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weights wq, wq, ..., w;, and for each j attempt to find an s-¢ path in G having weight w; under
the given assignment.

It is easy to see that the above computation can be done by an NI machine. Since one of the
g-weight assignments is guaranteed to give distinct weights to each of the s-f paths, the NL
machine will accept if and only if #acen(x) > 1.

Now, since NL is closed under complementation, it follows that an NL machine can determine
the value of ¢ = #accn(x) exactly, and then check if (z,1) € B. |

Theorem 5.2 LogFew C SPL.

Proof: Let f(x,i) be the #L function that counts the number of accepting computations of
the NL machine accepting the language {(x,?) : #accn(x) > ¢} in the proof of the preceding
theorem. We will now modify this function slightly.

Let g(x,1,7) be the #L function that counts the number of accepting computations of the NL
machine that, on input x, uses only the jth weight function of M to try to find at least ¢ paths
in the graph (. Note that if 7 is the “good” ¢-weight assignment for x, and if GG really has
exactly ¢ paths, then ¢g(x,2,7) = 1 (since there is exactly one sequence of guesses that will cause
the NI machine to find the ¢ paths and their weights). Also, if ¢ is larger than the number of
paths in GG, then ¢(x,¢,7) = 0.

Now consider the function h(x,?,7) that is defined to be

g(l’,i,j) H (1—g($,i/,j/)).

(j<j) or (i'<i and j'=j)

It follows from the standard closure properties of Gapl. that A is in GapL. (See, e.g. [AO96].)
It 7 is the lowest-numbered “good” ¢-weight function for z, then for the correct value of ¢,
h(x,i,j7) is equal to 1. For all other values of ¢« and j, h(x,¢, ) is equal to 0.

It now follows easily that any LogFew language is in LY. It was observed in [AR98] that L'
is equal to SPL. |
It is perhaps worth noting that Theorem 5.2 is in some sense the logspace-analog of the inclusion
Few C SPP, which was proved in [KSTT92]. Their proof relies on the fact that, for any #P
function f and any polynomial-time function ¢ that is bounded by a polynomial in n, the
function (gg;) is in #P. Note that, in contrast, this closure property is not known to hold for
#1 or GapL functions (although it is shown in [AR98] that if f is bounded by a polynomial in
n, this closure property does hold in the nonuniform setting — and under a plausible hypothesis
holds also in the uniform setting).

6 Conclusions and Open Problems

Can some of the other probabilistic inclusions relating to NI and UL be derandomized? Can
one show that LoglFewNL = UL, or that Logkew = UL? Can one show that UL = coUL? It

seems that some of these questions should be in reach of current methods.
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4 Biased Distributions Give Distinct Weights

Lemma 4.1 Let GG be a directed graph on n vertices and let P be a family of r distinct sets
of edges in GG. Suppose q is a prime power that is at least 2(;) and suppose M is a %-biased
matriz over (Fq)”2. Then, there exists a q-weight assignment of G in M (i.e., a row in M) that
gives all v sets of edges in P distinct weights.

Proof: To prove the lemma we first need the following proposition whose correctness can be
easily verified:

Proposition 4.1 Let w € (Fq)”2 be a q-weight assignment of G and let 51,5, be any two
distinct sets of edges in G. Then w gives Sy, S5 the same weight if and only if < S1—53,w >= 0.

Let M be the matrix over (Fq)”2 constructed in Section 3 whose associated distribution Dy
is %—biased. Then, by Definition 2.1 and the above proposition, we know that for any pair of
distinct sets of edges 51,55 in P, the probability that a random assignment w in M (i.e., a
random row w in M) gives them the same weight is at most (1 + )/q. Since in total there are
r sets in P, the probability that there exists a pair of such sets such that a random assignment
in M would give them the same weight is at most

(;) % (1 + %)/q.

Now with our choice of ¢ in the statement of the lemma, there must exist an assignment in M
that gives any set of edges in P a distinct weight. This completes the proof of the lemma. &

Following Theorem 3.1 and Lemma 4.1 it is straightforward to see the next fact:

Corollary 4.1 Let GG be a directed graph on n vertices and let P be a family of r distinct paths
in G'. Suppose q is a prime power that is at least 2(;) Then there is a deterministic procedure
that constructs in O(log n+logr) space a matriz M over (Fq)”2 such that there exists a g-weight
assignment of G in M that gives all v paths in P distinct weights. In particular, if v is poly(n)

then such matriz can be constructed in O(logn) space.

Remark: Sivakumar [Siv98] independently gave a construction of matrices (essentially the
same as that of Theorem 3.1) satisfying the requirements in Corollary 4.1. As he observed,
the result as stated in the corollary can be generalized to an isolation scheme for general set
systems.

5 Main Results
Theorem 5.1 LogFew C NL

Proof: Let A € LogFew. Thus, there is an NL machine N and a logspace-computable
predicate B such that @+ € A iff (x,7) € B, where ¢ = #acey(x). In addition, since A is in
LogFew, we know that #accy(x) is bounded by a polynomial in |z|.

First, we show that the language {(x,¢) : #acey(x) > ¢} is in NL.

On input (x,17), build a graph G such that the number of s-t paths in G is equal to #acen(x).
Now use Corollary 4.1 and see if there is a g-weight assignment in M that gives at least ¢
distinct weights to paths in (. That is, for each g-weight assignment in M, guess a sequence of



We extend this definition to matrices M over (F})™ as follows: a matrix M over (F,)" is said
to be e-biased if its associated distribution Dy on (F,)" is e-biased. In other words, if we take
the product of an e-biased matrix M over (F,)" and any non-zero vector v in (F,)" then, in the
resulting vector Mo, the fraction of any element in F is between (1 —€)/q and (1 + €)/q. By

definition, a usual e-biased sample space in the literature is an e-biased matrix M over (F3)".

2.3 Weight Assignments of a Graph

Let GG be a directed graph on n vertices with vertex set V and edge set F.
For a prime power ¢, a q-weight assignment of GG is a function

A VxV — F,.

Given such a weight assignment, the weight of an edge (u,v) € E is defined to be A(u,v); and
for a set S of edges in (7 (such as the set of edges on a path in (), the weight of S is defined to
be the sum of the weights of the edges in 5, i.e., A(S) = 3
is taken as field addition.

We will view a set S of edges in (¢ as a vector, denoted also by S for convenience, in (Fg)”2
with coordinates indexed by V' x V such that the (u,v)-th coordinate of S is 1 if and only if
(u,v) € E. We will view a ¢-weight assignment A of (i as a vector, denoted also by A, in (Fq)”2
with coordinates indexed by V' x V' such that the (u,v)-th coordinate of A is A(u,v). Now the
weight of S given by A is by definition A(S) =< A, S >. For a given matrix M over (Fq)”2, we
may view each row of M as a g-weight assignment of G.

wwyes A(u,v), where the summation

3 Constructing e-biased Distribution in Logspace

In this section we show how to construct a matrix M over (F},)" in logspace such that its
associated distribution Dy is e-biased.

Theorem 3.1 There is a deterministic algorithm such that given as input a positive integer n,
an € € (0,1] and a prime power q, computes an m x n matrizc M over (F,)" with m = (nqe™')?
that is e-biased; moreover, each entry of the matriz can be computed in space O(logn + log g +
log e™).

n

The proof of the theorem is essentially given in [AGHP92] (see also [NN90]). We sketch a proof
here for completeness and emphasize the space complexity of the construction.

Proof: Let ¢ be an integer to be determined later and let ¢ : F;e — (F,)" be an isomorphic
mapping. The rows of matrix M are indexed by {(z,y) | @,y € F} (thus the total number
of rows in M is m = ¢*'), and the i-th coordinate of the (z,y)-th row in M is defined to be
< p(at), d(y) >.

As is shown in [AGHP92] for the case ¢ = 2, by choosing ¢ = (lognge™!)/(log q) (thus m =
(nge™1)?), the distribution Dy associated to M is e-biased.

Let us examine the space complexity of the construction. It is well-known that we can efficiently
encode the field elements of F: (and (F})") so that field addition and multiplication can be
done in space O(tlog ¢): mainly what we need for this is an irreducible polynomial of degree ¢
over Fy,, which can be constructed in space O(tlogq). We refer the reader to [LN86] for more
background on finite fields. Given this fact, it is then easily seen that each entry of the matrix
M in our construction is computable in space O(tlog ¢), which is O(logn + log g+ loge™'). B



2 Preliminaries

2.1 Classes in Nondeterministic Logspace

We assume the reader is familiar with NL (Nondeterministic Logspace). The unambiguous
version of NL, denoted UL, was first explicitly defined and studied in [BJLR92, AJ93]. A
language A is in UL if and only if there is a nondeterministic logspace machine M accepting A
such that, for every x, M has at most one accepting computation on input .

A generalization of unambiguous machines considers machines that have only a “few” accepting
computation paths. In [BDHM92], the complexity classes LogFewNL and LogFew were defined.
(In [BDHM92], these classes were defined using “weakly unambiguous machines”; for our results
we do not need this additional complication.! Our results hold even in the stronger setting
using the definitions as we present them here.) LogFewNL consists of languages accepted by
NL machines having the property that the number of accepting computations is bounded by a
polynomial. LogFew is also defined in terms of NL machines M such that #acepr(2) is bounded
by a polynomial; but now there is also a logspace-computable predicate R such that = isin A if
and only if R(x,#acepr(x)) is true. From the definitions, it is immediate that UL C LogFewNL
C NL, and LogFewNL C LogFew. Thus it is immediate from [RA97] that in the nonuniform
setting LogFewNL and NL coincide with UL. It is shown in [RA97] that, in the nonuniform
setting, these three classes also coincide with Logkew.

#L 1s the class of functions that count the number of accepting paths of an NI machine. GapL
is the class of functions that are the difference of two #L functions. GapL is of interest because
it is precisely the class of functions that are logspace-reducible to computing the determinant
of an integer matrix. (See, for example [MV97].)

SPL is the set of all languages A such that the characteristic function y4 is in GapL. In
[RA9T], it is shown that the nonuniform version of SPL contains such problems as computing
a maximum matching and finding maximum flow in a graph with unary weights. It follows
that, at least in the nonuniform setting, SPL contains LogFew. In this paper, we show that
this inclusion holds also in the uniform setting.

2.2 e-Biased Distributions

We associate to each m x n matrix M a probability distribution Dj; defined as follows: for
each n-vector v, Dy(v) = k/m if there are exactly k different rows in M that are equal to v.
Such a matrix M is said to be over a vector space V (of dimension n) if each row of M is a
vector in V. In what follows we use ¢ to denote a prime power unless specified otherwise, and
use I, to denote the finite field with ¢ elements.

e-biased distributions have been studied extensively under the name of ¢-biased sample space
for about ten years (see e.g. [Vaz86, NN90, AGHP92, ABNNR92]). They have become one of

the main tools for derandomization. The formal definition is as follows:

Definition 2.1 A probability distribution D on (F,)" is said to be e-biased if for any non-zero
v € (F,)" and any ¢ € F,
| Pri<u,vo>=¢=1/q | < ¢/q,

where uw € (F,)" is randomly chosen according to distribution D, and < w,v > is the inner
product of u and v.

!Recently, Buntrock [Bu98] has pointed out that there is a simple direct argument, showing that LogFew
i1s in NL if the original definition using “weakly unambiguous machines” is used. We believe that it is more
natural to study the class as we have defined it here.



Uniform Inclusions in Nondeterministic Logspace
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Abstract

We show that the complexity class LogFew is contained in NL. N SPL. Previously, this
was known only to hold in the nonuniform setting.

Key Words: Nondeterministic Logspace Computation, Nonuniform Complexity, Derandom-
ization, e-biased Sample Space.

1 Introduction

In [RA97], a probabilistic construction was used to show that the complexity classes NL/poly
and UL/poly coincide. That is, in the context of nonuniform complexity, nonuniform logspace
is no more powerful than unambiguous logspace. It was observed in [AR98] that the equality
NL=UL holds also in the uniform setting, under a plausible hypothesis concerning pseudoran-
dom number generators. However, it remains an important open question whether NL=UL
can be established without resorting to unproved assumptions.

The results and techniques of [RA97] were extended in [AR98] in a number of ways. One
extension involves the class LogFew, defined in [BDHM92]. (Formal definitions appear below.)
No inclusion relation was known between NI and LogFew in the uniform setting, although UL
is trivially contained in LogFew, and thus NL/poly C LogFew/poly. The converse inclusion
LogFew/poly € NL/poly was proved in [AR98], again using a probabilistic argument. In
this paper, we show that this probabilistic argument can be derandomized. Thus, LogFew is
contained in NL.

Another extension in [RA97] involves the complexity class SPL (also defined below). One of
the main results of [AR98] is that the matching problem is in the nonuniform version of SPL.
UL is trivially contained in SPL, but no inclusion relation was known between LogFew and
SPL (although it follows from [AR98] that LogFew is contained in the nonuniform version of
SPL). In this paper, we also show that LogFew is contained in SPL in the uniform setting. It
remains unknown if NL is contained in SPL in the uniform setting.

The main point of this paper is that it shows that at least some of the nonuniform inclusions
of [RA97, AR98] can be shown to hold also in the uniform setting, by making use of current
derandomization techniques.
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