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Abstract

In an influential paper, Linial and Shraibman (STOC ’07) introduced the factorization norm
as a powerful tool for proving lower bounds against randomized and quantum communication
complexities. They showed that the logarithm of the approximate γ2-factorization norm is
a lower bound for these parameters and asked whether a stronger lower bound that replaces
approximate γ2 norm with the γ2 norm holds.

We answer the question of Linial and Shraibman in the negative by exhibiting a 2n × 2n

Boolean matrix with γ2 norm 2Ω(n) and randomized communication complexity O(log n).
As a corollary, we recover the recent result of Chattopadhyay, Lovett, and Vinyals (CCC ’19)

that deterministic protocols with access to an Equality oracle are exponentially weaker than
(one-sided error) randomized protocols. In fact, as a stronger consequence, our result implies
an exponential separation between the power of unambiguous nondeterministic protocols with
access to Equality oracle and (one-sided error) randomized protocols, which answers a question
of Pitassi, Shirley, and Shraibman (ITSC ’23).

Our result also implies a conjecture of Sherif (Ph.D. thesis) that the γ2 norm of the Integer
Inner Product function (IIP) in dimension 3 or higher is exponential in its input size.

1 Introduction

The γ2-factorization norm is an important notion of matrix complexity that was initially developed
in Banach Space theory. In an influential paper, Linial and Shraibman [LS09] introduced this
norm to communication complexity. Subsequently, the factorization norm and its approximate
version found numerous applications in communication complexity and other adjacent areas such
as discrepancy theory [MNT14] and differential privacy [MN12, ENU20, HU22].

Definition 1.1 (γ2-factorization norm). The γ2 norm of a real matrix A is

∥A∥γ2 := min
X,Y :A=XY

∥X∥row∥Y ∥col,

where ∥X∥row and ∥Y ∥col denote the largest ℓ2-norm of a row in X and the largest ℓ2 norm of a
column in Y , respectively.
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Definition 1.2 (Approximate γ2 norm). The approximate γ2 norm of A ∈ Rk×ℓ with error ϵ,
denoted by γ̃ϵ2(A), is the minimum ∥B∥γ2 over all matrices B ∈ Rk×ℓ with ∥A−B∥∞ ≤ ϵ.

We use the notation γ̃ϵ2(·) to emphasize that unlike the γ2 norm ∥ · ∥γ2 , the approximate γ2
norm is not a norm. The choice of the error parameter ϵ is mostly unimportant in the context
of communication complexity. Indeed, a reduction in the error parameter increases log γ̃ϵ2(A) by a
constant factor [BDBGK18, Lemma 21]. Therefore, we use the standard choice of ϵ = 1/3 and write

γ̃2 for γ̃
1/3
2 . Both of the quantities γ̃2 and γ2 are polynomial-time computable using semi-definite

programming [LS09].
Linial and Shraibman [LS09] showed that log γ̃2(A) provides a lower bound on the public-coin

randomized communication complexity R(A) and the quantum communication complexity with
shared entanglement Q∗(A):

log γ̃2(A) ≲ Q∗(A) ≤ R(A). (1)

These lower bounds subsume the most well-known lower bounds on randomized and quantum
communication complexity, such as discrepancy, approximate trace norm [Raz03], and entropy of
singular values [Kla01].

Linial and Shraibman [LS09] state that “they cannot rule out the intriguing possibility that the
first inequality in Eq. (1) is a tip of something bigger and randomized communication complexity
and the quantum communication complexity with shared entanglement are in fact polynomially
equivalent to log ∥A∥γ2 .”

Question 1.3 ([LS09]). Is log ∥A∥γ2 ≤ Õ(R(A)) for every a Boolean matrix A : {0, 1}n×{0, 1}n →
{0, 1}?

Here, the notation Õ(·) hides a factor of polylog(n), which is common in communication com-
plexity since the communication cost of polylog(n) is considered efficient. The purpose of the
present paper is to give a strong negative answer to Question 1.3. In fact, we work with a stronger
parameter of R0(A) instead of R(A) . This parameter is the minimum cost of a one-sided public-
coin randomized protocol. The protocol is not allowed to have any error on 1 entries of A, but on
the 0 entries, it can have a probability of error as big as 1/3.

1.1 Main result

Our main result establishes a strong separation between the γ2 norm and R0.

Theorem 1.4 (Main Theorem). There is a Boolean matrix M : {0, 1}n × {0, 1}n → {0, 1} with
∥M∥γ2 ≥ 2n/32 and R0(M) ≤ O(log n).

The construction in Theorem 1.4 is based on the point-line incidence matrix over the integers.
For integers 1 ≤ q ≤ p, let PL be the qp×qp Boolean matrix whose rows and columns are indexed by
the elements of [q]×{0, . . . , p− 1} and its entries are given as PL[(x, x′), (y, y′)] = 1 iff xy+x′ = y′.
We also define a variant of PL over Zp to simplify the analysis. The matrix PLZp is the qp × qp
Boolean matrix whose rows and columns are indexed by [q] × Zp and its entries are given as
PLZp [(x, x

′), (y, y′)] = 1 iff xy + x′ ≡ y′ mod p.
Recall that the trace norm of a matrix is the sum of its singular values (see Section 2.1).Theo-

rem 1.4 is immediate from the following theorem, which is our main technical contribution.
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Theorem 1.5 (Technical Statement of the Main Theorem). Let p be a prime.

(i) For 1 ≤ q ≤ √
p, we have

∥PLZp∥Tr = Ω(pq9/8) and ∥PLZp∥γ2 = Ω(q1/8) and R0(PLZp) = O(log log p).

(ii) For 1 ≤ q ≤ p1/3, we have

∥PL∥Tr = Ω(pq9/8) and ∥PL∥γ2 = Ω(q1/8) and R0(PL) = O(log log p).

Remark 1.6. The condition 1 ≤ q ≤ p1/3 in (ii) allows us to deduce (ii) from (i) since ∥PLZp−PL∥Tr =
o(pq9/8) in this range (see Lemma 5.1). On the other hand, the condition 1 ≤ q ≤ √

p in (i)
is to guarantee R0(PLZp) = O(log log p). Indeed, unlike PL, whose randomized communication
complexity is always small, the randomized communication complexity of PLZp is large when q is
close to p. For example, for q = p, this follows from the fact that all nontrivial eigenvalues of PLZp

are at most
√
3p [Sol09].

1.2 Consequences of the main theorem

As an immediate consequence, combining Theorem 1.4 with Eq. (1) implies an exponential sepa-
ration between γ̃2(·) and ∥ · ∥γ2 . This corollary answers a question of Pitassi, Shirley, and Shraib-
man [PSS23, Open Question 3].

Corollary 1.7. There is a Boolean matrix M : {0, 1}n ×{0, 1}n → {0, 1} with ∥M∥γ2 ≥ 2n/32 and
γ̃2(M) ≤ O(poly(n)).

Another corollary of Theorem 1.4 concerns the deterministic communication complexity with
oracle access to the Equality function. We formally define this model in Section 2.2 and denote
the corresponding complexity measure by Deq(·). The equality function, which corresponds to
the identity matrix, is the standard example of a problem with O(1) randomized communication
complexity but large deterministic communication complexity. This fact makes Deq(·) an interesting
complexity measure between randomized and deterministic communication complexities.

log γ̃2(A) ≲ Q∗(A) ≤ R(A) ≲ Deq(A) ≤ D(A). (2)

Since the γ2 norm of the identity matrix is 1, it is not difficult to see [HHH22, Proposition 3.1] that

1

2
log ∥A∥γ2 ≤ Deq(A). (3)

In light of Eq. (3), Theorem 1.4 implies the following.

Corollary 1.8. There is a Boolean matrix M : {0, 1}n × {0, 1}n → {0, 1} with R0(M) ≤ O(log n)
and Deq(M) = Ω(n).

The above corollary recovers the result of Chattopadhyay, Lovett, and Vinyals [CLV19] sepa-
rating R and Deq. In fact, we obtain an exponential lower bound on a model stronger than Deq. In
complexity theory, unambiguous nondeterminism is similar to nondeterminism but with the extra
requirement that for every input, there is at most one accepting computational path. Therefore,
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the power of unambiguous nondeterminism lies between determinism and nondeterminism. For a
Boolean matrix M , the unambiguous nondeterministic communication complexity of M with access
to an equality oracle is denoted by UPeq (see Section 2.2). It is immediate that UPeq(·) ≤ Deq(·).
Theorem 1.4 implies the following corollary, answering a question of Pitassi, Shirley, and Shraibman
[PSS23, Open Question 2].

Corollary 1.9. There is a Boolean matrix M : {0, 1}n × {0, 1}n → {0, 1} with R0(M) ≤ O(log n)
and UPeq(M) = Ω(n).

The matrix PL that we consider in Theorem 1.5 is essentially a submatrix of the Integer In-
ner Product matrix (IIP) used in the work of Chattopadhyay et al. [CLV19]; however, the proof
technique here is entirely different.

Definition 1.10. Let t ∈ N be a fixed constant. For a positive integer m = 2n, the Integer Inner
Product function IIPt : {−m, . . . ,m}t × {−m, . . . ,m}t → {0, 1} is defined as

IIPt[(x1, . . . , xt), (y1, . . . , yt)] = 1 iff x1y1 + . . .+ xtyt = 0.

Since t is a fixed constant, the input size of IIPt is Θ(n)-bits as a communication problem.
Chattopadhyay, Lovett, and Vinyals proved that R0(IIPt) = O(log n), and Deq(IIPt) = Ω(n) for
t ≥ 6.

Later, Sherif [She21] conjectured ∥IIPt∥γ2 = 2Ω(n) for t ≥ 6. Since the matrix PL is a submatrix
of IIP3, as a corollary of Theorem 1.5, we answer Sherif’s question in the affirmative.

Corollary 1.11. For t ≥ 3,
∥IIPt∥γ2 = 2Ω(n).

Proof. Choose n such that 2n−1 ≤ p ≤ 2n and q = ⌈p1/3⌉. From Theorem 1.5, we obtain PL as a
submatrix of IIP3 with m = 2n such that ∥PL∥γ2 = Ω(2n/32). Since the γ2 norm cannot increase
when restricting to a submatrix, we conclude that

∥IIPt∥γ2 ≥ ∥IIP3∥γ2 ≥ ∥PL∥γ2 = 2Ω(n).

Remark 1.12. The condition t ≥ 3 is necessary as ∥IIP2∥γ2 = O(1). To prove the latter, we use
Eq. (3) and show Deq(IIP2) = O(1). Note that if x1y1 + x2y2 = 0 and y1, x2 ̸= 0, then x1

x2
= −y2

y1
.

To check this equation, Alice and Bob can call the Equality oracle on rational inputs x1
x2

and −y2
y1
.

1.3 Connections to Fourier algebra norm

The sum of the absolute values of the Fourier coefficients of a function f : Zn
2 → R is called the

algebra norm of f :

∥f∥A := ∥f̂∥1 =
∑
a∈Zn

2

|f̂(a)|.

For any error parameter ϵ ∈ (0, 1/2), the ϵ-approximate algebra norm of f : Zn
2 → {0, 1} is

Ãϵ(f) := inf{∥g∥A : ∥f − g∥∞ ≤ ϵ}.

It is possible to use the xor operation to lift these norms to the γ2 norm and the approximate γ2
norm [LS09]: for the matrix F : Zn

2 × Zn
2 → {0, 1} defined by F (x, y) = f(x⊕ y), we have

∥f∥A = ∥F∥γ2 and Ãϵ(f) = γ̃ϵ2(F ).
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The communication complexity measures of F are related to the parity query complexity measures
of f . For example, we have

R(F ) ≤ 2 rdt⊕(f),

where rdt⊕(f) denotes the randomized parity decision tree complexity of f (see [HHH22]).
Therefore, the class of xor-lifted Boolean functions provide a rich collection of matrices for

which the questions about the factorization norm reduce to simpler questions about the Fourier
algebra norm. In this setting, one can ask the analog of Question 1.3.

Question 1.13 (Open Question). Is log ∥f∥A = Õ(rdt⊕(f)) for every Boolean function f : Zn
2 →

{0, 1}?

By the above discussion, if we find a counter-example f to Question 1.13, then F (x, y) := f(x⊕y)
would be a counter-example to Question 1.3. However, Question 1.13 remains open. Indeed, our
counter-example to Question 1.3 is not an xor-lift.

Finally, let us comment on the stronger versions of Question 1.3 and Question 1.13, where we
do not tolerate a polylog(n) factor, i.e., replace Õ(·) with O(·). Let B(n, r) ⊆ {0, 1}n denote the
Hamming ball of radius r around the origin, i.e.,

B(n, r) :=

{
x ∈ {0, 1}n :

n∑
i=1

xi ≤ r

}
.

Note that the lifted function Fn,r(x, y) = 1B(n,r)(x ⊕ y) corresponds to the hamming distance
problem, whose communication complexity is well-understood. We have [HSZZ06]

rdt⊕(1B(n,r)) ≤ O(r log r) and R(Fn,r) ≤ O(r log r).

On the other hand, for r ≤ n/2, the following bounds are known [HHH22, Lemma 2.15] about the
Fourier algebra norm of 1B(n,r):

e−r

√√√√ r∑
i=0

(
n

i

)
≤

∥∥1B(n,r)

∥∥
A
= ∥Fn,r∥γ2 ≤

√√√√ r∑
i=0

(
n

i

)
.

Therefore, in the context of Question 1.13 and Question 1.3, taking r = O(1) provides examples
of f : {0, 1}n → {0, 1} and F : {0, 1}n × {0, 1}n → {0, 1} with

rdt⊕(f) = O(1) and log ∥f∥A = Θ(log n),

and
R(F ) = O(1) and log ∥F∥γ2 = Θ(log n).

Paper organization. In Section 2, we discuss the preliminaries of matrix norms, communication
complexity, and Fourier analysis. We give a brief overview of the proof strategy in Section 3. We
present the proof of Theorem 1.5 in Sections 4 and 5. Finally, we discuss several open problems in
Section 6.
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2 Notations and Preliminaries

For a positive integer k, we denote [k] := {1, . . . , k}. We use the shorthand notations a ≡p b to
denote a ≡ b mod p. For a set S, we use the indicator function notation 1S , which is evaluated to
1 on x if x ∈ S and 0 otherwise. All the logarithms in this paper are in base 2.

We adopt the standard computer science asymptotic notations and use the tilde asymptotic
notations to hide poly-logarithmic factors. We write f ≲ g to denote f(n) = O(g(n)).

For a vector v ∈ Ck, we denote the ℓ2-norm of v by ∥v∥2 =
√∑

i |vi|2. We denote the all-1
matrix by J.

2.1 Matrix norms

For a complex-valued matrix A ∈ Ck×ℓ, we denote the singular values of A by

σ1(A) ≥ σ2(A) ≥ . . . ≥ σmin(k,ℓ)(A) ≥ 0.

We primarily work with the matrix norm family of Schatten norms. For p ∈ [1,∞], the Schatten-
p norm of a matrix is the ℓp norm of the vector of its singular values. The particular cases of
p = 1, 2,∞ are frequently used, and these norms are commonly known as trace norm, Frobenius
norm, and spectral norm respectively:

∥A∥Tr = ∥A∥S1 =
∑
i

σi

∥A∥F = ∥A∥S2 =

√∑
i

σ2
i =

√∑
i,j

|Aij |2

∥A∥ = ∥A∥S∞ = σ1 = max
x∈Cℓ:∥x∥2=1

∥Ax∥2 = max
u∈Ck,v∈Cℓ

∥u∥2=∥v∥2=1

u∗Av

Viewing Schatten p-norm as the ℓp norm of the singular value vector, one can obtain several
useful properties inherited from ℓp norms. One such property is the monotonicity of Schatten
p-norm in p: ∥A∥Sp ≥ ∥A∥Sq for 1 ≤ p < q ≤ ∞.

Similar to the case of ℓp norm, for p, q ∈ [1,∞] with 1
p +

1
q = 1, the dual norm of ∥ · ∥Sp is ∥ · ∥Sq .

With the inner product on the matrix space Ck×ℓ defined by ⟨A,B⟩ = Tr(A∗B) =
∑

ij AijBij , the
Schatten p-norm admits the following dual norm characterization:

∥A∥Sp = max
∥B∥Sq=1

|⟨A,B⟩|.

For the particular case of p = 1, this yields

|⟨A,B⟩| ≤ ∥A∥Tr∥B∥.

In particular, by setting B = A, we have

∥A∥2F ≤ ∥A∥Tr∥A∥. (4)

Next, we discuss a reformulation of the γ2 norm in terms of the trace norm. As shown in
[LSŠ08], for A ∈ Rk×ℓ, we have

∥A∥γ2 = max
u∈Rk,v∈Rℓ

∥u∥2=∥v∥2=1

∥A ◦ uvT ∥Tr.
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Here ◦ denotes the Hadamard (or entrywise) product of two matrices: for B,C ∈ Rk×ℓ, their
product B ◦ C is the m × n matrix defined by [B ◦ C]ij = BijCij for all i, j. It follows from the
trace norm formulation of the γ2 norm that

∥A∥γ2 ≥ 1√
kℓ

∥A∥Tr. (5)

2.2 Communication complexity

Communication complexity studies the amount of communication required to solve a problem when
the input to the problem is distributed among two or more parties. In the standard communication
model there are two parties and problems are modelled by functions f : X × Y → {0, 1} on finite
domains X ,Y. The two parties receive x ∈ X and y ∈ Y, respectively, and they exchange messages
to compute f(x, y). We often interpret f as a Boolean matrix indexed by (x, y) ∈ X × Y.

For a given ϵ ∈ (0, 1/2), we denote by Rϵ(f), the randomized communication complexity of f in
the public-coin model with two-sided error ϵ > 0. The one-sided versions, R1

ϵ (f) and R0
ϵ (f), restrict

the error to be one-sided: R1
ϵ (f) does not allow any error on the inputs in f−1(0). Similarly, R0

ϵ (f)
does not allow any error on the inputs in f−1(1). We refer the reader to [KN97] for the formal
definitions. We use the canonical choice of ϵ = 1/3. This choice is without loss of generality since
the probability of error can be reduced to any constant ϵ′ > 0 by repeating the protocol a constant
number of times and outputting the majority.

As mentioned, approximate norms are useful tools for studying communication complexity. The
following well-known inequalities [HHP+22, Proposition A.2] connect approximate γ2 norm with
randomized communication complexity.

log γ̃2(A) ≤ R(A) ≤ O(γ̃2(A)2). (6)

Next, we define the deterministic communication complexity with access to an equality oracle.
In this model, a protocol computing a Boolean matrix AX×Y corresponds to a binary tree. Each
non-leaf node v in the tree is labelled with two functions av : X → Z and bv : Y → Z for a finite set
Z. Such a node v corresponds to the query eq(av(x), bv(y)), which returns 1 if av(x) = bv(y) and
0 otherwise. Every input (x, y) naturally corresponds to a path from the tree’s root to a leaf, and
the leaf must be labelled with the correct value A(x, y). The cost of the protocol is the depth of
the tree. The deterministic communication complexity of the matrix A with access to an equality
oracle, denoted by Deq(A), is the smallest depth of such a protocol for A.

Consider a node v in an equality-oracle deterministic communication protocol as described
above. Note that the matrix Bv(x, y) := eq(av(x), bv(y)) consists of a collection of all-1 submatrices
with rows and columns disjoint. Such matrices are dubbed blocky matrices by [HHH22]. The answer
to the query at the node v will inform the parties whether the input (x, y) belongs to the support
of Bv or the support of J−Bv.

Consider a leaf ℓ of the protocol tree where the protocol outputs 1, and let v1, . . . , vd = ℓ be
the set of the nodes on the corresponding path from the root. The inputs that lead the protocol
to reach ℓ are the 1 entries of the matrix Mℓ := Cv1 ◦ . . . ◦Cvd−1

with Cv−i = Bvi or Cvi = J−Bvi

according to the outcome of the query at vi. Each matrix Cvi is either a blocky matrix or the
difference of two blocky matrices. Since the γ2 norm of a Blocky matrix is at most 1, it follows that
∥Cvi∥γ2 ≤ 2. Since γ2 is an algebra norm (i.e., ∥X ◦ Y ∥γ2 ≤ ∥X∥γ2∥Y ∥γ2), we have ∥Mℓ∥γ2 ≤ 2d.
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Note that A =
∑

Mℓ where the sum is over all the leaves where the protocol outputs 1. Hence,

∥A∥γ2 ≤ 4d. (7)

An unambiguous nondeterministic protocol with access to equality oracle is a collection of 2m

deterministic equality-oracle protocols, each with depth at most d, such that on every input, at
most one of them returns 1. The cost of such a protocol is m + d. Consider such a protocol for a
Boolean matrix A, and let A1, . . . , A2m be the Boolean matrices computed by the 2m deterministic
equality-oracle protocols. We must have A =

∑2m

i=1Ai, and in particular, by Eq. (7), we have

∥A∥γ2 ≤
2m∑
i=1

∥Ai∥γ2 ≤ 2m × 4d = 2m+2d.

We denote by UPeq(A), the smallest cost of an unambiguous nondeterministic equality-oracle
protocol for A. We conclude

1

2
log ∥A∥γ2 ≤ UPeq(A) ≤ Deq(A). (8)

2.3 Fourier analysis of Zk
p

This section gives a basic overview of Fourier analysis on the finite Abelian group G := Zk
p for

p, k ∈ N. Consider the Hilbert space L2(G) with the inner product of two functions f, g : G → C
defined by

⟨f, g⟩ =
∑
x∈G

f(x)g(x).

The inner product defines the norm ∥f∥2 =
√
⟨f, f⟩.

Consider the principal p-th root of unity ω := e2πi/p. For every element a = (a1, . . . , ak) ∈ Zk
p,

define the corresponding Fourier character χa : G → C as

χa(x) = ω
∑k

i=1 aixi .

The Fourier characters form an orthogonal basis for L2(G):

⟨χa, χb⟩ =
∑
x∈G

χa−b(x) =

{
|G| if a = b

0 otherwise
.

Therefore, every function f : G → C has a unique expansion

f =
∑
a∈G

f̂(a)χa,

where

f̂(a) =
1

|G|
⟨f, χa⟩.

It follows from the orthogonality of the Fourier characters that for every f : G → C,∑
x∈G

|f(x)|2 = |G|
∑
a∈G

|f̂(a)|2. (9)

This identity is called Parseval’s identity.
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3 Overview of the proof of the main theorem

Let 1 ≤ q ≤ p, and letM be the ([q]×Zp)×([q]×Zp) Boolean matrix defined asM [(x, x′), (y, y′)] = 1
iff xy = x′ + y′. Note that M [(x, x′), (y, y′)] = PLZp [(x,−x′), (y, y′)], and thus M is just a row
permutation of PLZp . Therefore, ∥M∥Tr = ∥PLZp∥Tr.

Let σ1 ≥ . . . ≥ σN be the singular values of M . Since M is a real symmetric matrix and every
row of M contains exactly q ones, the largest eigenvalue of M is σ1 = q, which corresponds to the
all-1 eigenvector. If M were a “pseudo-random” matrix in the sense that all of its non-principal
eigenvalues were small (i.e., σ2 < q1−ϵ), then one could easily show that the trace norm of M is
large. Indeed, the Frobenius norm of M is equal to√ ∑

(x,x′),(y,y′)

M [(x, x′), (y, y′)]2 =
√
qN,

therefore

∥M∥Tr ≥
N∑
i=2

σi ≥
∑N

i=2 σ
2
i

σ2
=

qN − q2

σ2
= Ω

(
qN

σ2

)
. (10)

However, we cannot expect M to be pseudo-random since pseudo-random matrices have large
randomized communication complexity and this is not the case for M .

To prove a lower bound for ∥M∥Tr, there is nothing special about removing only the largest
singular value in Eq. (10). One can take any subspace W ⊆ RN and apply Eq. (4) to the orthogonal
projection of M to W . More precisely, let PW : RN → RN be the orthogonal projection from RN

to W . By Eq. (4), we have

∥M∥Tr ≥ ∥P ∗
W ∥∥M∥Tr∥PW ∥ ≥ ∥P ∗

WMPW ∥Tr ≥
∥P ∗

WMPW ∥2F
∥P ∗

WMPW ∥
.

Taking W as the orthogonal complement of the principal eigenvector of M yields Eq. (10). The
natural choice to strengthen this lower bound is to take W as the span of the eigenvectors of M
that correspond to small eigenvalues. Dropping the first k− 1 largest eigenvalues will result in the

lower bound ∥M∥Tr ≥
∑N

i=k σ2
k

σk
. If a non-negligible mass of ∥M∥2F is on the tail

∑N
i=k σ

2
k for some

σk < q1−ϵ, then this approach provides a strong lower bound for ∥M∥Tr.
Unfortunately, the direct application of this method requires determining the eigenvectors and

eigenvalues of M , which seems difficult. To circumvent this difficult task, we employ tools from
Fourier analysis and show that there is a linear span of some Fourier characters W ⊆ RN such that
∥P ∗

WMPW ∥F = Ω(∥M∥F ) and ∥P ∗
WMPW ∥ is small.

4 Randomized communication complexities of PL and PLZp

We divide the proof of Theorem 1.5 into two sections. In this section, we prove the upper bounds
of Theorem 1.5 on R0(PLZp) and R0(PL).

Proposition 4.1. For q ≤ √
p, we have R0(PLZp) ≤ O(log log p). For every 1 ≤ q ≤ p, we have

R0(PL) ≤ O(log log p).
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Proof. We describe a randomized protocol that solves PLZp with cost O(log log p) that never makes
mistakes on inputs where PLZp takes value 1. The same protocol also solves PL.

Suppose Alice and Bob have inputs (x, x′), (y, y′) ∈ [q]×Zp respectively. Since q ≤ √
p, we have

[xy + x′ ≡p y
′] ⇐⇒ [xy + x′ = y′] ∨ [xy + x′ = y′ + p].

In the rest of the proof, we show that each of the two equations on the right-hand side can be
verified with a protocol of cost at most O(log log p) and error at most 1/6, which then implies a
protocol of cost O(log log p) and error at most 1/3 for the matrix PLZp . Suppose Alice and Bob
want to verify whether xy+x′ = y′; the case for xy+x′ = y′+ p is similar. Alice picks a uniformly
random prime r from the set of the first ⌈6 log(2p)⌉ primes P and sends it to Bob. Alice and Bob
exchange the values (x mod r), (x′ mod r), (y mod r), (y′ mod r) and check whether

(x mod r)(y mod r) + (x′ mod r) ≡r (y
′ mod r),

or equivalently
xy + x′ ≡r y

′.

The cost of this communication is at most O(log r) = O(log log p). Next, we show that the proba-
bility of error (over the choice of r) is at most 1/6. Observe that an error can only happen when
xy + x′ ̸= y′ but xy + x′ ≡r y

′. We want to show that

Pr
r∈P

[[xy + x′ ̸= y′] ∧ [xy + x′ ≡r y
′]] ≤ 1

6
.

Let B ⊆ P be the set of bad choices for r, namely

B = {r ∈ P : [xy + x′ ̸= y′] ∧ [xy + x′ ≡r y
′]}.

Suppose towards a contradiction that |B| > |P|
6 . Define

m :=
∏
r∈B

r ≥ 2|B| > 2p.

Note that for all r ∈ B, we have xy + x′ ≡r y′. By the Chinese remainder theorem, we have
xy+x′ ≡m y′. This implies the contradiction that xy+x′ = y′ because 0 ≤ xy+x′, y′ < 2p < m.

Remark 4.2. Note that the protocol used in the proof Proposition 4.1 is in fact a private-coin
protocol, so the bounds in Proposition 4.1 hold in both private-coin and public-coin models.

Remark 4.3. Combining Proposition 4.1 with Eq. (6), we obtain

γ̃2(PLZp) ≤ logO(1)(N). (11)

5 Trace norms of PL and PLZp

This section is dedicated to proving the lower bounds on ∥PLZp∥Tr and ∥PL∥Tr of Theorem 1.5. The
lower bounds on ∥PLZp∥γ2 and ∥PL∥γ2 immediately follow from Eq. (5).
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Lemma 5.1. For 1 ≤ q ≤ p, we have

∥PL− PLZp∥Tr ≤ q4.

In particular, if q ≤ p1/3, then
∥PL− PLZp∥Tr = O(pq).

Proof. For (x, y), (x′, y′) ∈ [q]× {0, . . . , p− 1}, we have

PLZp [(x, y), (x
′, y′)] = 1 iff [xy + x′ = y′] ∨ [xy + x′ = y′ + p].

Therefore, we can write PLZp = PL+A, where A is defined as

A[(x, y), (x′, y′)] = 1 iff xy + x′ = y′ + p.

Because xy ≤ q2 and x′ < p, xy+x′ = y′+ p implies y′ < q2. Therefore, A has at most q4 non-zero
entries. Consequently ∥A∥Tr ≤ q4.

By Lemma 5.1, to complete the proof of Theorem 1.5, it suffices to prove ∥PLZp∥Tr = Ω(pq9/8).
Since we want to apply Fourier analysis to study the trace norm of PLZp , it is more convenient to
extend the rows and columns of PLZp to G := Z2

p by adding all-zero rows and columns. That is, we
consider M : G×G → {0, 1}, defined as

M [(x, x′), (y, y′)] =

{
1 if x, y ∈ [q] and xy ≡p x

′ + y′

0 otherwise
.

This definition of M is slightly different from the one used in the proof overview, but all of the
properties we want still hold. For x, y ∈ [q], we have M [(x, x′), (y, y′)] = PLZp [(x,−x′), (y, y′)], and
M is zero on the other entries. In other words, M is obtained from PLZp by first permuting the
rows according to the change of variable x′ → −x′, then adding several all-zero rows and columns.
These operations do not change the matrix’s trace, Frobenius, and spectral norm, and in particular,

∥PLZp∥Tr = ∥M∥Tr.

For (α, β) ∈ G, let χα,β : G → C denote the corresponding character in Ĝ, defined as χα,β :
(x, x′) 7→ ωαx+βx′

where ω = e2πi/p.
Let S ⊆ Zp, and πS be the G×G matrix corresponding to the orthogonal projection from L2(G)

to the span of χα,β for (α, β) ∈ Zp × S. That is, for f : G → C,

πSf =
∑
α∈Zp

∑
β∈S

f̂(α, β)χα,β.

Denote MS := π∗
SMπS . Since πS is an orthogonal projection, we have πS = π∗

S and ∥πS∥ =
∥π∗

S∥ ≤ 1, and therefore,

∥MS∥Tr = ∥π∗
SMπS∥Tr ≤ ∥π∗

S∥∥MS∥Tr∥πS∥ ≤ ∥M∥Tr.

Hence, we can use Eq. (4) to obtain a lower bound for ∥M∥Tr:

∥M∥Tr ≥ ∥MS∥Tr ≥
∥MS∥2F
∥MS∥

.

First, we determine the value of ∥MS∥F .
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Lemma 5.2. For any S ⊆ Zp, ∥MS∥F = q
√

|S ∩ (−S)|.

Proof. Since 1√
|G|

χα,β’s form an orthonormal basis for L2(G), for every matrix AG×G, we have

∥A∥2F =
1

|G|2
∑

(α,β),(α′,β′)∈G

|⟨Aχα,β, χα′,β′⟩|2. (12)

For every α, α′, β, β′ ∈ Zp, we have

⟨MSχα,β, χα′,β′⟩ = ⟨MπSχα,β, πSχα′,β′⟩ =

{
⟨Mχα,β, χα′,β′⟩ if β, β′ ∈ S

0 otherwise

and therefore, by Eq. (12),

∥MS∥2F =
1

|G|2
∑

(α,β),(α′,β′)∈Zp×S

|⟨Mχα,β, χα′,β′⟩|2. (13)

For β ∈ S, define the matrix Fβ ∈ Cp×p as

Fβ(α, α
′) =

∑
x,y∈[q]

ωαx+α′y+βxy. (14)

Let α, α′ ∈ Zp and β, β′ ∈ S. We have

⟨Mχα,β, χα′,β′⟩ =
∑

x,y∈Zp

∑
x′,y′∈Zp

M [(y, y′), (x, x′)]χα,β(x, x
′)χα′,β′(y, y′)

=
∑

x,y∈[q]

∑
x′,y′∈Zp

M [(y, y′), (x, x′)]χα,β(x, x
′)χα′,β′(y, y′)

=
∑

x,y∈[q]

∑
y′∈Zp

χα,β(x, xy − y′)χα′,β′(y, y′)

=
∑

x,y∈[q]

∑
y′∈Zp

ωαx+β(xy−y′)−α′y−β′y′

=
∑

x,y∈[q]

ωαx−α′y+βxy
∑
y′∈Zp

ω−(β+β′)y′

=

{
pFβ(α,−α′) if β = −β′

0 otherwise
.

Combining this with Eq. (13) gives

∥MS∥2F =
p2

|G|2
∑

α,α′∈Zp

∑
β∈S∩(−S)

|Fβ(α,−α′)|2 = 1

|G|
∑

β∈S∩(−S)

∥Fβ∥2F . (15)
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Furthermore,

∥Fβ∥2F =
∑

α,α′∈Zp

∑
x,y∈[q]

ωαx+α′y+βxy
∑

x′,y′∈[q]

ω−(αx′+α′y′+βx′y′)

=
∑

α,α′∈Zp

∑
x,y,x′,y′∈[q]

ωα(x−x′)+α′(y−y′)+β(xy−x′y′)

=
∑

x,y,x′,y′∈[q]

ωβ(xy−x′y′)
∑

α,α′∈Zp

ωα(x−x′)+α′(y−y′).

The inner sum is zero unless x = x′ and y = y′, in which case the inner sum is evaluated to p2.
Thus, for every β, we have ∥Fβ∥2F = q2p2. We conclude that

∥MS∥2F =
|S ∩ (−S)|q2p2

|G|
= q2|S ∩ (−S)|.

Next, we turn to the upper bound of the spectral norm of MS .

Lemma 5.3. There is a set S ⊆ Zp, closed under negation and of size |S| ≥ p/2, such that
∥MS∥ ≤ 2q7/8.

Proof. We have
∥MS∥ = max

f,g:G→C
∥f∥2=∥g∥2=1

⟨MSf, g⟩ = max
f,g:G→C

∥f∥2=∥g∥2=1

⟨MπSf, πSg⟩.

Define f̂β, ĝβ ∈ Cp as f̂β(α) := f̂(α, β) and ĝβ(α) := ĝ(α,−β) for each α ∈ Zp. Recalling the
definition of Fβ in Eq. (14), we have

⟨MπSf, πSg⟩ =
∑

β,β′∈S

∑
α,α′∈Zp

f̂(α, β)ĝ(α′, β′)⟨Mχα,β, χα′,β′⟩

= p
∑

β∈S∩(−S)

∑
α,α′∈Zp

f̂(α, β)ĝ(α′,−β)Fβ(α, α
′)

= p
∑
β∈S

∑
α,α′∈Zp

f̂(α, β)ĝ(α′,−β)Fβ(α
′, α)

= p
∑
β∈S

⟨Fβ f̂β, ĝβ⟩,

where at the third equality, we used the negation-closed property of S. By the definition of spectral
norm and Cauchy-Schwarz inequality,

|⟨MπSf, πSg⟩| ≤ p
∑
β∈S

|⟨Fβ f̂β, ĝβ⟩| ≤ p
∑
β∈S

∥Fβ∥∥f̂β∥2∥ĝβ∥2

≤ pmax
β∈S

∥Fβ∥
√∑

β∈S
∥f̂β∥22

√∑
β∈S

∥ĝβ∥22 ≤
p

|G|
max
β∈S

∥Fβ∥,

where the last inequality follows from Parseval’s identity Eq. (9) and ∥f∥2 = ∥g∥2 = 1:∑
β∈S

∥f̂β∥22 ≤
∑
β∈Zp

∥f̂β∥22 =
∑

(α,β)∈G

|f̂(α, β)|2 = 1

|G|
∑

(x,y)∈G

|f(x, y)|2 = 1

|G|
.
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Next, we upper-bound the spectral norm of Fβ using the 4th moment of its singular values:

∥Fβ∥4 ≤ ∥Fβ∥4S4
= Tr

(
FβF

∗
βFβF

∗
β

)
=

∑
α1,α′

1,α2,α′
2∈Zp

Fβ(α1, α
′
1)Fβ(α1, α′

2)Fβ(α2, α
′
2)Fβ(α2, α′

1)

=
∑

α1,α′
1,α2,α′

2

∑
x1,...,x4

∑
y1,...,y4

ωα1(x1−x2)+α2(x3−x4)+α′
1(y1−y4)+α′

2(y3−y2)ωβ(x1y1−x2y2+x3y3−x4y4)

=
∑

x1,...,x4

∑
y1,...,y4

∑
α1,α′

1,α2,α′
2

ωα1(x1−x2)+α2(x3−x4)+α′
1(y1−y4)+α′

2(y3−y2)ωβ(x1y1−x2y2+x3y3−x4y4).

The inner sum is zero unless x1 = x2, x3 = x4, y1 = y4 and y2 = y3. This simplifies ∥Fβ∥4S4
to

∥Fβ∥4S4
= p4

∑
x,y,x′,y′∈[q]

ωβ(xy−xy′+x′y′−x′y) = p4r(β),

where

r(β) :=
∑
u⃗∈[q]4

ωβϕ(u⃗) with ϕ(u1, u2, u3, u4) := u1u2 − u1u4 + u3u4 − u3u2.

For every z ∈ Zp and y ∈ Zp \ {0}, we have Prx∈[q][xy ≡p z] ∈ {0, 1/q}. Note that the event
{ϕ(u⃗) ≡p ϕ(v⃗)} is equivalent to {u1(u2−u4) ≡p z}, where z = v1v2−v1v4+v3v4−v3v2−u3u4+u3u2.
Consider uniform independent random variables u⃗, v⃗ ∈ [q]4. Conditioned on u2 ̸= u4, which happens
with probability 1− 1/q, the probability that u1(u2 − u4) ≡p z is at most 1/q. Therefore,

Pr[ϕ(u⃗) ≡p ϕ(v⃗)] ≤
(
1− 1

q

)
× 1

q
+

1

q
× 1 ≤ 2

q
,

implying that |{(u⃗, v⃗) : ϕ(u⃗) ≡p ϕ(v⃗)}| ≤ 2q7. Hence

E
β
|r(β)|2 = E

β

 ∑
u⃗,v⃗∈[q4]

ωβ(ϕ(u⃗)−ϕ(v⃗))

 =
∑
u⃗,v⃗

E
β

[
ωβ(ϕ(u⃗)−ϕ(v⃗))

]
=

∑
u⃗,v⃗

1{ϕ(u⃗)≡pϕ(v⃗)} ≤ 2q7.

From the above inequality, for t := 2q7/2, by Markov’s inequality we have

Pr
β
[|r(β)| ≥ t] ≤ 2q7

t2
=

1

2
.

It is easy to check that r(β) = r(−β) for any β, so

S := {β ∈ Zp : |r(β)| < t}

is a subset of Zp closed under negation with |S| ≥ p/2. Therefore,

∥MS∥ ≤ p

|G|
max
β∈S

∥Fβ∥ ≤ p

|G|
max
β∈S

∥Fβ∥S4 ≤ p

|G|
max
β∈S

{p|r(β)|1/4} < t1/4 ≤ 2q7/8.

By combining Lemma 5.2 and Lemma 5.3, we conclude that

∥M∥Tr ≥ ∥MS∥Tr ≥
∥MS∥2F
∥MS∥

≥ q2 × p/2

2q7/8
= Ω(pq9/8).
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6 Concluding remarks

We showed the existence of Boolean matrices MN×N with ∥M∥γ2 ≥ Ω(N1/32) and R(M) ≤
R0(M) ≤ O(log logN), displaying a double exponential separation between γ2 norm and ran-
domized communication complexity. We did not attempt to optimize the power of N in the lower
bound, and there is no reason to suspect that 1/32 is the best possible.

Question 6.1. What is the largest c such that there exist Boolean matrices MN×N with R(M) ≤
O(log logN) and ∥M∥γ2 ≥ Ω(N c)?

It is also natural to ask the analogue of Question 6.1 regarding the approximate γ2 norm.

Question 6.2. What is the largest c such that there exist Boolean matrices MN×N with γ̃2(M) ≤
polylog(N) and ∥M∥γ2 ≥ Ω(N c)?

We remark that in Question 6.2, one cannot hope to obtain a lower bound stronger than Ω(N1/2)
as ∥M∥γ2 ≤ γ̃2(M) +O(

√
N) for all M (see [LS09, Lemma 15]).

Whether or not the upper bounds in Question 6.1 and Question 6.2 can be improved is also an
interesting open problem. As we discussed in Section 1.3, there are Boolean matrices MN×N with
R(M) = O(1) but ∥M∥γ2 = polylog(N).

Question 6.3. Is there a Boolean matrix MN×N with R(M) = O(1) and ∥M∥γ2 = NΩ(1)?

We could not overrule the possibility that PL and IIP are such examples. Nevertheless, we make
the following conjecture.

Conjecture 6.4. R(PL) = ω(1).
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