ≤ 1/2, where gj is given by (7) for j ∈ [t+ 1] and gj = 0 for j /∈ [t+ 1]. We
will then prove Theorem 22 in the following sections.

Theorem 22. As in Theorem 18, let u < t be positive integers and let G = (Gi)1≤i≤t−1 and
G′ = (G′i)1≤i≤t−1 be sequences of regular graphs on a shared vertex set V with labeling val : V → [2],
such that for all i 6= u we have Gi = G′i with λ(Gi) = λ(G′i) ≤ 1/100. Let val assign each label
b ∈ [2] to pb-fraction of the vertices. Then for every s = ±1 and 0 ≤ r ≤ 1/2, defining g(sr) as
in (8), we have

‖g(sr)‖ ≤ ‖G′u −Gu‖ · p0p1 · e2p0p1tr2 ·min

{
44,

22 · r2

(p0p1t)1/4
+

70

(p0p1t)5/4

}
.

By reducing Theorem 18 to Theorem 22, we reduce our goal of showing an `1-bound to the
problem of showing an `2-bound. Because the `2-norm is invariant under orthonormal basis changes,
we can transition to the Fourier basis to prove Theorem 22, as will be shown in Section 3.1.2.

To prove Theorem 18, we will partition [t + 1] into intervals of length approximately
√
p0p1t,

which equals the standard deviation of (Σ val(RWt
J))1. We then bound the `1-norm of g on each

such interval in terms of ‖g(sr)‖ for appropriately chosen s = ±1, 0 ≤ r ≤ 1/2, as shown in
Lemma 23 below. Intuitively, an appropriate selection of s, r allows the components of g(sr) in the
specified interval to dominate components outside the interval, so within each interval we obtain
asymptotically tight bounds.
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Lemma 23. For k ≥ 0, let

S+
k = {j ∈ [t+ 1] : k

√
p0p1t ≤ j − p1t < (k + 1)

√
p0p1t}

S−k = {j ∈ [t+ 1] : −(k + 1)
√
p0p1t < j − p1t ≤ −k

√
p0p1t}.

Then for s = ±1, r ≥ 0, the following holds:

1. For j ∈ [t+ 1], |gj | ≤ e−sr(j−p1t) · ‖g(sr)‖.

2. If p0p1t ≥ 1, then ‖gSsk‖1 ≤
√

2 · (p0p1t)
1/4 · e−rk

√
p0p1t · ‖g(sr)‖.

Proof. 1. By definition |gj | = e−sr(j−p1t) · |esr(j−p1t)gj | ≤ e−sr(j−p1t) · ‖g(sr)‖.

2. By definition

‖gSsk‖1 ≤ e
−rk
√
p0p1t ·

∑
j∈Ssk

|esrjgj |

≤ e−rk
√
p0p1t ·

√
|Ssk| · ‖g

(sr)‖,

where the second inequality above holds by the Cauchy-Schwartz inequality. Then the desired
result follows because |Ssk| ≤

√√
p0p1t+ 1 ≤

√
2 · (p0p1t)

1/4 as p0p1t ≥ 1.

Because
⋃
s=±1,0≤k≤

√
t/p1

Ssk = [t + 1], Lemma 23 shows how to bound ‖g‖1 given bounds on

‖g(sr)‖. We prove Theorem 18 using this approach below. The theorem is restated for convenience.

Theorem 18. Fix integers t ≥ 1 and 1 ≤ u ≤ t− 1. Let G = (Gi)1≤i≤t−1 and G′ = (G′i)1≤i≤t−1 be
sequences of regular graphs on a shared vertex set V such that for all i 6= u we have Gi = G′i with
λ(Gi) = λ(G′i) ≤ 1/100. Fix a labeling val : V → [2] that assigns each label b ∈ [2] to pb-fraction of
the vertices. Then for every c ≥ 0,∑

j∈[t+1]:|j−p1t|≥c

∣∣Pr
[
Σ val(RWt

G′) = (t− j, j)
]
− Pr

[
Σ val(RWt

G) = (t− j, j)
]∣∣

≤ 4000 · ‖G
′
u −Gu‖ · e−c

2/8t

t
.

(6)

Proof. First consider the case where p0p1t < 1. Then by Lemma 23 and Theorem 22, for j ∈ [t+1],

|gj | ≤ e−sr(j−p1t) · 44 · ‖G
′
u −Gu‖
t

· p0p1t · e2p0p1tr2

≤ 44 · ‖G
′
u −Gu‖
t

· e2r2−sr(j−p1t).

Thus setting r = 1/2 and s = sgn(j − p1t) and then summing over j gives∑
j∈[t+1]:|j−p1t|≥c

|gj | ≤
∑

j∈[t+1]:|j−p1t|≥c

44 · ‖G
′
u −Gu‖
t

· e1/2−|j−p1t|/2

≤ 88 · ‖G
′
u −Gu‖
t

· e
1/2−c/2

1− e−1/2
.
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When c > t, the left hand side above equals 0, so assume that 0 ≤ c ≤ t. Then −c/2 ≤ −c2/2t,
so (6) holds by the above inequality because 88 · e1/2/(1− e−1/2) ≤ 4000.

Now assume that p0p1t ≥ 1. Then by Lemma 23 and Theorem 22, for k ≥ 0 and s = ±1,

‖gSsk‖1 ≤
√

2 · (p0p1t)
1/4 · e−rk

√
p0p1t · ‖G′u −Gu‖ · p0p1 · e2p0p1tr2 ·

(
22 · r2

(p0p1t)1/4
+

70

(p0p1t)5/4

)
≤ ‖G

′
u −Gu‖
t

· e2r2p0p1t−rk
√
p0p1t ·

(
22
√

2 · r2 · p0p1t+ 70
√

2
)
.

To make the bound above tight, we choose 0 ≤ r ≤ 1/2 to minimize 2r2p0p1t− rk
√
p0p1t. That is,

set

r =

{
k

4
√
p0p1t

, k ≤ 2
√
p0p1t

1
2 , k > 2

√
p0p1t.

Then

2r2p0p1t− rk
√
p0p1t =

{
−k2

8 , k ≤ 2
√
p0p1t

p0p1t
2 − k

√
p0p1t
2 , k > 2

√
p0p1t.

For k > 2
√
p0p1t, we have

p0p1t

2
− k
√
p0p1t

2
= −p0p1t

2
− (k − 2

√
p0p1t)

√
p0p1t

2

≤ −(2
√
p0p1t+ (k − 2

√
p0p1t))

√
p0p1t

4

= −k
√
p0p1t

4
.

Furthermore, because p0p1t ≥ 1, by definition r2 · p0p1t ≤ k2/16. Thus

‖gSsk‖1 ≤
‖G′u −Gu‖

t
·max{e−k2/8, e−k

√
p0p1t/4} ·

(
22
√

2 · k
2

16
+ 70
√

2

)
≤ 70

√
2 · ‖G

′
u −Gu‖
t

·max{e−k2/16, e−k
√
p0p1t/8},

where the second inequality above holds because p0p1t ≥ 1 so that e−k
2/16 ·

(
22
√

2 · k2

16 + 70
√

2
)

and e−k
√
p0p1t/8 ·

(
22
√

2 · k2

16 + 70
√

2
)

are both maximized at k = 0, and therefore are both bounded

above by 70
√

2. Therefore

∑
j∈[t+1]:|j−p1t|≥c

|gj | ≤
b
√
t/p0p1c∑
`=0

(∥∥∥∥gS+

c/
√
p0p1t+`

∥∥∥∥
1

+

∥∥∥∥gS−
c/
√
p0p1t+`

∥∥∥∥
1

)

≤ 140
√

2 · ‖G
′
u −Gu‖
t

·
b
√
t/p0p1c∑
`=0

max{e−(c/
√
p0p1t+`)2/16, e−c/8−`

√
p0p1t/8}

≤ 140
√

2 · ‖G
′
u −Gu‖
t

· max{e−c2/16p0p1t, e−c/8}
1− e−1/16

.
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When c > t, the left hand side above equals 0, so assume that 0 ≤ c ≤ t. Then −c/8 ≤ −c2/8t,
and also −c2/16p0p1t ≤ −c2/4t, so the above inequality gives

∑
j∈[t+1]:|j−p1t|≥c

|gj | ≤ 140
√

2 · ‖G
′
u −Gu‖
t

· e−c
2/8t

1− e−1/16

≤ 4000 · ‖G′u −Gu‖ ·
e−c

2/8t

t
.

3.1.2 Reduction to bounding Fourier coefficients

In this section, we show how to prove Theorem 22 given bounds on the Fourier transform of
g(sr). Specifically, we prove Theorem 22 assuming Theorem 25 below, which will be proven in
Section 3.1.3.

We first introduce the Fourier transform for the group Z.

Definition 24. Let S1 = R/2πZ with `2 norm ‖f‖ =
√∫ π
−π |f(θ)|2dθ/2π. Let `2(Z) and `2(S1)

denote the subspaces of CZ and CS1
respectively containing all elements of finite `2 norm. Then the

Fourier transform for the group Z is the map F : `2(Z) → `2(S1) such the Fourier transform
of h ∈ `2(Z), denoted Fh = ĥ ∈ `2(S1), is given by

ĥ(θ) =
∑
j∈Z

hje
−iθj .

The Fourier transform may also be expressed in terms of the Fourier characters χθ = (eiθj)j∈Z ∈
CZ, as ĥ(θ) = χ∗θh.

It is well know that the Fourier transform preserves the `2 norm, so that ‖ĥ‖ = ‖h‖. Below, we
associate S1 = R/2πZ with the interval (−π, π], so that all θ ∈ S1 have |θ| ≤ π.

Theorem 25. As in Theorem 18, let u < t be positive integers and let G = (Gi)1≤i≤t−1 and
G′ = (G′i)1≤i≤t−1 be sequences of regular graphs on a shared vertex set V with labeling val : V → [2],
such that for all i 6= u we have Gi = G′i with λ(Gi) = λ(G′i) ≤ 1/100. Let val assign each label
b ∈ [2] to pb-fraction of the vertices. Then for every s = ±1 and 0 ≤ r ≤ 1/2, defining g(sr) as
in (8), we have for all −π < θ ≤ π that

|ĝ(sr)(θ)| ≤ 4 · ‖G′u −Gu‖ · p0p1 ·
(

4r2 +
3

2
θ2

)
· ep0p1t(2r2−θ2/20).

To obtain the desired bound on ‖g(sr)‖ in Theorem 22, we square the inequality in Theorem 25
and then integrate over θ ∈ (−π, π], using the fact that ‖g(sr)‖2 = ‖ĝ(sr)‖2 =

∫ π
−π |ĝ

(sr)(θ)|2dθ/2π
because the Fourier transform preserves `2-norms. This calculation is shown below.
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Proof of Theorem 22. Because the Fourier transform preserves the `2-norm, by Theorem 25,

‖g(sr)‖ =

√∫ π

−π
|ĝ(sr)(θ)|2 dθ

2π

≤ 4 · ‖G′u −Gu‖ · p0p1 · e2p0p1tr2 ·

√∫ π

−π

(
4r2 +

3

2
θ2

)2

· e−p0p1tθ2/10
dθ

2π

≤ 4
√

2 · ‖G′u −Gu‖ · p0p1 · e2p0p1tr2

·

(
4r2

√∫ π

−π
e−p0p1tθ2/10

dθ

2π
+

√∫ π

−π

9

4
θ4 · e−p0p1tθ2/10

dθ

2π

)
,

(9)

where the final inequality above holds because all a, b ≥ 0 satisfy (a + b)2 ≤ 2(a2 + b2) and√
a+ b ≤

√
a+
√
b. Applying the bound e−p0p1tθ2/10 ≤ 1 in the right hand side of (9) gives

‖g(sr)‖ ≤ 4
√

2 · ‖G′u −Gu‖ · p0p1 · e2p0p1tr2 ·
(

4r2 +
3π2

2
√

5

)
≤ 44 · ‖G′u −Gu‖ · p0p1 · e2p0p1tr2

,

where the second inequality above holds because 0 ≤ r ≤ 1/2. Alternatively, substituting q =√
p0p1t/10 · θ in the integrals in the right hand side of (9) gives

‖g(sr)‖ ≤ 4
√

2 · ‖G′u −Gu‖ · p0p1 · e2p0p1tr2

·

(
4r2

√
2π

(
10

p0p1t

)1/4
√∫ ∞

−∞
e−q2dq +

3

2
√

2π

(
10

p0p1t

)5/4
√∫ ∞

−∞
q4 · e−q2dq

)
.

Substituting the values
∫∞
−∞ e

−q2
dq =

√
π and

∫∞
−∞ q

4 ·e−q2
dq = 3

√
π/4 in the right hand side above

yields

‖g(sr)‖ ≤ ‖G′u −Gu‖ · p0p1 · e2p0p1tr2 ·
(

22 · r2

(p0p1t)1/4
+

70

(p0p1t)5/4

)
.

The above inequalities together imply the desired result.

3.1.3 Bounding Fourier coefficients

In this section we prove Theorem 25. Throughout this section, for convenience we extend the
sequences G and G′ to include 0th and tth components G0 = G′0 = Gt = G′t = J . In the proofs
below, these matrices will typically be applied to ~1, and they therefore could be removed at the
cost of more cumbersome notation.

First, we express the Fourier transform ĝ(sr)(θ) of g(sr) linear-algebraically below.

Lemma 26. Let P
(sr)
θ ∈ CV×V be the matrix given by:

P
(sr)
θ =

∑
v∈V

δvδ
∗
ve

(sr−iθ)(val(v)−p1) =
∑

v∈val−1(0)

δvδ
∗
ve
−p1(sr−iθ) +

∑
v∈val−1(1)

δvδ
∗
ve
p0(sr−iθ).
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Then

eiθp1t · ĝ(sr)(θ) = ~1∗GtP
(sr)
θ · · ·Gu+1P

(sr)
θ (G′u −Gu)P

(sr)
θ Gu−1 · · ·P (sr)

θ G0~1

= ~1∗

(
t∏

i=u+1

GiP
(sr)
θ

)
(G′u −Gu)

(
u−1∏
i=0

P
(sr)
θ Gi

)
~1.

Proof. ForW = G or G′, writingWi =
∑

v,v′∈V δv′δ
∗
v(Wi)v′,v, then the expression~1∗

(∏t
i=1(WiP

(sr)
θ )

)
~1 =

√
n~1∗

(∏t
i=1(WiP

(sr)
θ )

)
(1/
√
n)~1 expands to give

~1∗

(
t∏
i=1

(WiP
(sr)
θ )

)
~1 =

∑
(v0,...,vt−1)∈V [t]

Pr
[
RWt

W = (v0, . . . , vt−1)
] ∏
i′∈[t]

e(sr−iθ)(val(vi′ )−p1)

= E[e(sr−iθ)((Σ val(RWt
W ))1−p1t)].

The first equality above follows from an expansion analogous to the one described in detail in the
proof of Lemma 36 in Section 4.1, to which the reader is referred for details; we omitted some
intermediate steps here for readability. Now it follows that

eiθp1t · ĝ(sr)(θ) =
∑
j∈Z

(Pr
[
Σ val(RWt

G′) = (t− j, j)
]
− Pr

[
Σ val(RWt

G) = (t− j, j)
]
)e(sr−iθ)(j−p1t)

= E[e(sr−iθ)((Σ val(RWt
G′ ))1−p1t)]− E[e(sr−iθ)((Σ val(RWt

G))1−p1t)]

= ~1∗

(
t∏
i=1

(G′iP
(sr)
θ )

)
~1−~1∗

(
t∏
i=1

(GiP
(sr)
θ )

)
~1

= ~1∗

(
t∏

i=u+1

GiP
(sr)
θ

)
(G′u −Gu)

(
u−1∏
i=0

P
(sr)
θ Gi

)
~1,

where the final equality above holds because G′i = Gi for i 6= u by assumption.

Lemma 26 shows that in order to bound the Fourier transform of g(sr), it is sufficient to

bound ~1∗
(∏t

i=u+1GiP
(sr)
θ

)
(G′u − Gu)

(∏u−1
i=0 P

(sr)
θ Gi

)
~1. For this purpose, because the matrix

G′u −Gu annihilates ~1 from both sides, we will bound the components of
(∏t

i=u+1GiP
(sr)
θ

)
~1 and(∏u−1

i=0 P
(sr)
θ Gi

)
~1 that are orthogonal to ~1 (denoted by ⊥ below). To bound the orthogonal com-

ponents of these vectors, we will apply the following two lemmas, which provide bounds for the

matrix P
(sr)
θ , and will be proven in Section 3.1.4.

Lemma 27. For −π < θ ≤ π, s = ±1, and 0 ≤ r ≤ 1/2, we have

|~1∗P (sr)
θ

~1| ≤ 1 + p0p1 · r2 − 2

π2e1/2
· p0p1 · θ2

and

‖(P (sr)
θ

~1)⊥‖ = ‖(~1∗P (sr)
θ )⊥‖ ≤

√
e · p0p1 ·

(
4r2 +

3

2
θ2

)
.
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Lemma 28. Let ρ = 1/10 and F = J + ρ(I − J). Then for every s = ±1 and 0 ≤ r ≤ 1/2,

‖FP (sr)
θ F‖ ≤ 1 + 2p0p1 · r2 − p0p1

20
· θ2.

Lemma 29. For 1 ≤ u ≤ t− 1,∥∥∥∥∥∥
((

u−1∏
i=0

P
(sr)
θ Gi

)
~1

)⊥∥∥∥∥∥∥ ≤ 2 ·

√
p0p1 ·

(
4r2 +

3

2
θ2

)
· ep0p1u(2r2−θ2/20).

Proof. By definition∥∥∥∥∥∥
((

u−1∏
i=0

P
(sr)
θ Gi

)
~1

)⊥∥∥∥∥∥∥ ≤ ‖(P (sr)
θ

~1)⊥‖ ·

∥∥∥∥∥∥
((

u−2∏
i=0

P
(sr)
θ Gi

)
~1

)‖∥∥∥∥∥∥
+ ‖P (sr)

θ ‖ · λ(Gu−1) ·

∥∥∥∥∥∥
((

u−2∏
i=0

P
(sr)
θ Gi

)
~1

)⊥∥∥∥∥∥∥ .
The above inequality can be recursively applied to bound the term

∥∥∥∥((∏u−2
i=0 P

(sr)
θ Gi

)
~1
)⊥∥∥∥∥ on its

right hand side. Performing u− 1 such recursive applications gives that∥∥∥∥∥∥
((

u−1∏
i=0

P
(sr)
θ Gi

)
~1

)⊥∥∥∥∥∥∥ ≤ ‖(P (sr)
θ

~1)⊥‖
u−1∑
i=0

(
u−1∏
i′=i+1

‖P (sr)
θ ‖ · λ(Gi′)

)∥∥∥∥∥∥
((

i−1∏
i′=0

P
(sr)
θ Gi′

)
~1

)‖∥∥∥∥∥∥ .
Let ρ = 1/10 and F = J + ρ(I − J). By assumption all i′ ≤ u− 1 have λ(Gi′) ≤ ρ2. It follows that
‖F−1Gi′F

−1‖ ≤ 1, as F−1Gi′F
−1 preserves the vector ~1 and the subspace ~1⊥, and the restriction

F−1Gi′F
−1|~1⊥ has spectral norm ρ−1λ(Gi′)ρ

−1 ≤ 1. It also holds that ‖P (sr)
θ ‖ ≤ e1/2 because

0 ≤ r ≤ 1/2. Thus∥∥∥∥∥∥
((

u−1∏
i=0

P
(sr)
θ Gi

)
~1

)⊥∥∥∥∥∥∥
≤ ‖(P (sr)

θ
~1)⊥‖ ·

u−1∑
i=0

(e1/2ρ2)u−1−i ·

∣∣∣∣∣~1∗
(
i−1∏
i′=0

FP
(sr)
θ F · F−1Gi′F

−1

)
~1

∣∣∣∣∣
≤ ‖(P (sr)

θ
~1)⊥‖ ·

u−1∑
i=0

(e1/2ρ2)u−1−i · ‖FP (sr)
θ F‖i.
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Applying Lemma 27 and Lemma 28 to bound ‖(P (sr)
θ

~1)⊥‖ and ‖FP (sr)
θ F‖ respectively gives∥∥∥∥∥∥

((
u−1∏
i=0

P
(sr)
θ Gi

)
~1

)⊥∥∥∥∥∥∥
≤

√
e · p0p1 ·

(
4r2 +

3

2
θ2

)
·
u−1∑
i=0

(e1/2ρ2)u−1−i · ei·p0p1(2r2−θ2/20)

=

√
e · p0p1 ·

(
4r2 +

3

2
θ2

)
· ep0p1u(2r2−θ2/20) ·

u−1∑
i=0

(e1/2ρ2)u−1−i

ep0p1(u−i)(2r2−θ2/20)
.

Because ρ = 1/10 and ep0p1(2r2−θ2/20 ≥ e−π2/80,

u−1∑
i=0

(e1/2ρ2)u−1−i

ep0p1(u−i)(2r2−θ2/20)
≤

u−1∑
i=−∞

(e1/2/100)u−1−i

(e−π2/80)u−i
=

eπ
2/80

1− e1/2+π2/80/100
≤ 2√

e
.

Thus ∥∥∥∥∥∥
((

u−1∏
i=0

P
(sr)
θ Gi

)
~1

)⊥∥∥∥∥∥∥ ≤ 2 ·

√
p0p1 ·

(
4r2 +

3

2
θ2

)
· ep0p1u(2r2−θ2/20).

We now apply the above lemmas to prove Theorem 25.

Proof of Theorem 25. By Lemma 26,

|ĝ(sr)(θ)| =

∣∣∣∣∣~1∗
(

t∏
i=u+1

GiP
(sr)
θ

)
(G′u −Gu)

(
u−1∏
i=0

P
(sr)
θ Gi

)
~1

∣∣∣∣∣
≤

∥∥∥∥∥∥
(
~1∗

(
t∏

i=u+1

GiP
(sr)
θ

))⊥∥∥∥∥∥∥ ‖G′u −Gu‖
∥∥∥∥∥∥
((

u−1∏
i=0

P
(sr)
θ Gi

)
~1

)⊥∥∥∥∥∥∥ ,
where the inequality above holds because G′u−Gu annihilates ~1 from both sides. Lemma 29 implies
that ∥∥∥∥∥∥

((
u−1∏
i=0

P
(sr)
θ Gi

)
~1

)⊥∥∥∥∥∥∥ ≤ 2 ·

√
p0p1 ·

(
4r2 +

3

2
θ2

)
· ep0p1u(2r2−θ2/20)

∥∥∥∥∥∥
(
~1∗

(
t∏

i=u+1

GiP
(sr)
θ

))⊥∥∥∥∥∥∥ ≤ 2 ·

√
p0p1 ·

(
4r2 +

3

2
θ2

)
· ep0p1(t−u)(2r2−θ2/20),

where the second equality above holds because P
(sr)
θ is diagonal and therefore symmetric, so we may

apply Lemma 29 to bound the norm of the transpose of
(
~1∗
(∏t

i=u+1GiP
(sr)
θ

))⊥
. Now combining
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the above inequalities gives

|ĝ(sr)(θ)| ≤ 4 · ‖G′u −Gu‖ · p0p1 ·
(

4r2 +
3

2
θ2

)
· ep0p1t(2r2−θ2/20).

3.1.4 Bounds for the matrix P
(sr)
θ

In this section, we prove Lemma 27 and Lemma 28, thereby bounding the quantities |~1∗P (sr)
θ

~1|,
‖(P (sr)

θ
~1)⊥‖, and ‖FP (sr)

θ F‖. We first bound the former two quantities in the proof of Lemma 27
below by deriving explicit expressions for these quantities, and then simplifying the resulting ex-
pressions with Taylor approximations.

Proof of Lemma 27. By definition ~1∗P
(sr)
θ

~1 = p0e
−p1(sr−iθ) + p1e

p0(sr−iθ), so by Lemma 54,

|~1∗P (sr)
θ

~1| = (p0e
−p1sr + p1e

p0sr)

∣∣∣∣ p0e
−p1sr

p0e−p1sr + p1ep0sr
+

p1e
p0sr

p0e−p1sr + p1ep0sr
e−iθ

∣∣∣∣
≤ (p0e

−p1sr + p1e
p0sr)

(
1− p0p1e

(p0−p1)sr

(p0e−p1sr + p1ep0sr)2
· 2

π2
θ2

)

= p0e
−p1sr + p1e

p0sr − 2

π2
· e(p0−p1)sr

p0e−p1sr + p1ep0sr
· p0p1 · θ2

≤ 1 + p0p1 · r2 − 2

π2e1/2
· p0p1 · θ2,

where the final inequality above holds because 0 ≤ r ≤ 1/2, so that e−p1sr ≤ 1 − p1sr + (p1r)
2,

ep0sr ≤ 1 + p0sr + (p0r)
2, and e(p0−p1)sr/(p0e

−p1sr + p1e
p0sr) = 1/(p0e

−p0sr + p1e
p1sr) ≥ e−1/2.

We now bound ‖(P (sr)
θ

~1)⊥‖. By definition

(P
(sr)
θ

~1)⊥ = P
(sr)
θ

~1−~1~1∗P (sr)
θ

~1

=
1√
n

∑
v∈V

δve
(sr−iθ)(val(v)−p1) − 1√

n

∑
v∈V

δv(p0e
−p1(sr−iθ) + p1e

p0(sr−iθ))

=
e−p1(sr−iθ)(1− esr−iθ)√

n

p1

∑
v∈val−1(0)

δv − p0

∑
v∈val−1(1)

δv

 ,

so

‖(P (sr)
θ

~1)⊥‖ = e−p1sr · |1− esr−iθ| ·
√
p0n

p2
1

n
+ p1n

p2
0

n
=
√
p0p1 · e−p1sr · |1− esr−iθ|.

By analogous reasoning ‖(~1∗P (sr)
θ )⊥‖ =

√
p0p1 · e−p1sr · |1− esr−iθ|. Now because r ≤ 1/2,

|1− esr−iθ|2 = (1− esr−iθ)(1− esr+iθ)
= 1 + e2sr − 2esr cos θ

≤ 1 + (1 + 2sr + (2r)2)− 2(1 + sr)

(
1− θ2

2

)
≤ 4r2 +

3

2
θ2,

(10)
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so because e−p1sr ≤ 1/2,

‖(P (sr)
θ

~1)⊥‖ = ‖(~1∗P (sr)
θ )⊥‖ ≤

√
e · p0p1 ·

(
4r2 +

3

2
θ2

)
.

We prove Lemma 28 below. The main idea in the proof is to bound ‖FP (sr)
θ F‖ by the spectral

norm of a 2× 2 symmetric real matrix, which we in turn bound using Lemma 56.

Proof of Lemma 28. By definition

‖FP (sr)
θ F‖ = sup

x,y∈CV :‖x‖=‖y‖=1

|x∗FP (sr)
θ Fy|.

Decomposing x = x‖ + x⊥ and y = y‖ + y⊥ with x‖, y‖ ∈ span{~1} and x⊥, y⊥ ∈ ~1⊥ gives

|x∗FP (sr)
θ Fy| ≤ |x‖∗P (sr)

θ y‖|+ |x‖∗P (sr)
θ ρy⊥|+ |x⊥ρP (sr)

θ y‖|+ |x⊥ρP (sr)
θ ρy⊥|

≤
(
‖x‖‖ ‖x⊥‖

)( |~1∗P (sr)
θ

~1| ρ‖(~1∗P (sr)
θ )⊥‖

ρ‖(P (sr)
θ

~1)⊥‖ ρ2‖P (sr)
θ ‖

)(
‖y‖‖
‖y⊥‖

)
Thus

‖FP (sr)
θ F‖ ≤

∥∥∥∥∥
(
|~1∗P (sr)

θ
~1| ρ‖(~1∗P (sr)

θ )⊥‖
ρ‖(P (sr)

θ
~1)⊥‖ ρ2‖P (sr)

θ ‖

)∥∥∥∥∥ . (11)

The lower right entry of the matrix on the right hand side above is at most ρ2e1/2 because ‖P (sr)
θ ‖ =

max{e−p1sr, ep0sr} ≤ e1/2 as r ≤ 1/2. Applying Lemma 27 to bound the other three entries of this
matrix gives that

‖FP (sr)
θ F‖ ≤

∥∥∥∥∥∥
1 + p0p1 · r2 − 2

π2e1/2
· p0p1 · θ2 ρ

√
e · p0p1 ·

(
4r2 + 3

2θ
2
)

ρ
√
e · p0p1 ·

(
4r2 + 3

2θ
2
)

ρ2e1/2

∥∥∥∥∥∥ .
Because ρ = 1/10, p0p1 ≤ 1/4, and |θ| ≤ π,(

1 + p0p1 · r2 − 2

π2e1/2
· p0p1 · θ2

)
− ρ2e1/2 ≥ 1− 1

2e1/2
− e1/2

100
≥ 2

3
,

so Lemma 56 implies that

‖FP (sr)
θ F‖ ≤

(
1 + p0p1 · r2 − 2

π2e1/2
· p0p1 · θ2

)
+

1
100 · e · p0p1 ·

(
4r2 + 3

2θ
2
)

2/3

≤ 1 + 2p0p1 · r2 − p0p1

20
· θ2.
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4 Permutation branching programs

We now turn to the problem of bounding the distance between the distributions of f(val(RWt
G))

and f(val(RWt
J)) for functions f on [d]t that can be computed by permutation branching programs,

defined below.

Definition 30. A permutation branching program B of length t, width w, and degree d is
a collection of functions Bi : [d] × [w] → [w] for i ∈ [t] such that for b ∈ [d], each restriction
Bi(b) = Bi|{b}×[w] : [w] → [w] is a permutation. The program is said to compute the function
B : [d]t → [w] defined by1

B(a) = (Bt−1(at−1) ◦ · · · ◦B0(a0))(0).

To demonstrate the definition above, we show in the example below that the function Σ : [d]t →
[t+ 1]d from Definition 17 can be computed by a permutation branching program.

Example 31. Let w = (t+ 1)d, and associate the set [w] with [t+ 1][d], such that the initial state
0 ∈ [w] of a width-w permutation branching program corresponds to (0, . . . , 0) ∈ [t + 1][d]. Define
a permutation branching program B of length t, width w, and degree d so that for i ∈ [t], b ∈ [d],
and j ∈ [t+ 1]d−1,

Bi(b, j) = j + δb,

where the addition j + δb is performed (mod t + 1) in each component. Then B by definition
computes the function Σ.

For a function B computed by a permutation branching program B such as in Example 31, our
goal is to bound the difference between the distributions B(val(RWt

G)) and B(val(RWt
J)). To do

so, we will first expess the computation of B linear-algebraically. For this purpose, we take the
two related approaches presented in Section 4.1 and Section 4.2 respectively, each of which proves
useful in certain settings.

We show in Section 5.3 that the our bounds in Section 4.1 below are tight in general, in the
sense that no tighter bound holds for all permutation branching programs. Yet for the specific case
of B = Σ, the bounds in Section 4.1 and Section 4.2 below are not tight. Hence we needed more
specialzed methods in Section 3 to prove tight bounds for this case.

Remark. The labeling val : V → [d] is not strictly necessary for our study of permutation branching
programs. Specifically, we could consider degree-|V | instead of degree-d permutation branching
programs, and feed the vertices (v0, . . . , vt−1) ∼ RWt

G directly as inputs to the program. While this
simplified setup, which is equivalent to letting val : V → V be the identity map, would be sufficient
for our results in Section 4.1, the labeling val is useful in other results, particularly those regarding
symmetric functions in Section 3. We therefore include the labeling val : V → [d] throughout for
consistency.

4.1 General total variation distance bound

In this section, we show the following bound for an arbitrary permutation branching program.

1Without loss of generality the initial state is assumed to be 0 ∈ [w].
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Theorem 32. Let t ≥ 1, w ≥ 2, d ≥ 2 be integers and let G = (V,E) be a regular λ-spectral
expander with labeling val : V → [d]. If B : [d]t → [w] is computed by a permutation branching
program B of length t, width w, and degree d, and if λ < .1, then

d`2(B(val(RWt
G)), B(val(RWt

J))) ≤ λ+ 5λ2.

Below, we implicitly let t, w, d,G, val be given as in Theorem 32. The Cauchy-Schwartz inequal-
ity implies the following corollary.

Corollary 33. If B : [d]t → [w] is computed by a permutation branching program B, and λ < .1,
then

dTV(B(val(RWt
G)), B(val(RWt

J))) ≤
√
w

2
(λ+ 5λ2).

Although we have defined a permutation branching program B to compute a function B :
[d]t → [w], in the literature (see e.g. Hoza et al. [HPV21]) it is sometimes customary to designate
a single state as an accepting state, which without loss of generality may be 0 ∈ [w]. Then B is
associated with the boolean-valued function f : [d]t → {0, 1} given by f(a) = 1B(a)=0. Theorem 32
then implies that the total variation distance, which equals the absolute difference in expectation,
between f(val(RWt

G)) and f(val(RWt
J)) is O(λ), as stated below.

Corollary 34. For a permutation branching program B that computes B, let f(a) = 1B(a)=0 be
the boolean-valued function associated with B. If λ < .1, then

dTV(f(val(RWt
G)), f(val(RWt

J))) ≤ λ+ 5λ2.

Proof. Because the image of f is a subset of {0, 1}, by definition

dTV(f(val(RWt
G)), f(val(RWt

J))) = |Pr
[
f(val(RWt

G)) = 1
]
− Pr

[
f(val(RWt

J)) = 1
]
|

≤ d`2(B(val(RWt
G)), B(val(RWt

J)))

≤ λ+ 5λ2,

where the latter inequality above holds by Theorem 32.

For comparison, Cohen et al. [CPTS21] showed that if B : {0, 1}t → [w] is computed by
some width-w, degree-2 permutation branching program B and the vertex label weights of G are
p0 = p1 = 1/2, then dTV(B(val(RWt

G)), B(val(RWt
J))) = O(w4

√
λ). Corollary 33 improves this

total variation distance bound to O(
√
w · λ), while for the special case of programs with a single

accepting state, Corollary 34 shows the even stronger total variation distance bound of O(λ).
In Section 5.3, we show that Theorem 32 and Corollary 34 are tight, in the sense that there

exist λ-spectral expanders G and permutation branching programs B that yield lower bounds of
Ω(λ) to match the O(λ) upper bounds above.

4.1.1 Proof of Theorem 32

To prove Theorem 32, for a random walk matrix W ∈ RV×V , we show below how the distribution
of B(val(RWt

W )) can be computed by alternating applications of two matrices. We then apply
these matrix expressions for B to bound the distance between the distributions of B(val(RWt

G))
and B(val(RWt

J)).
For the definition below, in a slight abuse of notation we let Bi(b) ∈ R[w]×[w] denote the

permutation matrix for the permutation Bi(b) : [w]→ [w], so that (Bi(b))j′,j = 1Bi(b,j)=j′ .
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Definition 35. For a permutation branching program B, define the global increment matrix
P̃ of B to be the random walk matrix for the directed graph with vertex set V × [t]× [w] such that
each vertex (v, i, j) has a single outgoing edge to the vertex (v, i + 1, Bi(val(v), j)), where i + 1 is
taken (mod t). Note that this digraph is 1-regular, so P̃ is a permutation matrix. More explicitly,
P̃ is the linear operator on the vector space RV ⊗ Rt ⊗ Rw given by

P̃ =
∑

v∈V,i∈[t]

δvδ
>
v ⊗ δi+1δ

>
i ⊗Bi(val(v)),

where i+ 1 is again taken (mod t) above, so that δt = δ0 ∈ Rt.

For a random walk matrix W ∈ RV×V such as G or J , we let W̃ = W ⊗ I for the identity
matrix I of appropriate dimension, so that in this section, W̃ = W ⊗ (I ⊗ I) is the random walk
matrix on vertex set V × [t]× [w] that applies W to the first component and ignores the latter two
components.

The lemma below shows that the distribution of B(val(RWt
W )) can be computed by alternative

applications of P̃ and W̃ .

Lemma 36. Let P̃ be the global increment matrix of a permutation branching program B. For a
random walk matrix W ∈ RV×V and for every j ∈ [w],

Pr
[
B(val(RWt

W )) = j
]

= (~1⊗ δ0 ⊗ δj)>P̃ (W̃ P̃ )t−1(~1⊗ δ0 ⊗ δ0). (12)

Proof. Recall that n = |V |, so that here ~1 = (1/
√
n, . . . , 1/

√
n) ∈ RV . Decomposing W =∑

(v,v′)∈[w]2 Wv′,vδv′δ
>
v and then expanding the right hand side of (12) gives that

(~1⊗ δ0 ⊗ δj)>P̃ (W̃ P̃ )t−1(~1⊗ δ0 ⊗ δ0)

= (
√
n~1⊗ δ0 ⊗ δj)>P̃

 ∑
(v,v′)∈[w]2

Wv′,vδv′δ
>
v ⊗ I ⊗ I

 P̃

t−1(
1√
n
~1⊗ δ0 ⊗ δ0

)

=
∑

(v0,...,vt−1)∈V t
(
√
n~1⊗ δ0 ⊗ δj)>P̃

 ∏
i∈[t−1]

(Wvi+1,viδvi+1δ
>
vi ⊗ I ⊗ I)P̃

( 1√
n
~1⊗ δ0 ⊗ δ0

)
=

∑
(v0,...,vt−1)∈V t

(δ>vt−1
⊗ δ>t−1 ⊗ δ>j Bt−1(val(vt−1)))

·

 ∏
i∈[t−1]

Wvi+1,viδvi+1δ
>
vi ⊗ δi+1δ

>
i ⊗Bi(val(vi))

( 1

n
δv0 ⊗ δ0 ⊗ δ0

)

=
∑

(v0,...,vt−1)∈V t

 ∏
i∈[t−1]

Wvi+1,vi

 1

n
· δ>j (Bt−1(val(vt−1)) ◦ · · · ◦B0(val(v0)))δ0

=
∑

(v0,...,vt−1)∈V t
Pr
[
RWt

W = (v0, . . . , vt−1)
]
· δ>j (Bt−1(val(vt−1)) ◦ · · · ◦B0(val(v0)))δ0

=
∑

(v0,...,vt−1)∈V t
Pr
[
RWt

W = (v0, . . . , vt−1)
]
· 1B(val(v0,...,vt−1))=j

= Pr
[
B(val(RWt

W )) = j
]
,
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where the second and third equalities above hold by the definition of P̃ . Note that the products
over i ∈ [t− 1] in the expressions above are expanded from right to left.

Remark. The proof of Lemma 36 also works when the matrix W changes at each step in the random
walk. That is, for a sequence W = (Wi)1≤i≤t−1 of random walk matrices on shared vertex set V ,
then an exactly analogous proof implies that

Pr
[
B(val(RWt

W)) = j
]

= (~1⊗ δ0 ⊗ δj)>
(
t−1∏
i=1

P̃ W̃i

)
P̃ (~1⊗ δ0 ⊗ δ0), (13)

where the product above expands from right-to-left. We presented the proof for the special case
where all Wi are equal to simplify notation, but the generalization (13) will be useful in Section 4.2.

By Lemma 36, to bound the difference between the distributions of B(val(RWt
W )) for W = G, J ,

it is sufficient to bound the difference between the matrices P̃ (W̃ P̃ )t−1 for W = G, J . Below, we
derive such a bound using singular-value approximations.

Proposition 37. For the global increment matrix P̃ of any permutation branching program B, if
λ < .1 then

P̃ (G̃P̃ )t−1 sv
≈λ+5λ2 P̃ (J̃ P̃ )t−1.

Proof. By Lemma 16, G
sv
≈λ J , so by Lemma 15, G̃

sv
≈λ J̃ . Then because P̃ is a permutation

matrix so that ‖P̃‖ = 1, Lemma 13 implies that G̃P̃
sv
≈λ J̃ P̃ , and then Lemma 14 gives that

(G̃P̃ )t−1 sv
≈λ+5λ2 (J̃ P̃ )t−1. One more application of Lemma 13 then gives the desired result.

We are now ready to prove Theorem 32.

Proof of Theorem 32. Let g ∈ [−1, 1][w] denote the difference between the distributions ofB(val(RWt
G))

and B(val(RWt
J)), so that gj = Pr

[
B(val(RWt

G)) = j
]
−Pr

[
B(val(RWt

J)) = j
]
. Then by Lemma 36,

g = (~1⊗ δ0 ⊗ I)>(P̃ (G̃P̃ )t−1 − P̃ (J̃ P̃ )t−1)(~1⊗ δ0 ⊗ δ0),

so by Proposition 37 and by the definition of singular-value approximations,

‖g‖ ≤ ‖P̃ (G̃P̃ )t−1 − P̃ (J̃ P̃ )t−1‖ ≤ λ+ 5λ2.

4.2 Program-structure-dependent total variation distance bound

Although we show that the bounds of Section 4.1, and in particular Theorem 32, are tight over the
class of all permutation branching programs, smaller classes of permutation branching programs
may have special structure resulting in a smaller total variation distance between the distributions
of B(val(RWt

G)) and B(val(RWt
J)). In this section, we formalize this idea, to show that for cer-

tain permutation branching programs, this total variation distance decays exponentially in t. In
particular, we show the following.
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Theorem 38. Fix integers t ≥ 1, w ≥ 2, and d ≥ 2. For some 0 ≤ λ ≤ 1, let G = (Gi)1≤i≤t−1 be
a sequence of regular λ-spectral expanders on a shared vertex set V . Fix a labeling val : V → [d],
and for b ∈ [d], let pb denote the fraction of vertices with label b. Let B = (Bi)i∈[t] be a permutation
branching program of length t, width w, and degree d that computes B. For i ∈ [t], let Bp

i =∑
b∈[d] pbBi(b) ∈ Rw×w. Then

d`2(B(val(RWt
G)),Unif([w])) ≤

∏
i∈[t]

(
1−

(
1−
√
λ
)2

(1− λ(Bp
i ))

)
.

Below, we implicitly let the variables t, w, d, λ,G, val, p, Bp
i be given as in Theorem 38.

Corollary 39. For every permutation branching program B that computes B,

d`2(B(val(RWt
J)),Unif([w])) ≤

∏
i∈[t]

λ(Bp
i ).

Proof. Because J is the random walk matrix for the unweighted complete graph with self-loops,
which is undirected, the desired result follows by letting G = (J, . . . , J) in the first inequality in
Theorem 38, as λ(J) = 0.

The bounds in Theorem 38 and Corollary 39 are most useful when λ(Bp
i ) < 1 for many i ∈ [t],

as then these bounds can be used to show that d`2(B(val(RWt
G)),Unif([w])) decays exponentially

in t. The following lemma characterizes when we have λ(Bp
i ) < 1.

Lemma 40. Let B be a permutation branching program, and let B be normalized so that Bi(0) = I
is the identity for every i ∈ [t]. Then λ(Bp

i ) ≤ 1, with equality iff there exists a set ∅ ( S ( [w]
such that all permutations Bi(b) for b ∈ [d] preserve the set S. That is, λ(Bp

i ) < 1 iff the subgroup
of the symmetric group generated by Bi(b) for b ∈ [d] acts transitively on [w].

Proof. For every y ∈ Rw, because each Bi(b) is a permutation matrix, Jensen’s inequality implies
that

‖Bp
i y‖ =

∥∥∥∥∥∥
∑
b∈[d]

pbBi(b)y

∥∥∥∥∥∥ ≤
∑
b∈[d]

pb‖Bi(b)y‖ = ‖y‖,

where the inequality above is an equality iff all Bi(b)y are equal, as by assumption all pb are nonzero.
Therefore λ(Bp

i ) = ‖Bp
i |~1⊥‖ ≤ 1, with equality iff there exists some nonzero y ∈ ~1⊥ such that all

b ∈ [d] yield the same value of Bi(b)y. As all Bi(b) are permutation matrices and therefore preserve
~1, it follows that λ(Bp

i ) = 1 iff there exists some y ∈ Rw \ span{~1} such that all b ∈ [d] yield the
same value of Bi(b)y.

Now given y ∈ Rw \ span{~1} such that all b ∈ [d] yield the same value of Bi(b)y, choose
∅ ( S ( [w] to be the support of y0 (or of any yj), so that all Bi(b) must preserve S because they
preserve y. Conversely, given ∅ ( S ( [w] such that all Bi(b) for b ∈ [d] preserve S, then choose
y = 1S ∈ Rw \ span{~1}. As all Bi(b) preserve S, they must also preserve the complement of S, and
thus they preserve y, as desired.

For example, if Bi(0) = I and Bi(1) = Cw is the directed cycle, then the subgroup generated
by Bi(1) alone already acts transitively on [w], so Lemma 40 implies that λ(Bp

i ) < 1 regardless of
the choice of Bi(b) for b ≥ 2. Thus we have the following corollary.
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Corollary 41. For any fixed d, w, and p, define Bt : [d]t → [w] to be the sum modulo w, that is
Bt(a) =

∑
i∈[t] ai (mod w). Then there exists a constant c = c(d,w, p, λ) < 1 such that

dTV(Bt(val(RWt
G)), Bt(val(RWt

J))) ≤
√
w · ct.

Proof. Letting Bt
i(b) = Cbw for all t ∈ N, i ∈ [t] and b ∈ [d], then the permutation branching

program (Bt
i)i∈t by definition computes Bt. Because the group generated by the cycle permutation

acts transitively on [w], Lemma 40 implies that λ((Bt
i)
p) = λ(

∑
b∈[d] pbC

b
w) < 1, so by Theorem 38

and Corollary 39, there exists a constant c = c(d,w, p, λ) < 1 such that

d`2(Bt(val(RWt
G)),Unif([w])) ≤ ct and d`2(Bt(val(RWt

J)),Unif([w])) ≤ ct. (14)

Thus the total variation distance between Bt(val(RWt
G)) and Bt(val(RWt

J)) is

dTV(Bt(val(RWt
G)), Bt(val(RWt

J))) ≤
√
w

2
d`2(Bt(val(RWt

G)), Bt(val(RWt
J))) ≤

√
w · ct,

where the first inequality above holds by the Cauchy-Schwartz inequality as dTV = 1
2d`1 , and the

second inequality holds by applying the triangle inequality with (14).

Thus for any fixed d,w, p, λ, the sum function modulo w is fooled by a random walk on λ-
spectral expanders up to a total variation distance error that is exponentially small in t. In the
special case of w = 2 and d = 2, Corollary 41 states that expander walks fool the parity function
up to an exponentially small error. This fact was previously known, and is a key part of Ta-
Shma’s breakthrough construction of almost optimal ε-balanced codes [TS17]. Guruswami and
Kumar [GK21] also showed an analagous result to Corollary 41 for the special case of the sticky
random walk on n = 2 vertices when d = 2 and p = (1/2, 1/2).

4.2.1 Proof of Theorem 38

To prove Theorem 38, we will decompose the global increment matrix P̃ used in Section 4.1 into
a sequence of local increment matrices, for which we can more easily take advantage of spectral
properties.

Definition 42. For a permutation branching program B, define the local increment matrices
P̃0, . . . , P̃t−1 of B to be linear operators on the vector space RV ⊗ Rw given by

P̃i =
∑
v∈V

δvδ
>
v ⊗Bi(val(v)).

We can relate the P̃i’s to the global increment matrix P̃ of Definition 35 as follows: Up to a
reordering of basis elements, we have

P̃ =
∑
i∈[t]

δi+1δ
>
i ⊗ P̃i, (15)

so that the local increment matrices assemble to form the global increment matrix of B. The
following lemma is therefore a consequence of Lemma 36.
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Lemma 43. Let P̃0, . . . , P̃t−1 be the local increment matrices of a permutation branching program
B, and let W = (Wi)1≤i≤t−1 be a sequence of random walk matrices with shared vertex set V . Then
for every j ∈ [w],

Pr
[
B(val(RWt

W)) = j
]

= (~1⊗ δj)>
(
t−1∏
i=1

P̃iW̃i

)
P̃0(~1⊗ δ0), (16)

where the product above expands from right to left, that is,
∏t−1
i=1 P̃iW̃i = P̃t−1W̃t−1 · · · P̃1W̃1.

Proof. Recall that here W̃i = Wi ⊗ I. By (13),

Pr
[
B(val(RWt

W)) = j
]

= (~1⊗ δ0 ⊗ δj)>
(
t−1∏
i=1

P̃ (Wi ⊗ I ⊗ I)

)
P̃ (~1⊗ δ0 ⊗ δ0)

= (δ0 ⊗~1⊗ δj)>
(
t−1∏
i=1

P̃ (I ⊗ W̃i)

)
P̃ (δ0 ⊗~1⊗ δ0).

Now by (15), P̃ =
∑

i∈[t] δi+1δ
>
i ⊗ P̃i. Therefore for i ∈ [t], the ith application (counting from right

to left) of P̃ in the right hand side above takes as input a vector in δi ⊗ RV ⊗ Rw and outputs a
vector in δi+1 ⊗RV ⊗Rw, where i+ 1 is taken (mod t). Therefore the ith application of P̃ acts as
δi+1δ

>
i ⊗ P̃i, with all other terms in the sum in (15) vanishing. Thus

Pr
[
B(val(RWt

W)) = j
]

= (δ0 ⊗~1⊗ δj)>
(
t−1∏
i=1

δi+1δ
>
i ⊗ P̃iW̃i

)
(δ1δ

>
0 ⊗ P̃0)(δ0 ⊗~1⊗ δ0)

= (~1⊗ δj)>
(
t−1∏
i=1

P̃iW̃i

)
P̃0(~1⊗ δ0).

Below we apply Lemma 43 to bound the distance from B(val(RWt
G)) to the uniform distribution

on [w]. However, we first need the following lemma, which intuitively says that if X is a good
expander, then X̃P̃iX̃ has similar expansion to J̃ P̃iJ̃ .

Lemma 44. Let (P̃i)i∈[t] be the local increment matrices of a permutation branching program B.

Then for every matrix X ∈ CV×V such that ~1∗X = ~1∗, X~1 = ~1, and λ(X) = ‖X|~1⊥‖ ≤ 1, letting

X̃ = X ⊗ I, it holds that

‖X̃P̃iX̃|(~1⊗~1)⊥‖ ≤ 1− (1− λ(X))2(1− λ(Bp
i )).

Proof. Because X has spectral expansion λ(X), the matrix E = (X − (1 − λ(X))J)/λ(X) has
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‖E‖ = 1 (see e.g. Lemma 4.19 of Vadhan [Vad12]), so

‖X̃P̃iX̃|(~1⊗~1)⊥‖

= ‖((1− λ(X))J̃ + λ(X)Ẽ) · P̃i · ((1− λ(X))J̃ + λ(X)Ẽ)|(~1⊗~1)⊥‖

≤ (1− λ(X))2 · ‖J̃ P̃iJ̃ |(~1⊗~1)⊥‖

+ λ(X)
(

(1− λ(X)) · ‖J̃ P̃iẼ‖+ (1− λ(X)) · ‖ẼP̃iJ̃‖+ λ(X) · ‖ẼP̃iẼ‖
)

≤ (1− λ(X))2 · ‖J̃ P̃iJ̃ |(~1⊗~1)⊥‖+ λ(X) · (2− λ(X))

= 1− (1− λ(X))2 · (1− ‖J̃ P̃iJ̃ |(~1⊗~1)⊥‖).

Now by definition

J̃ P̃iJ̃ =
∑
v∈V

~1~1>δvδ
>
v
~1~1> ⊗Bi(val(v)) = ~1~1> ⊗ 1

n

∑
v∈V

Bi(val(v)) = J ⊗Bp
i .

so the desired inequality follows because

‖J ⊗Bp
i |(~1⊗~1)⊥‖ = λ(J ⊗Bp

p) = max{λ(J), λ(Bp
i )} = λ(Bp

i )}.

We apply Lemma 44 to prove Theorem 38 below with X = J +
√
λ(I − J).

Proof of Theorem 38. Let h ∈ [−1, 1][w] denote the difference between the distribution ofB(val(RWt
G))

and the uniform distribution on [w], so that hj = Pr
[
B(val(RWt

G)) = j
]
−1/w. Let F = J+

√
λ(I−

J) be the matrix that preserves ~1 and scales ~1⊥ by a factor of
√
λ. Also for notational convenience

let G0 = J . Then by Lemma 43,

h = (~1⊗ I)>

(
t−1∏
i=1

P̃iG̃i

)
P̃0(~1⊗ δ0)− 1√

w
~1

= (~1⊗ I)>

(
t−1∏
i=1

P̃iG̃i

)
P̃0

(
~1⊗

(
δ0 −

1√
w
~1

))

= (~1⊗ I)>

(
t−1∏
i=0

F̃ P̃iF̃ · F̃−1G̃iF̃
−1

)(
~1⊗

(
δ0 −

1√
w
~1

))
,

where the second equality above holds because by definition all P̃i and G̃i preserve the vector ~1⊗~1,
and the third equality holds because F̃ and all G̃i preserve the subspace ~1 ⊗ Rw. Thus because
δ0−(1/

√
w)~1 ∈ ~1⊥ is by definition the orthogonal projection of δ0 onto ~1⊥ so that ‖δ0−(1/

√
w)~1‖ ≤

‖δ0‖ = 1, and the matrices G̃ and P̃i preserve the subspace (~1 ⊗ ~1)⊥ because they preserve ~1 ⊗ ~1
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from both sides, it follows that

‖h‖ ≤

∥∥∥∥∥∥
t−1∏
i=0

F̃ P̃iF̃ · F̃−1G̃iF̃
−1

∣∣∣∣∣
(~1⊗~1)⊥

∥∥∥∥∥∥
≤

t−1∏
i=0

‖F̃ P̃iF̃ |(~1⊗~1)⊥‖ · ‖F̃
−1G̃iF̃

−1‖

≤
t−1∏
i=0

(
1−

(
1−
√
λ
)2

(1− λ(Bp
i ))

)
,

where the final inequality above holds by Lemma 44 and because ‖F̃−1G̃iF̃
−1‖ = ‖F−1GiF

−1‖ ≤ 1

as F−1GiF
−1 preserves the subspaces span{~1} and ~1⊥, and has norm at most

√
λ
−1 · λ ·

√
λ
−1

= 1

on ~1⊥ because F−1 = J +
√
λ
−1

(I − J).

5 Lower bounds

In this section, we show lower bounds to match our upper bounds in previous sections. We prove
these lower bounds using the sticky random walk, which is a particularly simple λ-spectral expander.

5.1 Sticky random walk

In this section, we consider the case where d = 2, and introduce the λ-sticky, p-biased random
walk, which is a random walk with spectral expansion λ and label weights p. The sticky random
walk can be thought if as a “canonical” λ-spectral expander, and will be useful for proving lower
bounds to match our upper bounds from previous sections. The special case of the sticky walk on
|V | = 2 vertices with p0 = p1 = 1/2 was studied extensively by Guruswami and Kumar [GK21].
To prove lower bounds that match our more general upper bounds in Section 3 and Section 4.1, we
generalize the sticky walk to arbitrary p.

Definition 45. Fix a vertex set V = V0 t V1 with labeling val : V → {0, 1} given by val(v) = b for
v ∈ Vb, so that p0 = |V0|/|V | and p1 = |V1|/|V |. For subsets A,B ⊆ V , let JA,B ∈ RA×B denote
the matrix with all entries equal to 1/|A|. For 0 ≤ λ ≤ 1, define the λ-sticky, p-biased random
walk matrix Gλ,p ∈ RV×V by

Gλ,p =

(
(p0 + p1λ)JV0,V0 (p0 − p0λ)JV0,V1

(p1 − p1λ)JV1,V0 (p1 + p0λ)JV1,V1

)
.

That is, Gλ,p treats all vertices within Vb identically for each b = 0, 1, and if (v, v′) represents a
1-step random walk on Gλ,p, then the transition probabilities are

Pr
[
v′ ∈ V0|v ∈ V0

]
= p0 + p1λ = (1− λ)p0 + λ

Pr
[
v′ ∈ V0|v ∈ V1

]
= p0 − p0λ = (1− λ)p0

Pr
[
v′ ∈ V1|v ∈ V0

]
= p1 − p1λ = (1− λ)p1

Pr
[
v′ ∈ V1|v ∈ V1

]
= p1 + p0λ = (1− λ)p1 + λ.
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We show below that the λ-sticky random walk is indeed a λ-spectral expander.

Lemma 46. λ(Gλ,p) = λ.

Proof. By definition
Gλ,p = (1− λ)JV,V + λW

for

W =

(
JV0,V0 0

0 JV1,V1

)
.

We have ‖W‖ = 1, as W acts as J on the orthogonal subspaces RV0 and RV1 of RV . Thus
λ(Gλ,p) ≤ λ. The opposite inequality follows from the fact that p11V0−p01V1 ∈ ~1⊥ is an eigenvector
of Gλ,p with eigenvalue λ, as is evident from the decomposition of Gλ,p above.

5.2 Lower bound for symmetric functions

In this section, we use the sticky random walk Gλ,p to show that the the c = 0 case of Corollary 19,
or equivalently the d = 2 case of Corollary 21, is asymptotically tight. Specifically, we show the
following.

Theorem 47. For every p = (p0, p1), 0 < λ < 1, and t ≥ 1010/(λ2(1− λ)4(p0p1)3), then

dTV(Σ val(RWt
Gλ,p

),Σ val(RWt
J)) ≥ λ

20
.

Theorem 47 implies that for every λ, p with d = 2, taking G = Gλ,p and letting t be sufficiently
large ensures that the total variation distance between Σ val(RWt

G) and Σ val(RWt
J) is Ω(λ). Thus

Corollary 21, which showed an upper bound of O(λ) for this total variation distance for all λ-
spectral-expanders, is tight for large t.

Theorem 47 generalizes a similar result of Guruswami and Kumar [GK21] for the special case
of p0 = p1 = 1/2, and indeed our proof method is similar to theirs. However, whereas Guruswami
and Kumar [GK21] derived their lower bound by proving a special case of the CLT, we instead cite
a similar but more general CLT result of Kloeckner [Klo19].

Cohen et al. [CMP+21] also showed a similar lower bound that is incomparable to Theorem 47.
Specifically, for the case of p0 = p1 = 1/2, Cohen et al. [CMP+21] presented a λ-spectral expander
G for which the total variation distance between Σ val(RWt

G) and Σ val(RWt
J) is Ω(λ) for all t. In

contrast, Theorem 47 considers arbitrary p, but only sufficiently large t.
The main idea to prove Theorem 47 is that by the Markov chain CLT, as t → ∞ then

((Σ val(RWt
Gλ,p

))1 − p1t)/
√
p0p1t converges in distribution (that is, in Kolmogorov distance) to

a normal distribution with variance (1 +λ)/(1−λ). In contrast, the CLT implies that the normal-
ized binomial distribution ((Σ val(RWt

J))1 − p1t)/
√
p0p1t converges to a normal distribution with

variance 1. Theorem 47 then follows because the distance between these two normals is Ω(λ).
The Markov chain CLT relies on the following asymptotic notion of variance.

Definition 48. For a sequence X = (Xt)t∈N of probability distributions over R, the asymptotic
variance of X is

σ2(X) = lim
t→∞

1

t
Var(Xt).
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When G = (V,E) is a graph with labeling val : V → [2], we write σ2(Σ val(RWt
G)) to denote

the asymptotic variance σ2((Σ val(RWt
G))0) = σ2((Σ val(RWt

G))1). The following formula for this
expression is well known; it for instance is a special case of the definition of asymptotic variance in
Kloeckner [Klo19].

Lemma 49. Let G = (V,E) be a regular graph with labeling val : V → [2] that assigns each label
b ∈ [2] to pb-fraction of the n vertices. Viewing val and val−p1 : V → R as vectors in RV , then

σ2(Σ val(RWt
G)) = p0p1 + 2

∞∑
i=1

1

n
(val−p1)>Gi val .

Letting σ2 = σ2(Σ val(RWt
Gλ,p

)), then the Markov chain CLT implies that ((Σ val(RWt
Gλ,p

))1−
p1t)/(σ

√
t) converges in distribution to the standard normal N (0, 1) as t → ∞. We specifically

apply a Berry-Esseen bound of Kloeckner [Klo19], which quantifies the rate of convergence to the
normal. As Kloeckner [Klo19] considers a significantly more general class of Markov chains than is
needed here, we simply state a direct consequence of their result as it applies to the sticky random
walk.

Theorem 50 (Follows from Theorem C of [Klo19]). Let σ2 = σ2(Σ val(RWt
Gλ,p

)). Then

dKol

(
1

σ
√
t

(
(Σ val(RWt

Gλ,p
))1 − p1t

)
,N (0, 1)

)
≤ 1000 ·max{1, 1/σ3}

(1− λ)2
√
t

.

To apply Theorem 50 to prove Theorem 47, we first compute the asymptotic variance for the
sticky random walk.

Lemma 51. Define Gλ,p and val as in Definition 45. Then

σ2(Σ val(RWt
Gλ,p

)) = p0p1 ·
1 + λ

1− λ
.

Proof. View val and val−p1 : V → R as vectors in RV . Then val−p1 ∈ ~1⊥ is an eigenvalue of

Gλ,p = (1− λ)JV,V + λ

(
JV0,V0 0

0 JV1,V1

)
with eigenvalue λ, so by Lemma 49,

σ2(Σ val(RWt
Gλ,p

)) = p0p1 + 2
∞∑
i=1

1

n
(val−p1)>Gi(val−p1)

= p0p1 + 2

∞∑
i=1

λi · ‖ val−p1‖2

n

= p0p1 + 2 · λ

1− λ
· p0p1

= p0p1 ·
1 + λ

1− λ
.

We now prove Theorem 47 using Lemma 51.
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Proof of Theorem 47. By Theorem 50 and Lemma 51,

dKol

(
1√
p0p1t

(
(Σ val(RWt

Gλ,p
))1 − p1t

)
, N

(
0,

1 + λ

1− λ

))
≤ 1000

(1− λ)2(p0p1)3/2
√
t
.

Furthermore, becuase G0,p = J by definition, Theorem 50 also implies that

dKol

(
1√
p0p1t

(
(Σ val(RWt

J))1 − p1t
)
,N (0, 1)

)
≤ 1000

(p0p1)3/2
√
t
.

Now by definition

dKol

(
N
(

0,
1 + λ

1− λ

)
,N (0, 1)

)
≥ Pr[N (0, 1) ≤ 1]− Pr

[
N
(

0,
1 + λ

1− λ

)
≤ 1

]
= Pr[N (0, 1) ≤ 1]− Pr

[
N (0, 1) ≤

√
1− λ
1 + λ

]

=

∫ 1√
1−λ
1+λ

1√
2π
e−u

2/2du

≥

(
1−

√
1− λ
1 + λ

)
1√
2π
e−1/2

≥ λ

2
√

2πe
,

where the final inequality above holds because
√

1− a ≤ 1− a/2 for 0 ≤ a ≤ 1. Now by definition
total variation distance dominates Kolmogorov distance, and both are invariant under scaling and
translation, so applying the triangle inequality with the three inequalities above gives that

dTV(Σ val(RWt
Gλ,p

),Σ val(RWt
J))

= dTV

(
1√
p0p1t

(
(Σ val(RWt

Gλ,p
))1 − p1t

)
,

1√
p0p1t

(
(Σ val(RWt

J))1 − p1t
))

≥ dKol

(
1√
p0p1t

(
(Σ val(RWt

Gλ,p
))1 − p1t

)
,

1√
p0p1t

(
(Σ val(RWt

J))1 − p1t
))

≥ λ

2
√

2πe
− 1000

(1− λ)2(p0p1)3/2
√
t
− 1000

(p0p1)3/2
√
t

≥ λ

2
√

2πe
− 2000

(1− λ)2(p0p1)3/2
√
t
,

Then the desired result follows because the right hand side above is at least λ/20 when

t ≥ 1010

λ2(1− λ)4(p0p1)3
.
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5.3 Lower bound for general permutation branching programs

In this section, we use the sticky random walk Gλ,p to show that Theorem 32 and Corollary 34
are tight. In particular, in Proposition 53 below, we show below that for every p = (p0, p1)

there exists a degree-2 permutation branching program B For which |Pr
[
B(val(RWt

Gλ,p
)) = 0

]
−

Pr
[
B(val(RWt

J)) = 0
]
| = Ω(λ). This lower bound matches the upper bound of O(λ) from Theo-

rem 32 and Corollary 34. Note that while we restrict to the d = 2 case in this section, the results
extend naturally to the case where d > 2, as we may group all labels in [d] into two sets, which can
be renamed with labels 0 and 1 respectively, and the lower bounds still hold.

Before presenting Proposition 53, we first present the following basic result showing that if p0, p1

are bounded away from 0, then there exists a degree-2 permutation branching program B of any

length t ≥ 2 and any width w ≥ 2 such that |Pr
[
B(val(RWt

Gλ,p
)) = 0

]
− Pr

[
B(val(RWt

J)) = 0
]
| =

Ω(λ).

Proposition 52. Let G = Gλ,p be the sticky random walk for some 0 ≤ λ ≤ 1 and p = (p0, p1).
For every t ≥ 2 and w ≥ 2, there exists a permutation branching program B of length t, width w,
and degree d = 2 such that∣∣Pr

[
B(val(RWt

G)) = 0
]
− Pr

[
B(val(RWt

J)) = 0
]∣∣ = 2p0p1λ.

Proof. Define B to be the permutation branching program of length t ≥ 2, width w ≥ 2, and degree
d = 2 with

Bi(b, j) =


j + b (mod w), i = 0

j + b− 1 (mod w), i = 1

j, otherwise.

That is, B0(1) = Cw is the forwards cycle permutation, B1(0) = C−1
w is the backwards cycle

permutation, and all other Bi(b) are the identity permutation. Then for an input a ∈ {0, 1}t, it
holds that B(a) = 0 iff a0 + a1 = 1, or equivalently, B(a) = 0 iff a0 6= a1. Thus

Pr
[
B(val(RWt

G)) = 0
]

= Pr
[
(RWt

G)0 6= (RWt
G)1

]
= p0(p1 − p1λ) + p1(p0 − p0λ) = 2p0p1(1− λ)

Pr
[
B(val(RWt

J)) = 0
]

= Pr
[
(RWt

J)0 6= (RWt
J)1

]
= p0p1 + p1p0 = 2p0p1.

Thus
∣∣Pr
[
B(val(RWt

G)) = 0
]
− Pr

[
B(val(RWt

J)) = 0
]∣∣ = 2p0p1λ.

The lower bound in Proposition 52 of Ω(p0p1λ) fails to meet the upper bounds of O(λ) in
Theorem 32 and Corollary 34 when p0p1 is small. The following result addresses this issue by
improving the lower bound to Ω(λ), although it requires the permutation branching program length
and width to be Ω(1/p0p1), whereas Proposition 52 only required length and width ≥ 2.

Proposition 53. Let G = Gλ,p be the sticky random walk for some 0 ≤ λ ≤ 1 and p = (p0, p1).
There exists a permutation branching program B of degree d = 2, length t = b1/min{p0, p1}c + 1,
and width w = t+ 1 such that∣∣Pr

[
B(val(RWt

G)) = 0
]
− Pr

[
B(val(RWt

J)) = 0
]∣∣ ≥ λ

2e2
.
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Proof. Assume without loss of generality that p1 ≤ 1/2, as otherwise the labeling val could be
replaced with 1 − val. Let B be the length-t, width-w, degree-2 permutation branching program
given by Bi(b, j) = j + b, so that B computes the sum function B : {0, 1}t → [w] defined by
B(a) = (Σa)1 =

∑
i∈[t] ai. Then

Pr
[
B(val(RWt

G)) = 0
]

= Pr
(v0,...,vt−1)∼RWt

G

[v0, . . . , vt−1 ∈ V0]

= p0(p0 + p1λ)t−1,

while

Pr
[
B(val(RWt

J)) = 0
]

= Pr
(v0,...,vt−1)∼RWt

J

[v0, . . . , vt−1 ∈ V0]

= pt0.

Thus ∣∣Pr
[
B(val(RWt

G)) = 0
]
− Pr

[
B(val(RWt

J)) = 0
]∣∣

= p0(p0 + p1λ)t−1 − pt0

= pt0 ·

((
1 +

p1

p0
λ

)t−1

− 1

)

≥ pt0 ·
(

1 + (t− 1)
p1

p0
λ− 1

)
= (1− p1)t−1 · (t− 1)p1λ

≥ e−2(t−1)p1 · (t− 1)p1λ

≥ e−2 · 1

2
λ,

where the second inequality above holds because log(1− p1) ≥ −2p1 as p1 ≤ 1/2, and the third
inequality holds because 1/2 ≤ (t− 1)p1 ≤ 1 as p1 ≤ 1/2 and t− 1 = b1/p1c.

The Ω(λ) lower bounds above match the O(λ) upper bounds in Theorem 32 and Corollary 34.
However, for permutation branching programs of large width w, it remains an open problem to
resolve the gap between these Ω(λ) lower bounds and our O(

√
w ·λ) upper bound on total variation

distance from Corollary 33.
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A Technical lemmas

The following technical lemmas are used at various points in the paper.

Lemma 54. Let p = (p0, p1) ∈ (0, 1)2 with p0 + p1 = 1. For all −π ≤ θ ≤ π with θ 6= 0,

p0p1

2
≤ 1− |p0 + p1e

iθ|
|1− eiθ|2

≤ p0p1. (17)

Furthermore,

p0p1
2

π2
θ2 ≤ 1− |p0 + p1e

iθ| ≤ p0p1θ
2. (18)

Proof. For the first inequality, by definition

1− |p0 + p1e
iθ|

|1− eiθ|2
=

1−
√

(p0 + p1 cos θ)2 + (p1 sin θ)2

(1− cos θ)2 + (sin θ)2

=
1−

√
(p0 + p1)2 − 2p0p1(1− cos θ)

2− 2 cos θ

=
1− (1− 2p0p1(1− cos θ))

(2− 2 cos θ)(1 +
√

1− 2p0p1(1− cos θ))

=
p0p1

1 +
√

1− 2p0p1(1− cos θ)
.
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The denominator of the right hand side above is always at least 1, which implies the desired upper
bound of p0p1. The right hand side above is minimized by letting θ → 0, which gives the desired
lower bound of p0p1/2.

For the second inequality, because |1− eiθ|2 = 2(1− cos θ), and for all −π ≤ θ ≤ π it holds that
2
π2 θ

2 ≤ 1− cos θ ≤ 1
2θ

2, it follows that

4

π2
θ2 ≤ |1− eiθ|2 ≤ θ2.

Multiplying this inequality with (17) gives (18).

Lemma 55. For all a, b > 0 and ρ > 0,

ab ≤ 1

2

(
ρa2 +

1

ρ
b2
)
.

Proof. The result follows from the inequality

ρa2 +
1

ρ
b2 − 2ab =

(
√
ρa− 1

√
ρ
b

)2

≥ 0.

Lemma 56. For all a, b, c ∈ R such that a+ c ≥ 0,∥∥∥∥(a b
b c

)∥∥∥∥ =
a+ c+

√
(a− c)2 + 4b2

2
.

In particular, if it also holds that a > c, then∥∥∥∥(a b
b c

)∥∥∥∥ ≤ a+
b2

a− c
.

Proof. Let M =

∥∥∥∥(a b
b c

)∥∥∥∥. By the spectral theorem, M has an orthonormal eigenbasis. Let

µ1 ≥ µ2 be the eigenvalues of M . Then ‖M‖ = max{|µ1|, |µ2|}, and as µ1 +µ2 = TrM = a+c ≥ 0,
it follows that ‖M‖ = µ1. The eigenvalues µ1, µ2 are roots of the characteristic polynomial

pM (µ) = µ2 − (a+ c)µ+ (ac− b2),

so

‖M‖ = µ1 =
a+ c+

√
(a− c)2 + 4b2

2
,

which proves the first part of the lemma. For the second part, if a > c, then because
√
u is a

concave function,

√
(a− c)2 + 4b2 ≤

√
(a− c)2 +

(
d

du

√
u

∣∣∣∣
u=(a−c)2

)
· 4b2

= a− c+
2b2

a− c
.
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Thus the above expression for ‖M‖ is bounded by

‖M‖ ≤ a+
b2

a− c
.

Lemma 57. Let β ∈ (1/2)Z. If β ≥ 0, then∫ ∞
0

qβe−q
2
dq ≤ (β + 1)β/2.

If β ≥ 2, then ∫ ∞
0

qβe−q
2
dq ≤

(
β − 1

2

)β/2
.

Proof. We show the result by induction. For the base case, the inequalities in the lemma statement
can be directly verified for all eight possible values 0 ≤ β < 4. For the inductive step, for some
β ≥ 4, assume that the bounds in the lemma statement hold for β − 2. Integrating by parts gives
that ∫ ∞

0
qβe−q

2
dq =

∫ ∞
0

qβ−1 · (qe−q2
)dq

=
β − 1

2
·
∫ ∞

0
qβ−2e−q

2
dq.

Thus the desired result follows by our bounds on
∫∞

0 qβ−2e−q
2
dq from the inductive hypothesis.

B Proof of Theorem 20 for d > 2

In this section, we prove the d > 2 case of Theorem 20. The proof we present in this section
generalizes the proof in Section 3.1 for the d = 2 case, and will therefore follow the same general
outline. In fact, the proof here also applies for the d = 2 case, but gives a worse dependence on p
than was achieved in Section 3.1; we also do not show a tail bound for the d > 2 case as was shown
in Theorem 18 when d = 2. The precise result we will prove in this section is (re)stated below.

Theorem 58 (d > 2 case of Theorem 20). Fix integers t ≥ 1 and 1 ≤ u ≤ t− 1. For some integer
d ≥ 2, let V be a finite set of vertices with labeling val : V → [d] that assigns each label b ∈ [d] to pb-
fraction of the vertices. Let G = (Gi)1≤i≤t−1 and G′ = (G′i)1≤i≤t−1 be sequences of regular graphs on
the shared vertex set V such that for all i 6= u we have Gi = G′i with λ(Gi) = λ(G′i) ≤ min(p)/400.
Then

dTV

(
Σ val(RWt

G′),Σ val(RWt
G)
)
≤ 29d/4+13dd/2+3

min(p)(d+3)/4
· ‖G

′
u −Gu‖
t

.

To begin, recall that forW = G or G′, the random variable Σ val(RWt
W) takes values in [t+1][d],

where (Σ val(RWt
W))b denotes the number of steps in RWt

W that land on a vertex with label b.
Note that the b = 0 component (for instance) of Σ val(RWt

W) is redundant, as the sum of all of the
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components equals t. Therefore we will often restrict to components 1 ≤ b ≤ d− 1 of Σ val(RWt
W),

which are supported inside [t+ 1]d−1 ⊆ Zd−1. That is, let

S = Zd−1 ∼=

j ∈ Zd :
∑
b∈[d]

jb = t

 ,

where the isomorphism above is given by (j1, . . . , jd−1) 7→ (t−
∑d−1

b=1 jb, j1, . . . , jd−1).
Define

g =
(
Pr
[
(Σ val(RWt

G′))[d]\{0} = j
]
− Pr

[
(Σ val(RWt

G))[d]\{0} = j
])
j∈S ∈ [−1, 1]S (19)

to denote the difference between the distributions of Σ val(RWt
G′) and Σ val(RWt

G) when restricting
to components in [d] \ {0}. In this notation, our goal is to show that if d and p are fixed, then
‖g‖1 = O(‖G′u −Gu‖/t).

B.1 Reduction to bounding an `2-norm

In this section, we show how to prove the d > 2 case of Theorem 20 given Theorem 59 below, which
bounds the norm of the vector

g
(sr)
b = (esr(jb−pbt)gj)j∈S ∈ RS (20)

for 1 ≤ b ≤ d − 1, s = ±1, and 0 ≤ r ≤ 1/2, where g is given by (19). We will prove Theorem 59
in the following sections.

Theorem 59. As in Theorem 20, let u < t and d ≥ 2 be positive integers, and let V be a set
of vertices with labeling val : V → [d] that assigns each label b ∈ [d] to pb-fraction of the vertices.
Let G = (Gi)1≤i≤t−1 and G′ = (G′i)1≤i≤t−1 be sequences of regular graphs on the shared vertex set
V , such that for all i 6= u we have Gi = G′i with λ(Gi) = λ(G′i) ≤ min(p)/400. Then for every

1 ≤ b ≤ d− 1, s = ±1, and 0 ≤ r ≤ 1/2, defining g
(sr)
b as in (20), we have

‖g(sr)
b ‖ ≤ 2d/2+9(d− 1)d/4+1 · .‖G′u −Gu‖ · e2pbtr

2 ·
(

pbr
2

(min(p)t)(d−1)/4
+

1

(min(p)t)(d+3)/4

)
.

As in the d = 2 case from Section 3.1, reducing the desired `1-norm bound on g to an `2-norm

bound on g
(sr)
b will allow us to take the Fourier transform of g

(sr)
b , and then bound each Fourier

coefficient separately, as described in Section B.2.
To prove the d > 2 case of Theorem 20, we will partition S into blocks, and then bound the

`1-norm of g within each block in terms of ‖g(sr)
b ‖ for appropriately chosen s = ±1, 0 ≤ r ≤ 1/2,

and 1 ≤ b ≤ d − 1. Intuitively, an appropriate selection of s, r, b allows the components of g
(sr)
b

inside the specified block to dominate components outside the block.
To begin, with S = Zd−1, then for integers 1 ≤ b ≤ d− 1 and k ≥ 0, define

S+
b,k = {j ∈ S : ‖j − pt‖∞ < (k + 1)

√
t, jb − pbt ≥ k

√
t}

S−b,k = {j ∈ S : ‖j − pt‖∞ < (k + 1)
√
t, jb − pbt ≤ −k

√
t}.
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Note that above j−pt is viewed as a vector in Rd−1, so that j = (j1, . . . , jd−1) and p = (p1, . . . , pd−1)
with p0 being ignored. By definition S equals the union over all b, k, s of Ssb,k, and furthermore,

supp(g) ⊆ [t+ 1]d−1 ⊆
⋃

1≤b≤d−1, 0≤k≤
√
t, s=±1

Ssb,k ⊆ S.

Therefore letting gA = (gj)j∈A ∈ [−1, 1]A denote the restriction of g to a subset A ⊆ S, then

‖g‖1 ≤
∑

1≤b≤d−1, 0≤k≤
√
t, s=±1

‖gSsb,k‖1. (21)

Thus we will focus on bounding the gSsb,k separately. We proceed analagously as in Section 3.1.

Lemma 60. For 1 ≤ b ≤ d− 1, 0 ≤ k ≤
√
t, s = ±1 and r ≥ 0,

‖gSsb,k‖1 ≤ 2d−1(k + 1)(d−2)/2t(d−1)/4e−rk
√
t · ‖g(sr)

b ‖.

Proof. By the definition of g
(sr)
b and the Cauchy-Schwartz inequality,

‖gSsb,k‖1 ≤ e
−rk
√
t · ‖(g(sr)

b )Ssb,k‖1

≤ e−rk
√
t
√
|Ssb,k| · ‖g

(sr)
b ‖

≤ e−rk
√
t
√

(
√
t+ 1)(2(k + 1)

√
t+ 1)d−2 · ‖g(sr)

b ‖

≤ 2d−1(k + 1)(d−2)/2t(d−1)/4e−rk
√
t · ‖g(sr)

b ‖.

We now apply the bound in (21) along with Theorem 59 and Lemma 60 to prove the d > 2 case
of Theorem 20.

Proof of Theorem 58 (d > 2 case of Theorem 20). By Lemma 60 and Theorem 59,

‖gSsb,k‖1 ≤ 2d−1(k + 1)(d−2)/2t(d−1)/4e−rk
√
t

· 2d/2+9(d− 1)d/4+1 · .‖G′u −Gu‖ · e2pbtr
2 ·
(

pbr
2

(min(p)t)(d−1)/4
+

1

(min(p)t)(d+3)/4

)
≤ 23d/2+8(d− 1)d/4+1 · ‖G′u −Gu‖ · (k + 1)(d−2)/2

· e2pbtr
2−rk

√
t ·
(

pbr
2

min(p)(d−1)/4
+

1

min(p)(d+3)/4 · t

)
.

Thus setting

r =

{
k

4pb
√
t
, k ≤ 2pb

√
t

1
2 , k > 2pb

√
t

gives that if k ≤ 2pb
√
t, then 2r2pbt − rk

√
t = −k2/(8pb), while if k > 2pb

√
t, then pbt ≤ k

√
t/2,

so 2r2pbt − rk
√
t = pbt/2 − k

√
t/2 ≤ −k

√
t/4 ≤ −k2/4, where this final inequality holds because

k ≤
√
t by assumption. Thus in either case,

2r2pbt− rk
√
t ≤ max

{
− k2

8pb
,−k

2

4

}
≤ −k

2

8
.
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Furthermore, when k ≤ 2pb
√
t then pbr

2 = k2/(16pbt), while when k > 2pb
√
t, then k2/(16pbt) >

4p2
bt/(16pbt) = pb/4 = pbr

2. Thus in either case,

pbr
2 ≤ k2

16pbt
≤ k2

16 min(p)t
.

Combining the above inequalities gives that

‖gSsb,k‖1 ≤ 23d/2+8(d− 1)d/4+1 · ‖G′u −Gu‖ · (k + 1)(d−2)/2

· e−k2/8 ·
(
k2/(16 min(p)t)

min(p)(d−1)/4
+

1

min(p)(d+3)/4 · t

)
= 23d/2+8(d− 1)d/4+1 · ‖G′u −Gu‖ · (k + 1)(d−2)/2 · e−k2/8 · k2/16 + 1

min(p)(d+3)/4 · t

≤ 23d/2+8(d− 1)d/4+1 · ‖G′u −Gu‖ · (k + 1)(d+2)/2 · e−k2/8 · 1

min(p)(d+3)/4 · t
,

where the final inequality above holds because k2/16+1 ≤ (k+1)2 for all k ≥ 0. Therefore by (21),

‖g‖1 ≤
23d/2+8(d− 1)d/4+1 · ‖G′u −Gu‖

min(p)(d+3)/4 · t
·

∑
1≤b≤d−1, 0≤k≤

√
t, s=±1

(k + 1)(d+2)/2 · e−k2/8

=
23d/2+9(d− 1)d/4+2 · ‖G′u −Gu‖

min(p)(d+3)/4 · t
·
b
√
tc∑

k=0

(k + 1)(d+2)/2 · e−k2/8.

The sum above can be bounded as

b
√
tc∑

k=0

(k + 1)(d+2)/2e−k
2/8 ≤ 1 + 2(d+2)/2

b
√
tc∑

k=1

k(d−2)/2e−k
2/8

≤ 1 + 2(d+2)/2

(∫ ∞
k=0

k(d+2)/2e−k
2/8dk + 2 sup

k≥0
k(d+2)/2e−k

2/8

)

≤ 1 + 2(d+2)/2

(
√

8
(d+4)/2

(d/4)(d+2)/4 + 2

(
2(d+ 2)

e

)(d+2)/4
)

≤ 23d/4+5dd/4+1/2,

where the second and third inequalities above hold because (k + 1)(d+2)/2e−k
2/8 is increasing for

0 < k <
√

2(d+ 2) and decreasing for k >
√

2(d+ 2), and the third inequality also uses the fact

that with ` = k/
√

8, then
∫∞
k=0 k

(d+2)/2e−k
2/8dk =

√
8

(d+4)/2 ∫∞
`=0 `

(d+2)/2e−`
2
d`, and this latter

integral can be bounded using Lemma 57. Thus

‖g‖1 ≤
23d/2+9(d− 1)d/4+2 · ‖G′u −Gu‖

min(p)(d+3)/4 · t
· 23d/4+5dd/4+1/2

≤ 29d/4+14dd/2+3

min(p)(d+3)/4
· ‖G

′
u −Gu‖
t

.
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B.2 Reduction to bounding Fourier coefficients

In this section, we show how to prove Theorem 59 given bounds on the Fourier transform of g
(sr)
b .

Specifically, we prove Theorem 59 assuming Theorem 62 below, which will be proven in Section B.3.
We first introduce the Fourier transform for the group Zd−1.

Definition 61. Let (S1)d−1 = (R/2πZ)d−1 with `2 norm ‖f‖ =
√∫

(−π,π]d−1 |f(θ)|2dθ/(2π)d−1.

Let `2(Zd−1) and `2((S1)d−1) denote the subspaces of CZd−1
and C(S1)d−1

respectively containing
all elements of finite `2 norm. Then the Fourier transform for the group Zd−1 is the map F :
`2(Zd−1)→ `2((S1)d−1) such the Fourier transform of h ∈ `2(Zd−1), denoted Fh = ĥ ∈ `2((S1)d−1),
is given by

ĥ(θ) =
∑

j∈Zd−1

hje
−iθ·j .

The Fourier transform may also be expressed in terms of the Fourier characters χθ = (eiθ·j)j∈Zd−1 ∈
CZd−1

, as ĥ(θ) = χ∗θh.

It is well know that the Fourier transform preserves the `2 norm, so that ‖ĥ‖ = ‖h‖. Below, we
associate (S1)d−1 = (R/2πZ)d−1 with the space (−π, π]d−1, so that all θ ∈ (S1)d−1 have ‖θ‖∞ ≤ π.

Theorem 62. As in Theorem 20, let u < t and d ≥ 2 be positive integers, and let V be a set
of vertices with labeling val : V → [d] that assigns each label b ∈ [d] to pb-fraction of the vertices.
Let G = (Gi)1≤i≤t−1 and G′ = (G′i)1≤i≤t−1 be sequences of regular graphs on the shared vertex set
V , such that for all i 6= u we have Gi = G′i with λ(Gi) = λ(G′i) ≤ min(p)/400. Then for every

1 ≤ b ≤ d − 1, s = ±1, and 0 ≤ r ≤ 1/2, defining g
(sr)
b as in (20), we have for all θ ∈ (−π, π]d−1

that

|ĝ(sr)
b (θ)| ≤ 4 · ‖G′u −Gu‖ ·

(
4pbr

2 +
3

2
‖θ‖2∞

)
· et(2pb·r2−min(p)·‖θ‖2∞/40).

To obtain the desired bound on ‖g(sr)
b ‖ in Theorem 59, we square the inequality in The-

orem 62 and then integrate over θ ∈ (−π, π]d−1, using the fact that ‖g(sr)
b ‖2 = ‖ĝ(sr)

b ‖2 =∫
(−π,π]d−1 |ĝ(sr)

b (θ)|2dθ/(2π)d−1 because the Fourier transform preserves `2-norms. This calculation
is shown below.
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Proof of Theorem 59. Because the Fourier transform preserves the `2-norm, by Theorem 62,

‖g(sr)
b ‖ =

√∫
(−π,π]d−1

|ĝ(sr)
b (θ)|2 dθ

(2π)d−1

≤ 4 · ‖G′u −Gu‖ · e2pbtr
2 ·

√∫
(−π,π]d−1

(
4pbr2 +

3

2
‖θ‖2∞

)2

· e−min(p)t·‖θ‖2∞/20
dθ

(2π)d−1

≤ 4
√

2 · ‖G′u −Gu‖ · e2pbtr
2

·

(
4pbr

2

√∫
(−π,π]d−1

e−min(p)t·‖θ‖2∞/20
dθ

(2π)d−1

+

√∫
(−π,π]d−1

9

4
‖θ‖4∞e−min(p)t·‖θ‖2∞/20

dθ

(2π)d−1

)
= 4
√

2 · ‖G′u −Gu‖ · e2pbtr
2

·

(
4pbr

2

√∫ π

0
e−min(p)t·η2/20 · 2(d− 1)(2η)d−2

dη

(2π)d−1

+

√∫ π

0

9

4
η4e−min(p)t·η2/20 · 2(d− 1)(2η)d−2

dη

(2π)d−1

)
,

(22)

where the second inequality above holds because all a, b ≥ 0 satisfy (a + b)2 ≤ 2(a2 + b2) and√
a+ b ≤

√
a +
√
b, and the second equality above holds because the (d − 2)-dimensional region

{θ ∈ Rd−1 : ‖θ‖∞ = η} has volume 2(d − 1)(2η)d−2. Substituting q =
√

min(p)t/20 · η in the
integrals in the right hand side of (22) gives

‖g(sr)‖ ≤ 4
√

2 · ‖G′u −Gu‖ · e2pbtr
2

·

4pbr
2

√
d− 1

πd−1
·
(

20

min(p)t

)(d−1)/2

·
∫ ∞

0
qd−2e−q2dq

+
3

2

√
d− 1

πd−1
·
(

20

min(p)t

)(d+3)/2

·
∫ ∞

0
qd+2e−q2 · dq

 .

Applying Lemma 57 to the two integrals on the right hand side above impies that both of these
integrals are bounded above by (d− 1)(d+2)/2. Therefore

‖g(sr)‖ ≤ 16
√

2 · 20(d+3)/4 · (d− 1)(d+4)/4

π(d−1)/2

· .‖G′u −Gu‖ · e2pbtr
2 ·
(

pbr
2

(min(p)t)(d−1)/4
+

1

(min(p)t)(d+3)/4

)
≤ 2d/2+9(d− 1)d/4+1 · .‖G′u −Gu‖ · e2pbtr

2 ·
(

pbr
2

(min(p)t)(d−1)/4
+

1

(min(p)t)(d+3)/4

)
.
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B.3 Bounding Fourier coefficients

In this section we prove Theorem 62. Throughout this section, for convenience we extend the
sequences G and G′ to include 0th and tth components G0 = G′0 = Gt = G′t = J . In the proofs
below, these matrices will typically be applied to ~1, and they therefore could be removed at the
cost of more cumbersome notation.

First, we express the Fourier transform ĝ
(sr)
b (θ) of g

(sr)
b linear-algebraically below.

Lemma 63. For θ ∈ (−π, π][d]\{0}, 1 ≤ b ≤ d− 1, s = ±1, and 0 ≤ r ≤ 1/2, let P
(sr)
θ,b ∈ CV×V be

the matrix given by:

P
(sr)
θ,b =

∑
v∈V

δvδ
∗
ve

(srδb−iθ)·δval(v)−pbsr =
∑

v∈val−1(b)

δvδ
∗
ve

(1−pb)sr−iθb +
∑

b′∈[d]\{b}

δvδ
∗
ve
−pbsr−iθb′ ,

where we extend θ to a tuple in (−π, π][d] by letting θ0 = 0. Then

ĝ
(sr)
b (θ) = ~1∗GtP

(sr)
θ,b · · ·Gu+1P

(sr)
θ,b (G′u −Gu)P

(sr)
θ,b Gu−1 · · ·P (sr)

θ,b G0~1

= ~1∗

(
t∏

i=u+1

GiP
(sr)
θ,b

)
(G′u −Gu)

(
u−1∏
i=0

P
(sr)
θ,b Gi

)
~1.

Proof. The proof is analogous to that of Lemma 26. ForW = G or G′, writingWi =
∑

v,v′∈V δv′δ
∗
v(Wi)v′,v,

then ~1∗
(∏t

i=1(WiP
(sr)
θ,b )

)
~1 =
√
n~1∗

(∏t
i=1(WiP

(sr)
θ,b )

)
(1/
√
n)~1 expands to give

~1∗

(
t∏
i=1

(WiP
(sr)
θ,b )

)
~1 =

∑
(v0,...,vt−1)∈V [t]

Pr
[
RWt

W = (v0, . . . , vt−1)
] ∏
i′∈[t]

e
(srδb−iθ)·δval(vi′ )

−pbsr

= E[e(srδb−iθ)·Σ val(RWt
W )−pbsrt].

The first equality above follows from an expansion analogous to the one described in detail in the
proof of Lemma 36, to which the reader is referred for details; we omitted some intermediate steps
to avoid redundancy. Therefore

ĝ
(sr)
b (θ) =

∑
j∈S

(Pr
[
Σ val(RWt

G′) = j
]
− Pr

[
Σ val(RWt

G) = j
]
)e(srδb−iθ)·j−pbsrt

= E[e(srδb−iθ)·Σ val(RWt
G′ )−pbsrt]− E[e(srδb−iθ)·Σ val(RWt

G)−pbsrt]

= ~1∗

(
t∏
i=1

(G′iP
(sr)
θ,b )

)
~1−~1∗

(
t∏
i=1

(GiP
(sr)
θ,b )

)
~1

= ~1∗

(
t∏

i=u+1

GiP
(sr)
θ,b

)
(G′u −Gu)

(
u−1∏
i=0

P
(sr)
θ,b Gi

)
~1,

where the final equality above holds because G′i = Gi for i 6= u by assumption.

Lemma 63 shows that in order to bound the Fourier transform of g
(sr)
b , it is sufficient to

bound ~1∗
(∏t

i=u+1GiP
(sr)
θ,b

)
(G′u − Gu)

(∏u−1
i=0 P

(sr)
θ,b Gi

)
~1. For this purpose, because the matrix
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G′u −Gu annihilates ~1 from both sides, we will bound the components of
(∏t

i=u+1GiP
(sr)
θ,b

)
~1 and(∏u−1

i=0 P
(sr)
θ,b Gi

)
~1 that are orthogonal to ~1 (denoted by ⊥ below). To bound the orthogonal com-

ponents of these vectors, we will apply the following two lemmas, which provide bounds for the

matrix P
(sr)
θ,b , and will be proven in Section B.4.

Lemma 64. For θ ∈ (−π, π]d−1, 1 ≤ b ≤ d− 1, s = ±1, and 0 ≤ r ≤ 1/2, we have

|~1∗P (sr)
θ,b

~1| ≤ 1 + pbr
2 − 3 min(p)

4π2e1/2
‖θ‖2∞

and

‖(P (sr)
θ,b

~1)⊥‖ = ‖(~1∗P (sr)
θ,b )⊥‖ ≤

√
4epbr2 +

3e

2
‖θ‖2∞.

Lemma 65. Let ρ =
√

min(p)/20 and F = J + ρ(I − J). Then for every 1 ≤ b ≤ d − 1, s = ±1
and 0 ≤ r ≤ 1/2,

‖FP (sr)
θ,b F‖ ≤ 1 + 2pb · r2 − min(p)

40
· ‖θ‖2∞.

Lemma 66. For 1 ≤ u ≤ t− 1,∥∥∥∥∥∥
((

u−1∏
i=0

P
(sr)
θ,b Gi

)
~1

)⊥∥∥∥∥∥∥ ≤ 2 ·
√

4pbr2 +
3

2
‖θ‖2∞ · eu(2pb·r2−min(p)·‖θ‖2∞/40).

Proof. The proof is similar to that of Lemma 29. By definition∥∥∥∥∥∥
((

u−1∏
i=0

P
(sr)
θ,b Gi

)
~1

)⊥∥∥∥∥∥∥ ≤ ‖(P (sr)
θ,b

~1)⊥‖ ·

∥∥∥∥∥∥
((

u−2∏
i=0

P
(sr)
θ,b Gi

)
~1

)‖∥∥∥∥∥∥
+ ‖P (sr)

θ,b ‖ · λ(Gu−1) ·

∥∥∥∥∥∥
((

u−2∏
i=0

P
(sr)
θ,b Gi

)
~1

)⊥∥∥∥∥∥∥ .
The above inequality can be recursively applied to bound the term

∥∥∥∥((∏u−2
i=0 P

(sr)
θ,b Gi

)
~1
)⊥∥∥∥∥ on its

right hand side. Performing u− 1 such recursive applications gives that∥∥∥∥∥∥
((

u−1∏
i=0

P
(sr)
θ,b Gi

)
~1

)⊥∥∥∥∥∥∥ ≤ ‖(P (sr)
θ,b

~1)⊥‖
u−1∑
i=0

(
u−1∏
i′=i+1

‖P (sr)
θ,b ‖ · λ(Gi′)

)∥∥∥∥∥∥
((

i−1∏
i′=0

P
(sr)
θ,b Gi′

)
~1

)‖∥∥∥∥∥∥ .
Let ρ =

√
min(p)/20 and F = J + ρ(I − J). By assumption all i′ ≤ u − 1 have λ(Gi′) ≤ ρ2. It

follows that ‖F−1Gi′F
−1‖ ≤ 1, as F−1Gi′F

−1 preserves the vector ~1 and the subspace ~1⊥, and the

restriction F−1Gi′F
−1|~1⊥ has spectral norm ρ−1λ(Gi′)ρ

−1 ≤ 1. It also holds that ‖P (sr)
θ,b ‖ ≤ e1/2
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because 0 ≤ r ≤ 1/2. Thus∥∥∥∥∥∥
((

u−1∏
i=0

P
(sr)
θ,b Gi

)
~1

)⊥∥∥∥∥∥∥
≤ ‖(P (sr)

θ,b
~1)⊥‖ ·

u−1∑
i=0

(e1/2ρ2)u−1−i ·

∣∣∣∣∣~1∗
(
i−1∏
i′=0

FP
(sr)
θ,b F · F

−1Gi′F
−1

)
~1

∣∣∣∣∣
≤ ‖(P (sr)

θ,b
~1)⊥‖ ·

u−1∑
i=0

(e1/2ρ2)u−1−i · ‖FP (sr)
θ,b F‖

i.

Applying Lemma 64 and Lemma 65 to bound ‖(P (sr)
θ,b

~1)⊥‖ and ‖FP (sr)
θ,b F‖ respectively gives∥∥∥∥∥∥

((
u−1∏
i=0

P
(sr)
θ,b Gi

)
~1

)⊥∥∥∥∥∥∥
≤
√

4epbr2 +
3e

2
‖θ‖2∞ ·

u−1∑
i=0

(e1/2ρ2)u−1−i · ei(2pb·r2−min(p)·‖θ‖2∞/40)

=

√
4epbr2 +

3e

2
‖θ‖2∞ · eu(2pb·r2−min(p)·‖θ‖2∞/40) ·

u−1∑
i=0

(e1/2ρ2)u−1−i

e(u−i)(2pb·r2−min(p)·‖θ‖2∞/40)
.

Because ρ =
√

min(p)/20 and e2pb·r2−min(p)·‖θ‖2∞/40 ≥ e−π2/80,

u−1∑
i=0

(e1/2ρ2)u−1−i

e(u−i)(2pb·r2−min(p)·‖θ‖2∞/40)
≤

u−1∑
i=−∞

(e1/2 ·min(p)/400)u−1−i

(e−π2/80)u−i

=
eπ

2/80

1− e1/2+π2/80 ·min(p)/400

≤ 2√
e
.

Thus ∥∥∥∥∥∥
((

u−1∏
i=0

P
(sr)
θ Gi

)
~1

)⊥∥∥∥∥∥∥ ≤ 2 ·
√

4pbr2 +
3

2
‖θ‖2∞ · eu(2pb·r2−min(p)·‖θ‖2∞/40).

We now apply the above lemmas to prove Theorem 62.

Proof of Theorem 62. By Lemma 63,

|ĝ(sr)
b (θ)| =

∣∣∣∣∣~1∗
(

t∏
i=u+1

GiP
(sr)
θ,b

)
(G′u −Gu)

(
u−1∏
i=0

P
(sr)
θ,b Gi

)
~1

∣∣∣∣∣
≤

∥∥∥∥∥∥
(
~1∗

(
t∏

i=u+1

GiP
(sr)
θ,b

))⊥∥∥∥∥∥∥ ‖G′u −Gu‖
∥∥∥∥∥∥
((

u−1∏
i=0

P
(sr)
θ,b Gi

)
~1

)⊥∥∥∥∥∥∥ ,
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where the inequality above holds because G′u−Gu annihilates ~1 from both sides. Lemma 66 implies
that ∥∥∥∥∥∥

((
u−1∏
i=0

P
(sr)
θ,b Gi

)
~1

)⊥∥∥∥∥∥∥ ≤ 2 ·
√

4pbr2 +
3

2
‖θ‖2∞ · eu(2pb·r2−min(p)·‖θ‖2∞/40)

∥∥∥∥∥∥
(
~1∗

(
t∏

i=u+1

GiP
(sr)
θ,b

))⊥∥∥∥∥∥∥ ≤ 2 ·
√

4pbr2 +
3

2
‖θ‖2∞ · e(t−u)(2pb·r2−min(p)·‖θ‖2∞/40),

where the second equality above holds because P
(sr)
θ,b is diagonal and therefore symmetric, so we may

apply Lemma 29 to bound the norm of the transpose of
(
~1∗
(∏t

i=u+1GiP
(sr)
θ,b

))⊥
. Now combining

the above inequalities gives

|ĝ(sr)
b (θ)| ≤ 4 · ‖G′u −Gu‖ ·

(
4pbr

2 +
3

2
‖θ‖2∞

)
· et(2pb·r2−min(p)·‖θ‖2∞/40).

B.4 Bounds for the matrix P
(sr)
θ,b

In this section, we prove Lemma 64 and Lemma 65, thereby bounding the quantities |~1∗P (sr)
θ,b

~1|,
‖(P (sr)

θ,b
~1)⊥‖, and ‖FP (sr)

θ,b F‖. The proofs are similar to those in Section 3.1.4.

Proof of Lemma 64. For the first inequality in the lemma statement, by definition ~1∗P
(sr)
θ,b

~1 =

e−pbsr(p · esrδb−iθ). We will first show that

|p · esrδb−iθ| ≤ 1 + pb(e
sr − 1)− 3 min(p)

4π2
‖θ‖2∞. (23)

Let b̄ = arg maxb′∈[d] |θb′ |, so that |θb̄| = ‖θ‖∞. If b̄ 6= b, then

|p · esrδb−iθ| ≤ (p0 + pb̄)

∣∣∣∣ p0

p0 + pb̄
+

pb̄
p0 + pb̄

e−iθb̄
∣∣∣∣+

∑
b′∈[d]\{0,b̄}

pb′ |e(srδb−iθ)·δb′ |

≤ (p0 + pb̄)

(
1− 2

π2
· p0pb̄

(p0 + pb̄)
2
θ2
b̄

)
+ 1− p0 − pb̄ + pb(e

sr − 1)

≤ 1 + pb(e
sr − 1)− min(p)

π2
‖θ‖2∞,

where the first inequality above holds by the triangle inequality, the second inequality holds by
Lemma 54, and the third inequality holds because p0pb̄/(p0 + pb̄) = p0/(p0/pb̄ + 1) = pb̄/(1 + pb̄/p0)
is minimized when p0 = pb̄ = min(p) are both minimized.
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If instead b̄ = b, then

|p · esrδb−iθ| ≤ (p0 + pbe
sr)

∣∣∣∣ p0

p0 + esrpb
+

pbe
sr

p0 + pbesr
e−iθb

∣∣∣∣+
∑

b′∈[d]\{0,b}

pb′ |e−iθb′ |

≤ (p0 + pbe
sr)

(
1− 2

π2
· p0pbe

sr

(p0 + pbesr)2
θ2
b

)
+ 1− p0 − pb

≤ 1 + pb(e
sr − 1)− 3 min(p)

4π2
‖θ‖2∞,

where the first inequality above holds by the triangle inequality, the second inequality holds by
Lemma 54, and the third equality holds because p0pbe

sr/(p0 + pbe
sr) is minimized when p0 = pb =

min(p) are both minimized and when sr = −1/2 is minimized, so that p0pbe
sr/(p0 + pbe

sr) ≥
min(p)e−1/2/(1 + e−1/2) ≥ 3 min(p)/8.

Thus (23) holds. It follows that

|~1∗P (sr)
θ,b

~1| = e−pbsr|p · esrδb−iθ|

≤ (1− pb)e−pbsr + pbe
(1−pb)sr − e−pbsr 3 min(p)

4π2
‖θ‖2∞

≤ 1 + pb(1− pb)r2 − 3 min(p)

4π2e1/2
‖θ‖2∞

≤ 1 + pbr
2 − 3 min(p)

4π2e1/2
‖θ‖2∞,

where the second inequality above holds because ea ≤ 1 + a + a2 when |a| ≤ 1/2, and because
e−pbsr ≥ e−1/2 as r ≤ 1/2.

For the second inequality in the lemma statement, the norms of (P
(sr)
θ,b

~1)⊥ and (~1∗P
(sr)
θ,b )⊥ are

equal because these vectors are by definition transposes of each other. Thus it suffices to bound

the norm of the former. Because ‖(P (sr)
θ,b

~1)⊥‖ equals the shortest distance from the vector P
(sr)
θ,b

~1

to the subspace span{~1}, we have

‖(P (sr)
θ,b

~1)⊥‖ ≤ ‖P (sr)
θ,b

~1− e−pbsr~1‖

=

∥∥∥∥∥ 1√
n

∑
v∈V

δve
(srδb−iθ)·δval(v)−pbsr − 1√

n

∑
v∈V

δve
−pbsr

∥∥∥∥∥
=

√
e−2pbsr

∑
b′∈[d]

pb′ |e(srδb−iθ)·δb′ − 1|2

≤

√√√√√e

pb(4r2 +
3

2
θ2
b

)
+

∑
b′∈[d]\{b}

pb′
3

2
θ2
b′


≤
√

4epbr2 +
3e

2
‖θ‖2∞,

where the second inequality above follows by (10) and because e−2pbsr ≤ e as r ≤ 1/2.
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Proof of Lemma 65. By definition

‖FP (sr)
θ,b F‖ = sup

x,y∈CV :‖x‖=‖y‖=1

|x∗FP (sr)
θ,b Fy|.

Decomposing x = x‖ + x⊥ and y = y‖ + y⊥ with x‖, y‖ ∈ span{~1} and x⊥, y⊥ ∈ ~1⊥ gives

|x∗FP (sr)
θ,b Fy| ≤ |x

‖∗P
(sr)
θ,b y

‖|+ |x‖∗P (sr)
θ,b ρy

⊥|+ |x⊥ρP (sr)
θ,b y

‖|+ |x⊥ρP (sr)
θ,b ρy

⊥|

≤
(
‖x‖‖ ‖x⊥‖

)( |~1∗P (sr)
θ,b

~1| ρ‖(~1∗P (sr)
θ,b )⊥‖

ρ‖(P (sr)
θ,b

~1)⊥‖ ρ2‖P (sr)
θ,b ‖

)(
‖y‖‖
‖y⊥‖

)
Thus

‖FP (sr)
θ,b F‖ ≤

∥∥∥∥∥
(
|~1∗P (sr)

θ,b
~1| ρ‖(~1∗P (sr)

θ,b )⊥‖
ρ‖(P (sr)

θ,b
~1)⊥‖ ρ2‖P (sr)

θ,b ‖

)∥∥∥∥∥ . (24)

The lower right entry of the matrix on the right hand side above is at most ρ2e1/2 because ‖P (sr)
θ,b ‖ =

max{e−pbsr, e(1−pb)sr} ≤ e1/2 as r ≤ 1/2. Applying Lemma 64 to bound the other three entries of
this matrix gives that

‖FP (sr)
θ,b F‖ ≤

∥∥∥∥∥∥
1 + pbr

2 − 3 min(p)

4π2e1/2
‖θ‖2∞ ρ

√
4epbr2 + 3e

2 ‖θ‖2∞
ρ
√

4epbr2 + 3e
2 ‖θ‖2∞ ρ2e1/2

∥∥∥∥∥∥ .
Because ρ =

√
min(p)/20, min(p) ≤ 1/2, and ‖θ‖∞ ≤ π,(

1 + pbr
2 − 3 min(p)

4π2e1/2
‖θ‖2∞

)
− ρ2e1/2 ≥ 1− 3

8e1/2
− e1/2

800
≥ 3

4
,

so Lemma 56 implies that

‖FP (sr)
θ,b F‖ ≤

(
1 + pbr

2 − 3 min(p)

4π2e1/2
‖θ‖2∞

)
+

min(p)
400 · (4epbr

2 + 3e
2 ‖θ‖

2
∞)

3/4

≤ 1 + 2pb · r2 − min(p)

40
· ‖θ‖2∞.
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