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Abstract

Information complexity is one of the most powerful tools to prove information-theoretical
lower bounds, with broad applications in communication complexity and streaming algorithms.
A core notion in information complexity analysis is the Shannon entropy. Though it has some
convenient properties, such as chain rules, Shannon entropy still has inherent limitations. One
of the most notable barriers is the square-root loss, which is reflected by the square-root gap
between entropy gaps and statistical distances, e.g., Pinsker’s inequality.

To break this barrier, we introduce a new method based on min-entropy analysis. Building
on this new method, we prove the following three results.

• A tight Ω(𝑛/𝑘) randomized lower bounds of the 𝑘-party Tree Pointer Jumping problems,
improving an Ω(𝑛/𝑘2) lower bounds by Chakrabarti, Cormode, andMcGregor (STOC 08).

• An Ω(𝑛/𝑘 +
√
𝑛) lower bounds of the Chained Index problem for oblivious communication

protocols, improving an Ω(𝑛/𝑘2) lower bound by Cormode, Dark, and Konrad (ICALP 19).
Here, oblivious means that the length of each message does not depend on the input.

• An Ω(𝑛/𝑘 − 𝑘) lower bounds of the Chained Index problem for non-oblivious protocols. To
the best of our knowledge, this is the first lower bound for non-oblivious protocols.

Since both problems served as hard problems for numerous applications for streaming prob-
lems, our new lower bounds improve these streaming lower bounds directly.

On the technical side, unlike Shannon entropy, min-entropy does not have nice properties
such as chain rules. To address this issue, we adopt the structure-vs-pseudorandomness decom-
position used by Göös, Pitassi, and Watson (FOCS 17) and Yang and Zhang (STOC 24), where
both papers used this decomposition to prove communication lower bounds. In this paper, we
extend this method into streaming settings, contributing a new toolkit for proving streaming
lower bounds.

1 Introduction

Information complexity is one of the most powerful tools in proving communication complexity
lower bounds [CSWY01, BYJKS04, BBCR10, DOR21, OR23] and streaming lower bounds [BYJKS04,
CCM08, AMOP08, GO16, ACK19, BGW20, LZ23, BGL+24]
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The idea of information complexity is to analyze the mutual information between the inputs
held by the communication parties and the communication transcript. The definition of informa-
tion complexity is similar to communication complexity, with information cost replacing commu-
nication cost. For a protocol Π, a popular notion of information cost is defined by

IC(Π) := I(𝑿 ;Π(𝑿 , 𝒀 ) |𝒀 ) + I(𝑌 ;Π(𝑿 , 𝒀 ) |𝒀 ),

where 𝑿 and 𝒀 are the input distribution of Alice and Bob respectively and I is the mutual infor-
mation. Intuitively, IC(Π) captures the mutual information of the inputs and the communication
transcript, which is a lower bound of the communication cost. Besides this specific definition, there
are many different variants which are smartly designed for diverse applications. However, they
all share a similar idea: capture the information cost (usually by Shannon entropy) between the
input distribution and the transcript.

Despite a vast number of applications successfully given by the information complexity-based
approaches, this framework still has some inherent limitations. Indeed, some significant barriers
are not only associated with some specific variants of information cost notions, but further deeply
caused by the entropy itself. In this direction, one notable limitation is the square-root loss barrier.

Square-root loss barrier. We first use a simple example to illustrate this phenomenon. Let 𝑰 be
a random variable that outputs 1 with probability 1/2 + 𝜀 and 0 with probability 1/2 − 𝜀. This is
a biased coin with a Θ(𝜀) statistical distance to the uniform distribution. However, on the other
hand, the entropy gap between them has only Θ(𝜀2). This square gap is not significant if 𝜀 is a
constant. However, the loss would become very large when it becomes very small. Beyond this
simple example, this is indeed a general gap between entropy loss and statistical distance. For example,
any result that applies Pinsker’s inequality has a good chance of creating this gap.

Lemma 1.1 (Pinsker’s inequality). If 𝑃 and 𝑄 are two distributions, then

𝐷𝑇𝑉 (𝑃,𝑄) ≤
√

1
2
𝐷𝐾𝐿 (𝑃 ∥𝑄)

Here 𝐷𝑇𝑉 (𝑃,𝑄) is the total variation distance of 𝑃 and 𝑄 and 𝐷𝐾𝐿 (𝑃 ∥𝑄) is the KL-divergence of 𝑃 and 𝑄 .

This quadratic gapmakes it difficult to get good bounds via entropy-based analysis inmany ap-
plications. For instance, proofs of multiparty unique-set disjointness [BYJKS04], set disjointness under
product distribution [DOR21, OR23], the chained index problem [CDK18], multi-party pointer jumping
problem [Cha07], tree pointer jumping problem [CCM08], pointer chasing problem [NW91], among oth-
ers, all meet the square-root loss comparing the upper bounds.

Besides concrete examples, this square-root loss also appears in fundamental problems such as
direct-sum questions. We quote a comment from a nice paper by Yehudayoff [Yeh20] here.

It appears in the parallel repetition theorem and is connected to the ‘strong parallel repetition’ conjecture,
which is motivated by Khot’s unique games conjecture [Kho02]. The ‘strong parallel repetition’ conjecture
was falsified by Raz [Raz11]; showing this square-root loss is necessary for parallel repetition. This loss also
appears in direct sums and products in communication complexity [BBCR10, BRWY13], which is related to
the question of optimal compression of protocols. It is still unclear if the square-root loss is necessary for the
direct sum question.
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Towards breaking the square-root loss. Since this loss limits many applications, there is a good
amount of work made progress to resolve this barrier [CKS03, Gro09, Jay09, BM13, Yeh20]. For ex-
ample, Jayram [Jay09] proved tight lower bounds for themultiparty unique set-disjointness, resolv-
ing the square-root loss by [BYJKS04, CKS03]; Braverman and Moitra [BM13] proved tight lower
bounds for the unique set-disjointness for all probabilities; and Yehudayoff [Yeh20] improved the
pointer chasing problem, addressed the square-root loss by [NW91].

Despite avoiding the square-root loss barrier for some specific problems, these efforts are ad-
hoc with some intelligent analysis on non-standard variants of Shannon entropy. Hence, it is hard
to extend them for broader applications. A natural question arises: Couldweuse anymeasurement
other than the Shannon entropy (or its close variants)?

Now, we revisit the example above. For a random variable𝑿 supported on {0, 1}𝑛 with entropy
H(𝑿 ) ≥ 𝑛 − 𝜀, we know the statistical distance between 𝑿 and the uniform distribution is Θ(√𝜀) by
Pinsker’s inequality. In further, it is hard to improve Pinsker’s inequality as it is tight in general.
However, on the other hand, for a random variable 𝑿 with min-entropy 𝑛 − 𝜀, a simple calculation
shows that the statistical distance between 𝑿 and the uniform distribution is Θ(𝜀). In this paper,
min-entropy is a good candidate for avoiding square root loss in general settings.

Analysis of min-entropy via structure-vs-pseudorandomness. Though the min-entropy itself
does not meet the square-root loss, there are other challenges in analyzing it. One of the most
significant challenges is that, unlike the Shannon entropy, there is no chain rule for min-entropy,
where a chain rule is an essential tool in entropy-bases analysis.

In order to overcome this issue, we adopt the structure-vs-pseudorandomness decomposi-
tion to serve as the “chain rule” in min-entropy analysis. This approach has been successfully
applied in sunflower lemmas [LSZ19, ALWZ20] and query-to-communication lifting theorems
[GLM+16, GPW17, LMM+22, YZ24]. Though this approach has been successfully applied in several
areas, it has not been studied in streaming settings. In this paper, we extend this approach to stream-
ing problems. Beyond the two problems studied in this paper, we believe the min-entropy-based
analysis could provide more applications to streaming problems.

1.1 Our Results and Their Applications to Streaming Problems

Building on min-entropy analysis, we improve the lower bounds for two communication prob-
lems: 1) Tree Pointer Jumping problem [CCM08] and 2) Chained Index problem [CDK18]. Combined
with previous reductions, our new results also give many applications in streaming problems (see
Section 1.1.3 for more details).

1.1.1 Tree Pointer Jumping Problem

The Tree Pointer Jumping problem is a communication problem introduced by Chakrabarti, Cor-
mode, and McGregor [CCM08] with applications in streaming lower bounds. For 𝑡, 𝑘 ≥ 2, we
consider a complete 𝑘-level 𝑡-ary tree 𝑇 rooted at 𝑣1. The 𝑘-party Tree Pointer Jumping problem,
denoted by TPJ𝑘,𝑡 (𝜙), takes as an input a function 𝜙 : 𝑉 (𝑇 ) → [𝑡], where 𝑉 (𝑇 ) is the set of nodes of
𝑇 . For each input 𝜙 , we define the functions 𝑔𝜙 by,

𝑔𝜙 (𝑣) =
{
the 𝜙 (𝑣)-th child of 𝑣 if 𝑣 is not an internal node;
𝜙 (𝑣) if 𝑣 is a leaf.
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The output of 𝑇𝑃 𝐽𝑘,𝑡 (𝜙) is defined by 𝑇𝑃 𝐽𝑘,𝑡 (𝜙) := 𝑔𝜙 (𝑔𝜙 (· · ·𝑔𝜙 (𝑣1) · · · )) . In the communication
setting, the input 𝜙 is distributed to 𝑘 players. They play a communication game as follows:

• Player 𝑖 receives the labels of the 𝑖-th level nodes, i.e., the first player receives 𝜙 (𝑣1),…, and
the last player receives the labels of the leaves.

• In each round, players send messages in reverse order: from the last player to the first player.
The cost of this round is the total number of bits sent by all players.

• Players could communicate (𝑘 − 1) rounds, and the first player outputs the answer.

The goal of the players is to compute𝑇𝑃 𝐽𝑘,𝑡 (𝜙) while minimizing the maximum cost of each round.
For any (𝑟 − 1)-round protocol Π, we use 𝑅max(Π) to denote the maximum communication cost in
all rounds. In this direction, [CCM08] first proved the following lower bound.

Theorem 1.2 ([CCM08]). Let 𝜇𝑘 denote the uniform distribution over all functions 𝜙 : 𝑉 (𝑇 ) → [𝑡]. Then
for any (𝑘 − 1)-round protocol Π with

Pr
𝜙←𝜇𝑘

[Π(𝜙) = 𝑇𝑃 𝐽𝑘,𝑡 (𝜙)] ≥ 2/3,

we have that 𝑅max(Π) = Ω(𝑡/𝑘2) .

Chakrabarti, Cormode , and McGregor [CCM08] first used Theorem 1.2 to improve multi-pass
streaming lower bound for median finding. Later on, Chakrabarti and Wirth [CW16] used this
theorem to show a pass/approximation trade-off for the SET-COVER in the semi-streaming setting.
In this paper, we improve the lower bound from Theorem 1.2 based on min-entropy analysis.

Theorem 1.3. Let 𝜇𝑘 denote the uniform distribution over all functions 𝜙 : 𝑉 (𝑇 ) → [𝑡]. Then for any
(𝑘 − 1)-round protocol Π with

Pr
𝜙←𝜇𝑘

[Π(𝜙) = 𝑇𝑃 𝐽𝑘,𝑡 (𝜙)] ≥ 2/3,

we have that 𝑅max(Π) = Ω(𝑡/𝑘) .

As the corollaries, our improved lower bounds can be directly used to improve the downstream
applications in [CCM08] and [CW16].

1.1.2 Chained Index Problem

The Chained Index problem, introduced by Cormode, Dark and, Konrad [CDK18], is another use-
ful tool with many applications in streaming lower bounds [CDK18, FNFSZ20, FNFSZ22, BKO22,
DDK23]. For this problem, we consider the following communication setting.

• There are 𝑘 players. Each player 𝑖 receives an input 𝑧𝑖 = (𝜎𝑖 , 𝑥𝑖) ∈ [𝑛] × {0, 1}𝑛

• It is promised that 𝑥1(𝜎2) = · · · = 𝑥𝑘−1(𝜎𝑘 ). Here 𝑥𝑖 (𝜎𝑖+1) is the 𝜎𝑖+1-th coordinate of 𝑥𝑖 .
• Their goal is to compute 𝑥𝑖 (𝜎𝑖+1) through a one-way communication from the first player

to the last player, where the last player should output the answer.
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We say that a one-way protocol solves the Chained Index problem if for every input (𝑧1, . . . , 𝑧𝑘 ),
the last player always outputs the correct answer with probability 2/3. The communication cost
of this protocol is the total communication bits of all players. Built on the information complexity,
[CDK18] proved the following lower bounds for the Chained Index problem.

Theorem 1.4 ([CDK18]). Any one-way communication protocol that solves the Chained Index problem has
randomized communication complexity Ω(𝑛/𝑘2) .

Since it has been introduced, many streaming lower bounds [CDK18, FNFSZ20, FNFSZ22,
BKO22, DDK23] were built on Theorem 1.4. We list some of them in Section 1.1.3.

Theorem 1.5 ([CDK18]). Any algorithm for the explicit vertex stream model that finds a 𝑐-approximation
to 𝛼 (𝐺) with probability at least 2/3 requires Ω(𝑛2

𝑐7
) space.

For a restricted range of 𝑘 , [CDK18] also announced the following result without proof.

Theorem 1.6 ([CDK18]). For 𝑘 < ( 𝑛
log𝑛 )1/4, any one-way communication protocol that solves the Chained

Index problem has randomized communication complexity Ω(𝑛/𝑘).

Theorem 1.4 was obtained by direct entropy-based analysis. However, we do not see a proof
for 1.6 so far. In this paper, we prove the following lower bounds for the Chained Index problem
without any range restriction on 𝑘 .

Theorem 1.7. Any one-way communication protocol that solves the Chained Index problem has randomized
communication complexity Ω(𝑛/𝑘 − 𝑘). For oblivious protocols, i.e., protocols in which each message has a
predetermined length independent of the input, the lower bound can be improved to Ω(𝑛/𝑘 +

√
𝑛).

Remark 1.8. To the best of our knowledge, all previous results only apply to oblivious protocols,
e.g., [Cha07, CDK18]; this is the first lower bound for non-oblivious protocols.

In Theorem 1.7, we consider a blackboard communication setting: any player can see all mes-
sages from previous players. This lower bound is indeed stronger than the lower bound in the
streaming setting by [CDK18] where the 𝑖-th player can only see the (𝑖 − 1)-th player’s message.
[CDK18] conjectured the tight bound should be Ω(𝑛) (independent with 𝑘) in the streaming set-
ting. However, in the blackboard setting, the upper bound is not clear. We suspect there is a chance
to improve the upper bound into 𝑂 (𝑛/𝑘). We leave it as an interesting open problem.

It is worth noting that the Chained Index problem is a promised problem. We developed the
structure-vs-pseudorandomness decomposition techniques to deal with the promise. Roughly,
we prove that probabilities under promise can be bounded by the probabilities under uniform
distribution during our main decomposition and sampling process.

1.1.3 Applications to Streaming Problems

Since many streaming lower bounds were built on the hardness of the Tree Pointer Jumping prob-
lem or the Chained Index problem, we automatically improve these steaming lower bounds. We
list some applications below.

Corollary 1.9. Any algorithm for the explicit vertex stream model that finds a 𝑐-approximation to 𝛼 (𝐺) with
probability at least 2/3 requires Ω(𝑛2/𝑐6) space.
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This corollary improves the previous lower of Ω(𝑛2/𝑐7) given by [CDK18].

Corollary 1.10. For every 𝜖 > 0, there is an integer 𝑝0 ≥ 2 such that the following holds for any randomized
𝑝-player protocol for Max-Card-𝑘 with 𝑘 = 𝑝 ≥ 𝑝0. If the protocol has an approximation guarantee of 1/2+𝜖,
then one of the players sends a message of length at least Ω(𝑁𝜖/𝑝2).

This corollary improves the previous lower of Ω(𝑁𝜖/𝑝3) given by [FNFSZ20].

Corollary 1.11. A data stream algorithm for Submodular Maximization subject to 𝑘 Matroid Constraints,
whose only access to the matroids is via the common independence oracle, and with expected approximation
ratio 𝑘 − 𝜖 for some 𝜖 ∈ [0, 𝑘 − 1) must use Ω( 𝜖𝑛

𝑘3
log𝑘) memory.

This corollary improves the previous lower of Ω( 𝜖𝑛
𝑘5

log𝑘) given by [FNFSZ22].

Corollary 1.12. For any 𝑡 ≥ 2, any algorithm for the geometric maximum independent set that can distin-
guish between an independent set of size 1 and 𝑡 and succeeds with probability at least 2/3 on streams of 2-
intervals must use at least Ω(𝑛/𝑡2) bits of memory.

This corollary improves the previous lower of Ω(𝑛/𝑡3) given by [BKO22].

Corollary 1.13. Any one-pass constant error randomized algorithm with approximation factor𝛼 for Interval
Selection on weighted arbitrary-length intervals in insertion-only streams needs Ω( 1𝛼 · min{Δ 1

2𝛼 , 𝑛
22𝛼 }) bits

of space.

This corollary improves the previous lower of Ω( 1
𝛼2 ·min{Δ 1

2𝛼 , 𝑛
22𝛼 }) given by [DDK23].

Corollary 1.14. Let 𝑐 > 1 be a constant. Let 𝐴 be a 𝑝-pass streaming algorithm that approximates the
optimum value of SET-COVER𝑛,𝑚 over instances to a factor smaller than𝑛1/(𝑝+1)/(𝑐 (𝑝+1)2) with probability
at least 2/3. Then 𝐴 must use Ω(𝑛𝑐/𝑝2) bits of space. This space lower bound applies to instances with
𝑚 = Θ(𝑛𝑐𝑝).

This corollary improves the previous Ω(𝑛𝑐/𝑝3) space lower bound given by [CW16].
Beyond direct applications, we believe our novel method could provide more applications for

streaming problems.

Paper organization. In Section 2, we give preliminaries. Section 3 shows an almost tight bound
for the Tree Pointer Jumping problem. Here, we show the lower bound in Section 3.1 and the
upper bound in Section 3.2. In Section 4, we prove an improved lower bounds for the Chained
Index problem.

2 Preliminary

Notations. We use capital letters 𝑋 to denote a set and bold symbols like 𝑹 to denote random
variables. For a set 𝑋 , we use 𝑿 to denote the random variable uniformly distributed over the set
𝑋 . We introduce the formal definition of min-entropy and min-entropy deficiency.

Definition 2.1 (Min-entropy). The min-entropy of a random variable 𝑹 is defined by

H∞(𝑹)
def
= min

𝑥∈supp(𝑹 )
log

(
1

Pr[𝑹 = 𝑥]

)
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Definition 2.2 (Min-entropy deficiency). Let 𝑹 be a random variable on a domain 𝑈 . Its min-
entropy deficiency is defined by 𝐷∞(𝑹)

def
= log |𝑈 | −H∞(𝑹),

In structure-vs-pseudorandomness decomposition, one of the most important notions, which
captures the pseudorandomness, is the block-wise density.

Definition 2.3 (Block-wise density [GLM+16]). For 𝛾 > 0. A random variable 𝑿 supported on 𝑈 𝑛

is said to be 𝛾-dense if for all nonempty 𝐼 ⊆ [𝑛], we have that H∞(𝑿 (𝐼 )) ≥ 𝛾 · |𝐼 | · log |𝑈 |, here 𝑿 (𝐼 ) is
the marginal distribution of 𝑿 on the set 𝐼 .

The following lemma tells us that a flat distribution could be decomposed by a combination of
random variables with dense properties by fixing some positions:

Lemma 2.4 (Density-restoring partition). Let𝛾 ∈ (0, 1). Let𝑋 be a subset of [𝑁 ]𝑀 and 𝐽 ⊆ [𝑀]. Suppose
that there exists an 𝛽 ∈ [𝑁 ] 𝐽 such that∀𝑥 ∈ 𝑋, 𝑥 (𝐽 ) = 𝛽. Then, there exists a partition𝑋 = 𝑋 1∪𝑋 2∪· · ·∪𝑋 𝑟
and every 𝑋 𝑖 is associated with a set 𝐼𝑖 ⊆ 𝐽 and a value 𝛼𝑖 ∈ {0, 1}𝐼𝑖 that satisfy the following properties.

1. ∀𝑥 ∈ 𝑋 𝑖 , 𝑥 (𝐼𝑖) = 𝛼𝑖 ;
2. 𝑿 𝑖 (𝐽 \ 𝐼𝑖) is 𝛾-dense;

3. 𝐷∞
(
𝑿 𝑖 (𝐽 \ 𝐼𝑖)

)
≤ 𝐷∞ (𝑿 (𝐽 )) − (1 − 𝛾) |𝐼𝑖 | log𝑁 + 𝛿𝑖 , where 𝛿𝑖

def
= log(|𝑋 |/| ∪𝑗≥𝑖 𝑋 𝑗 |).

Proposition 2.5. Let 𝑍1, . . . , 𝑍𝑇 be a partition of set 𝑍 . Then

𝑇∑
𝑖=1

|𝑍𝑖 |
|𝑍 | · log |𝑍𝑖 | ≥ log |𝑍 | − log𝑇 .

3 Tree Pointer Jumping

Recall that the Tree Pointer Jumping problem is associatedwith a 𝑘-level 𝑡-ary tree𝑇 and a function
𝜙 : 𝑉 (𝑇 ) → [𝑡]. Here, the 𝑖-th player receives the labels of the 𝑖-th level nodes.

For each node 𝑣 in the 𝑖-th level of 𝑇 , we represent it by a number in [𝑡𝑖−1]. Hence, the input
space of the Tree Pointer Jumping could be written [𝑡]𝑡0 × · · · × [𝑡]𝑡𝑘−2 × [𝑡]𝑡𝑘−1 . For each input
𝑥𝑖 = (𝑥𝑖 (1), . . . , 𝑥𝑖 (𝑡𝑖−1)) ∈ [𝑡]𝑡

𝑖−1 , it is indeed a function from [𝑡𝑖−1] to [𝑡], i.e., the 𝑖-th level labels.
For an input (𝑥1, . . . , 𝑥𝑡 ), recall the associated function 𝑔𝜙 : 𝑉 (𝑇 ) → 𝑉 (𝑇 ) ∪ [𝑡] is defined by

𝑔𝜙 (𝑣) =
{
the 𝜙 (𝑣)-th child of 𝑣 if 𝑣 is not a leaf;
𝜙 (𝑣) otherwise.

Let 𝑣1 be the root of the tree 𝑇 . For an ℓ > 1, we define 𝑣ℓ,𝜙 = 𝑔𝜙 (𝑣ℓ−1,𝜙 ) . When 𝜙 is clear in the
context, we simply shorthand as (𝑣1, . . . , 𝑣𝑘 ). The goal is to compute 𝑇𝑃 𝐽 (𝜙) = 𝜙 (𝑣𝑘 ) = 𝑥𝑘 (𝑣𝑘 ).

3.1 Proof of Lower Bounds

In communication protocols, it is known that the players’ messages partition input space intomany
rectangles. Our proof’s main idea is to decompose these into some nice rectangles further. For-
mally, we define the pseudorandom rectangles below.
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Definition 3.1. For 𝛾 > 0 and 𝑖 ≥ 1, we say that a set 𝑋𝑖 ⊆ [𝑡]𝑡
𝑖−1 is 𝛾-structure if there is a set

𝐼 ⊆ [𝑡𝑖−1] and 𝛼 ∈ {0, 1}𝐼 such that,
1. ∀𝑥𝑖 ∈ 𝑋𝑖 , 𝑥𝑖 (𝐼 ) = 𝛼 , here we call 𝐼 the set of fixed coordinates
2. 𝑿𝑖 ( [𝑡𝑖−1] \ 𝐼 ) is 𝛾-dense.

We say that a rectangle 𝑅 := 𝑋1 × · · · × 𝑋𝑘 is 𝛾-structure if all sets 𝑋1, . . . , 𝑋𝑘 are 𝛾-structure. Notice
that for each 𝛾-structure 𝑅, there is a list of sets of fixed coordinates 𝐼1, . . . , 𝐼𝑘 .

Let 𝜇𝑘 be the uniform distribution on the input space. Recall that our main goal is to prove the,
for any (𝑘 − 1)-round communication protocol Π with

Pr
𝜙=(𝑥1,...,𝑥𝑡 )←𝜇𝑘

[𝑣𝑘,𝜙 = Π(𝑥1, . . . , 𝑥𝑘 )] ≥ 2/3,

we have that 𝑅max(Π) = Ω(𝑡/𝑘) . To prove this result, we consider the following sampling process
(Algorithm1). In addition to sampling (𝑥1, . . . , 𝑥𝑘 ), we also sample some auxiliary randomvariables
in this process to help the analysis.

Algorithm 1: The decomposition and sampling process
1 𝑅 (0) ← 𝑅root;
2 𝐽 (0)𝑖 ← [𝑡𝑖−1] for 𝑖 = 1, · · · , 𝑘 ;
3 for ℓ ← 1 to 𝑘 do
4 𝑋1 × · · · × 𝑋𝑘 ← 𝑅 (ℓ−1) ;
5 for 𝑖 ← 𝑘 to ℓ + 1 do
6 let 𝑐ℓ,𝑖 be the total communication bits of player 𝑖 in the ℓ-th round;
7 𝑋𝑖 is partitioned into 2𝑐ℓ,𝑖 rectangles 𝑋 1

𝑖 , . . . , 𝑋
2𝑐ℓ,𝑖
𝑖 by the protocol message;

8 sample a random element 𝒋, which is equal to 𝑗 ∈ [2𝑐ℓ,𝑖 ] w.p. |𝑋 𝑗
𝑗 |/|𝑋𝑖 |;

9 𝑌𝑖 ← 𝑋 𝒋
𝑖 ;

10 decompose 𝑌𝑖 by Lemma 2.4 with 𝐽 = 𝐽 (ℓ−1)𝑖 , get 𝑌 1, · · · , 𝑌 𝑟 , 𝐼1, · · · , 𝐼𝑟 ;
11 sample a random element 𝒔, which is equal to 𝑠 ∈ [𝑟 ] w.p. |𝑌 𝑠 |/|𝑌𝑖 |;
12 𝑍𝑖 ← 𝑌 𝒔 ;
13 𝐼 ℓ𝑖 ← 𝐼𝒔 ⊲ store the newly fixed indices;
14 𝐽 (ℓ )𝑖 ← 𝐽 (ℓ−1)𝑖 \ 𝐼 (ℓ )𝑖 ⊲ store the unfixed indices;
15 uniformly sample an element 𝒙ℓ from 𝑋ℓ ;
16 𝑅 (ℓ ) ← 𝑋1 × · · · × 𝑋ℓ−1 × {𝒙ℓ } × 𝑍ℓ+1 × · · · × 𝑍𝑘 ;
17 Output the only element (𝑥1, . . . , 𝑥𝑘 ) in 𝑅 (𝑘 ) .

We observe that the output distribution by Algorithm 1 is exactly the uniform distribution 𝜇𝑘 .
In addition to sampling 𝜇𝑘 , Algorithm 1 also samples random variables 𝑹 (ℓ ) , 𝑱 (ℓ )𝑖 for 𝑖 > ℓ ≥ 1. The
crux is that in each round ℓ , we maintain a rectangle 𝑅 (ℓ ) such that

• We fix the first ℓ players’ inputs. Hence (𝑣1, . . . , 𝑣ℓ+1) are determined;
• 𝑅 (ℓ ) is a 𝛾-structure, with alive coordinates 𝐽 (ℓ )𝑖 for every 𝑖 > ℓ .
In order to prove the lower bound, our goal is to show that in the round ℓ , the players are hard

to guess (𝑣ℓ+1, . . . , 𝑣𝑘 ) even with the knowledge of 𝑣1, . . . , 𝑣ℓ . On the other hand, since 𝑅 (ℓ ) is a 𝛾-
structure, it is sufficient to that with high probability, the event 𝑣𝑖 ∈ 𝐽 (ℓ )𝑖 will happen. We formalize
the intuition by following lemmas.
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Lemma 3.2. Let 𝛾 = 1 − 1
log 𝑡 . For each ℓ > 1,

Pr
[
∃𝑖 > ℓ, 𝑣ℓ ∈ 𝐽 (ℓ−1)ℓ ∧ 𝑣𝑖 ∈ 𝐼 (ℓ )𝑖

]
≤ 2

𝑡
E

[∑
𝑖>ℓ

���𝑰 (ℓ )𝑖

���]
Proof. In order to prove this lemma, we consider a tuple Γ

def
=

(
𝑅 (ℓ−1) , 𝐼 (ℓ )ℓ+1, . . . , 𝐼

(ℓ )
𝑘

, 𝐵
)
, where

𝐵
def
= {𝑣 in the (ℓ + 1)-th level of the tree : 𝑣 is the ancestor of some nodes from 𝐼 (ℓ )𝑖 , for some 𝑖 > ℓ}

Now for any fixed tuple Γ, we have that

Pr
[
∃𝑖 > ℓ, 𝑣ℓ ∈ 𝐽 (ℓ−1)ℓ ∧ 𝑣𝑖 ∈ 𝐼 (ℓ )𝑖

��� Γ] = Pr
[
𝑣ℓ ∈ 𝐽 (ℓ−1)ℓ ∧ 𝑣ℓ+1 ∈ 𝐵

��� Γ]
Notice that if 𝑣ℓ ∈ 𝐽 (ℓ−1)ℓ happens, the random variable 𝒗ℓ+1 is 𝛾-dense. It implies that for any 𝑣 ,

Pr
[
𝑣ℓ ∈ 𝐽 (ℓ−1)ℓ ∧ 𝒗ℓ+1 = 𝑣

��� Γ] ≤ 𝑡−𝛾 ≤ 2
𝑡

Hence we have that,

Pr
[
𝑣ℓ ∈ 𝐽 (ℓ−1)ℓ ∧ 𝑣ℓ+1 ∈ 𝐵

��� Γ] ≤ 2
𝑡
· |𝐵 | ≤ 2

𝑡

∑
𝑖>ℓ

���𝐼 (ℓ )𝑖 ���
Now by taking the expectation on the choices of Γ, we then finish the proof. □

We then upper bound
���𝑰 (ℓ )𝑖

��� in the following lemma.

Lemma 3.3. Let Π be a (𝑘 − 1)-round protocol such that players communicate at most 𝑐 bits in each round,
then we have that,

E

[
𝑘−1∑
ℓ=1

∑
𝑖>ℓ

���𝑰 (ℓ )𝑖

���] ≤ 2𝑘𝑐

Proof. Consider in the ℓ-th round of communication. For every player 𝑖 > ℓ , the rectangle 𝑋𝑖 is
partitioned into 𝑋 1

𝑖 , ..., 𝑋
2𝑐ℓ,𝑖
𝑖 and that 𝒀𝑖 ← 𝑋 𝒋

𝑖 with probability |𝑋
𝑗
𝑖 |
|𝑋𝑖 | . In this process, we have that,

E
𝒋

[
𝐷∞

(
𝒀𝑖 (𝐽 (ℓ−1)𝑖 )

)
− 𝐷∞

(
𝑋𝑖 (𝐽 (ℓ−1)𝑖 )

)]
=

2𝑐𝑖∑
𝑗=1

���𝑋 𝑗
𝑖 (𝐽
(ℓ−1)
𝑖 )

������𝑋𝑖 (𝐽 (ℓ−1)𝑖 )
��� log

( ���𝑋𝑖 (𝐽 (ℓ−1)𝑖 )
������𝑋 𝑗

𝑖 (𝐽
(ℓ−1)
𝑖 )

���
)
≤ 𝑐ℓ,𝑖

Then by the density restoring lemma (Lemma 2.4), the rectangle 𝑌𝑖 is partitioned into 𝑌 1, ..., 𝑌 𝑟

together with the index sets 𝐼1, · · · , 𝐼𝑟 . Recall that 𝒁𝑖 ← 𝑌 𝑠 with probability |𝑌
𝑠 |
|𝑌𝑖 | . By the third item

in Lemma 2.4, we have that,

E
𝒔

[
𝐷∞

(
𝒁𝑖 (𝑱 (ℓ )𝑖 )

)
− 𝐷∞

(
𝑌𝑖 (𝐽 (ℓ−1)𝑖 )

)]
≤ E

𝒔

[
−(1 − 𝛾) · (log 𝑡) ·

���𝑰 (ℓ )𝑖

���] + E
𝒔
[𝛿𝒔] = E

𝒔

[
−

���𝑰 (ℓ )𝑖

���] + E
𝒔
[𝛿𝒔]
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Here the last equality follows from the fact that 𝛾 = 1− 1
log 𝑡 . Recall that 𝛿𝒔 = log

(
|𝑌𝑖 | /

��∪𝑝≥𝒔𝑌𝑝 ��) , then
we have that,

E[𝛿𝒔] =
∑
𝑠

|𝑌 𝑠 |
|𝑌𝑖 |

log
(��𝑌 𝑖 �� /��∪𝑝≥𝑘𝑌𝑝 ��) ≤ ∫ 1

0
log

1
1 − 𝑥 𝑑𝑥 = 1.

For the case where 𝑐ℓ,𝑖 = 0, the number of partitions is only 1 and we get 𝔼[𝛿𝒔] = 0. Hence, we
deduce that E[𝛿𝒔] ≤ 𝑐ℓ,𝑖 . Combining these inequalities, we get

E
𝒋,𝒔

[
𝐷∞

(
𝒁𝑖 (𝑱 (ℓ )𝑖 )

)
− 𝐷∞

(
𝑋𝑖 (𝐽 (ℓ−1)𝑖 )

)]
≤ 2𝑐ℓ,𝑖 − E

[���𝑰 (ℓ )𝑖

���]
By taking a summation on all players 𝑖 > ℓ , we have that∑

𝑖>ℓ

E
𝒋,𝒔

[
𝐷∞

(
𝒁𝑖 (𝑱 (ℓ )𝑖 )

)
− 𝐷∞

(
𝑋𝑖 (𝐽 (ℓ−1)𝑖 )

)]
≤

∑
𝑖>ℓ

(
2𝑐ℓ,𝑖 − E

[���𝑰 (ℓ )𝑖

���] ) ≤ 2𝑐 −
∑
𝑖>ℓ

E
[���𝑰 (ℓ )𝑖

���]
By the definition of Algorithm 1, it is clear that for every 𝑖 > ℓ , 𝑍𝑖 defined in the ℓ-th round is used
as 𝑋𝑖 in the (ℓ + 1)-th round. Hence, by summing all rounds, we have∑

ℓ

∑
𝑖>ℓ

E
[���𝑰 (ℓ )𝑖

���] ≤ 2𝑘𝑐 −
(∑
ℓ

∑
𝑖>ℓ

E
𝒋,𝒔

[
𝐷∞

(
𝒁𝑖 (𝑱 (ℓ )𝑖 )

)]
− 𝐷∞(𝑅root)

)
Here 𝐷∞(𝑅root) is the first round deficiency and 𝐷∞

(
𝒁𝑖 (𝑱 (ℓ )𝑖 )

)
is the last round deficiency. By the

definition of deficiency, we have that
1. 𝐷∞(𝑅root) = 0 as 𝑅root is equal to the input space;

2. For all 𝑖, ℓ , 𝐷∞
(
𝒁𝑖 (𝑱 (ℓ )𝑖 )

)
≥ 0 as the deficiency is always non-negative.

Together, we conclude that
∑
ℓ
∑
𝑖>ℓ E

[���𝑰 (ℓ )𝑖

���] ≤ 2𝑘𝑐. □

Combining these two lemmas, we can then prove the main theorem.

Theorem 3.4 (Restate of Theorem 1.3). Let 𝜇𝑘 denote the uniform distribution over the input space. Then
for any (𝑘 − 1)-round protocol Π with

Pr
𝜙=(𝑥1,...,𝑥𝑡 )←𝜇𝑘

[𝑣𝑘 = Π(𝑥1, . . . , 𝑥𝑘 )] ≥ 2/3,

we have that 𝑅max(Π) = Ω(𝑡/𝑘) .

Proof. We consider an event 𝐸 defined by 𝐸 :=
(
𝒗2 ∈ 𝑱 (1)2 , · · · , 𝒗𝑘 ∈ 𝑱 (𝑘−1)

𝑘

)
. Then we have that

Pr[𝑣𝑘 = Π(𝑥1, . . . , 𝑥𝑘 )] = Pr[𝑣𝑘 = Π(𝑥1, . . . , 𝑥𝑘 ) ∧ 𝐸] + Pr[𝑣𝑘 = Π(𝑥1, . . . , 𝑥𝑘 ) ∧ ¬𝐸]
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By Lemma 3.2 and Lemma lemma 3.3,

Pr[¬𝐸] = Pr
[
𝑣ℓ+1 ∉ 𝐽 (ℓ )ℓ+1 for some ℓ ∈ [𝑘 − 1]

]
= Pr

[
𝑘−1⋃
ℓ=1

{
𝑣𝑖 ∈ 𝐼 (ℓ )𝑖 for some 𝑖 > ℓ ∧ 𝑣ℓ ∈ 𝐽 (ℓ−1)ℓ

}]
≤
𝑘−1∑
ℓ=1

Pr
[
𝑣𝑖 ∈ 𝐼 (ℓ )𝑖 for some 𝑖 > ℓ ∧ 𝑣ℓ ∈ 𝐽 (ℓ−1)ℓ

]
(by union bound)

≤
𝑘−1∑
ℓ=1

2
𝑡
E

[∑
𝑖>ℓ

���𝑰 (ℓ )𝑖

���] (by Lemma 3.2)

≤𝑂
(
𝑘𝑐

𝑡

)
(by Lemma 3.3)

On the other hand, if the event 𝐸 happens, i.e., 𝒗2 ∈ 𝑱 (1)2 , · · · , 𝒗𝑘 ∈ 𝑱 (𝑘−1)
𝑘

, it implies that after the
(𝑘 − 1)-th round communication,

H∞(𝒁𝑘 (𝒗𝑘 )) ≥
(
1 − 1

log 𝑡

)
log 𝑡 = log 𝑡 − 1

Notice that (𝑘 −1)-th round communication is actually the last round of communication. It implies
that

Pr[𝑣𝑘 = Π(𝑥1, . . . , 𝑥𝑘 ) | 𝐸] ≤ 2− log 𝑡+1 = 2/𝑡,

Combining the two observations, we see that the overall success probability of the protocol is

Pr[𝑣𝑘 = Π(𝑥1, . . . , 𝑥𝑘 )] ≤ 𝑂

(
𝑘𝑐

𝑡

)
Hence, the protocol can succeed with probability 2/3 only if 𝑐 = Ω

( 𝑡
𝑘

)
. □

3.2 A Communication Protocol Matches the Lower Bounds

Now we present a protocol Π with 𝑅max(Π) = 𝑂 (𝑡/𝑘).
Algorithm 2: Tree Pointer Jumping Protocol

Input: An input 𝜙 = (𝑥1, . . . , 𝑥𝑘 ) where each player 𝑖 receives the input 𝑥𝑖 .
Output: The value 𝑠 ∈ [𝑡]

1 for ℓ ← 1 to 𝑘 − 1 do
2 if the (ℓ + 1)-th player can not fully determine 𝑣ℓ+1 then
3 Player (ℓ + 1) selects a random subset 𝑆ℓ of size |𝑆ℓ | = 2𝑡/𝑘 from the children of 𝑣ℓ ,

and writes{(𝑢, 𝑥ℓ+1(𝑢))}𝑢∈𝑆ℓ to the blackboard ;
4 Player ℓ writes 𝑥ℓ (𝑣ℓ ) to the blackboard ⊲ Note that 𝑥ℓ (𝑣ℓ ) is 𝑣ℓ+1 ;
5 All players compute whether 𝑣ℓ+1 ∈ 𝑆ℓ . If so, they compute 𝑣ℓ+2 = 𝑥ℓ+1(𝑣ℓ+1);
6 else
7 Player (ℓ + 1) writes 𝑣ℓ+2 = 𝑥ℓ+1(𝑣ℓ+1) to the blackboard;
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Theorem 3.5. There exists a protocol (Algorithm 2) that computes the Tree Pointer Jumping problem with
𝑂 (𝑡/𝑘) communication bits per round.

Proof. The communication cost of Algorithm 2 in each round is at most

2𝑡
𝑘
· log 𝑡 + log 𝑡 = 𝑂 (𝑡/𝑘) .

We observe that if there is a round ℓ such that 𝑣ℓ+1 ∈ 𝑆ℓ , the players could correctly compute the
output. Hence

Pr[𝑣𝑘 ≠ Π(𝑥1, . . . , 𝑥𝑘 )] ≤ Pr [∀ℓ, 𝑣ℓ+1 ∉ 𝑆ℓ ] ≤ (1 − 2/𝑘)𝑘 ≤ 0.3

The theorem then follows. □

4 Lower Bounds for Chained Index

Recall that in the Chained Index problem, the player 𝑖 receives an input 𝑧𝑖 = (𝜎𝑖 , 𝑥𝑖) ∈ [𝑛] × {0, 1}𝑛.
The players aim to compute 𝑥𝑘−1(𝜎𝑘 ) through a one-way communication. In this section, we show
an improved lower bound for the Chained Index problem. In light of Yao’s principle, we consider
the following hard distribution.

The distribution 𝜒𝑘

1. Uniformly sample 𝜎1, ..., 𝜎𝑘 ∈ [𝑛].
2. Sample (𝑥1, . . . , 𝑥𝑘 ) ← ({0, 1}𝑛)𝑘 conditioned on 𝑥1(𝜎2) = · · · = 𝑥𝑘−1(𝜎𝑘 ).
3. Output 𝑧 = (𝑧1, . . . , 𝑧𝑘 ) where 𝑧𝑖 = (𝜎𝑖 , 𝑥𝑖) for every 𝑖 ∈ [𝑘].

For a subset 𝑅 ⊆ ([𝑛] × {0, 1}𝑛)𝑘 , define the weight of 𝑅 under 𝜒𝑘 as

𝜒𝑘 (𝑅)
def
= Pr

𝑧←𝜒𝑘
[𝑧 ∈ 𝑅] = #{((𝜎1, 𝑥1), . . . , (𝜎𝑘 , 𝑥𝑘 )) ∈ 𝑅 : 𝑥1(𝜎2) = · · · = 𝑥𝑘−1(𝜎𝑘 )}

𝑛𝑘 · 2(𝑘−1) (𝑛−1)+𝑛+1
.

We prove the following lower bound.

Theorem 4.1. Let 𝜀 ∈ (0, 1/4]. Let Π be a protocol that has 2𝜀 advantage, i.e.,

Pr
𝑧=(𝜎1,𝑥1,...,𝜎𝑘 ,𝑥𝑘 )←𝜒𝑘

[Π(𝑧) = 𝑥𝑘−1(𝜎𝑘 )] ≥
1
2
+ 2𝜀.

Then we have that CC(Π) ≥ 𝜀2

8 · 𝑛/𝑘 − 𝑘 .

Extension to the large 𝑘 regime for oblivious protocols. Note that the above lower bound is
vacuous when 𝑘 = 𝜔 (

√
𝑛). If we are restricted to oblivious protocols, i.e., each message in a protocol

has a predetermined length independent of the input, then we can strengthen the lower bound so
as to work with large 𝑘’s by a simple reduction. Formally, we have
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Theorem 4.2. Let 𝜀 ∈ (0, 1/4]. If Π is an oblivious protocol for the Chained Index problem that has 2𝜀
advantage, then CC(Π) = Ω(𝑛/𝑘 +

√
𝑛).

We use a decomposition and sampling process DS, as shown in Algorithm 3, in our analysis.
DS takes as input a protocol Π, and samples a rectangle 𝑅 that is contained in Π𝑣 for some leaf node
𝑣 . Our proof proceeds in two steps:

1. Section 4.1 shows that the accuracy of Π is captured by a quantity called average fixed size,
which is a natural quantity that arises in the running of DS.

2. Section 4.2 proves that the average fixed size can be bounded from above by 𝑂 (𝑘 · CC(Π)).
Consequently, if Π enjoys high accuracy, we get a lower bound of CC(Π).

We first recall some basic definitions.

𝑘-party one-way protocols. A deterministic 𝑘-party one-way communication protocol Π is spec-
ified by a rooted binary tree. For every internal vertex 𝑣 ,

• it has 2 children, denoted by Π(𝑣, 0) and Π(𝑣, 1);
• 𝑣 is owned by some part — we denote the owner by owner(𝑣) ∈ [𝑘];
• every leaf node specifies an output.

Starting from the root, the owner of the current node cur partitions its input space into two parts
𝑋0 and 𝑋1, and sets the current node to Π(cur, 𝑏) if its input belongs to 𝑋𝑏 .

The communication complexity of Π, denoted by CC(Π), is the depth of the tree. On a path from
root to some leaf, each time the owner switches, we call it a new round; in a one-way protocol, the
label of the owner is non-decreasing.

Fact 4.3. The set of all inputs that leads to an internal vertex 𝑣 is a rectangle, denoted by Π𝑣 = 𝑋1 × · · · ×𝑋𝑘 .

Normalized Protocol. Wenormalized a protocolΠ as follows so as tomake it defined on all inputs
including those not in supp(𝜒𝑘 ). For the 𝑖-th party, given input (𝜎𝑖 , 𝑥𝑖) ∈ [𝑛] × {0, 1}𝑛 and previous
transcripts trans, output 0 if the input is invalid, i.e., given trans, there is no input in supp(𝜒𝑘 )matches
𝑥𝑖 . Otherwise the 𝑖-th party outputs 1 and proceed as Π. Clearly, by normalizing we communicate
𝑘 more bits.

Lemma 4.4 (Loop Invariant). After each iteration in Algorithm 3,
• 𝑅 ⊆ Π𝑣 ;
• for all 𝑖 ∈ [𝑘], 𝑿𝑖 (𝐽𝑖) is 𝛾-dense.

Proof. The first item is true because every time 𝑣 is updated, 𝑅 is updated accordingly to a sub-
rectangle of Π𝑣 and updating 𝑅 into its sub-rectangles does not violate this condition.

Since we applied density restoring partition at the end of each iteration, the second item is
guaranteed by Lemma 2.4 and the way that 𝑋𝑖 , 𝐽𝑖 are updated. □
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Algorithm 3: Decomposition and Sampling Process DS
Input: A protocol Π
Output: A rectangle 𝑅 = ({𝜎1} × 𝑋1) × · · · × ({𝜎𝑘 } × 𝑋𝑘 ) and 𝑘 sets 𝐽1, . . . , 𝐽𝑘 ⊆ [𝑛].

1 for 𝑖 ∈ [𝑘] do
2 𝑋𝑖 := {0, 1}𝑛 , 𝐽𝑖 := [𝑛]. // Initialization
3 Sample 𝜎1 ← [𝑛].
4 𝑣 := root of Π, 𝑅 := ({𝜎1} × {0, 1}𝑛) × ([𝑛] × {0, 1}𝑛)𝑘−1, bad := FALSE.
5 while 𝑣 is not a leaf node do
6 𝑖 := owner(𝑣), 𝑢0 := Π(𝑣, 0), 𝑢1 := Π(𝑣, 1).
7 //Loop invariant: (1) 𝑅 ⊆ Π𝑣; (2) 𝑿𝑖 (𝐽𝑖) is 𝛾-dense.
8 𝑋𝑖 is partitioned into 𝑋𝑖 = 𝑋 0 ∪ 𝑋 1 according to Π.
9 Sample 𝒃 such that Pr [𝒃 = 𝑏] = 𝜒𝑘 (𝑅𝑏 )

𝜒𝑘 (𝑅) where
𝑅𝑏 = ({𝜎1} × 𝑋1) × · · · ({𝜎𝑖} × 𝑋𝑏) × ([𝑛] × {0, 1}𝑛)𝑘−𝑖 for 𝑏 ∈ {0, 1}.

10 //𝑅 is always a shorthand for ({𝜎1} × 𝑋1) × · · · × ({𝜎𝑖} × 𝑋𝑖) × ([𝑛] × {0, 1}𝑛)𝑘−𝑖
11 Update 𝑋𝑖 := 𝑋𝒃 .
12 Let 𝑋𝑖 = 𝑋 1 ∪ · · · ∪ 𝑋𝑚 be the decomposition of 𝑋𝑖 promised by Lemma 2.4 with

associated sets 𝐼1, . . . , 𝐼𝑚 ⊆ 𝐽𝑖 . // Invoking Lemma 2.4 with 𝛾 = 1 − 2𝜀
𝑘 , 𝐽 = 𝐽𝑖 , 𝑁 = 2.

13 Sample 𝒋 ∈ [𝑚] such that Pr [𝒋′ = 𝑗] = 𝜒𝑘 (𝑅 𝑗 )
𝜒𝑘 (𝑅) where

𝑅 𝑗 = ({𝜎1} × 𝑋1) × · · · × ({𝜎𝑖} × 𝑋 𝑗 ) × ([𝑛] × {0, 1}𝑛)𝑘−𝑖 for 𝑗 ∈ [𝑚].
14 Update 𝑋𝑖 := 𝑋 𝒋, 𝐽𝑖 := 𝐽𝑖 \ 𝐼𝒋 .
15 if owner(𝑢𝒃) ≠ 𝑖 then
16 Sample 𝜎𝑖+1 ∈ [𝑛] such that Pr [𝜎𝑖+1 = 𝜌] = 𝜒𝑘 (𝑅𝜌 )

𝜒𝑘 (𝑅) where
𝑅𝜌 = ({𝜎1} × 𝑋1) × · · · × ({𝜎𝑖} × 𝑋𝑖) × ({𝜌} × {0, 1}𝑛) × ([𝑛] × {0, 1}𝑛)𝑘−𝑖−1 for 𝜌 ∈ [𝑛].

17 if 𝜎𝑖+1 ∉ 𝐽𝑖 then bad := TRUE;
18 Output 𝑅 = ({𝜎1} × 𝑋1) × · · · × ({𝜎𝑘 } × 𝑋𝑘 ).
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4.1 Relating Accuracy and Average Fixed Size

Lemma 4.5 (Relating accuracy and avarage fixed size). Assume that 𝛾 ≥ log
[
1 +

( 1−2𝜀
1+2𝜀

)1/𝑘 ] . Then

Pr
𝑧=(𝜎1,𝑥1,...,𝜎𝑘 ,𝑥𝑘 )←𝜒𝑘

[Π(𝑧) = 𝑥𝑘−1(𝜎𝑘 )] ≤
1
2
+ 𝜀 + 4

𝑛
· E
(𝑅,𝐽1,...,𝐽𝑘 )←DS(Π)


∑
𝑗∈[𝑘 ]
|𝐽𝑖 |

 .
Remark 4.6. 𝛾 def

= 1 − 2𝜀
𝑘 satisfies the condition. Indeed,

log

[
1 +

(
1 − 2𝜀
1 + 2𝜀

)1/𝑘 ]
≤

(
1 − 2𝜀
1 + 2𝜀

)1/𝑘
≤ 1 − 1

𝑘
· 4𝜀
1 + 2𝜀 ≤ 1 − 2𝜀

𝑘
,

where the first inequality is by log(1 + 𝑥) ≤ 𝑥 , and the second is by (1 − 𝑥)𝑟 ≤ 1 − 𝑟𝑥 for 𝑥 ∈ (−1, 0)
and 𝑟 ∈ (0, 1).

The proof of the lemma is obtained through the following two lemmas. The first lemma readily
says that conditioned on the flag bad is not raised, Π has little advantage in the rectangle 𝑅 output
by DS(Π). The second lemma shows the probability that the flag is raised is bounded in terms of
the average fixed size.

Lemma 4.7. If DS(Π) outputs (𝑅, 𝐽1, . . . , 𝐽𝑘 ) and bad = FALSE in the end, then

Pr
𝑧=(𝜌1,𝑥1,...,𝜌𝑘 ,𝑥𝑘 )←𝑅

[Π(𝑧) = 𝑥𝑘−1(𝜌𝑘 ) |𝑥1(𝜌2) = · · · = 𝑥𝑘−1(𝜌𝑘 )] ≤
1
2
+ 𝜀.

Lemma 4.8. PrDS(Π) [bad = TRUE] ≤ 4
𝑛 · E(𝑅,𝐽1,...,𝐽𝑘 )←DS(Π)

[∑
𝑗∈[𝑘 ] |𝐽𝑘 |

]
.

Next, we first prove Lemma 4.5 using the above two lemma.

Proof of Lemma 4.5. Note that in the running of DS(Π), we first sample 𝜎1, . . . , 𝜎𝑘 ← [𝑛] and then
always update 𝑅 to a randomly chosen rectangle; the probability of each rectangle being chosen is
proportional to its weight under 𝜒𝑘 . Consequently,

Pr
𝑧=(𝜎1,𝑥1,...,𝜎𝑘 ,𝑥𝑘 )←𝜒𝑘

[Π(𝑧) = 𝑥𝑘−1(𝜎𝑘 )]

= Pr
(𝑅,𝐽1,...,𝐽𝑘 )←DS(Π)
(𝜎1,𝑥1,...,𝜎𝑘 ,𝑥𝑘 )←𝑅

[Π(𝑧) = 𝑥𝑘−1(𝜎𝑘 ) | 𝑥1(𝜎2) = · · · = 𝑥𝑘−1(𝜎𝑘 )]

≤ Pr
DS(Π)

[bad = TRUE] + Pr
(𝑅,𝐽1,...,𝐽𝑘 )←DS(Π)
𝑧=(𝜎1,𝑥1,...,𝜎𝑘 ,𝑥𝑘 )←𝑅

[Π(𝑧) = 𝑥𝑘−1(𝜎𝑘 ) |𝑥1(𝜎2) = · · · = 𝑥𝑘−1(𝜎𝑘 ) ∧ bad = FALSE]

≤ 1
2
+ 𝜀 + 4

𝑛
· E
(𝑅,𝐽1,...,𝐽𝑘 )←DS(Π)

[
𝑘∑
𝑖=1

|𝐽𝑖 |
]
.

where the last step is by lemma 4.7 and lemma 4.8. □

It remains to prove the two lemmas.
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Proof of lemma 4.7. Say 𝑅 = ({𝜎1} × 𝑋1) × · · · × ({𝜎𝑘 } × 𝑋𝑘 ). Since bad = FALSE in the end, we have
𝜎𝑖+1 ∈ 𝐽𝑖 for all 𝑖 ∈ [𝑘 − 1]. By lemma 4.4, we have H∞(𝑿𝑖 (𝜎𝑖+1)) ≥ 𝛾 for all 𝑖. Since 𝑅 is contained in
some leaf node of Π, Π output the same answer in 𝑅, say 𝑏∗ ∈ {0, 1}. Note that for 𝑏 ∈ {0, 1},

Pr
𝑧=(𝜌1,𝑥1,...,𝜌𝑘 ,𝑥𝑘 )←𝑅

[𝑥1(𝜌2) = · · · = 𝑥𝑘−1(𝜌𝑘 ) = 𝑏] =
∏

𝑖∈[𝑘−1]
Pr

𝑥𝑖←𝑋𝑖

[𝑥𝑖 (𝜎𝑖+1) = 𝑏] ,

since we must have 𝜌𝑖 = 𝜎𝑖 . Write 𝑝𝑖
def
= Pr𝑥𝑖←𝑋 𝑖

[
𝑥𝑖 (𝜎𝑖) = 𝑏∗

]
. Then we have

Pr
𝑧=(𝜌1,𝑥1,...,𝜌𝑘 ,𝑥𝑘 )←𝑅

[Π(𝑧) = 𝑥𝑘−1(𝜌𝑘 ) |𝑥1(𝜌2) = · · · = 𝑥𝑘−1(𝜌𝑘 )]

= Pr
𝑧=(𝜌1,𝑥1,...,𝜌𝑘 ,𝑥𝑘 )←𝑅

[𝑥1(𝜌2) = · · · = 𝑥𝑘−1(𝜌𝑘 ) = 𝑏∗ |𝑥1(𝜌2) = · · · = 𝑥𝑘−1(𝜌𝑘 )]

= Pr
𝑧=(𝜌1,𝑥1,...,𝜌𝑘 ,𝑥𝑘 )←𝑅

[𝑥1(𝜎2) = · · · = 𝑥𝑘−1(𝜎𝑘 ) = 𝑏∗] / Pr
𝑧=(𝜌1,𝑥1,...,𝜌𝑘 ,𝑥𝑘 )←𝑅

[𝑥1(𝜎2) = · · · = 𝑥𝑘−1(𝜎𝑘 )]

=

∏
𝑖∈[𝑘 ] 𝑝𝑖∏

𝑖∈[𝑘 ] 𝑝𝑖 +
∏
𝑖∈[𝑘 ] (1 − 𝑝𝑖)

=
1

1 +∏
𝑖∈[𝑘 ] (1/𝑝𝑖 − 1)

.

Since H∞(𝑿𝑖 (𝜎𝑖+1)) ≥ 𝛾 for all 𝑖, we have 𝑝𝑖 ∈ [1 − 2−𝛾 , 2−𝛾 ], which implies

1
1 +∏

𝑖∈[𝑘 ] (1/𝑝𝑖 − 1)
≤ 1

1 + (2𝛾 − 1)𝑘
.

Since we assumed 𝛾 ≥ log
[
1 +

( 1−2𝜀
1+2𝜀

)1/𝑘 ] , it holds that 1
1+(2𝛾 −1)𝑘 ≤

1
2 + 𝜀, concluding the proof. □

Proof of lemma 4.8. Let B𝑡 denote the event that the flag bad is raised when 𝑖 = 𝑡 (i.e., when the 𝑖-th
round ends) for the first time. Clearly, Pr [bad = TRUE] = ∑𝑘−1

𝑡=1 Pr [B𝑡 ] . It suffices to bound each
Pr [B𝑡 ].

Fix 𝑡 ∈ [𝑘 − 1] and the random coins coin used for the first (𝑡 − 1) rounds, i.e., until Line 17 is
reached with 𝑖 = 𝑡 − 1). Let 𝑅𝑡−1 = ({𝜎1} × 𝑋1 × · · · × ({𝜎𝑡 } × {0, 1}𝑛) × ([𝑛] × {0, 1}𝑛)𝑘−𝑡 be the value
of rectangle 𝑅 when running DS(Π) using coin until the 𝑡-th round begins. The core of our proof is
to compare the process with one that runs under uniform weight instead of the weight under 𝜒𝑘 ;
this is why we can deal with the promise.

• Let Real𝑡 be the process that runs DS(Π) until the 𝑡-th round begins with coin, then run the
𝑡-th round with fresh random coins.

• Let U𝑘 denote the uniform distribution over the input space ([𝑛] × {0, 1}𝑛)𝑘 . Consider the
following process, denoted by Unif𝑡 : run DS(Π) until the 𝑡-th round begins with coin, then
run the 𝑡-th round with 𝜒𝑘 replaced byU𝑘 .

Note that during the execution of Real𝑡 and Unif𝑡 , the partitions are the same, and the only
difference is that when choosing 𝒃, 𝒋, 𝜎𝑡+1, the probabilities are different. Let𝑋𝑡 , �̂�𝑡 , 𝜎𝑡+1 be a possible
value of 𝑋𝑡 , 𝐽𝑡 , 𝜎𝑡+1 at the end of the 𝑡-th round. In Real𝑡 we update 𝑅 according to 𝜒𝑘 , and thus the
probability that 𝑋𝑡 = 𝑋𝑡 , 𝜎𝑡+1 = �̂�𝑡+1 in the end of Real𝑡 equals

𝑝 (𝑋𝑖 , 𝜎𝑡+1) =
𝜒𝑘 (({𝜎1} × 𝑋1) × · · · × ({𝜎𝑖} × 𝑋𝑖) × ({𝜎𝑡+1} × {0, 1}𝑛) × ([𝑛] × {0, 1}𝑛)𝑘−𝑡−1)

𝜒𝑘 (𝑅𝑖−1)
.
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Similarly, the probability that 𝑋𝑖 = 𝑋𝑖 , 𝜎𝑡+1 = 𝜎𝑡+1 in the end of Unif𝑖 equals

𝑞(𝑋𝑖 , 𝜎𝑡+1) =
U𝑘 (({𝜎1} × 𝑋1) × · · · × ({𝜎𝑖} × 𝑋𝑖) × ({𝜎𝑡+1} × {0, 1}𝑛) × ([𝑛] × {0, 1}𝑛)𝑘−𝑡−1)

U𝑘 (𝑅𝑖−1)
=
|𝑋𝑖 |
𝑛2𝑛

.

The next claim reveals a connection between the two probabilities, whose proof is by direct calcu-
lation and is deferred to the appendix.

Claim 4.9. For all possible value 𝑋𝑖 , 𝜎𝑡+1, 𝑝 (𝑋𝑖 , 𝜎𝑡+1) ≤ 2𝑞(𝑋𝑡 , 𝜎𝑡+1).
Since 𝐽𝑡 is determined by the value of 𝑋𝑡 and the event B𝑡 is determined by 𝑋𝑡 and 𝜎𝑡+1, the

above claim implies that PrReal𝑡 [B𝑡 ] ≤ 2 PrUnif𝑡 [B𝑡 ] . Note that in Unif𝑡 , 𝜎𝑡+1 is chosen uniformly at
random, and thus

Pr
Unif𝑡
[B𝑡 ] ≤ E

Unif𝑡

[
|𝐽𝑡 |

]
/𝑛 ≤ 2 E

Real𝑡

[
|𝐽𝑡 |

]
/𝑛.

Taking expectation over coin we get Pr [B𝑡 ] ≤ 4
𝑛 · EDS(Π)

[
|𝐽 𝑡 |

]
, as desired. □

4.2 Average Fixed Size is Bounded by Communication

Now that the accuracy of a protocol Π is bounded from above by the average fixed size (i.e.,
EDS(Π)

[
|𝐽1 | + · · · + |𝐽𝑘 |

]
), in what follows we show that the average fixed size is at most𝑂 (𝑘 ·CC(Π)).

Formally, we prove that

Lemma 4.10. Assume that Π is a normalized protocol. Then

E
(𝑅,𝐽1,...,𝐽𝑘 )←DS(Π)


∑
𝑗∈[𝑘 ]
|𝐽𝑘 |

 ≤
4

1 − 𝛾 · CC(Π).

Proof. Theproof strategy is similar to the proof of lemma4.8. Fix 𝑡 ∈ [𝑘−1] and considerEDS(Π)
[
|𝐽 𝑡 |

]
Fix the random coins coin used for the first (𝑡 −1) rounds, i.e., until Line 17 is reachedwith 𝑖 = 𝑡 −1).
Let Real𝑡 and Unif𝑡 be defined as in the proof of lemma 4.8. Moreover, let 𝑐𝑡 denote the number of
bits sent by the 𝑡-th party, i.e., the number of iterations in the 𝑡-th round. By a standard density
increment argument (prove later), we have

Claim 4.11. EUnif𝑡

[
|𝐽𝑡 |

]
≤ 2

1−𝛾 EUnif𝑡 [𝑐𝑡 ].

Since the value of 𝐽𝑡 is determined by the value of 𝑋𝑡 , we get

E
DS(Π)

[
|𝐽𝑡 |

]
= E

coin,Real𝑡

[
|𝐽𝑡 |

]
≤ 2 E

coin,Unif𝑡

[
|𝐽𝑡 |

]
≤ 2

1 − 𝛾 E
coin,Unif𝑡

[𝑐𝑡 ] ≤
4

1 − 𝛾 E
coin,Real𝑡

[𝑐𝑡 ] .

where the first inequality is by claim 4.9, the second is by claim 4.11, and the last inequality holds
since Π is a normalized protocol — it only writes one bit on invalid inputs. Note that Ecoin,Real𝑖 [𝑐𝑖]
is the expected number of bits written by the 𝑖-th party. Hence, by summing up all 𝑖’s, we get the
desired result. □

It remains to prove claim 4.11.
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Proof of claim 4.11. We shall prove this lemma by density increment argument. That is, we study
the change of the density function 𝐷∞(𝑿𝑡 (𝐽𝑡 )) . in each iteration. Let 𝝓ℓ be the value of 𝐷∞(𝑿𝑡 (𝐽𝑡 ))
at the end of the ℓ-th iteration.

We fix the random coins used for the first (ℓ − 1) iterations and consider the updates in the
current iteration.

1. First, 𝑋𝑡 is partitioned into 𝑋𝑡 = 𝑋 0 ∪ 𝑋 1 according to Π. Then, 𝑋𝑡 is updated to 𝑋𝑏 with
probability |𝑋

𝑏 |
|𝑋 | . Consequently, 𝐷∞(𝑿𝒕 (𝐽𝑡 )) will increase as |𝑋𝑡 | shrinks, and in expectation

(over the random choice of 𝒃) the increment is∑
𝑏∈{0,1}

|𝑋𝑏 |
|𝑋𝑡 |

log

(
|𝑋𝑡 |
|𝑋𝑏 |

)
≤ 1. (1)

2. Next, we further partition𝑋𝑡 according to lemma 2.4. Say𝑋 is partitioned into𝑋𝑡 = 𝑋 1∪· · ·∪𝑋𝑚
and let 𝐼1, . . . , 𝐼𝑚 be the index sets promised by lemma 2.4; and for all 𝑗 ∈ [𝑚] we have

𝐷∞(𝑿 𝑗 (𝐽𝑡 \ 𝐼 𝑗 )) ≤ 𝐷∞(𝑿𝑡 (𝐽𝑡 )) − (1 − 𝛾) |𝐼 𝑗 | + 𝛿 𝑗 ,

where 𝛿 𝑗 = log(|𝑋𝑡 |/∪𝑣≥ 𝑗𝑋 𝑣). With probability 𝑝 𝑗
def
= |𝑋 𝑗 |/|𝑋𝑡 |, we update 𝑋𝑡 := 𝑋 𝑗 and 𝐽𝑡 :=

𝐽𝑡 \ 𝐼 𝑗 . Therefore, taking expectation over the random choice of 𝒋, the density function will
decrease by

𝐷∞(𝑿𝒕 (𝐽𝑡 )) − E
𝑗←𝒋

[
𝐷∞(𝑿 𝑗

𝒕 (𝐽𝑡 \ 𝐼 𝑗 ))
]
≥ E

𝑗←𝒋

[
(1 − 𝛾) · |𝐼 𝑗 | − 𝛿 𝑗

]
. (2)

Note that 𝛿 𝑗
def
= log 1∑

𝑣≥ 𝑗 𝑝𝑣
and thus

E
𝑗←𝒋

[
𝛿 𝑗

]
=

𝑚∑
𝑗=1

𝑝 𝑗 log
1∑

𝑣≥ 𝑗 𝑝 𝑗
≤

∫ 1

0

1
1 − 𝑥 d𝑥 ≤ 1. (3)

Let Fℓ−1 be the 𝜎-algebra generated by the random coins used for the first (ℓ−1) iterations. Let 𝜷ℓ
be the increment of |𝐽𝑡 | in the ℓ-th iteration. Observe that 𝜷ℓ = |𝐼𝒋 | bydefinition. By eq. (2) and eq. (3),
taking expectation over random choice of 𝒋, 𝐷∞(𝑿𝑡 (𝐽𝑡 )) decrease by at least (1−𝛾) · E [𝜷ℓ | Fℓ−1] − 1
due to the density restoring partition. Then

E [𝝓ℓ − 𝝓ℓ−1] = E [E [𝝓ℓ − 𝝓ℓ−1 | Fℓ−1]] ≤ E [1 − ((1 − 𝛾) · 𝜷ℓ − 1)] . (4)

In the beginning, 𝝓0 = 𝐷∞({0, 1}𝑛) = 0. Since the density function is always non-negative by defi-
nition, we have 𝝓𝒄𝑡 ≥ 0 and thus E

[
𝝓𝒄𝑡 − 𝝓0

]
≥ 0. On the other hand, by telescoping,

E
[
𝝓𝒄𝑡 − 𝝓0

]
= E

[
𝒄𝑡∑
ℓ=1

(𝝓ℓ − 𝝓ℓ−1)
]
≤ E

[
𝒄𝑡∑
ℓ=1

(𝜷ℓ + 2)
]
,

where the inequality follows from eq. (4). Observe that
∑𝒄𝑡
𝑡=1 𝜷𝑡 = |𝑱𝑡 | by definition. We conclude

that

E
[
|𝑱𝑡 |

]
= E

[
𝒄𝑡∑
ℓ=1

𝜷ℓ

]
≤ 2E [𝒄𝑡 ]

1 − 𝛾 ,

as desired. □

18



4.3 Putting it Together

Now we are prepared to prove theorem 4.1.

Proof of theorem 4.1. We first normalize Π so as to make it accepts all inputs in ( [𝑛] × {0, 1}𝑛)𝑘 . De-
noted by Π′ the normalized protocol, then we have CC(Π′) ≤ CC(Π) + 𝑘 .

Set 𝛾 = 1 − 2𝜀
𝑘 . One can check that 𝛾 satisfies the requirement in lemma 4.5. By lemma 4.5 and

lemma 4.10, we have

Accuracy(Π′) def
= Pr

𝑧=(𝜎1,𝑥1,...,𝜎𝑘 ,𝑥𝑘 )←𝜒𝑘
[Π′(𝑧) = 𝑥𝑘−1(𝜎𝑘 )] ≤

1
2
+ 𝜀 + 4

𝑛
· 𝑘
2𝜀
· 4CC(Π′) . (5)

Since Π′,Π have the same output on valid inputs and we assumed Accuracy(Π) ≥ 1
2 + 2𝜀, we get

Accuracy(Π′) ≥ 1
2 + 2𝜀. Combining with eq. (5) we conclude that CC(Π′) ≥ 𝜀2𝑛

8𝑘 , meaning that
CC(Π) ≥ 𝜀2𝑛

8𝑘 − 𝑘 . □
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A Proof of claim 4.9

Claim A.1 (claim 4.9 restated). Let 𝑡 ≤ 𝑘 . Let 𝜎1, . . . , 𝜎𝑡+1 ∈ [𝑛], 𝑋1, . . . , 𝑋𝑡 ⊆ {0, 1}𝑛. For ℓ ∈ {𝑡, 𝑡 + 1},
define

𝑅ℓ
def
= ({𝜎1} × 𝑋1) × · · · × ({𝜎ℓ−1} × 𝑋ℓ−1) × ({𝜎ℓ } × {0, 1}𝑛) × ([𝑛] × {0, 1}𝑛)𝑘−ℓ .

Then
𝜒𝑘 (𝑅𝑡+1)
𝜒𝑘 (𝑅𝑡 )

≤ 2
U𝑘 (𝑅𝑡+1)
U𝑘 (𝑅𝑡 )

.

Proof of claim 4.9. To start with, observe that

U𝑘 (𝑅𝑡+1)
U𝑘 (𝑅𝑡 )

=
|𝑅𝑡+1 |
|𝑅𝑡 |

=
|𝑋𝑡 |
𝑛2𝑛

. (6)

We claim that for ℓ ∈ {𝑡, 𝑡 + 1},

𝜒𝑘 (𝑅ℓ ) =
# {(𝑥1, . . . , 𝑥ℓ−1) ∈ 𝑋1 × · · · × 𝑋ℓ−1 : 𝑥1(𝜎2) = · · · = 𝑥ℓ−1(𝜎ℓ )}

𝑛ℓ · 2(𝑛−1)ℓ+1
. (7)

Then we have

𝜒𝑘 (𝑅𝑡+1) =
# {(𝑥1, . . . , 𝑥𝑡 ) ∈ 𝑋1 × · · · × 𝑋𝑡 : 𝑥1(𝜎2) = · · · = 𝑥𝑡 (𝜎𝑡+1)}

𝑛𝑡+1 · 2(𝑛−1) (𝑡+1)+1

≤ # {(𝑥1, . . . , 𝑥𝑡−1) ∈ 𝑋1 × · · · × 𝑋𝑡−1 : 𝑥1(𝜎2) = · · · = 𝑥𝑡−1(𝜎𝑡 )} · |𝑋𝑡 |
𝑛𝑡+1 · 2(𝑛−1) (𝑡+1)+1

= 𝜒𝑘 (𝑅𝑡 ) ·
|𝑋𝑡 |
𝑛2𝑛−1

.

where the first and the third equality is from eq. (7). Combining with eq. (6) we have the desired
result.

It remains to show eq. (7). Suppose that ((𝜌1, 𝑥1), . . . , (𝜌𝑘 , 𝑥𝑘 )) ∈ 𝑅ℓ satisfies 𝑥1(𝜌2) = · · · =
𝑥𝑘−1(𝜌𝑘 ). Then we 𝜌1 = 𝜎1, . . . , 𝜌ℓ = 𝜎ℓ and

𝑥1(𝜎2) = · · · = 𝑥ℓ−1(𝜎ℓ ) = 𝑏 for some 𝑏 ∈ {0, 1}.

For every 𝜌ℓ+1, . . . , 𝜌𝑘 ∈ [𝑛], there exists exactly 2(𝑛−1) possible values for each 𝑥 𝑗 with ℓ ≤ 𝑗 ≤ 𝑘 − 1
(with one bit fixed to be 𝑏) and 2𝑛 possible values for 𝑥𝑘 (which is not used at all). Therefore,

𝜒𝑘 (𝑅ℓ ) =
# {((𝜌1, 𝑥1), . . . , (𝜌𝑘 , 𝑥𝑘 )) ∈ 𝑅𝑡+1 : 𝑥1(𝜌2) = · · · = 𝑥𝑘−1(𝜌𝑘 )}

𝑛𝑘 · 2(𝑛−1) (𝑘−1)+𝑛+1

=
𝑛𝑘−ℓ · 2(𝑛−1) · (𝑘−1−ℓ )+𝑛 · # {(𝑥1, . . . , 𝑥ℓ−1) ∈ 𝑋1 × · · · × 𝑋ℓ−1 : 𝑥1(𝜎2) = · · · = 𝑥ℓ−1(𝜎ℓ )}

𝑛𝑘 · 2(𝑛−1) (𝑘−1)+𝑛+1

=
# {(𝑥1, . . . , 𝑥ℓ−1) ∈ 𝑋1 × · · · × 𝑋ℓ−1 : 𝑥1(𝜎2) = · · · = 𝑥ℓ−1(𝜎ℓ )}

𝑛ℓ · 2(𝑛−1)ℓ+1
,

which is exactly what we wanted. □
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