Quasirandom groups enjoy interleaved mixing

Harm Derksen* Emanuele Viola ${ }^{\dagger}$

June 27, 2022

Abstract

Let G be a group such that any non-trivial representation has dimension at least d. Let $X=\left(X_{1}, X_{2}, \ldots, X_{t}\right)$ and $Y=\left(Y_{1}, Y_{2}, \ldots, Y_{t}\right)$ be distributions over G^{t}. Suppose that X is independent from Y. We show that for any $g \in G$ we have

$$
\left|\mathbb{P}\left[X_{1} Y_{1} X_{2} Y_{2} \cdots X_{t} Y_{t}=g\right]-1 /|G|\right| \leq \frac{|G|^{2 t-1}}{d^{t-1}} \sqrt{\mathbb{E}_{h \in G^{t}} X(h)^{2}} \sqrt{\mathbb{E}_{h \in G^{t}} Y(h)^{2}} .
$$

Our results generalize, improve, and simplify previous works.
Quasirandom groups, introduced by Gowers [Gow08], are groups whose non-trivial representations have large dimension. Multiplication in such groups is known to behave like a random function in several respects. The prime example of this is that if X and Y are independent, high-entropy distributions over a quasirandom group then $X Y$ (i.e., sample from each and output the product) becomes closer to uniform in L_{2} norm. For a discussion of this result and its many proofs we refer to Section 13 of [Gow17]. Other random-like behaviors are known with respect to, for example, progressions [BHR22] and corners [Aus16] (cf. [Vio19]).

In this work we are interested in a question posed by Miles and Viola [MV13]. Let $X=$ $\left(X_{1}, X_{2}\right)$ and $Y=\left(Y_{1}, Y_{2}\right)$ be high-entropy distributions over G^{2} such that X is independent from Y (but X_{1} needs not be independent from X_{2} and Y_{1} needs not be independent from Y_{2}). They asked if the interleaved product $X_{1} Y_{1} X_{2} Y_{2}$ "mixes," i.e., if it is close to uniform, for suitable groups G. Their question was motivated by an application to cryptography (which follows from a positive answer to a more general question they asked).

Gowers and Viola give a positive answer to this question for non-abelian simple groups, which are known to be quasirandom. For the special case of $G=S L(2, q)$ they prove a strong error bound. A simpler exposition of the latter proof appears in [Vio19]. A follow-up paper by Shalev [Sha16] gives stronger error bounds for non-abelian simple groups.

These proofs are somewhat complicated and use substantial machinery, and they only apply to simple groups. Here we give a very short and elementary proof that applies to any quasirandom group, as stated in the abstract. (But if one is interested only in $G=S L(2, q)$ and is not willing to use representation theory, the proof in [GV19] may be more accessible, especially with the simplification presented in [Vio19].)

[^0]To illustrate the bound in the abstract, suppose that X is uniform over a set of density α and Y is uniform over a set of density β. Then the right-hand side is $|G|^{2 t-1} \cdot d^{-t+1}$. $(\alpha \beta)^{-1 / 2} /|G|^{2 t}=|G|^{-1} \cdot d^{-t+1} \cdot(\alpha \beta)^{-1 / 2}$. Our results also slightly improve the parameters in the cases where interleaved mixing could be established. For example for $t>2$ the bounds in [GV19] and [Sha16] have $(\alpha \beta)^{-1}$ instead of $(\alpha \beta)^{-1 / 2}$.

The paper [GV19] also shows that from interleaved mixing there follow a number of other results (including the solution to the more general question in [MV13], thus enabling the motivating application). Hence our results yield these applications for any quasirandom group. Since this is an immediate composition of proofs in [GV19] and this paper, we refer the reader to [GV19] for precise statements.

Proof of statement in the abstract We follow standard notation for non-abelian Fourier analysis, see for example Section 13 of [Gow17] or [GV22]. It suffices to prove the theorem for $g=1_{G}$. Let Z be a distribution over G. By Fourier inversion, and using that $\rho(1)=I$ and $\widehat{Z}(1)=1 /|G|$ we have

$$
\begin{equation*}
|\mathbb{P}[Z=1]-1 /|G||=\left|\sum_{\rho} d_{\rho} \operatorname{tr}\left(\widehat{Z}(\rho) \rho(1)^{T}\right)-1 /|G|\right|=\left|\sum_{\rho \neq 1} d_{\rho} \operatorname{tr}(\widehat{Z}(\rho))\right| \leq \sum_{\rho \neq 1} d_{\rho}|\operatorname{tr}(\widehat{Z}(\rho))|, \tag{1}
\end{equation*}
$$

where ρ ranges over irreducible representations.
The main claim is that if Z is the interleaved product $X_{1} Y_{1} X_{2} Y_{2} \cdots X_{t} Y_{t}$ then for any ρ

$$
\begin{equation*}
|\operatorname{tr}(\hat{Z}(\rho))| \leq|G|^{2 t-1}\left|\hat{X}\left(\rho^{\otimes t}\right)\right|_{2}\left|\hat{Y}\left(\rho^{\otimes t}\right)\right|_{2} \tag{2}
\end{equation*}
$$

Assuming the claim the proof is completed as follows. Plugging Inequality (2) into (1) and multiplying by d_{ρ}^{t} / d^{t} which is ≥ 1 for $\rho \neq 1$, the error is at most

$$
\frac{|G|^{2 t-1}}{d^{t-1}} \sum_{\rho \neq 1}\left(d_{\rho}^{t / 2}\left|\hat{X}\left(\rho^{\otimes t}\right)\right|_{2}\right)\left(d_{\rho}^{t / 2}\left|\hat{Y}\left(\rho^{\otimes t}\right)\right|_{2}\right)
$$

By Cauchy-Schwarz this is at most

$$
\frac{|G|^{2 t-1}}{d^{t-1}} \sqrt{\sum_{\rho \neq 1} d_{\rho}^{t}\left|\hat{X}\left(\rho^{\otimes t}\right)\right|_{2}^{2}} \sqrt{\sum_{\rho \neq 1} d_{\rho}^{t}\left|\hat{Y}\left(\rho^{\otimes t}\right)\right|_{2}^{2}} .
$$

Note that d_{ρ}^{t} is the dimension of $\rho^{\otimes t}$. Each sum can be bounded above by summing over all irreducible representations. Hence by Parseval the sum with X is at most $\mathbb{E}_{h \in G^{t}} X^{2}(h)$ and the same for Y, proving the theorem.

Next we verify Inequality (2). By definition we have

$$
\hat{Z}(\rho)=\mathbb{E}_{g} Z(g) \overline{\rho(g)}=\mathbb{E}_{g} \sum_{g_{1}, g_{2}, \ldots, g_{2 t}: \Pi g_{i}=g} X\left(g_{1}, g_{3}, \ldots, g_{2 t-1}\right) Y\left(g_{2}, g_{4}, \ldots, g_{2 t}\right) \overline{\rho(g)} .
$$

This summation is the same as summing over all g_{i} and setting g to be the product. Further, because ρ is a representation one has $\rho\left(\prod_{i} g_{i}\right)=\prod_{i} \rho\left(g_{i}\right)$. Hence we get

$$
\hat{Z}(\rho)=\frac{1}{|G|} \sum_{g_{1}, g_{2}, \ldots, g_{2 t}} X\left(g_{1}, g_{3}, \ldots, g_{2 t-1}\right) Y\left(g_{2}, g_{4}, \ldots, g_{2 t}\right) \overline{\prod_{i \leq 2 t} \rho\left(g_{i}\right)}
$$

And now the critical equation:

$$
\begin{aligned}
\operatorname{tr} \hat{Z}(\rho) & =\sum_{i} \frac{1}{|G|} \sum_{g_{1}, g_{2}, \ldots, g_{2 t}} X\left(g_{1}, g_{3}, \ldots, g_{2 t-1}\right) Y\left(g_{2}, g_{4}, \ldots, g_{2 t}\right) \sum_{i_{2}, i_{3}, \ldots, i_{2 t}} \bar{\rho}\left(g_{1}\right)_{i, i_{2}} \bar{\rho}\left(g_{2}\right)_{i_{2}, i_{3}} \cdots \bar{\rho}\left(g_{2 t}\right)_{i_{2 t}, i} \\
& =\frac{1}{|G|} \sum_{i, i_{2}, i_{3}, \ldots, i_{2 t}}\left(\sum_{g_{1}, g_{3}, \ldots, g_{2 t-1}} X\left(g_{1}, g_{3}, \ldots, g_{2 t-1}\right) \bar{\rho}\left(g_{1}\right)_{i, i_{2}} \cdot \bar{\rho}\left(g_{3}\right)_{i_{3}, i_{4}} \cdots \bar{\rho}\left(g_{2 t-1}\right)_{i_{2 t-1}, i_{2 t}}\right) \\
& \cdot\left(\sum_{g_{2}, g_{4}, \ldots, g_{2 t}} Y\left(g_{2}, g_{4}, \ldots, g_{2 t}\right) \bar{\rho}\left(g_{2}\right)_{i_{2}, i_{3}} \cdot \bar{\rho}\left(g_{4}\right)_{i_{4}, i_{5}} \cdots \bar{\rho}\left(g_{2 t}\right)_{i_{2 t}, i}\right) \\
& =|G|^{2 t-1} \sum_{i, i_{2}, i_{3}, \ldots, i_{2 t}}\left(\hat{X}\left(\bar{\rho}^{\otimes t}\right)_{i, i_{2}, i_{3}, \ldots, i_{2 t}}\right)\left(\hat{Y}\left(\bar{\rho}^{\otimes t}\right)_{i, i_{2}, i_{3}, \ldots, i_{2 t}}\right) .
\end{aligned}
$$

Inequality (2) now follows by applying the Cauchy-Schwarz inequality.

References

[Aus16] Tim Austin. Ajtai-Szemerédi theorems over quasirandom groups. In Recent trends in combinatorics, volume 159 of IMA Vol. Math. Appl., pages 453-484. Springer, [Cham], 2016.
[BHR22] Amey Bhangale, Prahladh Harsha, and Sourya Roy. Mixing of 3-term progressions in quasirandom groups. In Mark Braverman, editor, ACM Innovations in Theoretical Computer Science conf. (ITCS), volume 215 of LIPIcs, pages 20:1-20:9. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022.
[Gow08] W. T. Gowers. Quasirandom groups. Combinatorics, Probability \& Computing, 17(3):363-387, 2008.
[Gow17] W. T. Gowers. Generalizations of Fourier analysis, and how to apply them. Bull. Amer. Math. Soc. (N.S.), 54(1):1-44, 2017.
[GV] W. T. Gowers and Emanuele Viola. The multiparty communication complexity of interleaved group products. SIAM J. on Computing.
[GV15] W. T. Gowers and Emanuele Viola. The communication complexity of interleaved group products. In ACM Symp. on the Theory of Computing (STOC), 2015.
[GV19] W. T. Gowers and Emanuele Viola. Interleaved group products. SIAM J. on Computing, 48(3):554-580, 2019. Special issue of FOCS 2016.
[GV22] W. T. Gowers and Emanuele Viola. Mixing in non-quasirandom groups. In ACM Innovations in Theoretical Computer Science conf. (ITCS), 2022.
[MV13] Eric Miles and Emanuele Viola. Shielding circuits with groups. In ACM Symp. on the Theory of Computing (STOC), 2013.
[Sha16] Aner Shalev. Mixing, communication complexity and conjectures of Gowers and Viola. Combinatorics, Probability and Computing, pages 1-13, 62016. arXiv:1601.00795.
[Vio19] Emanuele Viola. Non-abelian combinatorics and communication complexity. SIGACT News, Complexity Theory Column, 50(3), 2019.

[^0]: *Partially supported by NSF grant DMS 2147769.
 ${ }^{\dagger}$ Supported by NSF grant CCF-2114116.

