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weights w�� w�� � � � � wi� and for each j attempt to �nd an s�t path in G having weight wj under
the given assignment�
It is easy to see that the above computation can be done by an NL machine� Since one of the
q�weight assignments is guaranteed to give distinct weights to each of the s�t paths� the NL
machine will accept if and only if �accN�x� � i�
Now� since NL is closed under complementation� it follows that an NL machine can determine
the value of i � �accN�x� exactly� and then check if �x� i� � B�

Theorem ��� LogFew � SPL�

Proof� Let f�x� i� be the �L function that counts the number of accepting computations of
the NL machine accepting the language f�x� i� � �accN�x� � ig in the proof of the preceding
theorem� We will now modify this function slightly�
Let g�x� i� j� be the �L function that counts the number of accepting computations of the NL
machine that� on input x� uses only the jth weight function of M to try to �nd at least i paths
in the graph G� Note that if j is the �good� q�weight assignment for x� and if G really has
exactly i paths� then g�x� i� j� � � �since there is exactly one sequence of guesses that will cause
the NL machine to �nd the i paths and their weights�� Also� if i is larger than the number of
paths in G� then g�x� i� j� � 
�
Now consider the function h�x� i� j� that is de�ned to be

g�x� i� j�
Y

�j�j�� or �i��i and j��j�

��� g�x� i�� j����

It follows from the standard closure properties of GapL that h is in GapL� �See� e�g� �AO�����
If j is the lowest�numbered �good� q�weight function for x� then for the correct value of i�
h�x� i� j� is equal to �� For all other values of i and j� h�x� i� j� is equal to 
�
It now follows easily that any LogFew language is in LSPL� It was observed in �AR�
� that LSPL

is equal to SPL�
It is perhaps worth noting that Theorem 	�� is in some sense the logspace�analog of the inclusion
Few � SPP� which was proved in �KSTT���� Their proof relies on the fact that� for any �P
function f and any polynomial�time function g that is bounded by a polynomial in n� the
function

�
f�x�
g�x�

�
is in �P� Note that� in contrast� this closure property is not known to hold for

�L or GapL functions �although it is shown in �AR�
� that if f is bounded by a polynomial in
n� this closure property does hold in the nonuniform setting � and under a plausible hypothesis
holds also in the uniform setting��

� Conclusions and Open Problems

Can some of the other probabilistic inclusions relating to NL and UL be derandomized� Can
one show that LogFewNL � UL� or that LogFew � UL� Can one show that UL � coUL� It
seems that some of these questions should be in reach of current methods�
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� Biased Distributions Give Distinct Weights

Lemma ��� Let G be a directed graph on n vertices and let P be a family of r distinct sets
of edges in G� Suppose q is a prime power that is at least �

�
r

�

�
and suppose M is a �

�	biased

matrix over �Fq�n
�

� Then� there exists a q	weight assignment of G in M �i�e�� a row in M� that
gives all r sets of edges in P distinct weights�

Proof� To prove the lemma we �rst need the following proposition whose correctness can be
easily veri�ed�

Proposition ��� Let w � �Fq�n
�

be a q	weight assignment of G and let S�� S� be any two
distinct sets of edges in G� Then w gives S�� S� the same weight if and only if � S��S�� w �� 
�

Let M be the matrix over �Fq�n
�

constructed in Section � whose associated distribution DM

is �
�
�biased� Then� by De�nition ��� and the above proposition� we know that for any pair of

distinct sets of edges S�� S� in P � the probability that a random assignment w in M �i�e�� a
random row w in M� gives them the same weight is at most �� � �

�
��q� Since in total there are

r sets in P � the probability that there exists a pair of such sets such that a random assignment
in M would give them the same weight is at most

�
r

�

�
� �� �

�

�
��q�

Now with our choice of q in the statement of the lemma� there must exist an assignment in M
that gives any set of edges in P a distinct weight� This completes the proof of the lemma�

Following Theorem ��� and Lemma ��� it is straightforward to see the next fact�

Corollary ��� Let G be a directed graph on n vertices and let P be a family of r distinct paths
in G� Suppose q is a prime power that is at least �

�
r

�

�
� Then there is a deterministic procedure

that constructs in O�log n�log r� space a matrix M over �Fq�n
�

such that there exists a q	weight
assignment of G in M that gives all r paths in P distinct weights� In particular� if r is poly�n�
then such matrix can be constructed in O�log n� space�

Remark� Sivakumar �Siv�
� independently gave a construction of matrices �essentially the
same as that of Theorem ���� satisfying the requirements in Corollary ���� As he observed�
the result as stated in the corollary can be generalized to an isolation scheme for general set
systems�

� Main Results

Theorem ��� LogFew � NL

Proof� Let A � LogFew� Thus� there is an NL machine N and a logspace�computable
predicate B such that x � A i� �x� i� � B� where i � �accN�x�� In addition� since A is in
LogFew� we know that �accN�x� is bounded by a polynomial in jxj�
First� we show that the language f�x� i� � �accN�x� � ig is in NL�
On input �x� i�� build a graph G such that the number of s�t paths in G is equal to �accN�x��
Now use Corollary ��� and see if there is a q�weight assignment in M that gives at least i
distinct weights to paths in G� That is� for each q�weight assignment in M � guess a sequence of



We extend this de�nition to matrices M over �Fq�n as follows� a matrix M over �Fq�n is said
to be �	biased if its associated distribution DM on �Fq�n is ��biased� In other words� if we take
the product of an ��biased matrix M over �Fq�n and any non�zero vector v in �Fq�n then� in the
resulting vector Mv� the fraction of any element in Fq is between �� � ���q and �� � ���q� By
de�nition� a usual ��biased sample space in the literature is an ��biased matrix M over �F��n�

��� Weight Assignments of a Graph

Let G be a directed graph on n vertices with vertex set V and edge set E�
For a prime power q� a q	weight assignment of G is a function

A � V � V � Fq�

Given such a weight assignment� the weight of an edge �u� v� � E is de�ned to be A�u� v� and
for a set S of edges in G �such as the set of edges on a path in G�� the weight of S is de�ned to
be the sum of the weights of the edges in S� i�e�� A�S� �

P
�u�v��S A�u� v�� where the summation

is taken as �eld addition�
We will view a set S of edges in G as a vector� denoted also by S for convenience� in �F��n

�

with coordinates indexed by V � V such that the �u� v��th coordinate of S is � if and only if
�u� v� � E� We will view a q�weight assignment A of G as a vector� denoted also by A� in �Fq�n

�

with coordinates indexed by V � V such that the �u� v��th coordinate of A is A�u� v�� Now the
weight of S given by A is by de�nition A�S� �� A�S �� For a given matrix M over �Fq�n

�

� we
may view each row of M as a q�weight assignment of G�

� Constructing ��biased Distribution in Logspace

In this section we show how to construct a matrix M over �Fq�n in logspace such that its
associated distribution DM is ��biased�

Theorem ��� There is a deterministic algorithm such that given as input a positive integer n�
an � � �
� �� and a prime power q� computes an m�n matrix M over �Fq�n with m � �nq�����

that is �	biased� moreover� each entry of the matrix can be computed in space O�log n� log q �
log �����

The proof of the theorem is essentially given in �AGHP��� �see also �NN�
��� We sketch a proof
here for completeness and emphasize the space complexity of the construction�
Proof� Let t be an integer to be determined later and let � � Fqt � �Fq�t be an isomorphic
mapping� The rows of matrix M are indexed by f�x� y� j x� y � Fqtg �thus the total number
of rows in M is m � q�t�� and the i�th coordinate of the �x� y��th row in M is de�ned to be
� ��xi�� ��y� ��
As is shown in �AGHP��� for the case q � �� by choosing t � �log nq������log q� �thus m �
�nq������� the distribution DM associated to M is ��biased�
Let us examine the space complexity of the construction� It is well�known that we can e�ciently
encode the �eld elements of Fqt �and �Fq�t� so that �eld addition and multiplication can be
done in space O�t log q�� mainly what we need for this is an irreducible polynomial of degree t
over Fq� which can be constructed in space O�t log q�� We refer the reader to �LN
�� for more
background on �nite �elds� Given this fact� it is then easily seen that each entry of the matrix
M in our construction is computable in space O�t log q�� which is O�log n � log q � log �����



� Preliminaries

��� Classes in Nondeterministic Logspace

We assume the reader is familiar with NL �Nondeterministic Logspace�� The unambiguous
version of NL� denoted UL� was �rst explicitly de�ned and studied in �BJLR��� AJ���� A
language A is in UL if and only if there is a nondeterministic logspace machine M accepting A
such that� for every x� M has at most one accepting computation on input x�
A generalization of unambiguous machines considers machines that have only a �few� accepting
computation paths� In �BDHM���� the complexity classes LogFewNL and LogFew were de�ned�
�In �BDHM���� these classes were de�ned using �weakly unambiguous machines� for our results
we do not need this additional complication�� Our results hold even in the stronger setting
using the de�nitions as we present them here�� LogFewNL consists of languages accepted by
NL machines having the property that the number of accepting computations is bounded by a
polynomial� LogFew is also de�ned in terms of NL machines M such that �accM �x� is bounded
by a polynomial but now there is also a logspace�computable predicate R such that x is in A if
and only if R�x��accM�x�� is true� From the de�nitions� it is immediate that UL � LogFewNL
� NL� and LogFewNL � LogFew� Thus it is immediate from �RA��� that in the nonuniform
setting LogFewNL and NL coincide with UL� It is shown in �RA��� that� in the nonuniform
setting� these three classes also coincide with LogFew�
�L is the class of functions that count the number of accepting paths of an NL machine� GapL
is the class of functions that are the di�erence of two �L functions� GapL is of interest because
it is precisely the class of functions that are logspace�reducible to computing the determinant
of an integer matrix� �See� for example �MV�����
SPL is the set of all languages A such that the characteristic function 	A is in GapL� In
�RA���� it is shown that the nonuniform version of SPL contains such problems as computing
a maximum matching and �nding maximum !ow in a graph with unary weights� It follows
that� at least in the nonuniform setting� SPL contains LogFew� In this paper� we show that
this inclusion holds also in the uniform setting�

��� ��Biased Distributions

We associate to each m � n matrix M a probability distribution DM de�ned as follows� for
each n�vector v� DM �v� � k�m if there are exactly k di�erent rows in M that are equal to v�
Such a matrix M is said to be over a vector space V �of dimension n� if each row of M is a
vector in V� In what follows we use q to denote a prime power unless speci�ed otherwise� and
use Fq to denote the �nite �eld with q elements�
��biased distributions have been studied extensively under the name of ��biased sample space
for about ten years �see e�g� �Vaz
�� NN�
� AGHP��� ABNNR����� They have become one of
the main tools for derandomization� The formal de�nition is as follows�

De	nition ��� A probability distribution D on �Fq�n is said to be ��biased if for any non	zero
v � �Fq�

n and any c � Fq�
j Pr�� u� v �� c�� ��q j � ��q�

where u � �Fq�
n is randomly chosen according to distribution D� and � u� v � is the inner

product of u and v�

�Recently� Buntrock �Bu��� has pointed out that there is a simple direct argument� showing that LogFew
is in NL if the original de�nition using �weakly unambiguous machines	 is used
 We believe that it is more
natural to study the class as we have de�ned it here




Uniform Inclusions in Nondeterministic Logspace

Eric Allender� Shiyu Zhouy

Abstract

We show that the complexity class LogFew is contained in NL � SPL� Previously� this

was known only to hold in the nonuniform setting�

Key Words� Nondeterministic Logspace Computation� Nonuniform Complexity� Derandom�
ization� ��biased Sample Space�

� Introduction

In �RA���� a probabilistic construction was used to show that the complexity classes NL"poly
and UL"poly coincide� That is� in the context of nonuniform complexity� nonuniform logspace
is no more powerful than unambiguous logspace� It was observed in �AR�
� that the equality
NL�UL holds also in the uniform setting� under a plausible hypothesis concerning pseudoran�
dom number generators� However� it remains an important open question whether NL�UL
can be established without resorting to unproved assumptions�
The results and techniques of �RA��� were extended in �AR�
� in a number of ways� One
extension involves the class LogFew� de�ned in �BDHM���� �Formal de�nitions appear below��
No inclusion relation was known between NL and LogFew in the uniform setting� although UL
is trivially contained in LogFew� and thus NL"poly � LogFew"poly� The converse inclusion
LogFew"poly � NL"poly was proved in �AR�
�� again using a probabilistic argument� In
this paper� we show that this probabilistic argument can be derandomized� Thus� LogFew is
contained in NL�
Another extension in �RA��� involves the complexity class SPL �also de�ned below�� One of
the main results of �AR�
� is that the matching problem is in the nonuniform version of SPL�
UL is trivially contained in SPL� but no inclusion relation was known between LogFew and
SPL �although it follows from �AR�
� that LogFew is contained in the nonuniform version of
SPL�� In this paper� we also show that LogFew is contained in SPL in the uniform setting� It
remains unknown if NL is contained in SPL in the uniform setting�
The main point of this paper is that it shows that at least some of the nonuniform inclusions
of �RA��� AR�
� can be shown to hold also in the uniform setting� by making use of current
derandomization techniques�
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