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Abstract

Relaxed locally decodable codes (RLDCs) are error-correcting codes in which individual bits of
the message can be recovered by querying only a few bits from a noisy codeword. For uncorrupted
codewords, and for every bit, the decoder must decode the bit correctly with high probability.
However, for a noisy message, a relaxed local decoder is allowed to output a “rejection” symbol,
indicating that the decoding failed.

We study the power of adaptivity and two-sided error for RLDCs. Our main result is that if
the underlying code is linear, adaptivity and two-sided error do not give any power to relaxed local
decoding. We construct a reduction from adaptive, two-sided error relaxed local decoders to non-
adaptive, one-sided error ones. That is, the reduction produces a relaxed local decoder that never
errs or rejects if its input is a valid codeword and makes queries based on its internal randomness
(and the requested index to decode), independently of the input. The reduction does not change
the query complexity (nor the underlying code), and for any input, the decoder’s error probability
increases at most two-fold.

We base the reduction on our new notion of additive promise problems. A promise problem is
additive if the sum of any two YES-instances is a YES-instance and the sum of any NO-instance and
a YES-instance is a NO-instance. This novel framework captures both linear RLDCs and property
testing (of linear properties), despite their significant differences.

We prove that in general, algorithms for any additive promise problem do not gain power from
adaptivity or two-sided error, and obtain the result for RLDCs as a special case. The result also
holds for relaxed locally correctable codes (RLCCs), where a codeword bit should be recovered.

As an application, we improve the best known lower bound for linear adaptive RLDCs. Specifi-
cally, we prove that such codes require block length of n ≥ k1+Ω(1/q2), where k denotes the message
length and q denotes the number of queries.
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1 Introduction

Suppose you receive a binary string (a “message”), and would like to know the value of the message at
some index i. How many queries do you need to make? The answer is obviously 1, as you can query
index i and get the value. But what if some of the message bits are corrupted, because they were, say,
transmitted over a noisy channel? The bit at the needed index i might have been corrupted.

Error-correcting codes might help. Such codes allow encoding the message with extra redundancy
as a codeword, and the original message can be recovered even if some bits of the codeword were
corrupted. However, one needs to read the entire codeword to recover the original message. As our
goal was to read only one bit from the message, this solution seems inefficient.

Locally decodable codes (LDCs), introduced by Katz and Trevisan [KT00], are aimed at solving
this problem. These codes are equipped with a local decoding algorithm (“decoder”) that recovers
each message bit by querying a few bits from a codeword, instead of reading all of it. Two main
measures of efficiency for LDCs are the query complexity of the decoder (which we want to be as small
as possible) and the rate of the code (which we want to be high). A similar notion, originated in works
on program checking by Blum and Kannan [BK95] and Lipton [Lip90], is of locally correctable codes
(LCCs). These are error-correcting codes that admit a local algorithm (now called “corrector”) that
not only recovers each message bit, but is also required to correct any bit from the codeword.

LDCs and LCCs have profoundly impacted theoretical computer science and found numerous
applications. Despite the extensive research, current constructions require adding a large amount of
redundancy. Motivated by this, Ben-Sasson et. al. [BGH+06] introduced Relaxed Locally Decodable
Codes (RLDCs). For uncorrupted codewords, and for every bit, a relaxed local decoder still must
decode correctly the bit with high probability. However, for a noisy message, it is now allowed to
output a “rejection” symbol, indicating that the decoding failed. This relaxation allows constructing
codes with a dramatically better tradeoff between query complexity and rate. Such codes have found
various applications, notably in the construction of proof systems (e.g., [RR19]) and within the area
of property testing (e.g., [GGK15]).

More formally, a relaxed local decoder of radius ρ > 0 for a code C with soundness error ϵsoundness
and completeness error ϵcompleteness is a procedure that gets oracle access to w ∈ {0, 1}n, that is ρ-close1
to some codeword c = C(x) and an index i, and satisfies the following two requirements:

1. (completeness) If w is a valid codeword (that is, w = c) then for every i the relaxed local decoder
outputs xi with probability at least 1− ϵcompleteness.

2. (relaxed local decoding) Otherwise, with probability at least 1 − ϵsoundness, the relaxed local
decoder outputs xi or a “reject” symbol ⊥, indicating the decoding failed.

We call n the block length of the code, and the length of x the message length.
Gur, Ramnarayan, and Rothblum [GRR17] considered an analogous relaxation for local correction,

where the corrector either recovers the desired codeword bit, or rejects in case it detects a corruption.
They named such codes Relaxed Locally Correctable Codes, or RLCCs (see Definition 2.2).

In this work, we study the power of adaptivity and two-sided error of linear RLDCs and RLCCs.
We say that a local algorithm is adaptive if it is allowed to choose its queries according to answers of
previous queries, and that it is non-adaptive otherwise (i.e, if it determines its queries based only on its
internal coin tosses). Though adaptive algorithms are syntactically stronger than non-adaptive ones,
all known constructions of RLDCs and RLCCs are non-adaptive (e.g. [BGH+06,GRR20,AS21,CY22]).
This raises the question of whether it is possible to cleverly utilize adaptivity in order to make improved
constructions.

1Two strings are ρ-close to each other if the normalized Hamming distance between them is at most ρ.



Adaptivity also plays a central role in the study of lower bounds. A common strategy for establish-
ing these bounds is to first address the easier case of non-adaptive RLDCs. Then, the lower bound for
adaptive RLDCs is derived by using a generic reduction from adaptive decoders to non-adaptive ones.
Alas, known reductions cause an exponential blow-up in the query complexity (or a similar blow-up
in the soundness error), resulting in worse lower bounds for adaptive RLDCs [GL20,Gol23].

A main question in the study of probabilistic algorithms concerns the strength of two-sided error
algorithms vs. one-sided ones. We say that an algorithm has a one-sided error if it never errs on
“YES” instances, and a two-sided error if it is allowed to err on “both sides”. A major open problem
in computational complexity is whether BPP = RP, which asks whether, in general, an algorithm
allowed two-sided error possesses more computational power than one restricted to have a one-sided
error. In the standard definition of RLDCs, the decoder can err with a small probability, even when
its input is a valid codeword. That is, it is allowed to have two-sided error. In this work, we ask the
equivalent BPP = RP question for RLCCs: Are one-sided error relaxed local decoders weaker than
two-sided error ones? Can we transform any two-sided error decoder, eliminate its errors on valid
codewords, to become a one-sided error decoder?

1.1 Our results

Our main result is that for linear codes, two-sided error and adaptivity do not give any strength to
RLDCs and RLCCs.

We show a reduction that starts with a relaxed local decoder (resp., corrector) that might query
adaptively and err on valid codewords, and ends with a relaxed local decoder (resp., corrector) for
the same code, that is non-adaptive and never errs or rejects on valid codewords. The reduction
does not change the query complexity. The new soundness error is the sum of the completeness error
and soundness error of the original algorithm. Hence the gap between completeness and soundness
stays the same. The error probability, which is the probability to err on any specific input (i.e,
max(ϵcompleteness, ϵsoundness)) is at most doubled.

Theorem 1. Let C be a linear systematic2 code.
If C has a relaxed local decoder of radius ρ with completeness error ϵcompleteness, soundness error

ϵsoundness and query complexity q, then it has a one-sided error, non-adaptive decoder of radius ρ, with
soundness error ϵcompleteness + ϵsoundness and query complexity q.

Theorem 2. Let C be a linear code.
If C has a relaxed local corrector of radius ρ with completeness error ϵcompleteness, soundness error

ϵsoundness and query complexity q, then it has a one-sided error, non-adaptive corrector of radius ρ,
with soundness error ϵcompleteness + ϵsoundness and query complexity q.

Improved lower bound: Building upon the work of Gur and Lachish [GL20], Goldreich [Gol23]
established lower bounds on the achievable rate by an RLCC with a constant query complexity q.
Specifically, the lower bounds are n ≥ k1+Ω(1/q2) for the non-adaptive case and n ≥ k1+Ω(1/q3) for
adaptive RLCCs. By utilizing Theorem 2, we can remove the adaptivity restriction from the tighter
lower bound (for linear codes), leading to the following result:

Theorem 3. Let C be a linear RLDC with message length k, block length n, constant query complexity
q and constant correction radius and error probability.

Then n ≥ k1+Ω(1/q2).

This represents an improvement over the current state-of-the-art lower bound by Dall’Agnol, Gur

and Lachish [dSDGL21], which is n ≥ k
1+Ω( 1

q2 log2 q
)
(although it holds for non-linear codes as well).

2A code is called systematic if the entire original message is embedded as the first bits of its encoding.
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Linearity: Our reduction only works for linear codes. Nevertheless, linear codes are a significant
type of error-correcting and are widely studied in the literature. Virtually all known RLDCs and
RLCCs (and their non-relaxed counterparts) constructions are of linear codes.3

Non-systematic codes: In Theorem 1, it is assumed that the code is in a systematic form. This
is a technical detail, not an inherent limitation. Any RLDC can be transformed to be systematic by
adding the message bits to the beginning of its encoding. This transformation results in, at most, a
doubling of the block length of the code and a corresponding reduction in the decoding radius by the
same factor. Consequently, if the code’s rate and decoding radius were initially constant, they remain
unchanged after this transformation.

It is worth noting that any linear code can be made systematic through a basis change without
altering its block length. While such a transformation does not affect the set of valid codewords, it
does alter the encoding function. For RLDCs, this implies that the code’s decoder may no longer be
valid after the transformation.

Known reductions: We note two well-known immediate reductions from adaptive to non-adaptive
local algorithms. These reductions date back to [KT00], which stated them for non-relaxed LDCs, but
they also apply to relaxed ones.

The first reduction is to replace each of the q adaptive queries with multiple non-adaptive ones.
We replace the i-th query with 2i−1 queries, one for each possible result of the previous queries. This
reduction yields an exponential blowup in the query complexity. The second reduction is to “guess”
the result of the first q − 1 queries, and query a set of indices based on that guess. This reduction
exponentially decreases the algorithm’s soundness.

In light of the above, even a reduction with a polynomial blowup in the query complexity would
have been an exciting result.

Our contribution: Ben-Sasson, Harsh and, Raskhodnikov [BHR03] showed that for testing linear
properties, adaptivity and two-sided error do not help. Our work is based on [BHR03], and extends
their reductions to the setting of RLDCs and RLCCs. One technical difficulty in extending their work
is that decoders and correctors get an index as an input, in addition to the noisy codeword. This
difficulty turns out to be minor. The major difficulty is regarding the actual task at hand. First,
testers work under the promise that the input either has the property, or far from any element having
it. In contrast, decoders and correctors work under the promise that the input is close to the code
(or in it). Furthermore, the “output type” is different between those algorithms. On the one hand, a
tester has a binary verdict - it accepts or rejects the input. On the other hand, the output of decoders
and correctors is not binary - it is a symbol of the message, or a rejection symbol.

To overcome those differences, we introduce the abstract notion of additive promise problem (Def-
inition 1.1). We show that testing linear properties and relaxed decoding/correction of linear codes
satisfy this notion. We consider this notion, and the presentation of relaxed decoding and correction
as promise problems, to be the main technical contributions of this work.

We then present a reduction that applies to any promise problem satisfying this notion. The
reduction is a generalization of the one in [BHR03]. The generalization is done by decoupling the
logic of the reduction from the testing context. Arguably, this also provides a cleaner and more
straightforward presentation of the reduction.

We prove the main results by combining the interpretation of relaxed decoding/correction as
promise problems with the generic reduction.

3A remarkable exception is multiplicity codes, which are not linear. Fortunately, their codewords constitute a
subgroup (the sum of two codewords is a codeword), so our framework still covers them. See Definition 1.1.
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1.2 Motivation

The primary motivation for this work is to enhance our understanding of RLDCs and RLCCs. Addi-
tionally, we outline specific motivations as follows.

Applications for lower bounds: Our results show that, for linear codes, any lower bound for non-
adaptive, one-sided error RLDCs (resp., RLCCs) can be translated to a lower bound for adaptive, two-
sided error RLDCs (resp., RLCCs). Applying this outcome to the work of [Gol23] yields Theorem 3,
which is the current best lower bound for linear, adaptive, two-sided error RLDCs. However, this bound
is not known to be tight; specifically, the best RLCC construction with constant query complexity q,
of Asadi and Shinkar [AS21], achieves block length n = k1+O(1/q). As our reduction is applicable to
any RLCC, it holds potential for accommodating future improvements in lower bounds

In addition, in the case of linear code, any lower bound applicable to RLDCs also serves as a lower
bound for RLCCs, but the reverse is not true. This arises from the fact that every linear code can be
represented systematically, with the initial bits of the codeword corresponding to the original message.
Hence, for such codes, the corrector can be used as a decoder, so RLCCs are stronger objects than
RLDCs. Our reduction operates independently on each type, implying its potential application for
improved lower bounds on RLCCs, which may surpass those for RLDCs.

We note that the work of [dSDGL21] extends the result of [GL20] to adaptive, two-sided error
RLDCs, for all codes, including non-linear ones. However, this extension does not rely on a generic
reduction and is notably highly involved. In contrast, our reduction is arguably much simpler, offering
an alternative, simpler proof for linear codes.

Constructions: Virtually all known constructions of RLDCs and RLCCs are non-adaptive, linear,
and have one-sided error. Our results show that this should not be a surprise. It is impossible to use
adaptivity or two-sided error to improve constructions of linear RLDCs / RLCCs.

Definitions: In some works (e.g, [CGS20,GRR20,AS21,CY22]), the definition of RLDC requires it
to have one-sided error (i.e., it is not an additional property that a decoder might have). Other works
(e.g., [BGH+06, dSDGL21]) use the same definition we gave above. Our result settles this nuance in
the definitions - both are equivalent (for linear codes).

1.3 Technical overview

We next give a high-level sketch of the reduction.

Promise problems: We prove Theorem 1 and Theorem 2 by proving a general result on a family
of promise problems. First, a promise problem is a couple of two disjoint sets, Y (the YES-instances)
and N (the NO-instances). A randomized algorithm for a promise problem gets as input x ∈ Y ∪N
(we sometimes call Y ∪N “the promise”) and outputs YES or NO. If x ∈ Y then the algorithm must
output YES with high probability. Similarly, if x ∈ N it must output NO with high probability.

The main new idea we introduce in this work is of additive promise problems.

Definition 1.1. A promise problem (Y,N) ⊆ {0, 1}n is additive if it satisfies the following conditions:

1. (YES-instances are a linear subspace4) For every x, y ∈ Y , x+ y ∈ Y

2. (NO-instances are a collection of cosets) For every x ∈ N, y ∈ Y , x+ y ∈ N

4Strictly speaking, the requirement is that the YES-instances are a subgroup. For {0, 1}n these requirements are
equivalent.
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This definition can be generalized to any abelian group instead of {0, 1}n. For simplicity, in this
work we focus on {0, 1}n.

Testing linear properties: As a demonstration for the new definition, we next show that property
testing, when the tested property Π ⊆ {0, 1}n is a linear subspace, is an additive promise problem. The
YES-instances in this case are the elements of the tested property. That is, Y = Π. The NO-instances
are the elements ϵ-far from every YES-instances. Namely,

N = {x ∈ {0, 1}n | ∀y ∈ Y, dist(x, y) > ϵ}

The first item of Definition 1.1 follows from the assumptions that the property Π is linear. For the
second item, let x ∈ N, y ∈ Y . We need to show that x + y ∈ N . I.e, that x + y is ϵ-far from every
y′ ∈ Y . Indeed, for every y′ ∈ Y we have

dist(x+ y, y′) = dist(x, y′ − y) > ϵ

The equality holds because in general, dist(a, b) = dist(a + c, b + c) for every a, b, c. The inequality
holds because, since y and y′ are in the linear space Y then y′ − y ∈ Y , and x ∈ N and hence ϵ-far
from every element in Y .

In Section 3, we show how to interpret relaxed decoding and correction of linear codes as promise
problems. We use similar arguments as in the proof above to show that the resulting promise problems
are additive.

The reduction: Next, we construct a reduction from adaptive, two-sided error local algorithms to
non-adaptive, one-sided error ones that works for any additive promise problem.

Theorem 4. Let (Y,N) ⊆ {0, 1}n be an additive promise problem. If (Y,N) has an adaptive algorithm
A with completeness error ϵY , soundness error ϵN and query complexity q, it has a non-adaptive, one-
sided error algorithm A′ with soundness error ϵY + ϵN and query complexity q.

By applying Theorem 4 to relaxed decoding we prove Theorem 1, and by applying it to relaxed
correction we prove Theorem 2.

The reduction works in two steps. The first step ensures that the algorithm never errs on YES-
instances. We start with an adaptive, two-sided error arbitrary algorithm, and transform it to have
one-sided error (and it remains adaptive). This step does not increase the query complexity. If
the original algorithm errs on YES-instances with probability at most ϵY and on NO-instances with
probability at most ϵN , then the transformed algorithm errs on NO-instances with probability at most
ϵY + ϵN .

The second step handles adaptivity. We start with an adaptive, one-sided error algorithm, and
transform it to a non-adaptive algorithm (that still has one-sided error). This step maintains the
query complexity and the soundness error.

We next describe the two reductions.

Two-sided to one-sided error: Every randomized algorithm A can be described as a distribution
over a set of deterministic decision trees. Each leaf of each decision tree is labeled with YES or NO,
which is the output of the algorithm when that tree is chosen. The first step of the reduction is to
relabel the leaves of all trees, in the following way: If there is an input x ∈ Y that “leads” to this leaf,
then it is relabeled to YES. This step is necessary to get a one-sided error algorithm. However, this
transformation may not maintain the algorithm’s soundness. In Section 4.1, we explain the issue in
detail.
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The solution is to modify the algorithm. Instead of using the (relabeled) decision trees of A with
the given input x, choose a random YES-instance y, and use the tree as if the input was x+ y. Since
(Y,N) is an additive promise problem, if x ∈ Y then x+ y ∈ Y for any (randomly chosen) y, and the
original algorithm’s completeness can be used. Similarly, if x ∈ N then x+ y ∈ N for any y, and the
soundness of the original algorithm can be used. In Lemma 4.2, we prove that with this modification
the transformation maintains the sum of soundness and completeness error.

Adaptivity: Consider an adaptive, one-sided error algorithm A. Without loss of generality, the
only freedom A has is in choosing its queries. Once it queried an input x, it must output YES if there
exists a YES-instance consistence with the queries. Otherwise, when no YES-instance is consistence,
then x cannot be a YES-instance and w.l.o.g A outputs NO.

The new non-adaptive algorithm A′ works as follows: On input x, choose a random YES-instance
y. Query x on all indices A would have queried y, and output YES if the partial view of x is consistent
with some YES-instance (which might be different than y).

The new algorithm is non-adaptive since now it determines its queries independently of its input.
Its query complexity is maintained, and it has one-sided error (as it always outputs YES for YES-
instances). In Lemma 4.5, we show that its soundness error is also maintained. This is done by relating
the probability A′ outputs YES on some specific x to the average probability A outputs YES for a
random element of the set x+ Y .

1.4 Related work

Error correcting codes date back to the seminal works of Shannon [Sha49] and Hamming [Ham50].
LDCs, LCCs and their relaxed counterparts have attracted significant attention in recent years. See
the works of Yekhanin [Yek12] and Kopparty and Saraf [KS17] and references within for comprehensive
surveys of LDCs, LCCs and their applications.

RLDCs and RLCCs constructions: The constructions of RLDCs and RLCCs can be separated
into two regimes of parameters: constant query complexity, and constant rate. In the constant rate
regime, the state-of-the-art code is the construction of Cohen and Yankovitz [CY22]. This construction
is of a linear RLCC with rate arbitrarily close to 1, and query complexity q = (log n)O(log log logn). This
construction builds upon the result of [GRR20], which shows a similar code but with query complexity
q = (log n)O(log logn).

In the constant query regime, the original work of [BGH+06] achieves RLDC with constant query
complexity O(q) and block length n = O(k1+1/

√
q). The work of [GRR20] introduced the notion of

RLCCs, and constructed such a code with constant query complexity, but with worse block length.
Chiesa, Gur, and Shinkar [CGS20] constructed an improved RLCC, matching the block length of
[BGH+06].

The current state-of-the-art construction is of Asadi and Shinkar [AS21], which builds upon
[GRR20] and [CGS20]. Their construction is of RLCC and RLDC with constant query complex-
ity O(q) and block length n = O(k1+1/q). This is the first construction of RLDC, in the constant
query complexity regime, with better block length than of [BGH+06].

We remark that all the above constructions are linear, non-adaptive, and have one-sided error.

Lower bounds: In recent decades, extensive research has been conducted on lower bounds for (non-
relaxed) LDCs in various regimes [KT00,KdW03,Woo07,Woo12,AGKM22]. Gur and Lachish [GL20]
presented the first lower bound for relaxed LDCs. Such lower bounds are arguably harder to obtain,
as RLDCs are weaker objects than LDCs. Specifically, they showed that any non-adaptive RLDC
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requires a block length of n ≥ k
1+Ω( 1

q2 log2 q
)
. For the adaptive case, they established a lower bound of

n ≥ k
1+Ω( 1

22q log2 q
)
, by using the known reduction mentioned above, that causes an exponential blowup

in the query complexity.
The result of [GL20] was extended to additional settings, such as proofs of proximity, property

testing and to adaptive settings by Dall’Agnol, Gur and Lachish [dSDGL21]. Their result extends the

lower bound of n ≥ k
1+Ω( 1

q2 log2 q
)
to adaptive RLDCs.

Goldreich [Gol23] surveyed and simplified the work of [GL20], without employing the new tech-
niques of [dSDGL21]). He established an improved bound of n ≥ k1+Ω(1/q2) for the non-adaptive
case, and a bound of n ≥ k1+Ω(1/q3) for the adaptive case (which is weaker than the one presented
in [dSDGL21]).

Locally testable codes and RLDCs: Our work follows the theme of extending ideas from the
area of LTCs (locally testable codes [GS06]) to RLDCs. Loosely speaking, a code is locally testable
if it has a tester, a probabilistic algorithm that accepts valid codewords, and rejects inputs that are
“far” from any codeword, while making a small number of queries. LTC can be viewed as a special
case of property testing (see the book [Gol17] and references therein).

Kaufman and Viderman [KV10] showed that LDCs do not imply locally testable codes and vice
versa. In contrast, relaxed LDCs (and LCCs) seem to be closely related to LTC.

One RLCC construction from [GRR20] is based on an LTC construction of Kopparty, Meir, Ron-
Zewi and Saraf [KMRS17]. Indeed, this is the same construction, with [GRR20] showing that the LTC
is also an RLDC by describing a corrector for the code.

Furthermore, the lower bound of [GL20] uses techniques from the work of Fischer, Lachish and
Vasudev [FLV15], developed in the context of property testing.

Our work generalizes a result of [BHR03] for testing linear properties. We do that by finding a
framework capturing both linear property testing and linear RLDCs/RLCCs, giving concrete evidence
to the connection between LTCs and RLDCs/RLCCs.

We note one remarkable difference between LTCs and RLDCs. Recently, a work of Dinur et.
al. [DEL+22] showed the existence of LTC with constant rate and constant query complexity (and
constant distance). In contrast, the lower bound of [GL20] implies that an RLDC with such parameters
cannot exist.

1.5 Open problems

We conclude this section with a few questions we leave for future research.

Non-linear codes: Our result holds only for linear codes. A natural open problem is to extend
the result to non-linear codes, or to show that for non-linear codes, adaptivity and / or two-sided error
do give more power. Our reduction heavily relies on linearity, so we believe other techniques than the
ones used in this paper will be needed.

Adaptivity of LDCs and LCCs: The power of adaptivity for (non-relaxed) LDCs and LCCs is
an interesting open problem. As we discuss in Section 3, our framework of additive problems does
not seem to cover them. This leaves the question open, even for linear codes. To the best of our
knowledge, there are currently no known reductions from adaptive to non-adaptive LDCs, besides the
ones described above. Even a reduction that polynomially increases the query complexity, or slightly
increasing the code block length, would be an interesting result.
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A main open problem is to separate the power of LDCs and that of relaxed LDCs. Constructing an
adaptive (linear) LDC might aid in this effort, showing that LDCs and relaxed LDC differ regarding
adaptivity.

Additive promise problems: The notion we introduce in this work allows tackling RLDCs,
RLCCs and linear property testing simultaneously. We wonder if there are additional natural problems
that fit into this new framework. Our main reduction will hold for any such problems.

2 Definitions and preliminaries

We begin with some basic notations:

� Denote by [n] the set [n] = {1, 2, . . . , n}.
� For a distribution D, denote by x ∼ D a random variable x that is chosen according to the
distribution D.

� For a distribution D and an element x in its support, denote by D(x) the probability that x is
drawn from D.

� For a string x ∈ {0, 1}n and a set S ⊆ [n], denote by x|S the restriction of x to the indices S.

� For x, y ∈ {0, 1}n, denote by dist(x, y) the relative Hamming distance between x and y. Namely,

dist(x, y) = |{xi ̸=yi|i∈[n]}|
n . For ϵ > 0, if dist(x, y) ≤ ϵ, we say that x is ϵ-close to y, and otherwise

we say that x is ϵ-far from y.

2.1 Error correcting codes

Throughout, an error correcting code C with message length k and block length n is a function
C : {0, 1}k → {0, 1}n. For simplicity, we consider only binary alphabet in this work. We identify a
code with its image, i.e, C ⊆ {0, 1}n.

A code C is linear if it is a linear function (or, equivalently, if C as a set is closed to addition).

Definition 2.1. Let C : {0, 1}k → {0, 1}n be an error correcting code. A relaxed decoder of radius
ρ > 0 for C is a randomized procedure A, that gets as inputs an oracle access to x ∈ {0, 1}n, and explicit
input i ∈ [k], outputs an element of {0, 1,⊥}, and needs to satisfy the following two requirement:

1. (completeness) If x = C(y) for some y ∈ {0, 1}k then Ax(i) = yi with probability at least
1− ϵcompleteness.

2. (relaxed local decoding) If there exists y ∈ {0, 1}k such that dist(x,C(y)) < ρ, then Ax(i) ∈ {yi,⊥}
with probability at least 1− ϵsoundness.

Where the probability is over the internal randomness of A.

Definition 2.2. Let C ⊆ {0, 1}n be an error correcting code. A relaxed corrector of radius ρ > 0 for
C is a randomized procedure A, that gets as inputs an oracle access to x ∈ {0, 1}n, and explicit input
i ∈ [n], outputs an element of {0, 1,⊥}, and needs to satisfy the following two requirement:

1. (completeness) If x ∈ C then Ax(i) = xi with probability at least 1− ϵcompleteness.

2. (relaxed local correction) If there exists c ∈ C such that dist(x, c) < ρ, then Ax(i) ∈ {ci,⊥} with
probability at least 1− ϵsoundness.

Where the probability is over the internal randomness of A.
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In both definitions we call ϵcompleteness the completeness error, and ϵsoundness the soundness error.
In what follows we use the term local algorithm to refer to an algorithm which is a relaxed local

decoder or a relaxed local corrector. A local algorithm has one-sided error if its completeness error
is 0 (i.e., if it never errs on valid codewords). We say that a local algorithm has query complexity
q = q(n) if, on input i, and oracle access to any x ∈ {0, 1}n, the corrector makes at most q(n) queries.
We say that a local algorithm is non-adaptive if it determines all its queries based on its explicit input
(namely, the index to decode / correct) and internal coin tosses, independently of the specific x to
which it is given oracle access. Otherwise, we say that it is adaptive.

For an RLDC, we view its decoder A of a code as a set of k decoders A1, . . . , Ak, where Ai(x) =
Ax(i). We call Ai the decoders of C. Similarly, we view the corrector of a RLCCs as a set of n
correctors, A1, . . . , An, and call them the correctors of C. The benefit of this view is that each Ai is
now an algorithm that gets a single (implicit) input x ∈ {0, 1}n.

2.2 Promise problems

Definition 2.3. A Promise Problem is couple (Y,N) ⊆ {0, 1}n such that Y ∩N = ∅. We call Y the
YES-instances of the problem, and N the NO-instances of the problem.

Definition 2.4. An algorithm for a promise problem (Y,N) ⊆ {0, 1}n with completeness error ϵY > 0
and soundness error ϵN > 0 is a randomized procedure that gets as input an oracle access to x ∈ {0, 1}n,
outputs YES or NO, and satisfies the following conditions:

1. (completeness) If x ∈ Y then it outputs YES with probability at least 1− ϵY.

2. (soundness) If x ∈ N then its outputs NO with probability at least 1− ϵN.

We define query complexity and adaptivity of promise problem algorithms as they are defined in
Definition 2.2. We say that a promise problem algorithm has one-sided error if its completeness error
is 0 (i.e., if it never errs on YES-instances).

The main new definition of this work is of additive promise problems. See Definition 1.1.

3 Relaxed decoding and correction as additive promise problems

In this section, we show how to interpret relaxed decoding and relaxed correction of linear codes as
promise problems. We do that in Section 3.1. We then show, in Section 3.2, that the resulting promise
problems are additive.

3.1 Interpretation as promise problems

We start by showing how to interpret relaxed correction as a promise problem. We then explain how
relaxed decoding can be considered as a restrictive case of relaxed correction.

There are three possible values for the output of a relaxed local corrector: 0, 1 or ⊥.5 In contrast,
an algorithm for a promise problem has only two possible outputs: YES and NO. We must specify
how to translate a correction problem (with multiple possible output values) into a yes/no question.
The following observation enables us to do that.

Claim 3.1. If a code has a corrector A, then it has a corrector A′ (with the same parameters) such
that for every x ∈ {0, 1}n, the output of A′ for index i is xi or ⊥.

5For a larger alphabet, the number of possible outputs of a corrector is the size of the alphabet +1.
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Proof. The new corrector A′
i works according to the following rule:

A′
i(x) =

{
Ai(x), if Ai(x) ∈ {xi,⊥}
⊥, otherwise

From the construction, the output of A′
i(x) is xi or ⊥ for every input x (and never 1− xi). We next

show that A′
i satisfies the required completeness and soundness (Definition 2.2). For completeness,

if x ∈ C then Ai(x) = xi with probability 1 − ϵcompleteness, and hence A′
i(x) = xi with the same

probability.
For soundness, assume there exists c ∈ C such that dist(x, c) < ρ. We need to show A′

i(x) ∈ {ci,⊥}
with high probability. Consider the case ci = xi. From the soundness of Ai, Ai(x) ∈ {xi,⊥} with
probability at least 1− ϵsoundness, and hence A′

i(x) ∈ {xi,⊥ } = {ci,⊥} with the same probability.
Otherwise, ci ̸= xi. With probability at least 1 − ϵsoundness, the output of Ai is ci or ⊥. From

the construction, whenever the output of Ai is ci or ⊥, the output of A′
i is ⊥. Hence, with the same

probability, A′
i(x) = ⊥ ∈ {ci,⊥}.

By using Claim 3.1, we can replace item 2 of Definition 2.2 with the following:

Definition 3.2. (alternative definition of RLCCs)

2. (soundness) If there exists c ∈ C such that dist(x, c) < ρ and xi ̸= ci, then Ai(x) = ⊥ with
probability at least 1− ϵsoundness.

Definition 3.2 allows us to treat a corrector as having a “binary” output; We say that Ai accepts
x if Ai(x) = xi, and that it rejects x otherwise (namely, if Ai(x) = ⊥)

We can now phrase relaxed correction as a promise problem, as follows6:

Definition 3.3. Let C ⊂ {0, 1}n be an error correcting code, let ρ > 0 and let i ∈ [n]. The promise
problem of relaxed correction of C at index i with correction radius ρ is defined by:

1. (YES-instances are the codewords) Y = C

2. (NO-instances are the inputs a corrector rejects)
N = {x ∈ {0, 1}n | ∃c ∈ C with dist(x, c) < ρ and xi ̸= ci}.

The promise problem of relaxed correction is equivalent to relaxed correction of codes (of Defini-
tion 3.2) in the following sense:

Claim 3.4. An algorithm Ai is a corrector for index i of C with correction radius ρ, completeness error
ϵcompleteness and soundness error ϵsoundness according to Definition 3.2, if and only if it is an algorithm
for the promise problem of relaxed correction of C at index i with correction radius ρ, completeness
error ϵcompleteness and soundness error ϵsoundness according to Definition 2.4

Relaxed decoding: From the hypothesis for RLDCs, the code at hand is in systematic form. That
is, we assume that the first k bits of each codeword are the message encoded in it. Hence, a decoder
is simply a corrector that needs to “correct” only the first k bits of the input. The observation above
(Claim 3.1) holds for relaxed local decoders as well. Hence, we can assume w.l.o.g that the output of
the decoder, for input x and index i ∈ [k], is either xi or ⊥.

6Another possible formulation is Y = {(x, b) | x ∈ C and b = xi} and N = {(x, b) | ∃c ∈ C with dist(x, c) <
ρ and ci ̸= b}. This formulation preserves better the decoding “flavor” of the problem. We use the formulation of Defini-
tion 3.2, as it emphasizes the similarity to testing, with ⊥ corresponding to “reject” and any other output corresponding
to “accept”.

10



This allows us to replace the two requirements of Definition 2.1 (for linear codes) with:

Definition 3.5. (alternative definition of RLDCs)

1. (completeness) If x ∈ C then Ax(i) = xi with probability at least 1− ϵcompleteness.

2. (soundness) If there exists c ∈ C such that dist(x, c) < ρ and xi ̸= ci, then Ai(x) = ⊥ with
probability at least 1− ϵsoundness.

Accordingly, we phrase relaxed decoding as a promise problem in the same way relaxed correction,
except that the input index is in [k] (instead of in [n]):

Definition 3.6. Let C ⊂ {0, 1}n be an error correcting code, let ρ > 0 and let i ∈ [k]. The promise
problem of relaxed decoding of C at index i with decoding radius ρ is defined by:

1. (YES-instances are the codewords)
Y = C

2. (NO-instances are the inputs a decoder rejects)
N = {x ∈ {0, 1}n | ∃c ∈ C with dist(x, c) < ρ and xi ̸= ci}.

3.2 Additive promise problems

In this section, we show that the promise problems formulated above for relaxed decoding and relaxed
correction, have the special property of being additive (Definition 1.1).

Claim 3.7. The relaxed correction and relaxed decoding promise problems for linear codes is additive.

We prove the claim for relaxed correction. The proof for relaxed decoding is the same, with the
restriction that i ∈ [k] (instead of in [n]).

Proof. Let C be a linear error correcting code, let ρ > 0 and let i ∈ [n]. Let Y,N be as in Definition 3.3.
From the linearity assumption Y = C is a linear subspace of {0, 1}n, and the first item of Defini-

tion 1.1 holds.
To show the second item, let x ∈ N, y ∈ Y . We need to show that x+y ∈ N . x ∈ N , so there exists

a codeword c ∈ C such that dist(x, c) < ρ and xi ̸= ci. Define c′ = c+y. c′ is a codeword in C, since it is
a sum of two codewords, and C is a linear code. We get dist(x+y, c′) = dist(x+y, c+y) = dist(x, c) < ρ,
and (x+ y)i = xi + yi ̸= ci + yi = c′i. Hence x+ y ∈ N .

Non-relaxed LDCs: We remark that non-relaxed decoding / correction (for a specific index) does
not seem to fit into our new framework. First, it needs to be clarified how to formulate decoding /
correction as a promise problem. Say we define the YES-instances (resp. NO-instances) as the inputs
on which the corrector must output 0 (resp., 1) with high probability. Then the set of YES-instances
is not a linear subspace, as it contains strings outside C.

Another possible formulation is to define the YES-instances as the strings on which the corrector
must output xi. This formulation has the same problem, as again the set of YES-instances contains
strings outside C, so it is not necessarily a subspace.
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4 The reduction

In this section, we prove our main results, Theorem 1 and Theorem 2.
We prove these theorems by constructing the following, more general reduction:

Theorem 4.1. (Restatement of Theorem 4) Let (Y,N) ⊆ {0, 1}n be an additive promise problem.
If (Y,N) has an adaptive algorithm A with completeness error ϵY , soundness error ϵN and query
complexity q, it has a one-sided error, non-adaptive algorithm A′ with soundness error ϵY + ϵN and
query complexity q.

Theorem 1 and Theorem 2 are direct corollary of Theorem 4.1 applied to the relaxed decoding and
correcting promise problem.

The proof of Theorem 4.1 has two steps. The first is a reduction from two-sided error to one-sided
error algorithms. We show this reduction in Section 4.1. The second step is a reduction from one-sided,
adaptive algorithms to one-sided, non-adaptive algorithms. We show this reduction in Section 4.2.

4.1 From two-sided to one-sided error

In this section, we show a reduction from two-sided error algorithms to one-sided error ones for
additive promise problems. The reduction does not change the query complexity of the algorithm,
and maintains the sum of the completeness and soundness errors.

Lemma 4.2. Let (Y,N) ⊆ {0, 1}n be an additive promise problem. If (Y,N) has an (adaptive) algo-
rithm A with completeness error ϵY , soundness error ϵN and query complexity q, it has an (adaptive)
one-sided error algorithm A′ with soundness error ϵY + ϵN and query complexity q.

Randomized algorithms as distributions over decision trees: Consider some randomized
algorithm A for a promise problem. A can be described as a distribution DA over a set of deterministic
decision trees ΥA = {Γ1,Γ2, . . .}. We denote by Γ ∼ DA a tree chosen randomly from ΥA according
to the distribution DA. Each leaf ℓ of each tree corresponds to a set of indices I = (i1, . . . , it) ∈ [n]t

that are queried along the path leading to ℓ, and the corresponding values σ = (σ1, . . . , σt) ∈ {0, 1}t
at these indices. We identify each leaf with the corresponding indices and values and write ℓ = (I, σ).

For an input x, we denote by Γ(x) the leaf of Γ at the end of the path corresponding to querying
x. That is, Γ(x) = ℓ if x|I = σ, where ℓ = (I, σ), and x|I is the restriction of x to indices I. Each leaf
is labeled with YES or NO.

We can now describe the operation of A on input x as follows: It chooses a Γ ∼ DA and outputs
the label of Γ(x).

Relabeling decision trees: To convert an algorithm A to have one-sided error, we first go over
all of Γ ∈ ΥA and relabel them, so each Γ will have one-sided error. The relabeling works as follows:
For every leaf ℓ of Γ, if there exists a YES-instance y such that Γ(y) = ℓ, relabel ℓ with YES. We
denote the relabeled tree by Γc and call it the one-sided error relabeling of Γ. See Figure 1 on page 13
for an illustration of a relabeling that happens if, for example, the string “11100” ∈ {0, 1}5 is in Y .

This step is necessary to get a one-sided error algorithm; as long as there exists y ∈ Y and Γ such
that the label of Γ(y) is NO, there is some probability that A outputs NO for a YES-instance. The
issue, however, is that this transformation may not maintain the algorithm’s soundness. There might
be NO-instances that the new algorithm (wrongly) accepts with a high probability.
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(a) A decision tree (b) The same tree after relabeling the leaf corresponding to
I = (5, 1) and σ = (0, 1)

Figure 1: An example for relabeling a decision tree

The soundness issue with relabeling: Pretend the transformed algorithm A′ worked as follows.
For an input x, choose a random decision tree Γ ∼ DA, relabel the tree to get Γc, and output the label
of Γc(x) (instead of using Γ(x) as the original algorithm did). This new algorithm has one-sided error.
In fact, we can transform any algorithm this way to have one-sided error, so we should not expect it
to maintain soundness.

To see that the soundness is not necessarily maintained, consider some leaf ℓ of a tree Γ that was
relabeled from NO to YES. Let x ∈ {0, 1}n such that Γ(x) = ℓ. If x ∈ Y , the relabeling was beneficial.
Before the relabeling, the algorithm returned a wrong output for x (whenever it used the tree Γ),
and now it returns the correct output. However, what if x is a NO-instance? In this case, after the
relabeling we return the wrong output for x each time Γ is used. The tree Γ is sampled according to
the distribution DA, which is arbitrary. If DA gives much weight to Γ (say, it is chosen with probability
1
2), then the new algorithm returns the wrong output for x with high probability.7 This implies that
A′ does not have the required soundness property, as it should hold for every NO-instance.

The actual reduction: The solution is to modify the algorithm in the following way. Instead
of deterministically returning the label of Γc(x) (after Γ was chosen at random), the transformed
algorithm outputs the label of Γc(x + y) for a random y ∈ Y . We give a formal description of the
transformation in Algorithm 1. Now, even if Γc(x) was relabeled to YES, we output its label with a
small probability. In the proof of Lemma 4.2, we show that the soundness error of the transformed
algorithm is at most ϵY + ϵN .8

Query complexity: The relabeling does not change the query complexity (i.e., depth) of the
decision trees. Hence, the query complexity of A′ is the same as that of A.

One-sided error: Let x ∈ Y . We argue that A′ always outputs YES for x. From the definition of
A′, its output for x is the label of Γc(x+ y) for some y ∈ Y . Since (Y,N) is an additive problem and

7Even if there is no one heavy tree, relabels of many leaves in different trees might have the same affect if their total
weight is high.

8Recall that ϵN is error probability of the original algorithm for NO-instances, and ϵY is its error probability for
YES-instances.
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Algorithm 1 one-sided error local algorithm, A′

Input: Oracle access to x ∈ {0, 1}n.
Output: YES or NO.

1. Choose Γ ∼ DA.

2. Choose y ∈ Y uniformly at random.

3. Output the label of Γc(x+ y).

x ∈ Y , we get that x+ y ∈ Y . From the relabeling scheme for Γc, the label of Γc(y
′) is YES for every

y′ ∈ Y , and in particular for y′ = x+ y. Hence, the output of A′ for x is YES.
Before arguing about the soundness of the transformed algorithm, we need the following prepara-

tions.

Probability of hitting a specific leaf: We stated above that for an input x, the modified algo-
rithm uses the label of a specific leaf ℓ with a small probability. We next calculate this probability
(conditioning on first choosing the tree Γc of ℓ). There are |Y | possible options for y. The leaf ℓ is used
if the chosen y satisfies Γc(x+ y) = ℓ. Hence, we choose the label of ℓ with probability |(x+Y )∩Γ−1(ℓ)|

|Y | ,

where x+ Y = {x+ y | y ∈ Y } ⊆ {0, 1}n, and Γ−1(ℓ) = {z | Γ(z) = ℓ} ⊆ {0, 1}n. We argue that this
probability is either 0 (when there is no y ∈ Y such that Γ(x+ y) = ℓ and (x+Y )∩Γ−1(ℓ) is empty),
or equals to a quantity not depending on x.

Lemma 4.3. Let Y ⊆ {0, 1}n be a subspace of {0, 1}n, and fix a decision tree Γ and a leaf ℓ = (I, σ).
Define U = {u ∈ Y | u|I = 0}. Then for every x ∈ {0, 1}n, if there exists y ∈ Y such that Γ(x+y) = ℓ,
then |(x+ Y ) ∩ Γ−1(ℓ)| = |U |.

Proof. First, notice that U is not empty since the all-zeros string is in Y (as Y is a linear subspace).
Furthermore, U is a subspace of Y , since if u, u′ ∈ U then (u+ u′)|I = u|I + u′|I = 0 and u+ u′ ∈ U .
We argue that (x+ Y ) ∩ Γ−1(ℓ) is a coset of U , hence having the same size as U . Namely, we claim:

(x+ Y ) ∩ Γ−1(ℓ) = x+ y + U

where y is an element of Y such that Γ(x+ y) = ℓ.
We begin by proving the inclusion (x+Y )∩Γ−1(ℓ) ⊆ x+y+U . Let x+y′ ∈ (x+Y )∩Γ−1(ℓ). That is,

(x+y′)|I = σ. Define u = y′−y. Since (x+y)|I = (x+y′)|I = σ, we have u|I = ((x+y′)−(x+y))|I = 0
and u ∈ U . Therefore x+ y′ = x+ y + u ∈ x+ y + U .

To prove that (x+Y )∩Γ−1(ℓ) ⊇ x+y+U , let u ∈ U . Since y ∈ Y and u ∈ U ⊆ Y , and Y is closed
to addition, we have y+u ∈ Y and x+y+u ∈ x+Y . Next, (x+y+u)|I = (x+y)I+u|I = (x+y)I = σ
and hence x+ y + u ∈ Γ−1(ℓ).

We are now ready to prove Lemma 4.2.

Proof. (of Lemma 4.2) We proved above that the reduction maintains the query complexity of the
algorithm, and that the transformed algorithm has one-sided error. We are left with arguing about
its soundness.

Let x ∈ N . We need to show that A′ outputs NO for x with probability at least 1− ϵY− ϵN. That
is, we need to prove Pr[A′(x) = YES ] < ϵY + ϵN.

The probability for (wrongly) outputting YES for x may increase due to the transformation.
Nevertheless, it does not increase too much. We argue the transformation does not decrease the gap
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between the expected probability of returning YES for a random element of Y and the expected
probability of outputting YES for a random element of x+ Y . That is, we claim:

Claim 4.4. For every x ∈ N :

E
y∈Y

[Pr[A(y) = YES]]− E
y∈Y

[Pr[A(x+ y) = YES]] ≤ E
y∈Y

[Pr[A′(y) = YES]]− E
y∈Y

[Pr[A′(x+ y) = YES]]

where the probabilities are over the internal randomness of A and A′.

Proof. (of Claim 4.4) To prove this claim, it is enough to show that relabeling one leaf ℓ of one decision
tree does not decrease the gap. Then we obtain the claim by relabeling one leaf at a time, to get A′

from A.
Assume ℓ was relabeled from NO to YES. Let G := Y ∩ Γ−1(ℓ) be the strings y ∈ Y such that

Γ(y) = ℓ (these are the “Good” strings, which are now labeled YES and are in Y ). The set G
is not empty since we relabel ℓ only if there exists y ∈ Y such that Γ(y) = ℓ, i.e. y ∈ G. Let
B := (x+Y )∩Γ−1(ℓ) be the strings x+y ∈ x+Y such that Γ(x+y) = ℓ (these are the “Bad” strings,
which are now labeled YES but in x+ Y ⊆ N).

Every string in G ∪ B was rejected before the relabeling but is now accepted. The algorithm’s
behavior on the other elements in Y and x+Y is unaltered. Hence, E

y∈Y
[Pr[A(y) = YES]] increases by

D(Γ) · |G|
|Y | when ℓ is relabeled. Similarly, E

y∈Y
[Pr[A(x+ y) = YES]] increases by D(Γ) · |B|

|Y | . It suffices

to show that |G| ≥ |B|. Intuitively, this means any “harm” done to x by the relabeling (an element
of B that increases the probability to wrongly output YES) is “compensated” by the relabeling (by
an element of G improving the algorithm’s completeness).

If B is empty, we are done. Otherwise, due to Lemma 4.3, |B| = |U | and |G| = |U |, and we
conclude that |G| = |B|.

From the claim, the soundness error for x gets worse by an amount bounded by the completeness
improvement. Since the completeness error reduces from ϵY to 0, the soundness error for x increases
by at most ϵY.

More formally, from Claim 4.4, the prefect completeness of A′ and the completeness error of A:

E
y∈Y

[Pr[A′(x+ y) = YES]] ≤ E
y∈Y

[Pr[A′(y) = YES]]− E
y∈Y

[Pr[A(y) = YES]] + E
y∈Y

[Pr[A(x+ y) = YES]]

≤ 1− (1− ϵY) + E
y∈Y

[Pr[A(x+ y) = YES]] = E
y∈Y

[Pr[A(x+ y) = YES]] + ϵY

(1)
Now, x+y ∈ N for every y ∈ Y , since x ∈ N and (Y,N) is additive. Hence, applying the soundness

of A to every x+ y, we have E
y∈Y

[Pr[A(x+ y) = YES ]] < ϵN.

In addition, from the definition of A′, Pr[A′(x + y) = YES] = Pr[A′(x) = YES] for every y ∈ Y .
Hence, from equation 1 we get that Pr[A′(x) = YES] < ϵY + ϵN

4.2 From adaptive to non-adaptive algorithms

In this section, we show a reduction from one-sided error adaptive to (one-sided error) non-adaptive
algorithms for additive promise problems. The reduction maintains the algorithm’s query complexity
or it soundness error.

Lemma 4.5. Let (Y,N) ⊆ {0, 1}n be an additive promise problem. If (Y,N) has an one-sided error,
adaptive algorithm A with soundness error ϵN and query complexity q, it has an one-sided error
non-adaptive algorithm A′ with soundness error ϵN and query complexity q.
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Proof. Let D = DA be a distribution over decision trees Υ = ΥA corresponding to A.
We first observe that we can assume w.l.o.g that the label of each leaf ℓ = (I, σ) is YES if and

only ∃y ∈ Y such that y|I = σ. Since A never errs on YES-instances, if there exists y ∈ Y such
that y|I = σ, then ℓ must be labeled YES. On the other hand, we can assume that if no such y ∈ Y
exists, then ℓ is labeled NO. Otherwise, ℓ can be relabeled from YES to NO while only improving the
algorithm’s soundness and maintaining its one-sided error.

Description of A′: The new non-adaptive algorithm works as follows. On input x, choose a
random y ∈ Y . Query x on all indices A would have queried y, and output YES if the partial view of
x is consistent with some y′ ∈ Y . We give a formal description of the new algorithm in Algorithm 2.

Algorithm 2 Non-adaptive local algorithm, A′

Input: Oracle access to x ∈ {0, 1}n.
Output: YES or NO.

1. Choose Γ ∼ D.

2. Choose y ∈ Y uniformly at random.

3. Let ℓ = (I, σ) = Γ(y).

4. Query x on the indices I.

5. Output “YES” if ∃y′ ∈ Y such that x|I = y′|I , and “NO” otherwise.

Analysis: The algorithm A′ is non-adaptive, as its queries depend only on its internal randomness
(the choice of Γ and y). It has the same query complexity as A, since it uses the same decision trees.
The algorithm has one-sided error since if x ∈ Y , we can take y′ = x at the last step of the algorithm,
and x|I = y′|I for every I.

We are left with proving that the transformation does not decrease the soundness error. Towards
this end, we relate the acceptance probability of A′ to the average acceptance probability of A.

Claim 4.6. For every x ∈ {0, 1}n:

Pr[A′(x) = YES] = E
y∈Y

[Pr[A(x+ y) = YES]]

where the probabilities are over the internal randomness of A and A′.

This claim shows that soundness is maintained. If x ∈ N , then since (Y,N) is additive, x+ y ∈ N
for every y ∈ Y . Hence, by using the soundness of A for every x+ y, we get that

Pr[A′(x) = YES] = E
y∈Y

[Pr[A(x+ y) = YES]] < ϵN

Proof. (of Claim 4.6) We begin by calculating E
y∈Y

[Pr[A(x+ y) = YES]]. Identifying the output YES

with 1, we can take expectation instead of probability. We denote by Γ(Y ) the set of leaves in Γ
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labeled YES9 , and get:

E
y∈Y

[Pr[A(x+y) = YES]] = E
y∈Y

E
Γ∼D

[A(x+y)]] = E
Γ∼D

E
y∈Y

[A(x+y)]] = E
Γ∼D

[
1

|Y |
·
∑

ℓ∈Γ(Y )

|(x+ Y ) ∩ Γ−1(ℓ)|]

(2)
where in the last equality, we take into account all y ∈ Y by iterating over each leaf ℓ ∈ Γ(Y ) (for
other leaves the algorithm’s output is 0) and counting the number of y values for which Γ(x+ y) = ℓ
(i.e., that lead the algorithm to output the label of ℓ).

On the other hand, for any I ⊆ {0, 1}n and x ∈ {0, 1}n define:

HI(x) =

{
1, if ∃y ∈ Y such that x|I = y|I
0, otherwise

With this notation, the last step of A′ can be described as “output HI(x)”.
We get:

Pr[A′(x) = YES] = E[A′(x)] = E
Γ∼D

E
y∈Y

(I,σ)←Γ(y)

[HI(x)] = E
Γ∼D

[
1

|Y |
·

∑
ℓ=(I,σ)∈Γ(Y )

|Y ∩ Γ−1(ℓ)| ·HI(x)] (3)

Here it is sufficient to iterate over the leaves in Γ(Y ): the algorithm A never errs on YES instances,
so if ℓ is labeled NO, there cannot be y ∈ Y such that Γ(y) = ℓ.

From equations 2 and 3 it is enough to show that for every ℓ = (I, σ) ∈ Γ(Y ):

|(x+ Y ) ∩ Γ−1(ℓ)| = |Y ∩ Γ−1(ℓ)| ·HI(x)

Since (I, σ) is labeled YES, and as discussed above, there exists y′ ∈ Y such that y′|I = σ and
Y ∩ Γ−1(ℓ) is not empty.

Consider the case HI(x) = 0. We claim (x + Y ) ∩ Γ−1(ℓ) is empty and hence the equality holds.
Assume towards contradiction that this set is not empty. Then there exists (x+y) ∈ (x+Y ) such that
(x+ y)|I = σ. Hence (x+ y)|I = y′|I and x|I = (y′ − y)|I , which implies HI(x) = 1 (since y′ − y ∈ Y ).

Next, consider the case HI(x) = 1. We argue that (x+Y )∩Γ−1(ℓ) is not empty. HI(x) = 1 implies
there exists y ∈ Y such that x|I = y|I , and (x − y)|I = 0. Now (x − y + y′)|I = (x − y)|I + y′|I = σ,
and hence x − y + y′ ∈ (x + Y ) ∩ Γ−1(ℓ) (as −y + y ∈ Y ). Since (x + Y ) ∩ Γ−1(ℓ) is not empty, and
from Lemma 4.3, we get that |(x + Y ) ∩ Γ−1(ℓ)| = |U |. The set Y ∩ Γ−1(ℓ) is also not empty, and
again from Lemma 4.3 |Y ∩ Γ−1(ℓ)| = |U |. We conclude that |(x+ Y ) ∩ Γ−1(ℓ)| = |Y ∩ Γ−1(ℓ)|.
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