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Abstract

We study classes of sets and functions computable by algorithms that make a limited

number of queries to an oracle� We distinguish between queries made in parallel

�each question being independent of the answers to the others� as in a truth�table

reduction	 and queries made in serial �each question being permitted to depend on

the answers to the previous questions� as in a Turing reduction	�

We de�ne computability by a set of functions� and we show that it captures

the information�theoretic aspects of computability by a �xed number of queries to

an oracle� Using that concept� we prove a very powerful result� the Nonspeedup

Theorem� which states that 
n parallel queries to any �xed nonrecursive oracle cannot

be answered by an algorithm that makes only n queries to any oracle whatsoever�

This is the tightest general result possible� A corollary is the intuitively obvious�

but nontrivial result that additional parallel queries to an oracle allow us to compute

additional functions� the same is true of serial queries�

We show that if k � � parallel queries to the oracle A can be answered by an

algorithm that makes only k serial queries to any oracle B� then n parallel queries

to the oracle A can be answered by an algorithm that makes only O�log n	 parallel

queries to a third oracle C�

We also consider polynomial time bounded algorithms that make a �xed number of

queries to an oracle� It has been shown that the Nonspeedup Theorem does not apply

in the polynomial time bounded framework� However� we prove a Weak Nonspeedup

Theorem� which states that if 
k parallel queries to the oracle A can be answered by

an algorithm that makes only k serial queries to the oracle B� then any n parallel

queries to the oracle A can be answered by an algorithm that makes only 
k � � of
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the same queries to A� A corollary is that if A is NP�hard and P �� NP� then extra

parallel queries to A allow us to compute extra functions in polynomial time� the

same is true of serial queries�
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Chapter �

Introduction

This dissertation is concerned entirely with computations that make use of an oracle�

An oracle is an imaginary device with which we equip an ordinary computer� in order

to give the computer additional computational power� Each oracle is associated with

a particular set A of strings �or natural numbers	� the oracle is said to be an oracle

for the set A� When the computer needs to know if the string �or natural number	

x belongs to A� the computer asks the oracle� the computer is then able to use the

oracle�s answer in the remainder of the computation� Although this dissertation will

not be concerned with machine model issues� we refer to Hopcroft and Ullman�smodel

of oracle computation on a Turing machine for the sake of completeness of exposition

�HU��� Section ���� pp� 
���
���


Let A be a language� A � ��� A Turing machine with oracle A is a single�

tape Turing machine with three special states q�� qy� and qn� The state q�

is used to ask whether a string is in the set A� When the Turing machine

enters the state q� it requests an answer to the question
 �Is the string

of nonblank symbols to the right of the tape head in A� The answer is

supplied by having the state of the Turing machine change on the next

move to one of the two states qy or qn� depending on whether the answer

is yes or no� The computation continues normally until the next time q�

is entered� when the �oracle answers another question�

�
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In this way� an oracle allows us to consider the questions� �What if a computer

could solve hyour favorite unsolvable problemi� and �What if a computer could

solve hyour favorite intractable problemi e!ciently� without being faced with an

immediate logical contradiction�

Oracle computations allow us to formalize the notion that one problem is compu�

tationally more di!cult than another� In much previous work �Rog��� HU��� Soa����

the set B has been said to be more computationally di!cult than the set A if A is

decidable by a computer with an oracle for B� but B is not decidable by any computer

with an oracle for A� That notion is essentially qualitative�

In this dissertation� we adopt a quantitative notion of when one problem is com�

putationally more di!cult than another� We �x a set C and we assume that our

computers are equipped with an oracle for C� We say that the set B is computa�

tionally more di!cult than the set A if A is decidable by a computer that makes

only k queries to the oracle for C for some constant k� but B is not decidable by any

computer that makes only k queries to the oracle for C�

Our notion of computational di!culty gives rise to a natural complexitymeasure��

the query complexity for oracle computations� The query complexity of a computation

is the number of queries that the computation makes to its oracle� In Section 
���

we de�ne the bounded query classes� which are classes of languages decidable by a

computer that makes a �xed number of queries to a �xed oracle� The bounded query

classes are complexity classes of the query complexity measure�

Throughout this dissertation we examine the following question
 �When does the

ability to ask n� � queries to an oracle for A allow us to solve harder problems than

we could solve with only n queries� This general question admits several variants�

depending on the following issues


� What do we mean by asking n or n � � queries� Must all queries be made in

parallel �each question being independent of the answers to the others� as in

a truth�table reduction	� or may the queries be made in series �each question

�This measure is not always a computational complexity measure in the sense of Blum �see
Section �����
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being permitted to depend on the answers to the previous questions� as in a

Turing reduction	�

� What do we mean by problems� Are we considering the di!culty of computing

functions� or of solving decision problems�

� What restrictions do we place on the oracle� Must the n queries be posed to

the oracle for A� as are the n � � queries� or may they be posed to a di�erent

oracle�

In Chapter � we study the bounded query classes relative to an oracle for the

halting problem� and we prove a variety of separation results� In particular� n � �

queries to an oracle for the halting problem allow us to solve more decision problems

than we can solve by making only n queries to an oracle for the halting problem� as

long as we are consistent about serial and parallel queries�

In Chapter � we study the bounded query classes relative to an oracle for an

arbitrary nonrecursive set� and we generalize some of the results from Chapter �� We

prove a very powerful result� the Nonspeedup Theorem� which says that 
n parallel

queries to a nonrecursive oracle cannot be answered by an algorithm that makes only

n queries to any oracle whatsoever� This is the tightest general result possible� One

of its corollaries is that n� � queries to an oracle for the nonrecursive set A allow us

to compute more functions than n queries to an oracle for the same set A allow us to

compute� as long as we are consistent about serial and parallel queries�

In Chapter � we study bounded query classes within a polynomial time bounded

setting� Unfortunately� the Nonspeedup Theorem does not generalize in the way we

would �rst expect� In fact� Amir and Gasarch have constructed a set A �� P such that

n queries to an oracle for A do not allow us to compute more functions than we can

compute by making a single query to an oracle for A �AG���� The techniques used

in Chapter � are therefore more subtle and oracle�speci�c than those of Chapter ��

We show that if A is NP�hard and P �� NP then n�� queries to an oracle for the set

A allow us to compute in polynomial time more functions than we can compute in

polynomial time by making only n queries to an oracle for the same set A� as long as

we are consistent about serial and parallel queries�



Chapter �

Preliminaries

��� Terminology and Conventions

When I use a word� it means just what I choose it to mean � neither

more nor less�

" Humpty Dumpty �Car�
�

We write A � B to denote that A is a subset of B� A � B to denote that A is a

proper subset of B� #A to denote the complement� of the set A� A�B to denote the

set di�erence A� #B� maxA to denote the maximum element of the �nite set A� � if A

is empty� jAj or card�A	 to denote the cardinality of the set A� and �A�x	 to denote

the characteristic function of the set A
 � if x � A� � if x �� A� We write N to denote

the set of natural numbers� We write p 	 q to denote the the inclusive�or of the two

logical values p and q
 � if p � � or q � �� � otherwise� and we write p 
 q to denote

the exclusive�or of p and q
 � if p �� q� � otherwise� We always use base�
 logarithms�

We assume that the reader has a basic familiarity with recursion theory� includ�

ing Turing machines� partial recursive and total recursive functions� recursive and

recursively enumerable sets� and many�one and Turing reductions� These concepts

�Our default universal set is the set of all strings over some �xed alphabet� Since there is an
e�ective �polynomial time computable	 in fact� one
one correspondence between the set of all strings
over a �xed alphabet and the set of natural numbers	 we can just as easily take our default universal
set to be the set of natural numbers�

�
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are explained in �Rog��� HU��� Soa���� The footnotes occasionally refer to more ad�

vanced material in recursion theory that is not necessary in order to understand the

results in this dissertation�

Because we are not concerned with the particulars of our machine model� we

will use the following terms synonymously
 computer� Turing machine� program�

algorithm� machine� Using standard dovetailing techniques �HU��� Section ����� we

can run countably many computations at once� Thus� we can construct machines

that �timeshare several computations or run several computations �in parallel� 

Truth�table reductions are de�ned in �Rog��� HU��� Soa���� and weak truth�table

reductions are de�ned in �Rog��� Soa���� The following notation is standard �Soa���


Notation �
�
�

� A �m B if A is many�one reducible to B�

� A �tt B if A is truth�table reducible to B�

� A �wtt B if A is weak truth�table reducible to B�

� A �T B if A is Turing reducible to B�

Informally� a truth�table �tt�	 reduction from A to B works as follows
 On input x�

our machineM prepares a �nite list of queries� makes the queries toB� plugs the oracle

answers into a total recursive function� and outputs the result of the total recursive

function� which must be equal to �A�x	� A weak truth�table �wtt�	 reduction from A

to B works as follows
 On input x� our machine M prepares a list of queries� makes

the queries to B� performs an arbitrary computation using those oracle answers� and

outputs the result of its computation� which must be equal to �A�x	� The di�erence

between a tt�reduction and a wtt�reduction is the following
 If we are computing A

via a tt�reduction to B then the computation must converge� even if the computation

receives incorrect oracle answers� although the result of the computation is allowed

to be incorrect� however� if we are computing A via a wtt�reduction to B then the

computation is allowed to diverge if it receives incorrect oracle answers�



CHAPTER �� PRELIMINARIES �

Lachlan �Lac��� has constructed an example that illustrates the di�erence between

tt� and wtt�reductions
 Let B be the union of two disjoint r�e� sets A and E� Then

A �wtt B by the following reduction� which makes only � query to B
 First ask

the oracle if x � B� If x �� B then x cannot be in A� so reject� Otherwise� run

the enumerators for the r�e� sets A and E� using a standard timesharing technique�

Either x � A or x � E� so eventually x is enumerated in one of the two sets� If x is

enumerated in E then x cannot belong to A� so reject� If x is enumerated in A� then

accept� There is no obvious tt�reduction from A to B� and in fact Lachlan�s paper

produces the sets A� B� and E via a priority argument that defeats every tt�reduction�

In most cases� when we refer to an oracle� we mean an oracle for a set� Therefore�

we use the terms �oracle and �set interchangeably� Instead of writing �an oracle

for B this convention allows us to write simply �B� In a few instances� we need

to refer to oracles that compute functions� we call such oracles �function oracles in

order to avoid confusion�

When no confusion can arise� we do not distinguish between sets and ����valued

total functions� Thus we identify the set A with its characteristic function �A�

On the other hand� we must distinguish between solving decision problems �i�e��

computing ����valued functions� determining membership in a language	 and com�

puting functions� Many of the fundamental questions in this paper are more easily

answered when they are asked about functions than when they are asked about deci�

sion problems�

We say that n queries to an oracle are made in parallel� or that n parallel queries

are made� if a list of all n queries is formed before any of them is made�� Otherwise

we say that n queries are made in series� or that n serial queries are made� or simply

that n queries are made� The di�erence is that computation is allowed between serial

queries to an oracle� the answer to an earlier query may determine what query is to

be made next�

We de�ne the bounded query classes relative to the oracle A


�In �BK��
	 Book and Ko call parallel queries nonadaptive queries�
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De�nition �
�
�

� MQ�n�A	 is the set of machines with oracle A that make at most n queries to

A�

� FQ�n�A	 is the set of partial functions that are computable by a machine in

MQ�n�A	�

� Q�n�A	 is the set of ����valued total functions that are in FQ�n�A	�

� MQk�n�A	 is the set of machines with oracle A that make at most n queries to

A� all queries being made in parallel�

� FQk�n�A	 is the set of partial functions that are computable by a machine in

MQk�n�A	�

� Qk�n�A	 is the set of ����valued total functions that are in FQk�n�A	�

The preceding de�nitions make sense if the oracle A is replaced with a function

oracle f � In subsequent sections� we assume that the bounded query classes� MQ�

FQ� Q� MQk� FQk� and Qk� have been de�ned relative to function oracles as well as

ordinary oracles�

The members of MQ�n�A	 are called n�query A�machines� The members of

MQk�n�A	 are called n�parallel�query A�machines� Often we think of the oracle A as

being extrinsic from the machine M that computes with it� If M computes with an

unspeci�ed oracle� we call M an oracle machine� When necessary to prevent confu�

sion� we write M �� to denote machineM with an unspeci�ed oracle� We write MA to

denote the A�machine produced by equipping the oracle machineM �� with an oracle

for A�

If MA is an n�query A�machine� it is not necessary that MB be an n�query B�

machine for all B� because the behavior of M is allowed to depend on the answers

from the oracle� Suppose� for example� that� on input x� M computes the least y � x

such that y belongs to the oracle� using the obvious algorithm� If the oracle is equal

to the set of natural numbers� then M only makes one query� However� if the oracle
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is equal to the empty set then M always makes in�nitely many queries �and M does

not even halt	�

We can however� normalize� an n�query A�machine MA� so that M �� does not

make more then n queries even when computing with an oracle other than A� To

perform this normalization� we modify M �� so that it uses a counter in order to keep

track of the number of queries that it makes� If M �� is about to make its �n � �	st

query then we can have M �� halt and reject �or print �	� alternatively we can have

M �� go into an in�nite loop� Our choice of a particular normal behavior for M �� will

depend on our particular needs� The modi�cations to M �� above do not e�ect the

output of MA� If M �� has been normalized in one of these ways� then we call M ��

an n�query oracle machine� We can also normalize M so that M makes exactly n

queries wheneverM halts� by having M examine its counter before halting and make

the necessary number of super$uous queries� This modi�cation does not e�ect the

output of MB for any B�

Similarly� we can normalize an n�parallel�query A�machine MA so that M �� does

not make more than one round of queries� even when computing with an oracle other

than A� We can also guarantee that M makes exactly n parallel queries whenever M

halts�

In contrast with A�machines� ordinary Turing machines �without oracle	 will sim�

ply be called machines� however� when there is a possibility of confusion� ordinary

Turing machines will be called ��machines�

Because we do not distinguish between sets and ����valued total functions� we

think of the elements of Q�n�A	 as being sets� languages� decision problems� or ����

valued total functions according to our convenience�

We de�ne reducibilities that use a bounded number of queries� When the re�

ducibility requires only one query� we obtain an equivalence relation�

De�nition �
�
�

� A is n�query reducible to B �denoted A �n�T B	 if A � Q�n�B	�

� A is n�parallel�query reducible to B �denoted A �n�wtt B	 if A � Qk�n�B	�
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� A is ��query equivalent to B �denoted A 
��T B	 if A ���T B and B ���T A�

Thus� n�query reducibility is a variant of Turing reducibility in which only n queries

are allowed� and n�parallel�query reducibility is a variant of weak truth�table re�

ducibility in which only n queries are allowed�

De�nition �
�
� A is n�query complete for C if A � C and C � Q�n�A	�

In other words A belongs to C� and every set B belonging to C is n�query reducible

to A� For example� the halting problem is ��query complete for r�e� � co�r�e�

The class of recursive sets �or total recursive ����valued functions	 is denoted by

SREC� and the class of partial recursive functions is denoted by FREC�

We write f � g to denote the composition of the functions f and g� so that �f �

g	�x	 � f�g�x		� We extend the de�nition of composition to apply to sets of functions


De�nition �
�
� If S� and S� are two sets of functions then

S� � S� � ff� � f� j f� � S� and f� � S�g�

In the next section we show that composition of two bounded serial query classes

corresponds to allowing a number of queries to one oracle followed by a number of

queries to a second oracle�

De�nition �
�
� f k g denotes the concatenation of the functions f and g� as

de�ned below


i� If f and g are functions then

�f k g	�x	 � f�x	� g�x	�

�The comma ��	 operator treats its two operands as lists and concatenates them�

Scalar operands are treated as singleton lists� Thus the comma operator is

associative�	

ii� If S� and S� are sets of functions then

S� kS� � ff� k f� j �f� � S�	 and �f� � S�	g�

We note that k is associative because the comma operator is associative�
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In the next section we show how concatenation of two bounded parallel query

classes is related to allowing a number of parallel queries to one oracle simultaneous

with a number of parallel queries to a second oracle�

Relative to an oracle A we de�ne two functions� FA
n and �A

n � and two oracles�

PARITYA
n and GEQA� FA

n � de�ned below� is a convenient notation for the results of

n parallel queries to the oracle A�

De�nition �
�
	

FA
n �x�� � � � � xn	 � ��A�x�	� � � � � �A�xn		�

The function �A
n determines how many of n strings are elements of A�

De�nition �
�
�

�A
n �x�� � � � � xn	 �

X
��i�n

�A�xi	�

PARITYA
n determines whether an odd number of n strings are elements of A�

De�nition �
�
�

PARITYA
n �x�� � � � � xn	 � �A

n �x�� � � � � xn	 mod 
�

GEQA determines whether at least t out of n strings are elements of A�

De�nition �
�
�


GEQA�t�x�� � � � � xn	 �

��
� � if �A

n �x�� � � � � xn	 � t�

� otherwise�

Following our general convention� we will frequently treat PARITYA
n and GEQA as

sets� rather than as ����valued functions�

��� Observations about Q and FQ

Observation �
�
�

i� FQ��� A	 � FQk��� A	�

ii� Q��� A	 � Qk��� A	�

Proof� The de�nitions of n�serial� and n�parallel�query computation coincide when

n � ��
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Observation �
�
� If s � t then

i� FQ�s�A	 � FQ�t� A	�

ii� Q�s�A	 � Q�t� A	�

iii� FQk�s�A	 � FQk�t� A	�

iv� Qk�s�A	 � Qk�t� A	�

Proof� A computation that makes no more than s queries makes no more than t

queries�

Observation �
�
�

i� If FQ�s� f	 � FQ�t� g	 then Q�s� f	 � Q�t� g	�

ii� If FQk�s� f	 � FQk�t� g	 then Qk�s� f	 � Qk�t� g	�

Proof� Let S be the set of ����valued total functions �from the set of all strings

to the set of all strings	�

i� Q�s� f	 � S � FQ�s� f	 � S � FQ�t� g	 � Q�t� g	�

ii� Qk�s� f	 � S � FQk�s� f	 � S � FQk�t� g	 � Qk�t� g	�

Observation �
�
� FA
n � FQk�n�A	�

Proof� A program to exhibit the answers to n given queries to A can make those

n queries in parallel�
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Observation �
�
�

i� If f � FQ�s� g	 and g � FQ�t� h	� then f � FQ�st� h	�

ii� If f � FQk�s� g	 and g � FQk�t� h	� then f � FQk�st� h	�

Proof�

i� We can compute f via an algorithm that makes s queries to g� We can answer

each call to g by making t queries to h� Thus� we can compute f by making st

queries to h�

ii� Similar to �i	�

Observation �
�
�

i� f � FQ�s� g	 if and only if FQ��� f	 � FQ�s� g	�

ii� f � FQk�s� g	 if and only if FQ��� f	 � FQk�s� g	�

iii� A � Q�s� g	 if and only if Q��� A	 � Q�s� g	�

iv� A � Qk�s� g	 if and only if Q��� A	 � Qk�s� g	�

Proof�

i� Suppose that h � FQ��� f	� By Observation 
�
��� h � FQ�s� g	� There�

fore FQ��� f	 � FQ�s� g	� Conversely� if FQ��� f	 � FQ�s� g	 then

f � FQ��� f	 � FQ�s� g	�

ii� Similar to �i	�

iii� If A � FQ�s� g	 then FQ��� A	 � FQ�s� g	 by �i	� By Observation 
�
���

Q��� A	 � Q�s� g	� Conversely� if Q��� A	 � Q�s� g	 then A � Q��� A	 � Q�s� g	�

iv� Similar to �iii	�
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Observation �
�
	 FQ���FA
n 	 � FQk�n�A	�

Proof� By Observation 
�
��� FA
n � FQk�n�A	� Therefore� by Observation 
�
���

FQ���FA
n 	 � FQk�n�A	� Conversely� let f � FQk�n�A	� Then f can be computed by

an algorithm that makes only n parallel queries to A� Therefore f can be computed

by an algorithm that makes one call to a function that answers n parallel queries to

A�

Observation �
�
�

i� �A
n � FQk�n�A	�

ii� PARITYA
n � Qk�n�A	�

Proof� Both can be computed by making n parallel queries to A�

Observation �
�
� �A
n � FQ����

�A
n 	�

Proof� �A
n �x�� � � � � xn	 � n��

�A
n �x�� � � � � xn	�

Observation �
�
�
 If A �m B then

i� A � Q��� B	�

ii� ��n	�FQ�n�A	 � FQ�n�B	��

iii� ��n	�FQk�n�A	 � FQk�n�B	��

iv� PARITYA
n �m PARITYB

n �

v� �A
n � FQ����B

n 	�

Proof� Since A �m B� let f be a total recursive function such that x � A if and

only if f�x	 � B�

i� An m�reduction requires only one query�
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ii� We can modify any n�query A�machine so that instead of querying whether

x � A� it queries whether f�x	 � B� The new machine is an n�query B�machine

that computes the same function�

iii� Similar to �ii	�

iv� �x�� � � � � xn	 � PARITYA
n if and only if �f�x�	� � � � � f�xn		 � PARITYB

n �

v� �A
n �x�� � � � � xn	 � �B

n �f�x�	� � � � � f�xn		�

Observation �
�
�� A function g can be computed by making at most n� parallel

queries to f�� followed by at most n� parallel queries to f�� � � � followed by at most nr

parallel queries to fr if and only if

g � FQk�nr� fr	 � FQk�nr��� fr��	 � � � � � FQk�n�� f�	�

Proof� First� assume that g can be computed by an oracle Turing machine that

makes at most n� parallel queries to f�� followed by at most n� parallel queries to

f�� � � � followed by at most nr parallel queries to fr� Without loss of generality� we

assume that g�s output is stored on a special bu�er tape that is printed as part of the

halt instruction �this prevents the output of g from interfering with the input%output

relations of the r functions that we are composing	�

We compute a function g� as follows
 output the initial instantaneous description

of g �i�e�� the starting tape con�guration and the starting state	�

For � � i � r� we compute a function gi as follows
 The input to gi is an

instantaneous description of a computation� Simulate g� starting from the given

instantaneous description� until g is about to halt or make some parallel queries� If

g is about to make no more than ni parallel queries to fi� continue the simulation

until after the queries are made� and then output the instantaneous description of g�

Otherwise� stop simulating� and then output the instantaneous description�

We compute a function gr�� as follows
 The input to gr�� is an instantaneous

description of a computation� Simulate g� starting from the given instantaneous

description� until g is about to halt or make some queries� In either case� halt�
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For � � i � r� gi � FQk�ni� ri	� Because g� and gr�� are recursive�

g� � g� � FQk�n�� fr	 and gr�� � gr � FQk�nr� fr	� Therefore

g � �gr�� � gr	 � gr�� � � � � � �g� � g�	

� FQk�nr� fr	 � FQk�nr��� fr��	 � � � � � FQk�n�� f�	�

Conversely� assume that g � gr � gr�� � � � � � g�� where each gi is a function in

FQk�ni� fi	� We evaluate g� and use its output as the input to g�� then we evaluate

g� and use its output as the input to g	� � � � and then �nally we evaluate gr� That

algorithm computes g�x	 by making n� parallel queries to f�� followed by n� parallel

queries to f�� � � � followed by nr parallel queries to fr�

Corollary �
�
��

FQ�a� b� f	 � FQ�a� f	 � FQ�b� f	�

Proof� By Observation 
�
���� for every n

FQ�n� f	 � FQk��� f	 � � � � � FQk��� f	� �z �
n

�

Therefore

FQ�a� b� f	 � FQk��� f	 � � � � � FQk��� f	� �z �
a�b

� FQk��� f	 � � � � � FQk��� f	� �z �
a

�FQk��� f	 � � � � � FQk��� f	� �z �
b

� FQ�a� f	 � FQ�b� f	 by Observation 
�
���

Observation �
�
�� The function g can be computed by making at most n� parallel

queries to f�� simultaneous with at most n� parallel queries to f�� � � � simultaneous

with at most nr simultaneous queries to fr if and only if

g � FREC � �FQk�n�� f�	 kFQk�n�� f�	 k � � � kFQk�nr� fr		�
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Proof� First� assume that g can be computed by an oracle Turing machine that

makes at most n� parallel queries to f�� simultaneous with at most n� parallel queries

to f�� � � � simultaneous with at most nr simultaneous queries to fr� We assume that

g is normalized so that g makes exactly n� parallel queries to f�� simultaneous with

exactly n� parallel queries to f�� � � � simultaneous with exactly nr simultaneous queries

to fr� whenever g converges�

We compute a function gi as follows
 Simulate g until g is about to make its

parallel queries� make the ni parallel queries to fi� and output the results of those ni

queries�

We compute a function h as follows
 The input to h consists of the input to

g followed by a sequence of
P

��i�r ni oracle answers� Simulate g using the oracle

answers given by the input sequence� rather than making any queries� Then

g � h � �g� k g� k � � � k gr	

� FREC � �FQk�n�� f�	 kFQk�n�� f�	 k � � � kFQk�nr� fr		�

Conversely� assume that

g � h � �g� k � � � k gr	�

where h is partial recursive� and each gi is a function in FQk�ni� fi	� We assume that gi

is normalized so that it makes exactly ni parallel queries whenever it halts� Then the

following algorithm computes g�x	 by making n� parallel queries to f�� simultaneous

with n� parallel queries to f�� � � � simultaneous with nr parallel queries to fr
 Simulate

g� through gr� and suspend each of them right before it is about to make its oracle

queries� When each of g� through gr is ready to make its oracle queries� continue the

simulation� making all queries simultaneously� When g� through gr have terminated�

simulate h� and print h�s answer�

Corollary �
�
��

FQk�a� b� f	 � FREC � �FQk�a� f	 kFQk�b� f		�

Proof� Let n� � a� n� � b� and f� � f� � f in Observation 
�
����
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Observation �
�
��

i� If FQ�n� �� B	 � FQ�n�B	 then

��m � n	�FQ�m�B	 � FQ�n�B	��

ii� If FQk�n� �� B	 � FQk�n�B	 then

��m � n	�FQk�m�B	 � FQk�n�B	��

Proof�

i� Assume that FQ�n�B	 � FQ�n� �� B	� For all t � ��

FQ�n� t� �� B	 � FQ�n� � � t� B	

� FQ�n� �� B	 � FQ�t� B	 by Corollary 
�
��


� FQ�n�B	 � FQ�t� B	 by assumption

� FQ�n� t� B	 by Corollary 
�
��
�

Thus FQ�n � t � �� B	 � FQ�n � t� B	 for all t � �� By transitivity�

FQ�m�B	 � FQ�n�B	 for all m � n�

ii� Assume that FQk�n�B	 � FQk�n� �� B	� For all t � ��

FQk�n� t� �� B	 � FQk�n� � � t� B	

� FREC � �FQk�n� �� B	 kFQk�t� B		 by Corollary 
�
���

� FREC � �FQk�n�B	 kFQk�t� B		 by assumption

� FQk�n� t� B	 by Corollary 
�
����

Thus FQk�n � t � �� B	 � FQk�n � t� B	 for all t � �� By transitivity�

FQk�m�B	 � FQk�n�B	 for all m � n�
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Observation �
�
�� Let n�� � � � � nr be nonnegative integers� let s � max��i�r ni� and

let

mj � jfni j ni � jgj�

Then

FQ�n�� A	 k � � � kFQ�nr� A	 � FQk�ms� A	 � FQk�ms��� A	 � � � � � FQk�m�� A	�

Proof� If f � FQ�n�� A	 k � � � kFQ�nr� A	 then we can compute f by timesharing

an n��query A�machine� an n��query A�machine� � � � and an nr�query A�machine�

Without loss of generality� we assume that each ni�query A�machine makes exactly

ni queries whenever it halts� We force those machines to synchronize their queries�

thus f is computed by a machine that makes m� parallel queries to A� followed by

m� parallel queries to A� � � � followed by ms parallel queries to A�

Observation �
�
�	

FQ�n�A	 k � � � kFQ�n�A	� �z �
m

� FQk�m�A	 � � � � � FQk�m�A	� �z �
n

Proof� Let r � m and let n� � n� � � � � � nr � n in Observation 
�
���� Then

s � n and m� � m� � � � � � ms � m�

Observation �
�
�� �A
n � FQ�dlog �n� �	e�GEQA	�

Proof� �A
n �x�� � � � � xn	 is an integer k such that � � k � n� For any t� a single

query to GEQA will tell us whether k � t� Thus� a binary search determines k by

making dlog �n� �	e queries to GEQA�

The following generalization of Observation 
�
��� is key to the classi�cation in

Chapter � of functions computable by machines that make several rounds of parallel

queries to an oracle for the halting problem�

Observation �
�
��

�A
�n��������nr����� � FQk�nr�GEQA	 � FQk�nr���GEQA	 � � � � � FQk�n��GEQA	�
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Proof�

Let N � �n� � �	 � � � �nr � �	� The value taken on by �A
N�� is an integer k

such that � � k � N � �� thus k has one of N possible values� For any t� a single

query to GEQA will tell us whether k � t� With n� parallel queries� we ask whether

k � N��n� � �	� k � 
N��n� � �	� � � � � k � n�N��n� � �	� These queries restrict k

to a range of N��n� � �	 possible values� Similarly� the next n� parallel queries can

restrict k to a range of N���n���	�n���		 possible values� We continue in this way�

until the �nal nr parallel queries restrict k to a range of N���n���	 � � � �nr ��		 � �

possible value� Thus �A
N�� can be computed by making n� parallel queries to GEQA�

followed by n� parallel queries to GEQA� � � � followed by nr parallel queries to GEQA�

By Observation 
�
����

�A
N�� � FQk�nr�GEQA	 � FQk�nr���GEQA	 � � � � � FQk�n��GEQA	�

In Chapter �� we will use the following observation to show that

Qk�n�K	 � Qk�n� ��K	�

where K is an oracle for the halting problem�

Observation �
�
�


�A
�n�� � FREC � �FQ����GEQA

n 	 kFQ���PARITYGEQA

n�� 		�

Proof� Suppose that we are to compute �A
�n����x 	� where �x � �x�� � � � � x�n��	� Let

�y � �y�� � � � � y�n��	� where

yi � �i��x 	�

Then

�A
�n����x 	 � �GEQA

�n�� ��y 	�

Let

z � �GEQA

�n�� ��y 	�

t � �GEQA

n �y�� y
� � � � � y�n	�

p � PARITYGEQA

n�� �y�� y	� � � � � y�n��	�
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Then z � 
t or z � 
t � �� depending on whether y�t�� � GEQA� Since the parity

function computed above changes value if y�t�� � GEQA� the value of p determines

whether z � 
t or z � 
t� �� thus z is determined by the values of t and p� In fact

z �

��
� 
t� p if t is even


t� � � p otherwise�

Thus� we can compute �A
�n����x 	 � �GEQA

�n�� ��y 	 by making one query to �GEQA

n simul�

taneous with one query to PARITYGEQA

n�� �

A version of Kleene�s recursion theorem is true for k�query A�machines� We will

use the following notation exclusively in connection with the recursion theorem�

Notation �
�
��

i� 	A
e is the function computed by machine e relative to oracle A�

ii�

	A�k
e �x	 �

��
� 	A

e �x	 if 	A
e �x	 converges after making at most k queries

unde�ned otherwise�

Note that 	A�k
e � FQ�k�A	�

Observation �
�
��

i� If f is a total recursive mapping from MQ�k�A	 to MQ�k�A	� then there exists

a machine n � MQ�k�A	 such that 	A
n � 	A

f�n��

ii� If f is a total recursive mapping from MQk�k�A	 to MQk�k�A	� then there exists

a machine n � MQk�k�A	 such that 	A
n � 	A

f�n��

Proof�

i� We prove this by making minor changes to the proof in �Soa��� of the ordinary

recursion theorem� By the s�m�n theorem� there is a total recursive function d

such that

��v� z	�	A
d�v��z	 � 	A�k

�v�v�
�z	��
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Choose v such that 	v � f � d� then

��z	�	A
d�v��z	 � 	A�k

f�d�v��z	��

Let n � d�v	� Then

��z	�	A
n�z	 � 	A�k

f�n��z	��

By the de�nition of d� machine n � d�v	 is a k�query A�machine� Therefore� by

the de�nition of f � machine f�n	 must also be a k�query A�machine� Therefore�

	A�k
f�n� � 	A

f�n�� so

��z	�	A
n�z	 � 	A

f�n��z	��

Thus� n is a �xed point of f �

ii� Similar to �i	�



Chapter �

Bounded Queries to the Halting

Problem

In this chapter� we study the classes of sets and functions computable by machines

that make a bounded number of queries to an oracle for the halting problem� In

Chapter �� we will generalize some of these results to arbitrary nonrecursive oracles�

��� Lemmas About K

We use K to denote the halting problem� i�e�� the set of machines that halt on empty

input� Since the usual variants of the halting problem are recursively isomorphic �see�

for example� �Soa���	� we lose no generality by considering only this version of the

halting problem� We exhibit some straightforward properties of K�

Lemma �
�
� If A is r�e� then GEQA is r�e�

Proof� Given a nondeterministic acceptor for A� we accept GEQA as follows
 On

input �t�x�� � � � � xn	� run the nondeterministic acceptor for A on each of x� through

xn� keeping track of how many are accepted� If at least t of them are accepted� then

accept� otherwise reject� This nondeterministic algorithm accepts GEQA�
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Lemma �
�
� GEQK 
m K�

Proof� Because K is r�e�� GEQK is r�e� by Lemma ������ Therefore GEQK �m K�

Conversely� x � K if and only ���x	 � GEQK� so K �m GEQK�

The next lemma shows that we can determine how many of n programs halt by

asking only dlog �n� �	e queries to K�

Lemma �
�
� �K
n � FQ�dlog �n� �	e�K	�

Proof� By Observation 
�
����

�K
n � FQ�dlog �n � �	e�GEQK	�

By Lemma ����
� GEQK 
m K� Therefore�

FQ�dlog �n� �	e�GEQK	 � FQ�dlog �n� �	e�K	�

by Observation 
�
����ii	� Therefore�

�K
n � FQ�dlog �n� �	e�K	�

In order to determine which of n numbers belong to an r�e� set B� we only need

to know how many of them belong to the set B� as shown by the next lemma�

Lemma �
�
� If B is r�e� then FB
n � FQ����B

n 	�

Proof� Here is an algorithm relative to �B
n to determine which of x�� � � � � xn belong

to B
 Let t � �K
n �x�� � � � � xn	� Simulate an enumerator for B until at least t of the

numbers x�� � � � � xn have been enumerated� If xi has been enumerated by that time�

then xi � B� otherwise xi �� B�



CHAPTER �� BOUNDED QUERIES TO THE HALTING PROBLEM 
�

Lemma �
�
�

i� FK
n � FQ����K

n 	�

ii� FQk�n�K	 � FQ����K
n 	�

Proof�

i� This follows from Lemma ����� because K is r�e�

ii� By Observation 
�
��� FQk�n�K	 � FQ���FK
n 	� By �i	 and Observation 
�
���i	�

FQ���FK
n 	 � FQ����K

n 	� Therefore� FQk�n�K	 � FQ����K
n 	� Conversely�

�K
n � FQk�n�K	� so FQ����K

n 	 � FQk�n�K	 by Observation 
�
���i	�

The next lemma shows that we can determine which of n programs halt by asking

only dlog �n � �	e serial queries to K�

Lemma �
�
�

i� FK
n � FQ�dlog �n� �	e�K	�

ii� FQk�n�K	 � FQ�dlog �n� �	e�K	�

Proof�

i� By Lemma ������

FK
n � FQ����K

n 	�

By Lemma ������

�K
n � FQ�dlog �n� �	e�K	�

Therefore� by Observation 
�
���i	�

FK
n � FQ�dlog �n� �	e�K	�

ii� By Observation 
�
��� FQk�n�K	 � FQ���FK
n 	� By �i	 and Observation 
�
���i	�

FQ���FK
n 	 � FQ�dlog �n� �	e�K	�
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Lemma ������ii	 states a relationship between serial queries and parallel queries

to K� In the next section we will prove a converse to Lemma ������ii	�

Lemma ����� allows us to replace n parallel queries to K by a single query to �K
n �

The next lemma shows how to transform a query to �K
n into a special form�

Lemma �
�
	 There is a total recursive function �y such that for every natural num�

ber n and every n�tuple �x � �x�� � � � � xn	

�K
n ��y ��x 		 � maxfi j yi � Kg � �K

n ��x 	�

where �y � �y�� � � � � yn	�

Proof� By Lemma ������ GEQK is r�e� Therefore� there exists a total recursive

function f such that z � GEQK if and only if f�z	 � K� Let yi � f�i��x 	� If

�i � ���x 	 � GEQK then �i��x 	 � GEQK � so if yi�� � K then yi � K� Therefore�

�K�yi	 � �K�yi��	� Because of this monotonicity condition�

�K
n ��y 	 � maxfi j yi � Kg

� maxfi j �i��x 	 � GEQKg

� maxfi j �K
n ��x 	 � ig

� �K
n ��x 	�

Lemma ����� allows us to replace n parallel queries to K with n queries to K in

such a way that the answers to the queries are monotone� We will use that transfor�

mation explicitly in the remainder of this chapter� instead of referring to the lemma�

The following lemma depends only on the fact that GEQK �m K�

Lemma �
�
�

�K
�n�� � FREC � �FQ����K

n 	 kFQ���PARITYK
n��		�
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Proof� By Observation 
�
�
��

�K
�n�� � FREC � �FQ����GEQK

n 	 kFQ���PARITYGEQK

n�� 		�

By Lemma ����
� GEQK 
m K� Therefore�

FQ����GEQK

n 	 � FQ����K
n 	

by Observation 
�
����v	� and

FQ���PARITYGEQK

n 	 � FQ���PARITYK
n 	

by Observation 
�
����iv	 and Observation 
�
����ii	� Therefore�

�K
�n�� � FREC � �FQ����K

n 	 kFQ���PARITYK
n��		�

We will use Lemma ����� in the next section to show that Qk�n�K	 is a proper

subset of Qk�n� ��K	�

��� Separating the Bounded Query Classes

Lemma �
�
� FQ�n�K	 � FQk�

n � ��K	�

Proof� We show how to simulate an n�query K�machineM by a �
n��	�parallel�

queryK�machine� LetM � MQ�n�K	� Regardless of the oracle thatM uses� we know

that there are at most 
i�� possibilities for the ith query " one for each sequence

of answers to previous i � � queries� Thus we have an a priori bound of 
n � �

di�erent queries that could be made� regardless of the answers given by the oracle�

It is not in general possible to pre�compute what all these queries might be� because

some purported sequence of oracle answers might force M into a non�terminating

computation�

However� we can construct a query that has the same answer as the ith query

if the ith query is actually made �the answer is irrelevant if the ith query is not
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made	� For each Boolean sequence s of i� � potential oracle answers� we construct a

��machineM s that computes as follows
 Using the sequence s to answer the �rst i��

queries� simulateM untilM produces its ith query �go into an in�nite loop ifM halts

before producing i queries	� then simulate M �s ith query q �until q halts	 by using

the universal Turing machine� and then halt� M s makes no queries� furthermore� if

the assumed sequence of i� � oracle answers is correct� then M s halts if and only if

M makes at least i queries and M �s ith query belongs to K�

In other words� for each sequence of potential answers to the �rst i � � queries�

we have shown how to produce a query �namely �does M s halt� 	 that has the same

answer as M �s ith query if the �rst i� � answers are correct and if M actually makes

at least i queries� If the �rst i � � answers are not all correct or if M makes fewer

than i queries� we do not care about the answer to the query that we produce�

By determining whether each machine M s halts� we determine the answers to

all of M �s possible queries� The following algorithm simulates M by making onlyPn��
i�� 
i � 
n � � queries to K
 For each sequence s of fewer than n bits� query K to

determine whether M s halts� Simulate M � by substituting known answers for all of

M �s queries to K� Thus FQ�n�K	 � FQk�

n � ��K	�

Theorem �
�
� FQ�n�K	 � FQk�

n � ��K	�

Proof� By Lemma ������ii	�

��n	�FQk�n�K	 � FQ�dlog �n � �	e�K	��

By replacing n with 
n � � in the previous statement� we obtain

FQk�

n � ��K	 � FQ�n�K	�

Conversely� by Lemma ��
���

FQ�n�K	 � FQk�

n � ��K	�
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Theorem ��
�� below states that Q�n�K	 � Q�n � ��K	� We prove the theorem

by showing that the halting problem for n�query K�machines is in Q�n � ��K	 but

not in Q�n�K	�

Given a machineMB in MQ�n�B	 we can modifyM �� �in a �xed way	 so thatM ��

never makes more than n queries to its oracle �by having M keep count of how many

queries it makes	� Such a machine is said to be in standard form� It is important

that we choose a �xed way to modify M so that an algorithm can check whether a

machine is in standard form�

Notation �
�
�

� MQ��n�A	 is the set of machines in MQ�n�A	 that are in standard form�

� MQ�
k�n�A	 is the set of machines in MQk�n�A	 that are in standard form�

De�nition �
�
� If C is a set of machines then HC is the halting problem for C�

That is�

HC � fx � C j x halts on empty inputg�

Informally� we call HMQ��n�B� the halting problem for n�query B�machines�

Lemma �
�
� For every set B and natural number n

i� HMQ��n�B� �� Q�n�B	�

ii� HMQ�
k�n�B�

�� Qk�n�B	�

Proof�

i� �This is analogous to the standard proof that the halting problem for ��machines

is unsolvable�	 Given a machine x and an input y we can build another machine

that ignores its input and simulates machine x on input y �by the s�m�n Theo�

rem	� Thus the set of all pairs �x� y	 such that the n�query B�machine x halts on

input y is m�reducible to HMQ��n�B�� Therefore it su!ces to show that this more

general halting problem is not solvable by any n�query B�machine� Suppose



CHAPTER �� BOUNDED QUERIES TO THE HALTING PROBLEM 
�

that M were an n�query B�machine that could solve the halting problem for

n�query B�machines on arbitrary input� that is� if x is an n�query B�machine

in standard form then

M�x� y	 �

��
� true if program x halts on input y

false otherwise�

We de�ne a new machine u such that

u�x	

��
� goes into an in�nite loop if M�x� x	 � true

halts otherwise�

Clearly u is an n�query B�machine in standard form� By construction� u fails

to halt on input u if and only if u halts on input u� That is a contradiction�

ii� Simular to �i	�

A di�erent proof is possible� via the Recursion Theorem �
�
�

	 for n�query B�

machines �note that Theorem 
�
�

 is easily extended to machines in standard form	


Assume that M is an n�query B�machine that solves the halting problem for n�query

B�machines� De�ne an n�query B�machine program u such that for all x

	B
u �x	 �

��
� unde�ned if M�u	 � true

� otherwise�

�See �Soa��� pages ��&��� for a justi�cation of this informal use of the Recursion

Theorem�	 Then 	B
u converges on empty input if and only if 	B

u diverges on empty

input� The proof for n�parallel�query B�machines is similar�

A special case of the previous lemma is that n queries to K do not allow us to

solve the halting problem for n�query K�machines� However� n � � queries to K do

allow us to solve the halting problem for n�query K�machines� as shown below�

Lemma �
�
� HMQ��n�K� � Q�n� ��K	�
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Proof� Suppose that we are to determine whether an n�query machine x in stan�

dard form halts on empty input� The problem would be trivial if x always made

exactly n queries to K� If that were the case� we would simulate x until x had made

its n queries� and then we would ask a �nal query to K in order to determine if the

remainder of x�s computation would terminate� However� if x diverges there is no

guarantee that x uses its full allotment of n queries to K�

We avoid that pitfall as follows
 For � � i � n � � we de�ne a machine xi that

uses the answers to the �rst i � � queries �if that many queries are actually made	

in order to simulate x until x has halted or is about to make another query� If x has

halted then xi halts� otherwise xi simulates x�s ith query qi �until qi halts	 by using

the universal Turing machine� and then xi halts� Thus xi halts if and only if ��	 x

halts without making i queries or �
	 x makes at least i queries and the ith query

made by x is in K�

The following algorithm determines whether an n�queryK�machine halts on empty

input


Step �� Input x� If x is not an n�query K�machine in standard form then reject�

Step �� For i � � to n� � do the following


�a� Construct a machine xi that computes as follows
 Using the values

�K�x�	� � � � � �K�xi��	 computed in step 
�b	 as the �rst i � � oracle an�

swers� simulate x on empty input until x has halted or x is about to make

its ith query qi� if x is about to make its ith query qi then simulate qi until

qi has halted�

�b� Ask K whether xi halts�

�� If x makes an ith query qi� then �K�xi	 � �K�qi	� �	

Step �� Output the value of �K�xn��	 that was computed in step 
�b	�

We assert that x halts if and only if xn�� halts� Let j be the actual number of queries

made by machine x� By construction� xi � K if and only if qi � K for � � i � j� If

x halts then xj�� through xn�� halt� if x diverges then xj�� through xn�� diverge�
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The algorithm constructed above makes exactly n� � queries to K�

Theorem �
�
	 Q�n�K	 � Q�n � ��K	�

Proof� The inclusion is obvious �Observation 
�
�
	� Lemmas ��
���i	 and ��
��

imply that

HMQ��n�K� � Q�n� ��K	�Q�n�K	�

Therefore the inclusion is proper�

Corollary �
�
� FQ�n�K	 � FQ�n� ��K	�

Proof� This follows from Theorem ��
�� and Observation 
�
���

Corollary �
�
� Qk�

n � ��K	 � Qk�


n�� � ��K	�

Proof� By Theorem ��
��� Q�n�K	 � Q�n � ��K	� By Theorem ��
�
�

Q�n�K	 � Qk�

n � ��K	 and Q�n� ��K	 � Qk�


n�� � ��K	�

From Corollary ��
�� we can prove that more partial functions are computable

with n� � parallel queries to K than with only n parallel queries to K�

Lemma �
�
�
 ��n	�FQk�n�K	 � FQk�n� ��K	��

Proof� Proof by contradiction� Assume that FQk�n���K	 � FQk�n�K	 for some

n� Then� by Observation 
�
����

��m � n	�FQk�m�K	 � FQk�n�K	��

In particular FQk�

n � ��K	 � FQk�


n�� � ��K	� Therefore� by Observation 
�
���

Qk�

n � ��K	 � Qk�


n�� � ��K	� which contradicts Corollary ��
���

Corollary �
�
�� There is a total function in FQk�n� ��K	� FQk�n�K	�

Proof� By Lemma ��
���� FQk�n�K	 � FQk�n� ��K	� Therefore�

FK
n�� � FQk�n� ��K	 � FQk�n�K	�
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We have shown that n� � parallel queries are more useful than n parallel queries

for computing functions� Next we show that n � � parallel queries are more useful

than n parallel queries for solving decision problems�

Lemma �
�
�� PARITYK
n�� �� Qk�n�K	

Proof� By contradiction� Assume that PARITYK
n�� � Qk�n�K	� By Lemma ������

�K
�n�� � FREC � �FQ����K

n 	 kFQ���PARITYK
n��		

� FREC � �FQ����K
n 	 kFQk�n�K		 by assumption

� FREC � �FQk�n�K	 kFQk�n�K		 by Lemma ������ii	

� FQk�
n�K	 by Corollary 
�
����

Thus�

�K
�n�� � FQk�
n�K	�

and so� by Lemma ������ii	�

FQk�
n � ��K	 � FQ�
n�K	�

which contradicts Lemma ��
����

Theorem �
�
�� Qk�n�K	 � Qk�n� ��K	�

Proof� The containment is obvious� By Lemma ��
��
�

PARITYK
n�� � Qk�n � ��K	�Qk�n�K	�

so the containment is proper�

We have shown that the hierarchy of bounded parallel query classes relative to

K is proper� We have also seen where the bounded serial query classes �t into the

hierarchy


FQk���K	 � FQ���K	 �

FQk�
�K	 � FQk���K	 � FQ�
�K	 � FQk���K	 �

FQk���K	 � FQk���K	 � FQk���K	 � FQ���K	 � FQk���K	 � � � �

� � � � FQk�

n � 
�K	 � FQk�


n � ��K	 � FQ�n�K	 � FQ�
n�K	 � � � �
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The same relationship is true for decision problems


Qk���K	 � Q���K	 �

Qk�
�K	 � Qk���K	 � Q�
�K	 � Qk���K	 �

Qk���K	 � Qk���K	 � Qk���K	 � Q���K	 � Qk���K	 � � � �

� � � � Qk�

n � 
�K	 � Qk�


n � ��K	 � Q�n�K	 � Q�
n�K	 � � � �

��� A Normal Form for Languages in Qk�n�K�

By the de�nition of Qk every language in Qk�n�K	 is weak truth�table reducible to

K� In this section� we show that every language in Qk�n�K	 is� in fact� truth table

reducible to K� Furthermore� the truth table used in the reduction can always be

chosen to be n�ary exclusive�or �parity	 or its complement�

Theorem �
�
� If L � Qk�n�K	 then L ���tt PARITYK
n �

Proof� Let L � Qk�n�K	� Since Qk�n�K	 � Qk����
K
n 	� let �L be computed by a

machine M in MQk����
K
n 	� Because M halts on all inputs� we can assume without

loss of generality that M always makes exactly one query to �K
n �

For � � i � n� we compute a partial function fi�x	 as follows


Step �� SimulateM on input x until M prepares its query �q � �q�� � � � � qn	 to �K
n �
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Step �� Timeshare the following two computations until one of them has terminated


�a� Simulate q�� � � � � qn until at least i of them have halted� then simulate M

assuming that its oracle answer is equal to i� and �nally output the value

output by M �

�b� Simulate q�� � � � � qn until at least i�� of them have halted� and then output

the value ��

�� If �K
n ��q 	 � i� then step 
�a	 must terminate because the oracle answer is

correct and M halts on all inputs� if �K
n ��q 	 � i then step 
�b	 must terminate�

If �K
n ��q 	 � i then step 
�a	 and step 
�b	 both diverge� Thus step 
 terminates�

i�e�� fi�x	 is de�ned� if and only if i � �K
n ��q 	� �	

Thus�

fi�x	 �

�����
����

� or � �don�t care	 if i � �K
n ��q 	

�L�x	 if i � �K
n ��q 	

diverge if i � �K
n ��q 	�

For � � i � n��� we de�ne a ��machine yi�x	 that halts if and only if fi�x	 converges�

fi���x	 converges� and fi�x	 �� fi���x	� Thus�

�K�yi�x		 �

��
� fi�x	
 fi���x	 if i � �K

n ��q 	

� otherwise�

Let t � �K
n ��q 	� Then

f��x	
 PARITYK
n �y��x	� � � � � yn���x		

� f��x	
 ��K�y��x		
 � � � 
 �K�yn���x			

� f��x	
 ��K�y��x		
 � � � 
 �K�yt���x			
 ��K�yt�x		
 � � � 
 �K�yn���x			

� f��x	
 ��f��x	
 f��x		
 � � � 
 �ft���x	
 ft�x			
 ��
 � � � 
 �	

� f��x	
 ��f��x	
 f��x		
 � � � 
 �ft���x	
 ft�x			

� ��f��x	
 f��x		
 � � � 
 �ft���x	
 ft���x			
 ft�x	

� ft�x	

� �L�x	�
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Since f��x	 is total recursive� L ���tt PARITYK
n �

Corollary �
�
�

i� L � Qk�n�K	 if and only if L �n�tt K�

ii� L � Q�n�K	 if and only if L ���n����tt K�

Proof�

i� The forward implication follows immediately from Theorem ������ The converse

is obvious from the de�nitions�

ii� This follows from �i	� because Q�n�K	 � Qk�

n � ��K	 by Theorem ��
�
�

By de�nition� Qk�n�K	 consists of exactly those languages that are n�wtt reducible

to K� Thus Corollary ����
�i	 implies that n�wtt reducibility to K is equivalent to

n�tt reducibility to K� As mentioned in the introduction� Lachlan showed in �Lac���

that relative to some oracles n�wtt reducibility need not imply n�tt reducibility or

even unbounded tt�reducibility� even when n � �� In �Rog���� it was shown that if

K �tt B then

�A �wtt B	 implies �A �tt B	�

hence� in particular

�A �wtt K	 implies �A �tt K	�

In Rogers�s proof sketch� however� the tt�reduction uses more queries than the wtt�

reduction� and thus those methods do not yield our result that n�wtt reducibility to

K is equivalent to n�tt reducibility to K�

The next Corollary says that PARITYK
n is ��query complete for Qk�n�K	� It is

analogous to Lemma ������ii	�

Corollary �
�
� Qk�n�K	 � Q���PARITYK
n 	�

Proof� By Theorem ������ Qk�n�K	 � Q���PARITYK
n 	� The reverse containment

is obvious�
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That tt�reducibility to K via a �xed truth table of norm n implies membership

in Q���PARITYK
n 	 also follows from �Hay���� where it is shown that B �n�tt K via a

reduction whose truth table is independent of the input if and only if

�B �� PARITYK
n 	 or � #B �� PARITYK

n 	�

��� Several Rounds of Parallel Queries

In this section� we determine what functions can be computed if we are allowed to

make n� parallel queries to K� followed by n� parallel queries to K� � � � followed by

nr parallel queries to K�

Lemma �
�
�

FQk��n� � �	 � � � �nr � �	 � �	�K	 � FQk�nr�K	 � FQk�nr���K	 � � � � � FQk�n��K	�

Proof� Let N � �n� � �	 � � � �nr � �	� �� Then

FQk�N�K	 � FQ����K
N 	 by Lemma ������ii	

� FQk�nr�GEQK	 � FQk�nr���GEQK	 � � � � � FQk�n��GEQK	

by Observation 
�
���

� FQk�nr�K	 � FQk�nr���K	 � � � � � FQk�n��K	

because GEQK 
m K�

Lemma �
�
� FQk�n��K	 � FQk�n��K	 � FQk��n� � �	�n� � �	 � ��K	�

Proof� Let

f � FQk�n��K	 � FQk�n��K	 � FQ����K
n�
	 � FQ����K

n�
	�

by Lemma ������ii	� Then f � f� � f�� where f� � FQ����K
n�
	 and f� � FQ����K

n�
	�

Let M� compute f�� and let M� compute f�� Without loss of generality� we assume
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thatM� makes its query whenever it converges and thatM� makes its query whenever

it converges�

For � � r � n�� we de�ne a ��machine xr� that computes as follows
 simulate M�

until M� prepares its query �x�� � � � � xn�	� timeshare the ��machines x�� � � � � xn� until

at least r of them have halted� and halt�

For � � s � n� and � � t � n�� we de�ne a ��machine xs�t� that computes

as follows
 simulate M� until M� prepares its query �x�� � � � � xn�	� timeshare the ��

machines x�� � � � � xn� until at least s of them have halted� complete the simulation of

M� assuming that the answer to its query is equal to s� simulateM�� using the output

of M� as input� until M� prepares its query �y�� � � � � yn�	� timeshare y�� � � � � yn� until

at least t of them have halted� and halt�

We simulateM��M� as follows
 Ask K in parallel whether xr� halts for � � r � n�

and whether xs�t� halts for � � s � n�� � � t � n�� The answers to those queries

to K determine the answer to M��s query to �K
n�

and the answer to M��s query to

�K
n�
� We simulateM� �M� using this information in lieu of making additional oracle

queries� The number of parallel queries used by this simulation is n� � �n� � �	n� �

�n� � �	�n� � �	 � ��

Theorem �
�
�

FQk�n��K	 � FQk�n��K	 � FQk��n� � �	�n� � �	 � ��K	�

Proof� This follows from Lemma ����� and Lemma ����
�

Theorem �
�
�

FQk�nr�K	 � FQk�nr���K	 � � � � � FQk�n��K	 � FQk��n� � �	 � � � �nr � �	� ��K	�
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Proof� Proof by induction on r� The result is identically true for r � �� Assume

the result for some r� We will prove it for r � ��

FQk�nr���K	 � FQk�nr�K	 � � � � � FQk�n��K	

� FQk�nr���K	 � �FQk�nr�K	 � � � � � FQk�n��K		

� FQk�nr���K	 � FQk��n� � �	 � � � �nr � �	 � ��K	 by the induction hypothesis

� FQk���n� � �	 � � � �nr � �	 � � � �	�nr�� � �	 � ��K	 by Theorem �����

� FQk��n� � �	 � � � �nr�� � �	 � ��K	�

��� The Query Complexity Measure

De�nition �
�
�

� The query complexity of a computation relative to B is the number of queries

made to B if the computation terminates� in�nite otherwise�

� If a computation makes only one round of parallel queries to B then the parallel�

query complexity of that computation is equal to its query complexity�

A measure is a Blum complexity measure if it satis�es the following two conditions


��	 the complexity assigned to every divergent computation must be in�nite� and �
	

there must be an algorithm to determine whether the complexity of a computation

is at least c� for �nite c �see� for example� �MY��� page ��
�	� We relativize Blum�s

de�nition to apply to computations that use an oracle��

De�nition �
�
� A measure 
�M�x	 is a relativized Blum complexity measure for

computations that use oracle B if the measure satis�es the following two conditions


i� 
�M�x	 �� if and only if the B�machine M converges on input x�

�Our de�nition is di�erent from that of Lynch	 Meyer	 and Fischer �LMF��
	 because their de�

nition is uniform in the oracle�
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ii� The predicate 
�M�x	 � c is recursive in B�

Theorem �
�
� Query complexity and parallel�query complexity are relativized Blum

complexity measures for computations that use the oracle B if and only if K �T B�

Proof� First� assume that K �T B� By de�nition� the parallel�query complexity

and query complexity of a computation are �nite if and only if the computation

terminates� so condition �i	 is satis�ed�

We de�ne a �checkpoint of a computation as a halt or a query� A �segment is the

portion of a computation that occurs between checkpoints� Using an oracle for K� we

can determine whether a computation reaches a checkpoint� We can determine if the

serial query complexity of a computation is at least c by simulating the computation

one segment at a time� as follows


Step �� Input a machine M and a string x�

Step �� For i � � to c perform the following steps


�a� Using K� determine whether another checkpoint will be reached� If not

�� then the computation diverges� so its complexity is in�nite� which is at

least c �	 then accept�

�b� �� The computation reaches another checkpoint� �	 Simulate the com�

putation up to the checkpoint� If the checkpoint is a halt �� then the

computation makes fewer than c queries �	 then reject�

�c� �� The checkpoint is a query� �	 Using B� answer the query�

Step �� �� If we reach this step then the computation has made c queries� �	

Accept�

Since K �T B� the algorithm above is recursive in B� Since parallel�query com�

plexity is the same as query complexity� whenever the parallel�query complexity is

de�ned� the same algorithm determines if the parallel�query complexity of a compu�

tation is at least c� Thus� condition �ii	 is also satis�ed� so query complexity and

parallel�query complexity are relativized Blum computational complexity measures�
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Conversely� assume that parallel�query complexity or query complexity is a rel�

ativized Blum computational complexity measure� Suppose that we want to know

whether ��machine x halts on empty input� We replace x with an equivalent B�

machine that never uses its oracle� The query complexity of that B�machine�s com�

putation on empty input is either � or in�nity� By condition �ii	� we can determine

whether its query complexity is at least �� via an algorithm that is recursive in B� If

the complexity is at least � then x �� K� otherwise� x � K� Therefore� K �T B�

We will determine the exact query complexity relative to K of several problems�

����� Halting problems for K�machines

We write Kn to denote the halting problem for n�parallel�query K�machines�

De�nition �
�
� Kn � HMQ�
k�n�K��

Lemma �
�
�

HMQ��n�K� 
m HMQ�
k��

n���K��

Proof� In the proof of Theorem ��
�
 we showed how to e�ectively convert a

machine in MQ��n�K	 into a machine in MQ��
n � ��K	 that computes the same

function� and vice versa� If one halts� the other halts�

We shall determine the parallel�query complexity of Kn relative to K� If n is of

the form 
t � �� then our previous results provide an upper bound on the complexity

of Kn


Kn � HMQ�
k��

t���K�

� HMQ��t�K� by Lemma �����

� Q�t� ��K	 by Lemma ��
��

� Q���K	 � FQ�t�K	

� Q���K	 � FQk�

t � ��K	 by Theorem ��
�


� Q���K	 � FQk�n�K	�

� Qk�
n � ��K	 by Theorem ������
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In the next lemma� we prove this result for all n�

Lemma �
�
� Kn � Qk�
n� ��K	�

Proof� The following algorithm solves the halting problem for n�parallel�query

K�machines


Step �� Input x� if x is not an n�parallel�query K�machine in standard form then

reject�

Step �� �� Normalize x� �	 Let 'x be an n�parallel�query K�machine that com�

putes the same partial function as x� and makes exactly n parallel queries to K

whenever it halts�

Step �� For � � i � n� de�ne a ��machine xi that does the following
 simulate 'x

until 'x prepares its list of queries q�� � � � � qn� then simulate qi until qi halts�

�� Thus xi � K if and only if 'x asks a round of parallel queries and the ith

query belongs to K� �	

Compute FK
n �x�� � � � � xn	�

Step �� De�ne a machine x� that computes as follows
 simulate 'x until 'x prepares

its list of queries� using the oracle answers obtained in step �� continue the

simulation of 'x until 'x halts�

Ask K whether x� halts� output that answer�

We consider two cases�

Case �� The machine 'x makes its round of parallel queries�

In this case� step � produces the correct oracle answers� Therefore x� correctly

simulates 'x� so x� halts if and only if 'x halts�

Case �� The machine 'x does not make its round of parallel queries�

In this case� the machine 'x does not halt �because 'x is in normal form	� The

machine x� does not halt because x� goes into a divergent computation waiting

for 'x to make its round of parallel queries�
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In either case x� halts if and only if 'x halts� Because 'x and x compute the same

partial function� 'x halts if and only if x halts� Thus x� halts if and only if x halts�

The algorithm above makes only n parallel queries to K followed by a single query

to K� Therefore� by Observation 
�
����

Kn � FQ���K	 � FQk�n�K	

� FQk�
n � ��K	 by Theorem ������

so Kn � Qk�
n � ��K	 because Kn is a decision problem�

In Theorem ����� below� we show that the preceding result is tight�

Lemma �
�
	 PARITYK
�n�� � Q���Kn	�

Proof� Suppose that we are to determine whether �x � PARITYK
�n����x 	� where

�x � �x�� � � � � x�n��	� By Lemma ����
� K 
m GEQK� Therefore we can compute

�y � �y�� � � � � y�n��	 such that yi � K if and only if �i��x 	 � GEQK� We de�ne a

machine M in MQ�
k�n�K	 that does the following
 compute u � �K

n �y�� y
� � � � � y�n	�

simulate y�u�� until it has halted� and then halt� Then

�K
�n����x 	 � �K

�n����y 	 by the construction of �y

�

��
� 
u if y�u�� �� K


u� � otherwise�

Thus �K
�n����x 	 is odd if and only if y�u�� halts� By construction� M halts if and only

if y�u�� halts� so PARITYK
�n����x 	 � � if and only if M halts� Therefore� since M is

an n�parallel�query K�machine in standard form�

�x � PARITYK
�n���M � Kn�

Thus

PARITYK
�n�� �m Kn�
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Theorem �
�
� Kn is ��query complete for Qk�
n� ��K	�

Proof� By Lemma ������ Kn � Qk�
n � ��K	� Furthermore�

Qk�
n� ��K	 � Q���PARITYK
�n��	 by Corollary �����

� Q���Kn	 by Lemma ������

Since Kn is ��query complete for Qk�
n � ��K	� the parallel�query complexity of

Kn relative to K is exactly 
n� ��

Corollary �
�
� Kn � Qk�
n � ��K	�Qk�
n�K	�

Proof� By Theorem ������ Kn � Qk�
n � ��K	 and Qk�
n � ��K	 � Q���Kn	�

If Kn � Qk�
n�K	 then Qk�
n � ��K	 � Qk�
n�K	� contradicting Theorem ��
����

therefore Kn �� Qk�
n�K	�

Having seen that Qk�
n � ��K	 � Q���Kn	� one is led to wonder if a similar

result is true for functions
 Is it possible that FQk�
n���K	 � FQ���Kn	� The next

theorem rules out that possibility�

Theorem �
�
�
 If B is any set in Qk�n�K	� then FQk�
�K	 �� FQ��� B	�

Proof� By contradiction� Let B � Qk�n�K	 and suppose that FQk�
�K	 is a

subset of FQ��� B	� By Theorem ������

FQk��n � ��K	 � FQk�n� ��K	 � FQk�
�K	

� FQk�n� ��K	 � FQ��� B	�

Thus every function in FQk��n � ��K	 is computable by making a machine M that

makes one query to B followed by n � � parallel queries to K� We would like to

simulate M by making n parallel queries to K in order to determine the result of B�

simultaneous with n � � parallel queries to K to determine the result of the entire

computation assuming that B answers no� and simultaneous with n�� parallel queries

to K to determine the result assuming that B answers yes� However� it is possible
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that the computation diverges when we assume that B gives the incorrect oracle

answer� As usual� we exploit our oracle K in order to prevent our computations from

diverging� Without loss of generality we can assume that M makes exactly one query

to B followed by exactly n � � parallel queries to K whenever M converges� We

simulate M as follows


Step �� Simulate M until M is about to make a query to B�

Step �� For t � �� � and � � i � n� �� de�ne a machine xti that does the following


simulateM � assuming that the answer to the query to B is t� until M is about

to make its parallel queries q�� � � � � qn�� to K� simulate qi until qi terminates�

Step �� Perform the following two computations simultaneously


�a� Make n parallel queries to K in order to evaluate the query to B�

�b� Compute FK
�n���x

�
�� � � � � x

�
n��� x

�
�� � � � � x

�
n��	�

Step �� Let t equal the answer to the query to B� as computed in step ��a	� simulate

M assuming that the answer to the query to B is t and that the answers to the

parallel queries to K are equal to FK
n���x

t
�� � � � � x

t
n��	� as computed in step ��b	�

This algorithm simulatesM by making only �n� 
 parallel queries to K� Therefore�

FQk��n � ��K	 � FQk��n� 
�K	�

contradicting Theorem ��
����

Theorem �
�
�� If B is any set� then FQk�
�K	 �� FQ��� B	�

Proof� By contradiction� Assume that FK
� � FQ��� B	� for some B� Let M be

a ��query B�machine that computes FK
� � Without loss of generality� we can assume

that M �� never makes more than one query to its oracle� even if the oracle is di�erent

from B� For t � �� � we de�ne a ��machine M t that simulates M assuming that the

oracle answer is equal to t� Then for all pairs �x� y	� one of M� or M� produces the

correct output FK
� �x� y	�
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We de�ne a set A computed as follows
 On input �x� y	� compute FK
� �x� y	� time�

share M� and M� on input �x� y	 until one of them produces the correct answer

FK
� �x� y	� if the �rst one to produce the correct answer isM� then return �� otherwise

return ��

Then MA computes FK
� by making one query to A� which is in Qk�
�K	� That

contradicts Theorem �������

In Chapter � we will show that if A is any nonrecursive set then FA
� is not in

FQ��� B	 for any set B�

����� Recursively De�ned Halting Problems

We consider one class of decision problems� and we analyze their parallel�query com�

plexity relative to K�

De�nition �
�
�� We de�ne Kn recursively


Kn �

��
� K if n � �

HMQ����Kn��� otherwise�

Thus Kn is the halting problem for ��query Kn���machines��

Theorem �
�
��

HMQ����PARITYKn � � Qk�n� 
�K	�

Proof� The following algorithm solves the halting problem for ��query PARITYK
n �

machines


Step �� Input M � If M is not a ��query PARITYK
n �machine in standard form then

reject�

�Do not confuse Kn with K�n�	 which is the nth jump of K	 as de�ned in �Rog��	 p� ���
 and in
�Soa��	 De�nition ���
� We will show that Kn �T K	 so the Turing degree of Kn is much lower than
the Turing degree of K�n�� The set Kn is a sort of �
query jump of Kn��	 because Kn �� Q���Kn���
by Lemma ������i��
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Step �� For � � i � n� de�ne a ��machine xi that does the following
 simulate M

until M is about to make its query q�� � � � � qn to PARITYK
n � simulate qi until qi

halts�

Step �� For t � �� �� de�ne a ��machine M t that does the following
 simulate M

assuming that the answer to M �s query to PARITYK
n is equal to t�

Step �� Compute FK
n���x�� � � � � xn�M

��M�	�

Step �� Use the oracle answers obtained in step � in order to compute

t � PARITYK
n �x�� � � � � xn	

without making any more queries� �� If M queries its oracle� then the con�

struction guarantees that t is equal to the answer given by the oracle� �	

Step �� Output the value �K�M t	� which was computed in step ��

The algorithm given above makes only n� 
 parallel queries to K�

Corollary �
�
�� If B � Qk�n�K	 then

HMQ����B� � Qk�n� 
�K	�

Proof� Let B be a set in Qk�n�K	� Then B � Q���PARITYK
n 	� by Corollary ������

Therefore� FQ��� B	 � FQ���PARITYK
n 	 by Observation 
�
��� Furthermore� the

proof of Observation 
�
�� is constructive� it allows us to transform a machine in

MQ���� B	 into an equivalent machine in MQ����PARITYK
n 	� Therefore�

HMQ����B� �m HMQ����PARITYK
n �
�

Therefore� by Theorem �������

HMQ����B� � Qk�n� 
�K	�
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Lemma �
�
�� Kn � Qk�
n � ��K	�

Proof� By induction on n� K� � K � Qk���K	� so the base case is established�

Assume that Kn � Qk�
n � ��K	� for some n � �� Therefore�

HMQ����Kn� � Qk�
n � ��K	�

by Corollary ������� Therefore Kn�� � Qk�
n � ��K	 by the de�nition of Kn���

completing the induction�

Lemma �
�
��

PARITYK
�n�� �m HMQ����PARITYK�n���

�

Proof� Suppose that we are to determine whether �x � PARITYK
�n��� where �x �

�x�� � � � � x�n��	� By Lemma ����
� GEQK 
m K� Therefore we can compute �y �

�y�� � � � � y�n��	 such that yi � K if and only if �i��x 	 � GEQK� We de�ne a ��query

PARITYK
�n���machine M that does the following


Step �� Simulate y� until y� has halted� �� If �K
�n����x 	 � �� which is even� then

this step diverges� �	

Step �� Let p � PARITYK
�n���y�� y	� � � � � y�n	� �� Let t � �K

�n���y�� y	� � � � � y�n	� �	

Step �� If p � � then halt� �� In this case t is even� �K
�n����x 	 � t � �� which is

odd� �	

Step �� If p � � then simulate y�n�� until y�n�� has halted� �� In this case t is

odd� If t � 
n � � then �K
�n����x 	 � t � �� which is even� If t � 
n � � then

�K
�n����x 	 � 
n or 
n � �� depending on whether y�n�� halts� We halt only in

the latter case� �	

We convert M to standard form� The ��query PARITYK
�n���machine M halts if and

only if �x � PARITYK
�n���
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Corollary �
�
�	 Qk�
n � ��K	 � Q���Kn	�

Proof� By induction on n� Since Qk���K	 � Q���K	� the base case �n � �	

is established� Assume that the corollary is true for some n � �� where n � ��

Then Qk�
n � ��K	 � Q���Kn��	� so PARITYK
�n�� � Q���Kn��	� Therefore we

can e�ectively transform any machine in MQ����PARITYK
�n��	 into an equivalent

machine in MQ����Kn��	� so

HMQ����PARITYK
�n���

�m HMQ����Kn��� � Kn�

By Lemma �������

PARITYK
�n�� �m HMQ����PARITYK�n���

�

By transitivity�

PARITYK
�n�� �m Kn� ��	

By Corollary ������

Qk�
n� ��K	 � Q���PARITYK
�n��	

� Q���Kn	 by ��	�

Theorem �
�
�� Kn is ��query complete for Qk�
n � ��K	�

Proof� This follows from Lemma ������ and Corollary �������

Theorem �
�
�� If n is an odd number then HMQ����PARITYK
n �

is ��query complete

for Qk�n � 
�K	�

Proof� By Theorem �������

HMQ����PARITYKn � � Qk�n� 
�K	�

Because n is odd�

PARITYK
n�� �m HMQ����PARITYKn ��

by Lemma ������� Because PARITYK
n�� is ��query complete for Qk�n� 
�K	�

Qk�n� 
�K	 � Q���HMQ����PARITYK
n �	�
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By Theorem ������� the parallel�query�complexity of the halting problem for ��

query PARITYK
n �machines is n � 
� for odd n� We do not know the parallel�query�

complexity of the halting problem for ��query PARITYK
n �machines for even n�

��� Unbounded Queries

In Section ��
� we considered languages that are n�parallel�query reducible to K�

and we showed that they form a hierarchy between the recursive languages and the

languages that are weak truth�table reducible to K� In this section� we extend the

hierarchy up through languages that are Turing reducible to K�

We consider reducibilities that allow an unbounded number of queries� If we allow

an unbounded number of serial queries� then the reducibility is the same as Turing

reducibility� If� however� we allow only a bounded number of rounds of parallel queries

�with an unbounded number of parallel queries allowed during some rounds	� then we

obtain reducibilities that are di�erent from all of the reducibilities mentioned earlier

in this dissertation� If r and s are two reducibilities then we say that r�reducibility

is weaker �Odi��� than s�reducibility if for all sets A and B

A �s B � A �r B�

In this section� we de�ne reducibilities that are weaker than weak truth�table re�

ducibility� but stronger than Turing reducibility� Our goal is a generalization of

Theorem ����� in which an unbounded number of parallel queries may be allowed

during some rounds�

We de�ne FB
� to be a function that can compute FB

n for arbitrary n�

De�nition �
�
� For every n�

FB
� �x�� � � � � xn	 � FB

n �x�� � � � � xn	�

We generalize the de�nition of bounded query classes relative to the oracle B
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De�nition �
�
�

� MQk���B	 � MQ���FB
� 	�

� FQk���B	 is the set of partial functions that are computable by a machine in

MQk���B	�

� Qk���B	 is the set of ����valued total functions that are in FQk���B	�

Thus� MQk���B	 is the set of machines with oracle B that make at most one

round of parallel queries to B �with no bound on the number of queries made in the

round	� Qk���B	 is the set of languages that are wtt�reducible to B�

We de�ne PARITYB
� to be an oracle that can compute PARITYB

n for arbitrary n�

De�nition �
�
� For every n�

PARITYB
� �x�� � � � � xn	 � PARITYB

n �x�� � � � � xn	�

Theorem �
�
� B � Qk���K	 if and only if B ���tt PARITYK
� �

Proof� If B ���tt PARITYK
� then B � Qk���K	 by the de�nition of Qk���K	�

Conversely� let B be any set in Qk���K	 � Q���FK
� 	� Let B be accepted by a machine

M belonging to MQ���FK
� 	� The following algorithm decides membership in B


Step �� Input x�

Step �� SimulateM on input x untilM prepares its query �q�� � � � � qn	 to FK
� � �� We

only want to �gure out n� �	

Step �� Transform M into a machine that queries FK
n instead of querying FK

� �

Step �� As in the proof of Theorem ������ transform the n�parallel�query K�machine

from step � into a machine that computes via a ��truth�table reduction to

PARITYK
n �

Step �� Output the result of running the machine produced by step � on input x�

The computations in steps � through � are total recursive� step � computes a ��truth�

table reduction to PARITYK
� � Thus� B ���tt PARITYK

� �
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The next theorem states that every partial function computable by a machine

that makes an unbounded number of parallel queries to K followed by one query to

K is also computable by a machine that makes only one round of parallel queries to

K�

Theorem �
�
� FQ���K	 � FQk���K	 � FQk���K	�

Proof� Let f � FQ���K	 � FQk���K	� Then f � f� � f� where f� is computed by

a machine M� in FQ���K	 and f� is computed by a machine M� in FQ���FK
� 	� The

following algorithm computes f 


Step �� Input x�

Step �� Simulate M� on input x until M� prepares its query �q�� � � � � qn	 to FK
� �

Step �� Transform M� into a machineM �
� that queries FK

n instead of querying FK
� �

�� We only want to �gure out n� �	

Step �� Using the method of Lemma ����
 transform M� �M �
� into an equivalent

�
n� �	�parallel�query K�machine�

Step �� Output the result of running the machine produced by step � on input x�

The computations in steps � through � are total recursive� Step � makes only one

round of parallel queries to K� Therefore f � FQk���K	�

The reverse containment is obvious�

Corollary �
�
� FQk�n�K	 � FQk���K	 � FQk���K	�

Proof�

FQk�n�K	 � FQk���K	 � FQ�n�K	 � FQk���K	

� FQ���K	 � � � � � FQ���K	� �z �
n

�FQk���K	

� FQk���K	�

by repeated application of Theorem ����� and the associativity of composition�
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We adopt the following notational convenience


De�nition �
�
	

Qk��n��
m� A	 � SREC � FQk���A	 � � � � � FQk���A	� �z �

m

�FQk�n�A	�

Thus Qk��n��m� A	 is the set of decision problems that can be solved by an algorithm

that makes n parallel queries to A followed by m rounds of �unbounded	 parallel

queries to A� This convention is motivated by Theorem ������ which gives an approx�

imately multiplicative rule for combining several rounds of parallel queries to K into

a single round of parallel queries� The analogy between this convention and ordinal

notation will be explained in Section ����

We show that the halting problem for MQ�
k��n��

m�K	 is in Qk��
n� ���m�K	�

Theorem �
�
�

HMQ�
k��n
�

m�K� � Qk��
n� ���m�K	�

Proof� By induction on m� By Lemma ��
��� HMQ�
k�n�K� � Qk�
n � ��K	� estab�

lishing the base case �m � �	� Assume that

HMQ�
k
��n
�m�K� � Qk��
n� ���m�K	�

for some m � �� The following algorithm solves the halting problem for

MQ�
k��n��

m���K	


Step �� Input M � a machine in MQk��n��
m��	� Check whether M is in standard

form� if not then reject� Transform M into a normal form that makes exactly

n parallel queries to K� followed by exactly m� � rounds of parallel queries to

K� whenever M halts�

Step �� De�ne an n�parallel�queryK�machineM � that simulatesM untilM prepares

its second round of parallel queries�

Step �� Determine whether M � halts� if not� then reject� �� By Lemma ��
��� we

can solve the halting problem for n�parallel�query K�machines by making only


n � � parallel queries to K� �	
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Step �� Simulate M until M prepares its second round of parallel queries q�� � � � � qj

to K�

Step �� Construct a machine 'M by modifyingM so that it queries FK
j instead of FK

�

on the second round of queries� �� 'M makes n parallel queries to K� followed

by j parallel queries to K� followed by m rounds of parallel queries to K� �	

Step �� Using the technique of Lemma ����
� transform 'M into an equivalent ma�

chine in MQ�
k����n� �	�j � �	 � �	��m�K	�

Step 	� Determine whether the machine constructed in step � halts� if so accept�

otherwise reject� �� By the induction hypothesis� the halting problem for

MQ�
k����n��	�j ��	� �	��m�K	 is in Qk��
�n��	�j ��	� ���m�K	� which is

a subset of Qk��
m���K	� �	

This algorithm makes 
n � � parallel queries to K during step �� and m� � rounds

of parallel queries to K during step �� Thus the halting problem for MQ�
k��n��

m�K	

is in Qk��
n� ���m�K	�

By the preceding theorem� the halting problem for ��parallel�query K�machines

is in Qk���K	�FQ���K	� This contrasts with the proof of Lemma ������ in which we

showed that the halting problem for n�parallel�query K�machines is in

Q���K	�FQk�n�K	� Of course� the halting problem for n�parallel�query K�machines

is in Qk�n�K	 � FQ���K	� because

Qk�n�K	 � FQ���K	 � Qk�
n � ��K	 � Q���K	 � FQk�n�K	

by Theorem ������ however� we did not obtain that result directly�

Corollary �
�
� Qk��n��
m�K	 � Qk��
n� ���m�K	

Proof� By Theorem ������ the halting problem for MQ�
k��n��

m�K	 is in

Qk��
n� ���m�K	� By an argument similar to either proof of Lemma ��
��� the

halting problem for MQ�
k��n��

m�K	 is not in Qk��n��m�K	� Therefore� Qk��n��m�K	

is a proper subset of Qk��
n� ���m�K	�
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Theorem �
�
�
 Q��n��m�K	 � Q���n� �	��m�K	

Proof� The containment is obvious� We show that the containment is proper by

contradiction� Assume that

Qk��n� ���m�K	 � Qk��n��
m�K	�

Equivalently�

Qk��
m�K	 � FQk�n� ��K	 � Qk��

m�K	 � FQk�n�K	�

Therefore�

��j	�Qk��
m�K	 � FQk�n� ��K	 � FQk�j�K	 � Qk��

m�K	 � FQk�n�K	 � FQk�j�K	��

so� by Theorem ������

��j	�Qk��
m�K	�FQk��j��	�n�
	���K	 � Qk��

m�K	�FQk��j��	�n��	���K	��

and so� by de�nition�

��j	�Qk���j � �	�n � 
	� ���m�K	 � Qk���j � �	�n� �	 � ���m�K	�� �
	

If j � n� then

�j � 
	�n� �	 � � � �j � �	�n � 
	� ��

so

��j � n	�FQk��j � 
	�n � �	� ��K	 � FQk��j � �	�n� 
	 � ��K	��

Therefore�

��j � n	�Qk��
m�K	�FQk��j�
	�n��	���K	 � Qk��

m�K	�FQk��j��	�n�
	���K	��

so� by de�nition�

��j � n	�Qk���j � 
	�n� �	 � ���m�K	 � Qk���j � �	�n� 
	� ���m�K	�� ��	

By transitivity� equation ��	 and equation �
	 imply that

��j � n	�Qk���j � 
	�n � �	� ���m�K	 � Qk���j � �	�n� �	 � ���m�K	��
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That statement is true for j � n� n� �� � � � � 
n� Therefore� by transitivity�

Qk���
n� 
	�n � �	� ���m�K	 � Qk���n� �	�n� �	 � ���m�K	�

so

Qk��
�n� �	� � ���m�K	 � Qk���n� �	� � ���m�K	�

That contradicts Corollary ������

Theorem �
�
�� Qk��n��
m�K	 � Qk��

m���K	�

Proof�

Qk��n��
m�K	 � Qk��n� ���m�K	 by Theorem ������

� Qk��
m���K	 by de�nition�

We adopt a further notational convenience


De�nition �
�
�� Qk�

�� A	 is the set of decision problems that can be solved by

making an unbounded number of serial queries to A�

Thus Qk�

�� A	� which also might reasonably be called Q���A	� is the set of decision

problems that are Turing reducible to A�

Theorem �
�
�� Qk��n��
m�K	 � Qk�


��K	�

Proof�

Qk��n��
m�K	 � Qk��n� ���m�K	 by Theorem ������

� Qk�

��K	 by de�nition�
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This completes our hierarchy of decision problems reducible to K


Qk���K	 � Qk�
�K	 � � � � � Qk�n�K	 � Qk�n� ��K	 � � � �

� Qk���K	 � Qk������K	 � � � � � Qk��n���K	 � Qk��n� ����K	 � � � �
���

� Qk��
m�K	 � Qk�����

m�K	 � � � � � Qk��n��
m�K	 � Qk��n� ���m�K	 � � � �

� Qk��
m���K	 � Qk�����

m���K	 � � � � � Qk��n��
m���K	 � Qk��n� ���m���K	 � � � �

���

� Qk�

��K	�

��� Chromatic Number of a Recursive Graph

A graph G � �V�E	 is said to be recursive if its vertex set V and its edge set E are

countable and recursive� The chromatic number of a graph is the minimum number

of colors that su!ce to color the graph in such a way that no two adjacent vertices

have the same color� If we know that a recursive graph can be colored with a �nite

number of colors� then we can compute its chromatic number with a K�machine� In

fact� given an a priori bound c on the chromatic number of G� the chromatic number

of G can be computed by making dlog �c� �	e serial queries to K� this result is tight

�BG����

In this section� we consider the problem of computing the chromatic number�

��G	� of a graph when we are not given an a priori bound on its chromatic number�

We �nd tight bounds on the query complexity of computing the chromatic number

of a graph� we express the complexity as a function of the chromatic number�

Computing the chromatic number of a recursive graph is a special case of a more

general problem called unbounded searching� which was posed by Bentley and Yao

in �BY���� The problem is as follows
 Player A chooses an arbitrary natural number�

n� Player B is allowed to ask whether a natural number x is less than n� In general

the number of questions that B has to ask in order to determine n is a function f of

n� How small can this function be�
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Theorem �
	
� If there is an unbounded searching algorithm that asks only f�n	

questions to determine the number n� then there is an algorithm that computes ��G	

for recursive graphs by making only f���G		 serial queries to K�

Proof� The chromatic number of a graph is some natural number n� In �BG����

it was shown that we can determine if n � t by making one query to K� Thus we

can determine n by using unbounded search� the number of queries we make to K is

equal to the number of questions asked in the unbounded search�

In �Bei���� we showed that for any � � �

f�n	 �

	

 X
��i�log� n

log�i� �n	

�
A� �log log �e� �		 log� n�O��	 ��	

questions are su!cient� but

f�n	 �

	

 X
��i�log� n

log�i� �n	

�
A� �log log e	 log� n�O��	

questions are not su!cient� Those bounds are slightly tighter than the original bounds

provided by Bentley and Yao� We also proved the existence of algorithms that di�er

from optimal by an arbitrarily small total recursive function� Very tight bounds were

provided constructively by Knuth in �Knu����

Theorem �
	
� Let � be any positive real number� There is an algorithm that com�

putes ��G	 for recursive graphs by making only

f�n	 �

	

 X
��i�log� n

log�i� �n	

�
A� �log log �e� �		 log� n�O��	

serial queries to K�

Proof� By equation ��	� there is an unbounded searching algorithm that asks only

f�n	 questions to determine the number n� Therefore� by Theorem ������ there is an

algorithm that computes ��G	 for recursive graphs by making only f�n	 serial queries

to K�
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In �Bei��� we proved the following result


Theorem �
	
� Let f be a nondecreasing� total recursive function such that

s �
X
i��


�f�i�

is a recursive real number � i�e�� there is an algorithm that computes each bit of a bi�

nary expansion of s	 and s � �� Then there is an algorithm that solves the unbounded

searching problem by asking at most f�n	 questions�

Corollary �
	
� Let f be a nondecreasing� total recursive function such that

s �
X
i��


�f�i�

is a recursive real number and s � �� Then there is an algorithm that computes ��G	

for recursive graphs by making only f�n	 serial queries to K�

Proof� This follows from Theorem ����� and Theorem ������

Theorem �
	
� If there exists an oracle B and an algorithm that computes ��G	 for

recursive graphs by making only f���G		 serial queries to B� then

X
i��


�f�i� � ��

The proof of this depends on ideas from Chapter �� Therefore� we defer the proof to

Appendix A�

Corollary �
	
� Let

f�n	 �
X

��i�log� n

log�i� �n	� �log log e	 log� n�O��	�

There exists no oracle B such that we can compute ��G	 for recursive graphs by

making only f���G		 serial queries to B�

Proof� By contradiction� By the preceding theorem�
P

i�� 

�f�i� � �� However� in

�Bei���� we showed that
P

i�� 

�f�i� diverges�



CHAPTER �� BOUNDED QUERIES TO THE HALTING PROBLEM ��

��	 Related Work

The Qk�n�K	 hierarchy has arisen previously in other contexts� Putnam �Put��� calls

P a k�trial predicate if P is computed by a machine that changes its mind at most k

times on any input�

De�nition �
�
� �Putnam� P is a k�trial predicate if there exists a total recursive f

such that

P �x�� � � � � xn	 
 � lim
y	


f�x�� � � � � xn� y	 � �	�

and there are at most k natural numbers y such that

f�x�� � � � � xn� y	 �� f�x�� � � � � xn� y � �	�

Putnam did not examine the hierarchy of k�trial predicates� instead he considered

the set of predicates that are k�trial predicates for some k� He proved �there exists a

k such that P is a k�trial predicate if and only if P belongs to ��
�� the smallest class

containing the recursively enumerable predicates and closed under truth functions� 

Ershov �Ers��a� de�nes the following classes


De�nition �
�
� �Ershov� Let F� denote the set of one�one partial recursive one�

place functions�

���
� � (��

� � SREC�

���
n�� � fX j ��f � F�	��Y � (��

n 	�X � f�Y 	�g�

(��
n�� � co����

n�� � fX j ��Y � ���
n��	�X � N� Y �g�

Ershov proves that X � ���
n if and only if X is of the form

R� � �R� � �R	 � � �� �Rn�� �Rn	 � � �		

where R�� � � � � Rn are r�e� ThusX � ���
n if and only ifX is m�reducible to PARITYK

n �

Ershov proves that X � ���
n�� � (��

n�� if and only if �x � X	 is an n�trial predicate�

Ershov also proves that his classes form a hierarchy� e�g�� ���
n is properly contained

in ���
n��� In �Ers��b� and �Ers���� he �nds two di�erent techniques to extend his

hierarchy over the ordinal numbers�
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These ideas were treated more recently in �Eps���� which de�nes the n�r�e� sets�

His de�nition can be considered a modi�cation of Putnam�s de�nition of the n�trial

predicates in which f�x�� � � � � xn� �	 is required to be �� Thus ��r�e� sets are the same

as r�e� sets� The class of n�r�e� sets is identical to Ershov�s class� ���
n �

Epstein� Haas� and Kramer de�ne the set of weakly n�r�e� sets� which is equal to

���
n�� �(��

n��� The weakly n�r�e� sets are equivalent to the n�trial predicates� In joint

work with Gasarch and Hay �BGH���� we use this fact in order to show that Qk�n�K	

is equal to the set of weakly n�r�e� sets� we also use this fact in order to �nd di�erent

proofs of many of the results presented in Section ��
 through Section ����

Epstein� Haas� and Kramer also �nd a more intuitive method than Ershov�s to

extend the hierarchy over the ordinals �EHK���� For m � �� it turns out that

Qk��n��
m�K	 is identical to their class� r�n����m� If we de�ne our hierarchy more

subtly� and place di�erent bounds on the number of parallel queries to be made de�

pending on the results of the preceding queries� then we can re�ne our hierarchy so

that it is identical with the one in �EHK����

It is interesting that the Qk�n�K	 hierarchy arises in so many natural ways� For

more related work see �Add��� and �Gol����
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Nonrecursive Oracles

In Section ���� we give a new de�nition of computability that enables us to apply

purely combinatorial techniques to our study of bounded�query classes� In Section ��
�

we prove the Nonspeedup Theorem� which says that 
n queries to a nonrecursive

oracle A cannot be answered by making only n queries to an oracle B� In Section ����

we show that n � � queries to a nonrecursive oracle B allow us to compute more

functions than n queries to B allow us to compute� In the remainder of the chapter�

we investigate separation results for decision problems� and we de�ne and study terse�

superterse� and verbose sets�

��� Computability by a Set of Partial Recursive

Functions

In this section� we de�ne a new notion of computability that captures the information�

theoretic aspects of n�query oracle computations� The new notion of computability

is independent of the particular oracle being used� thus allowing us to apply purely

combinatorial techniques to the study of bounded�query computations�

��
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De�nition �
�
� The partial function h is computable by a set of n partial recursive

functions if there exist n partial recursive functions g�� � � � � gn such that

��x	�if h�x	 converges then h�x	 � fgi�x	 j � � i � ng��

�If gi�x	 does not converge then we exclude its value from the set above� by conven�

tion�	

Thus� the function h is computable by a set of n partial recursive functions if� for

each x� we can e�ectively compute a list of length n that includes h�x	� Informally�

we say that there are only n possible values for h�x	�

Thus� for example� every �� ��valued function is computable by a set of two partial

recursive functions
 let gi�x	 � i � �� However� not every �� �� 
�valued function is

computable by a set of two partial recursive functions� because we can diagonalize in

the standard way�

The next theorem implies that computability by a set of partial recursive functions

captures the information�theoretic aspects of computability by an oracle�

Theorem �
�
�

i� If there exists an oracle B such that h � FQ�n�B	� then h is computable by a

set of 
n partial recursive functions�

ii� If h is computable by a set of 
n partial recursive functions� then there exists an

oracle B such that h � FQk�n�B	� If h is total� then B is in Q��� h	

Proof�

i� Suppose that h is computed by an n�query B�machine M � There are only 
n

possible sequences of n oracle answers� For each i� let gi simulate M by using

the ith �lexically	 sequence of oracle answers� instead of querying B� For each

x� one of the sequences of oracle answers must be the correct one� therefore at

least one of the gi�s correctly computes h�x	�
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ii� Suppose that h is computable by a set of 
n partial recursive functions� g�� � � � � g�n�

Then n bits of information are su!cient to specify the �rst i such that gi�x	 �

h�x	� We de�ne B to be an oracle that provides those bits� i�e�� �x� j	 � B if

and only if the jth bit of the aforementioned i�� is equal to �� Given an oracle

for B� we compute h�x	 as follows
 make n parallel queries to B in order to

determine �one bit at a time	 an i such that h�x	 � gi�x	� output gi�x	� Thus

h � FQk�n�B	� We determine membership in B as follows


Step �� Input �x� j	�

Step �
�� �� If h is total then we can skip this step� �	 If h�x	 diverges then

reject�

Step �� Compute h�x	�

Step �� Timeshare the computations of g��x	� � � � � g�n�x	 until one of them out�

puts the correct answer h�x	� Let gi�x	 be the �rst to output the correct

answer�

Step �� If the jth bit of i� � is equal to � then accept� otherwise� reject�

If h is total� we omit step ���� so that B � Q��� h	� If h is not total then step ��� is

necessary so that B will be a set� in this case� B is r�e� in h�

This theorem enables us to show that every total function h computable by making

n serial queries to an oracle A can be computed by making n parallel queries to a

di�erent oracle B such that B � Q��� h	�

Corollary �
�
� If h is a total function in FQ�n�A	 then there exists a set B in

Q��� h	 such that h is in FQk�n�B	�

Proof� By Theorem ����
�i	� h is computable by a set of 
n partial recursive

functions� Therefore� by Theorem ����
�ii	� there is a set B in Q��� h	 such that h is

in FQk�n�B	�
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��� The Nonspeedup Theorem

Corollary ������ stated that FK
� �� FQ��� B	 for any oracle B� We generalize that

to a result proved independently by Gasarch �Gas���
 If A is any nonrecursive set�

then two parallel queries to A cannot be answered by making only one query to any

set B� In addition� we show that 
n parallel queries to a nonrecursive set A cannot be

answered by making only n serial queries to any set B� This is the strongest possible

result� by Theorem ��
�
�

Theorem �
�
� If A is a nonrecursive set and B is any set� then

FA
� �� FQ��� B	�

Proof� By contradiction� Assume that FA
� � FQ��� B	� By Theorem ����
�i	� FA

�

is computable by a set of two partial recursive functions� That is� there exist partial

recursive functions g�� g� such that

��x� y	�FA
� �x� y	 � fg��x� y	� g��x� y	g��

Let 
 be the operator that projects an ordered pair onto its �rst component� We take

two cases�

Case ��

��x	��y	�
g��x� y	 � 
g��x� y	��

In this case the following is an algorithm to compute �A�x	
 Timeshare g��x� y	

and g��x� y	 for all y until we �nd a y� such that 
g��x� y�	 � 
g��x� y�	� One

of the two functions gives the right answer� since they agree� they both give the

right answer� Therefore� �A�x	 � 
g��x� y�	�

Case ��

��x	��y	�
g��x� y	 �� 
g��x� y	��

In this case choose x� such that 
g��x�� y	 �� 
g��x�� y	 for all y� Let

c � �A�x�	� Then the following is an algorithm to compute �A�y	
 Time�

share g��x�� y	 and g��x�� y	 until one of them produces an output whose �rst
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component is c� Since the other function disagrees with the one that produces

c� the other function must be incorrect� Thus �A�y	 is equal to the second

component of the function that produces c for the �rst component�

In either case� �A is computable� so A is recursive� This contradiction proves the

theorem�

This theorem does not generalize in the obvious way� In fact� by Theorem ��
�
�

FK
�n�� � FQ�n�K	� However� we can prove that this result for halting�problem oracles

is tight� as part of a general result�

Lemma �
�
� Let m�n � �� If FA
n is computable by a set of m partial recursive

functions� then FA
n�� is computable by a set of m� � partial recursive functions�

Proof� Assume that there exist g�� � � � � gm such that

��x�� � � � � xn	�F
A
n �x�� � � � � xn	 � fgi�x�� � � � � xn	 j � � i � mg�� ��	

Let 
 be the operator that projects an n�tuple onto its �rst n � � components� We

take two cases�

Case ��

��x�� � � � � xn��	��xn	���i� �� i�		�
gi��x�� � � � � xn	 � 
gi��x�� � � � � xn	�� ��	

In this case� for each input� two of the functions g�� � � � � gm agree on the �rst

n� � components� Thus we can de�ne m� � functions of n � � variables that

omit the repeated value� Formally� for � � i � m � �� we de�ne the function

g�i�x�� � � � � xn��	� which is computed as follows


Step �� Input �x � �x�� � � � � xn��	�

Step �� Timeshare the computations of gj��x � y	 for all j and all y until we �nd

j�� j�� and y such that j� � j� and


gj���x � y	 � 
gj���x � y	�

as guaranteed by equation ��	�
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Step �� If i � j� then output 
gi��x � y	� otherwise� output 
gi����x � y	�

Thus g�i is partial recursive for every i� and g��� � � � � g
�
m�� take on the same set of

values as 
g�� � � � � 
gm� so

��x�� � � � � xn��	�F
A
n���x�� � � � � xn��	 � fg

�
i�x�� � � � � xn��	 j � � i � m� �g��

Therefore FA
n�� is computable by a set of m� � partial recursive functions�

Case ��

��x�� � � � � xn��	��xn	��i� �� i�	�gi��x�� � � � � xn	 �� gi��x�� � � � � xn	�� ��	

In this case� let �x � �x�� x�� � � � � xn��	 be the �n � �	�tuple whose existence

is guaranteed by ��	� Let �c � FA
n���x�� � � � � xn��	� Then the following is an

algorithm to compute �A�y	
 Timeshare g���x � y	 through gm��x � y	� until one of

them produces an output whose �rst n � � components are �c � Then �A�y	 is

equal to the last component� Thus A is recursive� Therefore� FA
n is computable

by a set consisting of one partial recursive function�

Lemma �
�
� �Nonspeedup� If A is nonrecursive then FA
n is not computable by a

set of n partial recursive functions�

Proof� By contradiction� Assume that FA
n is computable by a set of n partial

recursive functions� By repeated application of the previous lemma� we see that FA
�

is computable by a set consisting of one partial recursive function� Therefore A is

recursive�

Theorem �
�
� �Nonspeedup� If A is a nonrecursive set and B is any set then

FA
�n �� FQ�n�B	�

Proof� By contradiction� Assume that FA
�n � FQ�n�B	� Then FA

�n is computable

by a set of 
n partial recursive functions by Theorem ����
�i	� This contradicts the

Nonspeedup Lemma�
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We relativize the de�nitions of the bounded query classes�

De�nition �
�
�

� MQC�n�A	 is the set of machines with oracles for A and for C that make at

most n queries to A and an unrestricted number of queries to C�

� FQC�n�A	 is the set of partial functions that are computable by machines in

MQC�n�A	�

� QC�n�A	 is the set of ����valued total functions that are in FQC�n�A	�

� MQC
k �n�A	 is the set of machines with oracles for A and for C that make at

most n queries to A� all queries being made in parallel� and an unrestricted

number of serial queries to C�

� FQC
k �n�A	 is the set of partial functions that are computable by machines in

MQC
k �n�A	�

� QC
k �n�A	 is the set of ����valued total functions that are in FQC

k �n�A	�

Theorem �
�
� �Relativized Nonspeedup� Let A be a set that is not recursive

in the set C� Then for all B

FA
�n �� FQC�n�B	�

Proof� The proof of the Nonspeedup Theorem relativizes�

��� Separation Theorems

The Nonspeedup Theorem enables us to generalize Lemma ��
��� to arbitrary non�

recursive oracles� That is�

Lemma �
�
� If A is nonrecursive then

FQk�n�A	 � FQk�n� �� A	�
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Proof� The containment follows from the de�nition of FQk� Assume that

the containment is not proper� so that FQk�n�A	 � FQk�n � �� A	� Then

FQk�m�A	 � FQk�n�A	 for all m � n� by Observation 
�
����ii	� In particular

FQk�

n� A	 � FQk�n�A	� Therefore� FA

�n � FQk�

n� A	 � FQk�n�A	 � FQ�n�A	� By

the Nonspeedup Theorem� A must be recursive�

Theorem �
�
� �Parallel Separation� If A is nonrecursive then there is a total

function in FQk�n � �� A	� FQk�n�A	�

Proof� FA
n�� is a total function in FQk�n��� A	�FQk�n�A	� by Lemma ������

Theorem �
�
� If A is nonrecursive then

FQ�n�A	 � FQ�n � �� A	

Proof� The containment follows from the de�nition of FQ� Assume that

the containment is not proper� so that FQ�n�A	 � FQ�n � �� A	� Then

FQ�m�A	 � FQ�n�A	 for all m � n� by Observation 
�
���� In particular

FQ�
n� A	 � FQ�n�A	� Therefore FA
�n � FQk�


n� A	 � FQ�
n� A	 � FQ�n�A	� By the

Nonspeedup Theorem� A must be recursive�

If A is not recursive� then n�� serial queries to A allow us to compute more partial

functions that n serial queries to A allow us to compute� The proof of the preceding

theorem depends only on the Nonspeedup Theorem and Observation 
�
��� �Com�

position	� It is tempting to de�ne bounded query classes of total functions and then

try to generalize our proofs directly� Unfortunately� our proof of Observation 
�
���

is not valid for total functions� although we do not know whether Observation 
�
���

is true for total functions� we suspect that it is not� Since we cannot generalize our

proofs directly to total functions� we use a more complicated technique to show that

n�� serial queries to A allow us to compute more total functions that n serial queries

to A allow us to compute�

Assume that A is nonrecursive� If it were the case that FA
n�� �� FQ�n�A	 then

FA
n�� would be a total function in FQ�n� �� A	� FQ�n�A	� If it were the case that
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FA
�n�� � FQ�n�A	 then FA

�n would be a total function in FQ�n � �� A	 � FQ�n�A	�

Those two cases are the extremes� which suggest the general rule� By the Nonspeedup

Theorem� for every nonrecursive set A and every natural number n� there is a largest

number u such that FA
u � FQ�n�A	� Then FA

u�� is a total function belonging to

FQ�n � �� A	� FQ�n�A	� We formalize this proof below�

Theorem �
�
� �Serial Separation� If A is nonrecursive� then there is a total

function in FQ�n� �� A	� FQ�n�A	�

Proof� Let A be a nonrecursive set� and let n be any natural number� Let

u � maxft j FA
t � FQ�n�A	g�

By the Nonspeedup Theorem� the maximum exists �in fact it is less than 
n	� so u is

well de�ned�

FA
u�� � FQ���FA

u 	 kFQ��� A	

� FQ�n�A	 kFQ��� A	 because FA
u � FQ�n�A	

� FQ�n� �� A	�

Since u was chosen as the maximum t such that FA
t � FQ�n�A	� it follows that

FA
u�� �� FQ�n�A	�

Therefore�

FA
u�� � FQ�n� �� A	� FQ�n�A	�

��� Decision Problems

In Chapter � we established tradeo�s between serial and parallel queries to the halt�

ing problem� and we proved separation results for bounded query classes of decision

problems solvable with an oracle for K� In this chapter we have proved several sep�

aration results for bounded query classes of functions computable with an arbitrary
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nonrecursive oracle� In this section� we consider bounded query classes of decision

problems solvable with an arbitrary nonrecursive oracle� and we investigate possible

generalizations of our previous results� We show that our previous results do not

generalize� except in special cases�

By Corollary ����
�i	� n�tt reducibility to K is equivalent to n�parallel�query re�

ducibility to K� Lachlan has shown that n�tt reducibility is di�erent from n�parallel�

query reducibility in the general case �see the discussion after Corollary ����
	� Thus�

Corollary ����
�i	 does not generalize�

One might hope to generalize the separation theorems of Section ��� to apply

to decision problems� instead of just to functions� Theorem ����� below states that

the Parallel Separation Theorem �����
	 does not generalize to decision problems� In

�Bei��d�� we construct a nonrecursive set B such that Q�n�B	 � Q��� B	 for all n�

therefore the Serial Separation Theorem ������	 does not generalize to decision prob�

lems�

Theorem �
�
� There exists a nonrecursive set B such that

Qk���B	 � Q��� B	�

Proof� Let B � PARITYK
� �

Qk���B	 � Qk���PARITYK
� 	

� Qk���K	 because PARITYK
� � Qk���K	

� Qk���PARITYK
� 	 by Theorem �����

� Qk��� B	�

Therefore Qk���B	 � Q��� B	� The reverse containment is obvious�

The following two theorems are from �Bei��d�


Theorem �
�
� If B � Q�n�K	 then

Q�n�B	 � Q�n� �� B	 and Qk�n�B	 � Qk�n� �� B	
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Theorem �
�
� There exists a nonrecursive set B such that Q�n�B	 � Q��� B	 for

every n�

The following theorem is a generalization of Observation 
�
��� to ����valued par�

tial functions�

Theorem �
�
� Let B be a set and k a natural number�

i� If there is no 
���valued partial function in FQ�k��� B	�FQ�k�B	 then there

is no 
���valued partial function in FQ�n�B	� FQ�k�B	 for any n�

ii� If there is no 
���valued partial function in FQk�
k�B	� FQk�k�B	 then there

is no 
���valued partial function in FQk�n�B	� FQk�k�B	 for any n�

Proof�

i� By induction on n� By assumption� the claim is true for n � k��� Suppose that

the claim is true for some n � k��� Let f be a ����valued partial function that

can be computed by an �n��	�query B�machineM � Without loss of generality�

assume that M makes exactly n� � serial queries to B whenever M halts� For

i � �� �� we de�ne a function fi computed as follows
 simulate M until M is

about to make its �rst serial query� complete the simulation assuming that the

answer to M �s �rst serial query is i� Then fi is a ����valued partial function

in FQ�n�B	� therefore� by the induction hypothesis� fi is in FQ�k�B	� We can

compute f by making M �s �rst query and then k more queries to simulate

either M� or M�� depending on the answer to the �rst query� Thus f is in

FQ�k � �� B	� By assumption f is in FQ�k�B	�

ii� By induction on n� By assumption� the claim is true for n � 
k� Suppose

that the claim is true for some n � 
k� Let f be a ����valued partial function

that can be computed by an �n � �	�parallel�query B�machine� M � Without

loss of generality� assume that M makes exactly n�� parallel queries whenever

M halts� For i � �� �� we de�ne a function fi computed as follows
 simulate

M until M is about to make its round of n� � parallel queries� make the last
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n parallel queries� complete the simulation assuming that the answer to the

�rst parallel query is i� Then fi is a ����valued partial function in FQk�n�B	�

therefore� by the induction hypothesis� fi is in FQk�k�B	� Let

gi�x	 �

�����
����

fi�x	 if the answer to M �s �rst parallel query is i

� if the answer to M �s �rst parallel query is �� i

unde�ned if M makes no queries�

Then f�x	 � g��x	 	 g��x	� and each gi is a partial ����valued function in

FQk�k��� B	� By assumption gi is in FQk�k�B	� Therefore f is in FQk�
k�B	�

which is a subset of FQk�k�B	 by assumption�

We prove some separation results in special cases�

Lemma �
�
� Let B be a set such that K � Q�j�B	� Then� for all k�

Q�k�B	 � Q�jk � j � k�B	�

Proof� The containment is obvious� The following algorithm solves the halting

problem for k�query B�machines


Step �� Input a k�query B�machine M � If M is not in standard form then reject�

NormalizeM so that M makes exactly k serial queries to B wheneverM halts�

Step �� For i � �� � � � � k do the following


�a� Query K to determine if M is going to make another query to B�

�b� If so� then query B to determine the answer� otherwise� reject�

Step �� Query K to determine if the remainder of M �s computation terminates�

This algorithm makes k � � serial queries to K and k serial queries to B� Since

K � FQ�j�B	� the halting problem for k�query B�machines is in Q�jk � j � k�B	�

By Lemma ��
��� the halting problem for k�query B�machines is not in Q�k�B	�
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Theorem �
�
� Let B be a set such that K � Q�j�B	� Then� for all k� there is a


���valued partial function in FQ�k � �� B	� FQ�k�B	�

Proof� Proof by contradiction� Assume that there is no ����valued partial function

in FQ�k��� B	�FQ�k�B	� By Theorem ������ there is no ����valued partial function

in FQ�n�B	�FQ�k�B	 for any n� In particular there is no ����valued partial function

in FQ�jk � j � k�B	 � FQ�k�B	� so Q�jk � j � k�B	 � Q�k�B	� This contradicts

Lemma ������

Next� we show that Lemma ��
�� does not generalize to arbitrary nonrecursive

oracles� even if we consider only decision problems�

Theorem �
�
	 There exists a nonrecursive set B such that

Qk���B	 � Q�
� B	�

Proof� Let B � PARITYK
� �

Qk���PARITYK
� 	 � Qk���PARITYK

� 	 as shown in the proof of Theorem �����

� Qk���K	 by Theorem �����

� Qk���K	 � FQ���K	 by Theorem �����

� Qk���PARITYK
� 	 � FQ���K	 by Theorem �����

� Qk���PARITYK
� 	 � FQ���PARITYK

� 	

because K �m PARITYK
�

� Q�
�PARITYK
� 	�

The following theorem is from �BGGO����

Theorem �
�
� There exists an oracle B such that

Qk�n� �� B	 �� Q�n�B	�

Thus Lemma ����� does not generalize to arbitrary nonrecursive oracles� even if we

consider only decision problems�
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��� Terse and Superterse Sets

A set B is terse� as de�ned in �BGGO���� if it is not possible to answer n parallel

queries to B by making only n � � serial queries to B�

De�nition �
�
� A set B is terse if

��n	�FB
n �� FQ�n � �� B	��

In �BGGO���� it was shown that every r�e� Turing degree� contains an r�e� terse

set� A set B is superterse if it is not possible to answer n parallel queries to B by

making only n� � serial queries to any oracle�

De�nition �
�
� A set B is superterse if

��A	��n	�FB
n �� FQ�n� �� A	��

Theorem �
�
� If B is r�e�� then B is not superterse�

Proof�

FB
�k�� � FQk�


k � ��K	 because B �m K

� FQ�k�K	�

The following corollary appears in �BGGO���


Corollary �
�
� There exist oracles that are terse but not superterse�

Proof� As shown in �BGGO���� there exist r�e� terse sets�

�If r is a reducibility such that r
reducibility is re�exive and transitive	 then we de�ne the
corresponding equivalence relation r
equivalence by A �r B if and only if A �r B and B �r A� An
r
degree is an equivalence class of r
equivalence� See �Rog��	 Soa��
� A degree is r�e� if it contains
an r�e� set�
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The Nonspeedup Theorem provides us with a tool for proving that an oracle is

superterse�

Theorem �
�
� If A is nonrecursive and

��n	�FA
�n�� � FQk�n�B	�

then B is superterse�

Proof� Suppose that B is not superterse� so that� for some set C and some positive

integer n

FB
n � FQ�n� �� C	� ��	

By assumption

FB
�n�� � FQk�n�B	

� FQ�n� �� C	 by equation ��	�

contradicting the Nonspeedup Theorem�

Lemma �
�
�

FK
�n�� � FQk�n�PARITYK

� 	�

Proof� Because FK
�n�� � Q����K

�n��	 by Lemma ������ it su!ces to show that

�K
�n�� � FQk�n�PARITYK

� 	�

Let t � �K
�n���x�� � � � � x�n��	� Then t is an n�bit nonnegative integer� Since PARITYK

�

is ��query complete for Q���K	� each bit of t can be determined by making a single

query to PARITYK
� �

Corollary �
�
	 PARITYK
� is superterse�

Proof� This follows from Lemma ����� and Theorem ������

Thus� there exists a superterse set�
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��� Verbose Sets

The Nonspeedup Theorem provides a quantitative bound on how �nonterse a non�

recursive set can be� We say that a set is verbose if it is as nonterse as the Nonspeedup

Theorem allows� i�e�� a set B is verbose if 
n�� parallel queries to B can be answered

by making only n serial queries to B� for all n�

De�nition �
�
� A set B is verbose if

��n	�FB
�n�� � FQ�n�B	��

For example� K is verbose� by Theorem ��
�
� We de�ne semiverboseness analo�

gously to superterseness�

De�nition �
�
� A set B is semiverbose if

��A	��n	�FB
�n�� � FQ�n�A	��

For example� all r�e� sets are semiverbose� as shown in the proof of Theorem ������

Since some r�e� sets are also terse� there exist sets that are semiverbose but not

verbose�

In �BGGO���� it was shown that every truth�table degree contains a verbose set�

The following proof is based on the proof in that paper and on Jockusch�s construction

of a semirecursive� set �Joc����

Theorem �
�
� If A is any nonrecursive set� then there exists a verbose set B that

is truth�table equivalent to A�

Proof� Let f be a recursive function that maps the natural numbers ��� onto the

set of �nite strings over the alphabet f�� �g� then f�� is a recursive function� We

write s� � s� to denote that the �possibly in�nite	 string s� precedes the �possibly

in�nite	 string s� in lexicographic order� Let � be the in�nite string� a�a� � � � � where

ai � �A�i	� Let B � fx j f�x	 � �g�

�A set B is semirecursive if there exists a total recursive �	�
valued function f such that if
f�x� y� � � then �B�x� � �B�y� and if f�x� y� � � then �B�x� � �B�y��
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First we show that B �tt A� We write ��n� to denote the �nite string consisting

of the �rst n characters of �� The following algorithm computes �B�x	
 let n be the

length of the string f�x	� make n parallel queries to A in order to determine ��n�� if

f�x	 � ��n� then output �� else output ��

Second we show that A �tt B� We determine whether n is in B as follows
 For

each string s of length n� query B to determine if f���s	 � B� thereby determining

whether s � �� this determines the �rst n bits of �� and in particular it determines

the nth bit of �� which is �B�n	�

Finally we show that 
n � � parallel queries to B can be answered by making

only n serial queries to B� We de�ne a linear ordering on the natural numbers as

follows
 for x� y � N� let x � y if and only if f�x	 � f�y	� We compute FB
�n�� as

follows
 given x�� x�� � � � � x�n��� order them according to �� assume �by renumbering	

that x� � x� � � � � � x�n��� use binary search �n queries	 to �nd the largest i such

that xi � B� then we know that x�� � � � � xi are in B and that xi��� � � � � xn are not in

B�

We included the proof of Theorem ����� because it leads to the following corollary


Theorem �
�
� There is a superterse set in every nonrecursive truth�table degree�

Proof� We use the notation from the proof of Theorem ������ Let S � PARITYB
� �

and let t � �B
�n���x�� � � � � x�n��	�

Then n parallel queries to S allow us to determine t� as follows
 Assume that

x� � x� � � � � � x�n��� For � � i � n� we can determine the ith bit of t by asking

if an odd number of fxj�i j � � j � 
n�ig are in B� Once we know t� we know that

x�� � � � � xt are in B and that xt��� � � � � x�n�� are not in B� Thus

FB
�n�� � FQk�n� S	�

By Theorem ������ S is superterse�
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��� �A

n �� FQ�n�B�

If B is de�ned as in the proof of Theorem ������ then FB
n � FQ����B

n 	� for all n�

Therefore� by the Nonspeedup Theorem� for every set S and natural number n�

�B
�n �� FQ�n� S	�

This leads us to conjecture the following� stronger version of the Nonspeedup Theo�

rem�

Conjecture �
	
� Let A be any nonrecursive set� For every set B and natural num�

ber n

�A
�n �� FQ�n�B	�

Theorem �
	
� Let A be any set� Assume that there exist sets B and C such that

B �m A� B is r�e� in C� and B is not recursive in C� Then for every set S and

natural number n

�A
�n �� FQ�n� S	�

Proof� By assumption� B �m A� Therefore �B
k � FQ����A

k 	� for all k� In

particular�

�B
�n � FQ����A

�n	�

By assumption� B is r�e� in C� Therefore� because Lemma ����� relativizes�	

FB
k � FQC����B

k 	� for all k� In particular�

FB
�n � FQC����B

�n	�

In order to obtain a contradiction� suppose that

�A
�n � FQ�n� S	�

Then� by transitivity�

FB
�n � FQC�n� S	�

Since B is not recursive in C� this contradicts the relativized Nonspeedup Theorem�

�See �Rog��	 Soa��
 for a discussion of relativizations�
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Corollary �
	
� Let A be nonrecursive� Assume that there exists C such that A is

r�e� in C� but not recursive in C� Then for every set S and natural number n

�A
�n �� FQ�n� S	�

Proof� Since A �m A� we can let B � A in the preceding theorem�

The hypothesis of Corollary ����� is not true for every nonrecursive set A� �For ex�

ample� let A equal the recursive join �Rog��� Soa��� of K and #K� If A is r�e� in C� then

#A is r�e� in C because #A �m A� Therefore A is recursive in C�	 Thus Corollary �����

is not powerful enough to establish Conjecture ������ In fact� Owings has pointed

out
 that even Theorem ����
 is not powerful enough to establish Conjecture ������

Corollary �
	
� Let A be nonrecursive� Assume that there exists a nonrecursive r�e�

set B such that B �m A� Then for every set S and natural number n

�A
�n �� FQ�n� S	�

Proof� Let C � � in Theorem ����
�

Corollary �
	
� If A is a nonrecursive set in Q�k�K	 then for every set S and

natural number n

�A
�n �� FQ�n� S	�

Proof� In �BGH���� we have shown that if A � Q�k�K	 then A is �
k � �	�r�e� If

A is a nonrecursive n�r�e� set then Epstein� Haas� and Kramer have shown �EHK���

Theorem ��� that there exists a nonrecursive r�e� set B such that B �m A or B �m
#A�

If B �m A then �A
�n �� FQ�n� S	 by Corollary ������ Otherwise B �m

#A� so

�
�A
�n �� FQ�n� S	� Since �

�A
�n � FQ����A

�n	 by Observation 
�
��� it follows that �A
�n ��

FQ�n� S	�

�Choose a set A such that the Turing degree of A is minimal� If B �m A then the degree of B
must also be minimal� In �Soa��	 p� ���
 it is shown that no nonzero r�e� degree is minimal	 as a
corollary to the Sacks Splitting Theorem� Relativizing that proof	 we obtain that if B is r�e� in C
but not recursive in C then the degree of B is not minimal� Thus the hypothesis of Theorem �����
is not true for elements of minimal Turing degrees�

�They only claim to prove that B �T A� however their proof sketch yields the stronger result� A
more detailed proof sketch appears in �Eps��	 Theorem � on page ���
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Lemma �
	
�

FA
n � FQ����A

�n��	

Proof� In order to determine which of x� through xn are in A� make 
i�� copies

of xi for each i� Ask how many of those 
n � � strings are in A� Then xi � A if and

only if the ith bit of that answer is one�

The next theorem is our most concrete progress on Conjecture �����


Theorem �
	
	 Let A be any nonrecursive set� For every set B and natural num�

ber n

�A
��
n
�� �� FQ�n�B	�

Proof� By contradiction� Suppose that

�A
��n�� � FQ�n�B	�

By Lemma ������

FA
�n � FQ����A

��n��	

� FQ�n�B	 by assumption�

which contradicts the Nonspeedup Theorem�

The results in this section have been substantially improved by Owings� who

proves two di!cult theorems in �Owi���� He has shown that if �B
� is computable

by a set of two partial recursive functions� then B is recursive� In addition� he has

shown that if �B
n is computable by a set of n partial recursive functions then B is

recursive in K� By Corollary ������ B cannot be a nonrecursive set in Q�k�K	 for

any k� Thus Conjecture ����� is open only for sets that are Turing reducible to K�

but not bounded�query� reducible to K�

�In �Sac��
	 Sacks has constructed a minimal Turing degree below �
�� Therefore Theorem �����

will not su�ce �see footnote �� to establish the remaining cases of Conjecture ������
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��	 Quantifying Verboseness

So far� the only nonterse sets we have seen are verbose sets� and the only nonsuperterse

sets we have seen are semiverbose sets� In this section� we exhibit some sets that are

neither terse nor semiverbose� We also prove that if a set fails to be terse� then it

fails in a strong way to be terse� if a set fails to be superterse then it comes within a

constant factor of being semiverbose�

De�nition �
�
�

� A set B is k�verbose if

FB
n � FQ�k log n �O��	� B	�

� A set B is k�semiverbose if there exists a set A such that

FB
n � FQk�k log n�O��	� A	�

�The constant term O��	 is allowed to depend in k�	

The next theorem is a useful tool for proving that a set is not semiverbose�

Theorem �
�
� If there exists a nonrecursive set A such that

FA
�n � FQk�m�B	

then for every set C

FB
m �� FQ�n�C	�

Proof� By contradiction� Assume that FA
�n � FQk�m�B	 and FB

m � FQ�n�C	�

Then FA
�n � FQ�n�C	� which contradicts the Nonspeedup Theorem�

Theorem �
�
� For every k � 
� PARITYK
k is ��semiverbose� but not semiverbose�
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Proof�

FPARITYK

k
n � FQk�n�PARITYK

k 	

� FQk�kn�K	 because PARITYK
k � Qk�k�K	

� FQ�dlog �kn� �	e�K	 by Lemma �����

� FQ�dlog �kn� �	e�PARITYK
k 	 because K �m PARITYK

k �

Since log �kn� �	 � log n�O��	� we conclude that PARITYK
k is ��semiverbose� Let

m � k�n� k � 
	 � �� The following algorithm computes �K
m


Step �� Input �x � �x�� � � � � xm	�

Step �� Construct yi such that yi � K if and only if �i��x 	 � GEQK � �� Then

�K
m��y 	 � �K

m��x 	� �	

Step �� Perform the following two computations in parallel


�a� Let s � �K
k���yn�k��� y��n�k���� � � � � yt�n�k���� � � � � y�k����n�k���	�

�� At this point we know that s�n�k�
	 � �K
m��x 	 � �s��	�n�k�
	� �	

�b� For � � i � n � k � 
 do the following


let �v i � �yi� yi�n�k��� � � � � yi�t�n�k���� � � � � yi��k����n�k���	�

and let s� � �
PARITYK

k

n�k�� ��v �� � � � � �v n�k��	�

�� If s is even then s� � �K
n�k����v s	� If s is odd then s� � �

�K
n�k����v s	� �	

Step �� If s is even then output s�n � k � 
	 � s��

Otherwise� output s�n� k � 
	 � n � k � �� s��

We make k�� parallel queries to K in step ��a	� and simultaneously we make n�k��

parallel queries to PARITYK
k in step ��b	� Thus

�K
m � FREC � �FQk�k � ��K	 kFQk�n� k � ��PARITYK

k 		

� FREC � �FQk�k � ��PARITYK
k 	 kFQk�n� k � ��PARITYK

k 		

because K �m PARITYK
k

� FQk�n�PARITYK
k 	 by Corollary 
�
����
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Therefore by Lemma ������ii	�

FK
m � FQk�n�PARITYK

k 	�

Equivalently�

FK
k�n�k����� � FQk�n�PARITYK

k 	�

Therefore� by Theorem ����
� for every set C

FPARITYK
k

n �� FQ�blog �k�n� k � 
	� �	c� C	�

For large n

dlog �n� �	e � blog �k�n � k � 
	 � �	c�

so PARITYK
k is not semiverbose�

Tighter upper and lower bounds are possible�

Corollary �
�
�

� There is a set that is neither terse nor semiverbose�

� There is a set that is neither terse nor verbose�

Proof� The preceding theorem showed that PARITYK
� is such a set�

In studying oracles that are neither terse nor verbose� one might look for an oracle

B such that for every su!ciently large k�

FB
k � FQ�k � �� B	� FQ�k � 
� B	�

However� if

FB
k � FQ�k � �� B	

then for every n�

FB
nk � FQ��k � �	� B	 k � � � kFQ�k � �� B	� �z �

n

� FQ��k � �	� B	 � � � � � FQ�k � �� B	� �z �
n

by Observation 
�
���

� FQ�n�k � �	� B	�
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Thus� if B is not terse� then there exists r � � such that

FB
n � FQ�rn�B	�

for su!ciently large n� In fact� we can prove an even stronger result�

Theorem �
�
� If FA
j � FQ�k�A	 then for every t � �

FA
jt � FQ�kt� A	�

Proof� By induction on t� The theorem is identically true in the base case �t � �	�

Assume that the theorem is true for t� ��

FA
jt � FQk�j

t��� A	 k � � � kFQk�j
t��� A	� �z �

j

because we can ask the queries in j groups of jt�� queries

� FQ�kt��� A	 k � � � kFQ�kt��� A	� �z �
j

by the induction hypothesis

� FQk�j�A	 � � � � � FQk�j�A	� �z �
kt��

by Observation 
�
���

� FQ�k�A	 � � � � � FQ�k�A	� �z �
kt��

by assumption

� FQ�k�kt��	� A	 by Observation 
�
���

� FQ�kt� A	�

Corollary �
�
� If A is not terse� then there exists r � � such that

FA
n � FQ�nr� A	�

for su�ciently large n�

Proof� Suppose that FA
k�� � FQ�k�A	� Choose t such that

�k � �	t � n � �k � �	t���
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Then

FA
n � FQk��k � �	t��� A	

� FQ�kt��� A	 by the preceding Theorem�

Furthermore� t � logk�� n� because we chose t such that �k � �	t � n� Therefore�

kt�� � k��logk�� n

� k�klogk�� n	

� k�nlogk�� k	

� n
�

�
���logk�� k��

for su!ciently large n� Consequently�

FA
n � FQ�n

�

�
���logk�� k�� A	�

for su!ciently large n�

Later in this section� we prove an even stronger result about semiverboseness� If

k queries to A can be answered by making fewer than k queries to a second oracle�

then by Theorem ����
�i	 there are fewer than 
k possible answers to any k queries to

A� Therefore� given n queries� there are fewer than 
k possible answers to any choice

of k of those n queries� In this section� we prove a combinatorial lemma� that shows

that� in that case� there are at most S�n� k	 possible answers to the entire list of n

queries� where

S�n� k	 �
k��X
i��

�
n

i



�

We write �n
k to denote the set of k�element subsequences of �� � � � � n�

De�nition �
�
	

�n
k � f���� � � � � �k	 j � � �� � � � � � �k � ng�

	The author has recently been referred to �COS��
 by Clarke	 Owings	 and Spriggs� Our combi

natorial lemma is essentially a restatement of their theorem on simultaneous m
splitting trees� Our
proof is signi�cantly simpler�
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De�nition �
�
� Let �� be an element of �n
k �

i� If �x � �x�� � � � � xn	 is an n�tuple then

�x ��� 	 � �x��� � � � � x�k	�

ii� If X is a set of n�tuples then

X��� 	 � f�x ��� 	 j �x � Xg�

For example ���� ��� 
�� �� �� ��	��� 
� �	 � ���� ��� 
�	� Intuitively�X��� 	 is the projec�

tion of the set X onto the k components indicated by the sequence �� � For example� if

we write f�� �� 
gn to denote the set of all n�tuples whose components are in f�� �� 
g�

then f�� �� 
gj��� � � � � k	 � f�� �� 
gk� provided that k � j�

Lemma �
�
� Let X be a set of n�tuples of bits� and let k be an integer such that

� � k � n� If� for all �� in �n
k

card�X��� 		 � 
k	

then

card�X	 � S�n� k	�

Proof� By induction on n� Assume that the lemma is true for �� � � � � n� �� Let X

be a set of n�tuples of bits� The lemma is true when k � n because S�k� k	 � 
k � ��

The lemma is true when k � �� because all elements of X agree on each component

so that X has only one element� Let � � k � n�

Let �� be an element of �n��
k � Then �� is also an element of �n

k � so by assumption�

card�X��� 		 � 
k�

Because �� is a subsequence of �� � � � � n� ��

X��� 	 � X��� � � � � n� �	��� 	�

Therefore�

card�X��� � � � � n� �	��� 		 � 
k�
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By the induction hypothesis�

card�X��� � � � � n� �		 � S�n� �� k	�

If ��y � �	 or ��y � �	 is an element of X then� �y must be an element of X��� � � � � n� �	�

Let Y be the set of �n� �	�tuples �y such that both ��y � �	 and ��y � �	 are elements of

X� Then

card�X	 � card�X��� � � � � n� �		 � card�Y 	�

Let �� be an element of �n��
k�� � Then we claim that

card�Y ��� 		 � 
k���

Suppose not� Then

card�Y ��� 		 � 
k���

If �y � Y then ��y � �	 � X and ��y � �	 � X� Therefore� if z � Y ��� 	 then ��z � �	 � X���� � n		

and ��z � �	 � X���� � n		� Thus

card�X���� � n			 � 
 card�Y ��� 		 � 
k�

contrary to our assumption� so our claim is established� Since

card�Y ��� 		 � 
k��

whenever �� is an element of �n��
k��� the induction hypothesis implies that

card�Y 	 � S�n� �� k � �	�

Therefore

card�X	 � card�X��� � � � � n� �		 � card�Y 	

� S�n� �� k	 � S�n� �� k � �	

� S�n� k	

because �
n

i



�

�
n� �

i



�

�
n � �

i� �



�
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Lemma �
�
�
 If FA
k is computable by a set of 
k � � partial recursive functions�

then FA
n is computable by a set of S�n� k	 partial recursive functions� for every n � k�

Proof� By assumption� there exist partial recursive functions g�� � � � � g�k�� such

that

��q�� � � � � qk	�F
A
k �q�� � � � � qk	 � fgi�q�� � � � � qk	 j � � i � 
k � �g��

We say that a pair of k�tuples ��p � �w 	 is consistent if �w � fgi��p 	 j � � i � 
k � �g�

We say that a pair of n�tuples ��q � �x 	 is consistent if ��q ��� 	� �x ��� 		 is consistent for

all �� in �n
k � Since FA

n is computed by the set of functions fg�� � � � � g�k��g� the pair

��q �FA
n ��q 		 is consistent for all �q �

We will complete the proof by de�ning partial recursive functions g��� g
�
�� � � � such

that g�i��q 	 is the ith n�tuple �x such that ��q � �x 	 is consistent� First we de�ne the set

T as the set of consistent pairs of n�tuples� Let

T � f��q � �x 	 j ���� � �n
k	��x ��� 	 � fgi��q ��� 		 j � � i � 
k � �g�g�

The set T is r�e�� because we are quantifying over a �nite set and each function gi is

partial recursive� Let

X�q � f�x j ��q � �x 	 � Tg�

Thus X�q is the set of vectors �x such that ��q � �x 	 is consistent� Therefore FA
n ��q 	 � X�q �

and for all �� in �n
k

X�q ��� 	 � fgi��q ��� 		 j � � i � 
k � �g�

so card�X�q ��� 		 � 
k� By Lemma ������� card�X�q 	 � S�n� k	�

Since T is r�e�� let M be a Turing machine that enumerates T without repetition�

We compute g�i��q 	 as follows
 simulateM untilM has enumerated i pairs of the form

��q � �x 	� output the second element of the ith such pair� Thus

X�q � fg�i��q 	 j i � �g�

Since card�X�q 	 � S�n� k	 and the sequence g����q 	� g
�
���q 	� � � � contains no repetitions�

X�q � fg�i��q 	 j � � i � S�n� k	g�

Since FA
n ��q 	 � X�q � the function FA

n is computed by the S�n� k	 partial recursive

functions g��� � � � � g
�
S�n�k��
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Theorem �
�
�� If there exists a set B such that

FA
k � FQ�k � �� B	

then there exists a set C 
tt A such that

FA
n � FQk��k � 
	 log n�O��	� C	�

Proof� Assume that FA
k � FQ�k � �� B	� By Theorem ����
�i	� FA

k is computable

by a set of 
k�� partial recursive functions� By Lemma ��
�
� FA
k�� is computable

by a set of 
k�� � � partial recursive functions� Therefore� by Lemma ������� FA
n is

computable by a set of S�n� k � �	 partial recursive functions� By Theorem ����
�ii	�

for every n � k there exists a set Cn � FQ���FA
n 	 such that

FA
n � FQk�dlogS�n� k � �	e� Cn	�

Let C� be the recursive join of Ck� Ck��� � � � � Then� for all n � k

FA
n � FQk�dlog S�n� k � �	e� C�	�

Since S�n� k � �	 � O�nk��	�

FA
n � FQk��k � 
	 log n�O��	� C�	�

Let C � A join C�� so that C �tt A ���tt C and

FA
n � FQk��k � 
	 log n�O��	� C	�

Corollary �
�
�� If A is not superterse then there exists a natural number k such

that A is k�semiverbose�

Proof� This follows directly from Theorem �������
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Theorem ������ provides an alternative way of proving Theorem ������

Corollary �
�
�� There is a superterse set in every nonrecursive truth�table degree�

Proof� Let A be a nonrecursive set� If A is not superterse� then by Theorem ������

there exists a set B 
tt A such that

FA
n � FQk�O�log n	� B	�

If B is not superterse then there exists a set C such that

FB
n � FQk�O�log n	� C	�

so

FB
logn � FQk�O�log log n	� C	�

Therefore

FA
n � FQk�O�log log n	� C	�

which contradicts the Nonspeedup Theorem� Thus either A is superterse� or else B

is a superterse set that is truth�table equivalent to A�

Corollary �
�
�� If A � Q�k�B	 and B is not superterse� then A is not superterse�

Proof� Assume that B is not superterse�

FA
n � Q�k�B	 k � � � kQ�k�B	� �z �

n

because A � Q�k�B	

� FQ�k�B	 k � � � kFQ�k�B	� �z �
n

� FQk�n�B	 � � � � � FQk�n�B	� �z �
k

by Observation 
�
���

� FQ���FB
n 	 � � � � � FQ���FB

n 	� �z �
k

�

Since B is not superterse� there exists a set C such that

FB
n � FQk�O�log n	� C	�
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by Theorem ������� Therefore�

FA
n � FQk�O�log n	� C	 � � � � � FQk�O�log n	� C	� �z �

k

� FQ�O�k log n	� C	�

Therefore� A is not superterse�

��
 Decision Problems and Superterseness

De�nition �
�
� A set B is self�encoding if

��k	��n	�Qk�n�B	 � Q�k�B	��

Theorem �
�
� If the set B is self�encoding then B is either superterse or recursive�

Proof� Suppose that B is self�encoding� so that for some k

��n	�Qk�n�B	 � Q�k�B	��

Suppose also that B is not superterse� so that for some set A and some positive

integer j

FB
j � FQ�j � �� A	�

By Theorem ����
�i	� the function FB
j is computable by a set of 
j�� � 
j � � partial

recursive functions� Therefore� by Lemma ������� FB
n is computable by a set of S�n� j	

partial recursive functions� Since S�n� j	 � O�nj��	� choose n large enough so that

S�n� j	 � nj� Thus FB
n is computable by a set of nj partial recursive functions� By

Theorem ����
�ii	� there exists a set C in Q���FB
n 	 such that

FB
n � FQk�dj log ne� C	

� FREC �

	
BB
Q���FB

n 	 k � � � kQ���FB
n 	� �z �

dj logne

�
CCA because C � Q���FB

n 	
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� FREC �

	
BB
Qk�n�B	 k � � � kQk�n�B	� �z �

dj logne

�
CCA

� FREC �

	
BB
Q�k�B	 k � � � kQ�k�B	� �z �

dj logne

�
CCA because Qk�n�B	 � Q�k�B	

� FREC �

	
B
FQk�dj log ne� B	 � � � � � FQk�dj log ne� B	� �z �

k

�
CA by Observation 
�
����

For all n� the function FB
n is computable by a set of S�n� j	 partial recursive func�

tions� as shown above� Since S�n� j	 � O�nj��	� choose n large enough so that

S�dj log ne� j	 � �log n	j � Therefore there is a set C � such that

FQk�dj log ne� B	 � FQk�dj log log ne� C
�	�

by Theorem ����
�ii	� Therefore�

FB
n � FREC � FQk�dj log log ne� C

�	 � � � � � FQk�dj log log ne� C
�	� �z �

k

� FQ�kdj log log ne� C �	�

Choose n large enough so that n � 
kdj log logne� By the Nonspeedup Theorem� B

must be recursive�

Corollary �
�
� Let A be nonrecursive� If B is ��query complete for Qk���A	 then

B is superterse�

Proof� LetB be ��query complete for Qk���A	� ThenB � Qk���A	 and Qk���A	 �

Q��� B	� For every n�

Qk�n�B	 � Qk���A	 because B � Qk���A	

� Q��� B	�

Thus B is self�encoding� By Theorem ����
� B is superterse or recursive� Because

A � Q��� B	� the set B is not recursive� Therefore B is superterse�
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Corollary �
�
� If there exists k such that no 
���valued partial function belongs to

FQk�
k�B	� FQk�k�B	�

then B is superterse or recursive�

Proof� Assume that there is no ����valued partial function in FQk�
k�B	� FQk�k�B	�

By Theorem ������ii	� there is no ����valued partial function in FQk�n�B	� FQk�k�B	

for any n� Therefore� there is no ����valued total function in FQk�n�B	� FQk�k�B	�

Therefore� for every n�

Qk�n�B	 � Qk�k�B	 � Q�k�B	�

so B is self�encoding� By Theorem ����
� B is superterse or recursive�

Corollary �
�
� Let B be a nonrecursive set in Q�j�A	� where A is not superterse�

Then for every k there is a 
���valued partial function in

Qk�
k�B	�Qk�k�B	�

Proof� By Corollary ������� B is not superterse� Since B is not recursive either�

there must be a ����valued partial function in Qk�
k�B	�Qk�k�B	� by the preceding

corollary�

���� Discussion and Related Work

Since the appearance of the original draft of this chapter� several papers and technical

reports have been published on the topic of bounded queries to a nonrecursive set

�BGGO��� BG��� Bei��a� BGO��� Owi��� Bei��d��

Material from Sections ���� ��
� ���� and ��� has been included in �BGGO��� by

Beigel� Gasarch� Gill� and Owings� In �BGGO���� it was shown that all semirecursive

sets are verbose� Using similar techniques� we can construct sets that are �k � �	�

semiverbose but not k�semiverbose �BG��
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Material from Section ��� has been included in �BG���� in which we de�ned sup�

portive and parallel supportive sets� A set B is supportive if Q�n�B	 � Q�n� �� B	

for all n� A set B is parallel supportive if Qk�n�B	 � Qk�n � �� B	 for all n� In

�BG���� we showed that the jump of every set is supportive and parallel support�

ive� all generic sets are supportive and parallel supportive� all semirecursive sets are

supportive and parallel supportive� every truth�table degree contains a set that is

supportive and parallel supportive� and every r�e� Turing degree contains an r�e� set

that is supportive and parallel supportive� We also showed that the jump of every

Turing degree contains a set that is not parallel supportive�

In �Bei��d�� we showed that almost all sets are supportive and parallel support�

ive� and that all nonrecursive r�e� sets are supportive and parallel supportive� We

constructed a set that is neither supportive nor parallel supportive�

Our paper �Bei��a� consists of the material from Section ����

In �BGO���� Beigel� Gasarch� and Owings de�ne bounded query classes for non�

deterministic computation� and we study nondeterministic terseness�



Chapter �

Polynomial Time Bounded

Reductions

In the preceding chapters we considered machines that could perform arbitrary e�ec�

tive computations� In this chapter� we restrict our attention to machines that run in

polynomial time� We de�ne the bounded query classes for polynomial time bounded

computations� and we attempt to generalize the results from the preceding chapters

to polynomial time bounded computations� In Section ��
� we prove a weak analogue

of the Nonspeedup Theorem� In Section ���� we use the Weak Nonspeedup Theorem

to show that that k�� queries to an NP�hard oracle allow us to compute more func�

tions in polynomial time than only k queries to the same oracle allow us to compute

in polynomial time� unless P � NP� In Section ���� we discover that the Nonspeedup

Theorem does not generalize to polynomial time bounded computations �AG���� and

we study the sets for which the generalization fails� In Section ���� we prove a gener�

alization of Theorem ����
� In Section ��� we use that theorem to show that �P� �hard

sets are polynomial superterse and to produce a relativization that makes all NP�hard

sets polynomial superterse�

We de�ne the bounded query classes for polynomial time


� MQ�n�A�P	 is the set of machines with oracle A that run in polynomial time

and make at most n queries to A�

��



CHAPTER �� POLYNOMIAL TIME BOUNDED REDUCTIONS ��

� FQ�n�A�P	 is the set of total functions that are computable by a machine in

MQ�n�A�P	�

� Q�n�A�P	 is the set of ����valued total functions that are in FQ�n�A�P	�

� MQk�n�A�P	 is the set of machines with oracle A that run in polynomial time

and make at most n queries to A� all queries being made in parallel�

� FQk�n�A�P	 is the set of total functions that are computable by a machine in

MQk�n�A�P	�

� Qk�n�A�P	 is the set of ����valued total functions that are in FQk�n�A�P	�

��� Computability by a Set of Polynomial Time

Functions

The material in this section is analogous to the material in Section ����

De�nition �
�
� The total function h is computable by a set of k polynomial time

functions if there exist k polynomial time functions g�� � � � � gk such that

��x	�h�x	 � fgi�x	 j � � i � kg��

Thus� the function h is computable by a set of k polynomial time functions if� for each

x� we can compute in polynomial time a length�k list that includes h�x	� Informally�

we say that there are only k possible values for h�x	�

Theorem �
�
�

i� If there exists an oracle B such that h � FQ�k�B�P	 then h is computable by a

set of 
k polynomial time functions�

ii� If h is computable by a set of 
k polynomial time functions then there exists an

oracle B � Q��� h�P	 such that h � FQk�k�B�P	�

Proof� The constructions in the proof of Theorem ����
 run in polynomial time�
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This theorem enables us to show that every function h computable in polynomial

time by making n serial queries to an oracle A can be computed in polynomial time

by making n parallel queries to a di�erent oracle B such that B � Q��� h�P	�

Corollary �
�
� If h is in FQ�n�A�P	 then there exists a set B in Q��� h�P	 such

that h is in FQk�n�B�P	�

Proof� By Theorem ����
�i	� h is computable by a set of 
n polynomial time

functions� Therefore� by Theorem ����
�ii	� there is a set B in Q��� h�P	 such that h

is in FQk�n�B�P	�

��� A Weak Nonspeedup Theorem

In �AG���� Amir and Gasarch have shown how to produce a set B of arbitrarily

large time complexity such that FB
n � FQ��� B�P	 for every n� Thus the Nonspeedup

Theorem does not apply to polynomial time computation� however� we can prove

a weak version of the Nonspeedup Theorem for polynomial time computation� In

Section ���� we will use the Weak Nonspeedup Theorem to prove that FQk�n�B�P	 �

FQk�n� �� B�P	 for every NP�hard set B and every n� unless P � NP�

De�nition �
�
� If C is a collection of sets and X is a set� then X separates C if for

all S� S � in C

S �� S� � S �X �� S� �X�

This section�s main result will follow from the following combinatorial lemma�

which says that k � � points are su!cient to separate k sets� The lemma� which

appears in �Owi��� was �rst stated and proved by Owings �Owi���� We present

Owings�s proof�

Lemma �
�
� If jCj � k � � then there exists a set X that separates C such that

jXj � k � ��
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Proof� By induction on k� The base case �k � �	 is trivial� Assume that the

lemma is true for some value of k � �� Let S�� S� be distinct elements of C� and let

x � �S� � S�	 � �S� � S�	� Let

C� � fS � C j x � Sg and C� � fS � C j x �� Sg�

Let k� � jC�j and k� � jC�j� By the induction hypothesis� there exists a set X�

that separates C� such that jX�j � k� � �� and there exists a set X� that separates

C� such that jX�j � k� � �� Let X � X� � X� � fxg� Then X separates C and

jXj � k� � � � k� � � � � � k� � k� � � � k � ��

We also present a di�erent proof of Lemma ��
�
� which is based on our original

proof of the Weak Nonspeedup Theorem in �Bei���� In our proof we �rst show that

there is a �nite set Y of m points that separates C� We construct X by taking two

cases
 If there is one point that is �necessary in order to separate two of the sets in

C then we put the necessary point in X� If none of the points is necessary in order to

separate any two of the sets in C then we remove any point from Y � In either case�

we reduce to a smaller problem and proceed inductively�

Proof� We write A�B to denote �A�B	� �B �A	� the symmetric di�erence of

A and B� If x � A�B then we say that the point x separates A from B� and we say

that the sets A and B di�er on x�

For each pair of sets S� S� � C� we can choose a single point that separates S from

S �� thus there exists a set Y that separates C such that jY j �
�
k

�

�
� Therefore� it

su!ces to show that if jCj � k and a �nite set separates C then there is a set X that

separates C such that jXj � k � ��

We prove that statement by induction on k� The base case �k � �	 is trivial�

Assume that the statement is true for some value of k � �� and let C be a collection

of k � � distinct sets�

We prove� by induction on m� that if Y separates C and jY j � m then there exists

a set X that separates C such that jXj � k� The base case �m � �	 is trivial because

k � �� Suppose that the statement is true for some m � �� suppose that Y separates

C� and suppose that jY j � m� ��
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Let D � fS � Y j S � Cg� We claim that if X separates D� then X separates C�

Proof
 Assume that X separates T � Let S and S� be distinct elements of C� Then

S � Y �� S � � Y because Y separates C� Therefore S � Y �X �� S� � Y �X� because

X separates D� Therefore S �X �� S� �X� proving the claim� Thus it su!ces to �nd

a set X that separates D such that jXj � k� We consider two cases�

Case �� There exist two sets T� T � in D that di�er on exactly one point�

Let x be the unique element of T �T �� There cannot be three sets that di�er

only on the single point x� However� there may be other pairs of sets in D that

di�er only on the point x� Let there be p such pairs including �T� T �	� Let D�

consist of one element from each such pair� Let D� consist of the other element

from each such pair� Let D	 consist of the remaining elements of D� Then

jD�j � jD�j � p� and jD	j � k � 
p � ��

By the induction hypothesis �for k	 there exists a set X� that separates

fT � fxg j T � D� � D	g such that jX�j � p � �k � 
p � �	 � � � k � p� Let

X � X� � fxg� We claim that X separates D� Proof
 Let T� T � be distinct

elements of D� We take three cases�

Case �a�� T and T � are both in D� � D	�

By our choice of x� it follows that T�fxg �� T ��fxg� We chose X� so that

X� separates T � fxg from T � � fxg� Therefore X� separates T from T ��

Case �b�� T � D� � D	 and T � � D��

Let T �� � T ��fxg� By construction� the set T �� is in D�� If T �� � T � then

x separates T from T �� Otherwise� X� separates T � fxg from T �� � fxg�

Since T �� � fxg � T � � fxg� the set X� separates T � fxg from T � � fxg�

Therefore X� separates T from T ��

Case �c�� T and T � are both in D��

Let T �� � T �fxg� and let T ��� � T ��fxg� Then T �� and T ��� are distinct

elements of D�� Therefore X� separates T �� � fxg from T ��� � fxg� so X�

separates T � fxg from T � � fxg� Therefore� X� separates T from T ��
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In each case� X � X� � fxg separates T from T �� Therefore X separates D�

Since jXj � k � p� � � k� the claim is proven�

Case �� Every pair of sets T� T � in D di�ers on at least two points�

Each T in D is a subset of Y � Because jY j � m � �� any set of m points in

Y separates D� By the induction hypothesis �for m	 there exists a set X that

separates T such that jXj � k�

Lemma �
�
� If FA
k is computable by a set of k polynomial time functions� then any

k queries to A can be answered by a polynomial time algorithm that asks only k � �

of the same queries in parallel�

Proof� By assumption� there exist k polynomial time functions g�� � � � � gk such

that

��x�� � � � � xk	�F
A
k �x�� � � � � xk	 � fgi�x�� � � � � xk	 j � � i � kg��

Without loss of generality� assume that if i �� j then gi�x�� � � � � xk	 �� gj�x�� � � � � xk	

for all x�� � � � � xk� Let �x � �x�� � � � � xk	 and let X � fx�� � � � � xkg� For i � �� � � � � k let

Si � fx � X j gi�x	 � �g � X

We say that the set S agrees with the set A on X if S �X � A �X� Because FA
n is

computed by g�� � � � � gk� one of the sets S�� � � � � Sk agrees with A on X� Thus we can

determine FA
k ��x 	 by computing a natural number i such that Si agrees with A on X�

Because the functions g�� � � � � gk produce distinct outputs� the sets S�� � � � � Sk are

distinct� By Lemma ��
�
� there is a �k��	�element set X � � fx��� � � � � x
�
k��g that sep�

arates fS�� � � � � Skg� Since S�� � � � � Sk are subsets ofX� points outside ofX cannot help

to separate fS�� � � � � Skg� therefore� without loss of generality� we may assume that

X � is a subset of X� Because one of the sets S�� � � � � Sk agrees with A on X� at least

one of the sets S�� � � � � Sk agrees with A on X �� Because X � separates fS�� � � � � Skg�

exactly one of the sets S�� � � � � Sk agrees with A on X �� This set must also agree with
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A on X� Thus we can determine FA
k ��x 	 by computing the unique i such that Si agrees

with A on X ��

The following algorithm computes FA
k 


Step �� Input x�� � � � � xk�

Step �� Compute S�� � � � � Sk as above�

Step �� By using the construction implicit in Lemma ��
�
 �� or by trying all k

possibilities �	 �nd a set of k � � points fx��� � � � � x
�
k��g � fx�� � � � � xkg that

separates fS�� � � � � Skg�

Step �� Compute FA
k���x

�
�� � � � � x

�
k��	�

Step �� Find i such that

FA
k���x

�
�� � � � � x

�
k��	 � FSi

k���x
�
�� � � � � x

�
k��	�

Step �� Output gi�x�� � � � � xk	�

Theorem �
�
� If FA
�k � FQ�k�B�P	 then

i� for every n � 
k� any n queries to A can be answered by a polynomial time

algorithm that asks only 
k � � of the same queries in parallel�

ii� for every n� FA
n � FQ�k�B�P	�

Proof� Assume that FA
�k � FQ�k�B�P	�

i� By Theorem ����
�i	� FA
�k is computable by a set of 
k polynomial time functions�

Thus by Lemma ��
��� the answers to 
k parallel queries to A can be determined

in polynomial time by making �in parallel	 only 
k�� of the same 
k�� queries

to A�

If n � 
k then we can replace 
k of the n parallel queries with only 
k � � of

them� thereby eliminating one of the n queries� We keep eliminating queries in

this way until we are left with only 
k � � of the original n parallel queries�
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ii� This is obvious if n � 
k� If n � 
k then

FA
n � FQk�


k � �� A�P	 by �i	

� FQk�

k� A�P	

� FQ�k�B�P	 by assumption�

��� A Serial�Parallel Tradeo


In this section� we generalize Lemma ��
��� which states that

FQ�n�K	 � FQk�

n � ��K	�

In the recursion theoretic framework of the preceding chapters� that result is not true

for all oracles� However� in the polynomial time bounded framework of the current

chapter� that result is true for all oracles�

A well�known theorem of Nerode �Rog��� Theorem ��XIX� states that if A is

Turing reducible to B by a reduction that terminates regardless of the oracle answers�

then A is truth�table reducible to B� Because polynomial time reductions always

terminate� we obtain a similar result for polynomial time bounded query reductions�

Theorem �
�
� For every set A and natural number k�

FQ�k�A�P	 � FQk�

k � �� A�P	�

Proof� Let f � FQ�k�A�P	 and let f be computable in time p�n	 for some poly�

nomial p� We can simulate the computation of f for all possible sequences of oracle

answers in time O�
kp�n		� because we can truncate any computation that runs for

more than p�n	 steps� During the simulation we prepare a list of all 
k � � possible

queries� We make the 
k � � queries in parallel� and then simulate f with the correct

sequence of oracle answers�



CHAPTER �� POLYNOMIAL TIME BOUNDED REDUCTIONS ���

Corollary �
�
� If FA
�k � FQ�k�B�P	 then for every n

FQ�n�A�P	 � FQ�k�B�P	�

Proof� Assume that FA
�k � FQ�k�B�P	�

FQ�n�A�P	 � FQk�

n � �� A�P	 by Theorem �����

� FQ�k�B�P	 by Theorem ��
���ii	�

Corollary �
�
� There exists a set B of arbitrarily great time complexity such that

for every k

FQ�k�B�P	 � FQ��� B�P	�

Proof� In �AG���� Amir and Gasarch have shown how to construct a set B of

arbitrarily great time complexity such that FB
k � FQ��� B�P	 for every k� In particular

FB
�k�� � FQ��� B�P	� Therefore� by Theorem �����

FQ�k�B�P	 � FQk�

k � �� B�P	 � FQ��� B�P	�

��� Cheatable Sets

In this section� we study the class of sets for which the polynomial time version of

the Nonspeedup Theorem fails�

De�nition �
�
�

� A set A is k�cheatable if ��B	�FA
�k � FQ�k�B�P	��

� A set A is cheatable if A is k�cheatable for some k�

The name cheatable is motivated by Theorem ��
���i	� which states that if B is

cheatable then any n queries to B can be answered by a polynomial time algorithm
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that asks only a �xed number �independent of n	 of the same questions� If the answers

to a true�false test are given by a cheatable set� then a student up to no good would

only need to copy a �xed number of answers in order to determine them all�

As mentioned in Section ��
� Amir and Gasarch have constructed ��cheatable sets�

The proof below is based on their proof in �AG����

Theorem �
�
� �Amir and Gasarch� There exists a ��cheatable set that is not in

P�

Proof� De�ne tow�n	 recursively as follows


tow�n	 �

��
� � if n � �


tow�n��� if n � ��

By the time hierarchy theorem �HU��� Theorem �
��� p� 
���� there exists a set

L � �� that is in DTIME��tow�n� �		�	� but not in DTIME�tow�n � �		 � Let

A � f�tow�y� j �y � Lg�

If A � DTIME�nk	� then L � DTIME��tow�n		k	 � DTIME�tow�n � �		� contra�

dicting our choice of L� therefore A �� P� Given x� � tow�y�	 � x� � tow�y�	� the

running time to determine if x� is in A is quadratic in the length of x�� Therefore a

single query to A �to determine �A�x�		 and a polynomial amount of running time

�to determine �A�x�		 allow us to compute FA
� �x�� x�	� Therefore� A is ��cheatable�

Theorem �
�
�

i� If FQ�k � �� B�P	 � FQ�k�B�P	 then B is k�cheatable�

ii� If FQk�k � �� B�P	 � FQk�k�B�P	 then B is k�cheatable�
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Proof�

i� Using the same proof as of Observation 
�
����i	� we see that

��n � k	�FQ�n�B�P	 � FQ�k�B�P	��

In particular FQ�
k� B�P	 � FQ�k�B�P	� so FB
�k � FQ�k�B�P	�

ii� Using the same proof as of Observation 
�
����ii	� we see that

��n � k	�FQk�n�B�P	 � FQk�k�B�P	��

In particular FQk�

k� B�P	 � FQk�k�B�P	� so

FB
�k � FQk�k�B�P	 � FQ�k�B�P	�

Self�reducible sets were de�ned by Schnorr in �Sch���


De�nition �
�
� A set B is self�reducible if there exists a polynomial time bounded

oracle machine M such that for every string x the machine MB determines whether

x is in B by querying only strings that are shorter than x�

We say that a set B is self�tt�reducible if we can determine in polynomial time the

answer to any query x to B by asking several parallel queries to B� all of which are

shorter than x�

De�nition �
�
� The set B is self�tt�reducible if there exist polynomial time com�

putable functions f and �q such that for every string x

�B�x	 � f�x�F���q �x			�

and each component of �q �x	 is shorter than x�

Theorem �
�
� If B is self�tt�reducible and cheatable� then B � P�
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Proof� Since B is self�tt�reducible� there exist polynomial time computable func�

tions f and �q such that for every string x

�B�x	 � f�x�F���q �x			�

and each component of �q �x	 is shorter than x� Assume that B is k�cheatable� The

following recursive algorithm computes FB
�k��


Step �� Input �x � �x�� � � � � x�k��	�

Step �� If each component of �x is equal to the empty string� then compute FB
�k����x 	

by table lookup� and return the value�

Step �� Compute �y by concatenating �q �x�	� � � � � �q �x�k��	� If the length of �y is less

than 
k then pad �y with empty strings� so that the length of �y is 
k�

Step �� As in the proof of Theorem ��
���i	� we can compute FB
� ��y 	 in polynomial

time by determining the answers to only 
k � � of the same queries� Let �z �

�z�� � � � � z�k��	 be those queries� Recursively compute FB
�k����z 	� and use the

answer in order to compute FB
� ��y 	�

Step �� Return the value of �f�x��FB
� ��q �x�			� � � � � f�x�k���F

B
� ��q �x�k��				�

Since each component of �q �xi	 is shorter than xi� the depth of the recursion is bounded

by the length of the longest component of �x � Each recursive call runs in polynomial

time� so the algorithm runs in polynomial time� Since FB
�k�� is computable in poly�

nomial time� the set B is computable in polynomial time�

Corollary �
�
	 If B is self�tt�reducible and B �� P then

i� FQ�k�B�P	 � FQ�k � �� B�P	�

ii� FQk�k�B�P	 � FQk�k � �� B�P	�

Proof� Let B be a self�tt�reducible set that is not in P�
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i� By contradiction� Assume that FQ�k�B�P	 � FQ�k � �� B�P	� By Theo�

rem ������ B is cheatable� By assumption� B is self�tt�reducible and B �� P�

This contradicts Theorem ������

ii� Similar to �i	�

By Theorem ������ every self�tt�reducible� cheatable set is in P� In Section ���� we

will show that if P �� NP then no NP�hard set is cheatable� We would like to show

that other classes of sets contain no cheatable sets� in particular� we would like to

show that cheatable sets are� in some sense� easy� In the next theorem� we show that

any ��cheatable set must be easy in�nitely often� In �BS���� Balcazar and Sch)oning

formalized the notion of being easy in�nitely often� which was previously considered

by Berman and Hartmanis �BH��� and by Rabin �Rab����

De�nition �
�
� A set A is bi�immune for a class C if neither A nor #A has an in�nite

subset that belongs to C�

Thus A is easy in�nitely often if and only if A is not bi�immune for P� Theo�

rem ������ below shows that every ��cheatable set is easy in�nitely often�

Lemma �
�
� If A is ��cheatable then there is a polynomial time algorithm that takes

as input two queries to A and either determines the answer to one of the queries or

else determines whether the two answers are equal or unequal�

Proof� Let A be a ��cheatable set� By Theorem ��
���i	� we can answer any two

queries x� y to A by asking only one of them� Let M be a polynomial time bounded

machine that performs that computation�

The polynomial time algorithm below takes as input two queries x and y and

produces one of the following six answers
 ��A�x	 � �� ��A�x	 � �� ��A�y	 � �� 

��A�y	 � �� ��A�x	 � �A�y	� or ��A�x	 �� �A�y	� 

Step �� Input two queries x� y�

Step �� Simulate M until M is about to make its query q� let p be the other query�
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Step �� Simulate M for both possible oracle answers� thus determining a Boolean

function f such that �A�p	 � f��A�q		�

Step �� If the Boolean function f is identically true then output that �A�p	 � �� If

f is identically false then output that �A�p	 � �� If f is the identity function

then output that �A�p	 � �A�q	� If f is the complement of the identity function

then output that �A�p	 �� �A�q	�

Theorem �
�
�
 No ��cheatable set is bi�immune for P�

Proof� By the Nonspeedup Theorem� A must be recursive� so let M be a ma�

chine that decides membership in A� Call the algorithm of the preceding lemma

Algorithm A�

Our proof will proceed as follows
 We de�ne in�nitely many sparse� in�nite� dis�

joint sets S�� S�� � � � � We run AlgorithmA on every pair of consecutive elements of Si�

Either we determine the answer to one query in one of the pairs� or else we produce

a long chain of queries� such that we know the relationship between �A�x	 and �A�y	

for consecutive elements x and y of the chain� In the latter case� we compute the

answer to the smallest element of the chain� thereby determining the answer to the

largest element of the chain� In either case� at least one element of Si is easy� Since

the sets S�� S�� � � � are disjoint� there are in�nitely many easy points�

Let fi�n	 � �n�i� and let Si � ffi�n	 j n � �g� The construction below produces

two sets Bi
� and Bi

� such that the the set Bi
� is a subset of #A� the set Bi

� is a subset

of A� and jBi
� � Bi

�j � ��

Stage �
 Let base � fi��	� Let equal � �� Go to stage ��

Stage n � �
 Let x � fi�n	� let y � fi�n � �	� and run Algorithm A on input x� y�

We take six cases� depending on the output of A�

�A�x	 � �
 Let Bi
� � fxg and Bi

� � �� Exit the construction�

�A�x	 � �
 Let Bi
� � fxg and Bi

� � �� Exit the construction�
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�A�y	 � �
 Let Bi
� � fyg and Bi

� � �� Exit the construction�

�A�y	 � �
 Let Bi
� � fyg and Bi

� � �� Exit the construction�

�A�x	 � �A�y	
 Do nothing�

�A�x	 �� �A�y	
 Let equal � �� equal�

If M does not converge within n steps on input base� then go to stage n� ��

�� Otherwise� if equal � � then �A�y	 � �A�base	� else �A�y	 �� �A�base	� �	

If �A�base	 � equal then let Bi
� � fyg and Bi

� � �� otherwise� let Bi
� � fyg and

Bi
� � �� Exit the construction�

Let

B� �
S
i��B

i
� and B� �

S
i��B

i
��

We can determine whether z is of the form fi�n	 in polynomial time� If

z � fi�n	� then we can determine whether z is in B� or B� �or neither	 by run�

ning the construction above through stage n � jzj� Algorithm A runs in polynomial

time� The remainder of time in each stage is dominated by the simulation of n steps

of a Turing machine computation� The simulation can be performed in O�n�	 time

�HU��� Theorem �
���� Thus B� � P and B� � P�

For every i� the set Bi
� � Bi

� is nonempty� so B� � B� is in�nite� Therefore B� or

B� is in�nite� Thus B� is an in�nite polynomial time subset of #A� or B� is an in�nite

polynomial time subset of A�

Gasarch has found a simpler proof of our result �Gas���� We present his proof�

Proof� We take two cases�

Case �� For in�nitely many values of n� when we run Algorithm A on input ��n� �n��	�

the algorithm tells us �A��n	 or �A��n��	� In this case� let

Bv � f�n j Algorithm A on input ��n��� �n	 or ��n� �n��	 yields �A��n	 � vg�

for v � �� �� Then B� is an in�nite polynomial time subset of #A� or B� is an

in�nite polynomial time subset of A�
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Case �� There exists m such that for every natural number n � m� when we run Al�

gorithmA on input ��n� �n��	� the algorithm tells us whether �A��n	 � �A��n��	�

In this case� the following algorithm determines whether �n � A
 If n � m then

determine the answer by table lookup� If n � m then determine whether �m � A

by table lookup� run Algorithm A on ��m� �m��	� on ��m��� �m��	� � � � � and on

��n��� �n	� and determine whether �n � A by following the chain of answers

given by Algorithm A�

Let Bv � f�n j �A��n	 � vg� for v � �� �� Then B� is an in�nite subset of #A� or

B� is an in�nite subset of A�

De�nition �
�
�� A set S is P�countable if S � fg�i	 j i � Ng� where g is ���� and

both g and g�� are polynomial time computable�

Allender has proved that if S is P�printable �HY��� then S is sparse and P�countable

�All��� Theorem ��
	�� However� P�countable sets need not be sparse�

De�nition �
�
�� A set A is locally bi�immune for a class C if there exists a P�

countable set S such that neither S �A nor S � #A has an in�nite subset that belongs

to C�

Theorem �
�
�� No ��cheatable set is locally bi�immune for P�

Proof� Let A be a ��cheatable set� let g be a ��� function such that g and g��

are polynomial time computable� and let S � fg�i	 j i � Ng� We perform the same

construction as in the proof of Theorem ������� except that we let x � g�fi�n		 and

y � g�fi�n��		 �so that we will construct subsets of S	� and instead of simulatingM

for n steps on input base we simulateM for jyj steps on input base� Because g and fi

are ��� functions� y � g�fi�n��		 is unbounded� therefore the modi�ed construction

converges� Either B� is an in�nite subset of S� #A� or B� is an in�nite subset of S�A�

Thus� we have proved that every cheatable set is easy in�nitely often on every

P�countable set�
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��� P�Terse and P�Verbose Sets

In this section� we generalize de�nitions from Chapter �� such as terseness and verbose�

ness� to polynomial time computation� We show that if a set A is not P�superterse

then n parallel queries to A can be answered in polynomial time by making only

O�log n	 queries to some oracle�

De�nition �
�
�

� A set A is polynomial terse �P�terse	 if

��n	�FA
n �� FQ�n� �� A�P	��

� A set A is polynomial superterse �P�superterse	 if

��B	��n	�FA
n �� FQ�n� �� B�P	��

� A set A is polynomial verbose �P�verbose	 if

��n	�FA
�n�� � FQ�n�A�P	��

� A set A is polynomial k�verbose �P�k�verbose	 if

FA
n � FQ�k log n�O��	� A�P	�

� A set A is polynomial k�semiverbose �P�k�semiverbose	 if there exists a set B

such that

FA
n � FQk�k log n�O��	� B�P	�

� A set A is polynomial self�encoding �P�self�encoding	 if

��k	��n	�Qk�n�A�P	 � Q�k�A�P	��

The de�nition of P�terseness is due to Amir and Gasarch �AG����

The following lemma is a generalization of Lemma ������� We have to be slightly

careful in order to produce functions that run in polynomial time� otherwise the proof

is the same�
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Lemma �
�
� If FA
k is computable by a set of 
k � � polynomial time functions�

then FA
n is computable by a set of S�n� k	 polynomial time functions� for every n � k�

Proof� By assumption� there exist polynomial time functions g�� � � � � g�k�� such

that

��q�� � � � � qk	�F
A
k �q�� � � � � qk	 � fgi�q�� � � � � qk	 j � � i � 
k � �g��

We say that a pair of k�tuples ��p � �w 	 is consistent if �w � fgi��p 	 j � � i � 
k � �g� If

m � k� we say that a pair of m�tuples ��q � �x 	 is consistent if ��q ��� 	� �x ��� 		 is consistent

for all �� in �m
k � Since F

A
k is computed by the set of functions fg�� � � � � g�k��g� the pair

��q �FA
n ��q 		 is consistent for every n�tuple �q �

We will complete the proof by de�ning polynomial time functions g��� g
�
�� � � � such

that g�i��q 	 is the ith n�tuple �x such that ��q � �x 	 is consistent�

We can test in polynomial time whether a pair of k�tuples is consistent� because

each function gi is polynomial time computable and 
k�� is a constant� If m � k� we

can test in polynomial time whether a pair of m�tuples is consistent� because there

are only
�
m

k

�
choices for �� � We de�ne a function g�i� which is computed as follows


Step �� Input �q � �q�� � � � � qn	�

Step �� Compute a list Lk containing all k�tuples �x�� � � � � xk	 such that

��q ��� � � � � k	� �x�� � � � � xk		 is consistent�

Step �� For j � k � � to n do the following


�a� Let Lj be an empty list�

�b� For each element �x of Lj�� and for b � �� � do the following


if ��q ��� � � � � j	� ��x � b		 is consistent then insert ��x � b	 into Lj �

Step �� If the length of Ln is at least i then output the ith element of Ln� otherwise�

output the �rst element of Ln�

Let Xj be the set of elements on the list Lj at the end of step ��b	� Then

��q ��� � � � � j	� �x 	 is consistent for every j�tuple �x in Xj � Therefore� for every �� in �j
k

Xj��� 	 � fgi���q ��� � � � � j		��� 		 j � � i � 
k � �g�



CHAPTER �� POLYNOMIAL TIME BOUNDED REDUCTIONS ���

so card�Xj��� 		 � 
k � � � 
k� By Lemma ������ card�Xj	 � S�j� k	 � S�n� k	�

which is a polynomial in n� Since Lj contains no repetitions� the length of Lj is is

bounded by a polynomial in n� Therefore g�i is computable in polynomial time� Since

Ln contains every n�tuple �x such that ��q � �x 	 is consistent�

FA
n ��q 	 � fg

�
i��q 	 j i � �g�

The length of Ln is at most S�n� k	� therefore g�i��q 	 � g����q 	 for every i � S�n� k	�

Therefore�

FA
n ��q 	 � fg

�
i��q 	 j � � i � S�n� k	g�

Theorem �
�
� If there exists a set B such that

FA
k � FQ�k � �� B�P	

then there exists a set C 
Ptt A such that

FA
n � FQk��k � �	 log n�O��	� C�P	�

Proof� Assume that FA
k � FQ�k��� B�P	� By Theorem ����
�i	� FA

k is computable

by a set of 
k�� � 
k � � polynomial time functions� Therefore� by Lemma ����
� FA
n

is computable by a set of S�n� k	 polynomial time functions� By Theorem ����
�ii	�

for every n � k there exists a set Cn � Qk���F
A
n �P	 such that

FA
n � FQk�dlog �S�n� k		e� Cn�P	�

A review of the proof shows that the polynomial time bounds are the same for

Ck� Ck��� � � � � Let C� be the recursive join �Rog��� Soa��� of Ck� Ck��� � � � � Then

C� is polynomial time truth�table reducible to A� and for all n � k

FA
n � FQk�dlog �S�n� k		e� C��P	�

Since S�n� k	 � O�nk��	�

FA
n � FQk��k � �	 log n �O��	� C��P	�
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Let C � A join C�� so that C �Ptt A �P��tt C and

FA
n � FQk��k � �	 log n�O��	� C�P	�

Corollary �
�
� If A is not P�superterse� then there exists a natural number k such

that A is P�k�semiverbose�

Proof� This follows immediately from Theorem ������

��� Decision Problems and P�terse Sets

Theorem �
�
� If the set B is P�self�encoding then

��k	��n	�Q�n�B�P	� Qk�k�B�P	��

Proof� Assume that B is P�self�encoding so that for some j

��n	�Qk�n�B�P	 � Q�j�B�P	�� ��	

Let k � 
j � �� By Theorem ������

Q�n�B�P	 � Qk�

n � �� B�P	 by Theorem �����

� Q�j�B�P	 by equation ��	

� Qk�

j � �� B�P	 by Theorem �����

� Qk�k�B�P	�

If the set B is P�self�encoding� then extra queries to B do not allow us to solve

extra decision problems� The next theorem shows that if B is P�self�encoding but

not P�superterse� then extra queries to B do not even allow us to compute extra

functions�



CHAPTER �� POLYNOMIAL TIME BOUNDED REDUCTIONS ���

Theorem �
�
� If the set B is P�self�encoding but not P�superterse� then B is cheat�

able�

Proof� The proof is the same as the proof of Theorem ����
� except that we omit

the last step� which applies the Nonspeedup Theorem�

��� NP�Hard and �P


�Hard Oracles

In this section� we apply the results of the previous sections to NP�hard and �P� �hard

oracles� We show that n � � queries to an NP�hard oracle allow us to compute in

polynomial time more functions than we can compute in polynomial time with only

n queries to the same oracle� unless P � NP� We show that all �P� �hard sets are

superterse unless P � NP�

Theorem �
	
� Let B be an NP�complete set� The following four statements are

equivalent


i� P � NP�

ii� B is cheatable�

iii� ��k	�FQ�k � �� B�P	 � FQ�k�B�P	��

iv� ��k	�FQk�k � �� B�P	 � FQk�k�B�P	��

Proof�

�i�� �ii�iii�iv�� Assume that P � NP� Then B � P�

�ii�� �i�� Assume that B is cheatable� Because B is NP�complete� SAT is m�

reducible to B� Therefore� SAT is cheatable� Furthermore� SAT is self�tt�

reducible because any Boolean formula can be reduced to the two Boolean

formulas obtained by setting the �rst variable to � and to �� By Theorem ������

SAT � P� so P � NP�
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�iii�� �ii�� Follows from Theorem ������i	�

�iv�� �ii�� Follows from Theorem ������ii	�

A set B is said to be NP�hard if all problems in NP are m�reducible to B��

Corollary �
	
� Let B be an NP�hard set� If P �� NP then

i� B is not cheatable�

ii� ��k	�FQ�k�B�P	 � FQ�k � �� B�P	��

iii� ��k	�FQk�k�B�P	 � FQk�k � �� B�P	��

Proof�

i� By contradiction� Let B be an NP�hard set� and assume that B is cheatable� Let

C be any NP�complete set� Then C �m B� so C is cheatable� By Theorem ������

P � NP� a contradiction�

ii� By contradiction� Assume that FQ�k � �� B�P	 � FQ�k�B�P	�� By Theo�

rem ������i	� B is cheatable� This contradicts �i	�

iii� By contradiction� Assume that FQk�k � �� B�P	 � FQk�k�B�P	�� By Theo�

rem ������ii	� B is cheatable� This contradicts �i	�

Part �ii	 was also proven by Krentel in �Kre����

Let B be any NP�complete set� We have shown that extra queries to B allow

us to compute extra functions in polynomial time� provided that P �� NP� How�

ever� it is not known whether extra queries to B allow us to solve extra decision

problems in polynomial time� For example� Blass and Gurevich �BG�
�� Valiant

and Vazirani �VV���� and Papadimitriou and Yannakakis �PY��� have considered the

�Others have de�ned NP
hardness in terms of Turing reductions� The results to follow do not
apply to that kind of NP
hardness�
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class DP � fL� � L� j L�� L� � NPg� it is not known whether P �� NP implies that

DP �� co�NP � NP�

It is well known that if NP � co�NP then the Meyer�Stockmeyer polynomial time

hierarchy �MS�
� Sto��� collapses into NP� That observation relativizes�� Therefore�

if we pick A to be an oracle such that NPA � co�NPA but PA �� NP
A �BGS���� then�

computing relative to A� ��query reducibility to an NPA�complete set is identical with

Turing reducibility to an NPA�complete set� Thus� there is a relativized world in which

P �� NP� but extra queries to an NP�complete set do not allow us to solve extra decision

problems� If B is NP�complete� Cai and Hemachandra �CH��� have constructed rela�

tivizations for each value of k that make

Qk�k�B�P	 � Qk�k � �� B�P	 � Qk���B�P	�

The next result states that if extra queries to an NP�complete set do not allow

us to solve extra decision problems in polynomial time� then all NP�hard sets are P�

superterse� unless P � NP� We tend to disbelieve the hypothesis �because it implies

that the polynomial�time hierarchy collapses �Kad���	 and we tend to believe the

conclusion �because it is true under almost all relativizations �Bei��b�	� However�

neither belief has been proven true� and it is reassuring to know that at least one of

them must be true� unless P � NP�

Theorem �
	
� Assume that P �� NP� and let B be a P�self�encoding set�

i� If B is NP�hard then B is P�superterse�

ii� If B is NP�complete then all NP�hard sets are P�superterse�

Proof�

i� By contradiction� Assume that B is NP�hard and P�self�encoding� but not P�

superterse� Since B is P�self�encoding but not P�superterse� B is cheatable� by

Theorem ����
� Since B is NP�hard and cheatable� P � NP� by Corollary ����
�

That is a contradiction�

�See �BGS��
 by Baker	 Gill	 and Solovay for a discussion of relativizations�
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ii� By �i	 B is P�superterse� If C is NP�hard� then B �m C� so C must be super�

terse�

We can relativize the bounded query classes for polynomial time in the same way

as we relativized the bounded query classes in Chapter �� We relativize some of the

de�nitions from this Chapter�

De�nition �
	
�

� The set B is PA�superterse if

��C	��n	�FB
n �� FQA�n� �� C�P	��

� The set B is PA�self�encoding if

��k	��n	�QA
k �n�B�P	 � QA�k�B�P	��

� The set B is A�cheatable if

��C	��k	�FB
�k � FQA�k�C�P	��

Theorem �
	
� There is an oracle A such that all NPA�hard sets are PA�superterse�

Proof� Proof by contradiction� There is an oracle A such that NPA � co�NPA

but PA �� NP
A �BGS���� Let C be any NPA�complete set� Since NPA � co�NPA the

relativized polynomial time hierarchy collapses to NPA� so

��n	�QA
k �n�C�P	 � QA��� C�P	��

Therefore� C is PA�self�encoding� The proof of Theorem ������ii	 relativizes� since

P
A �� NP

A and C is both NPA�complete and PA�self�encoding� all NPA�hard sets are

P
A�superterse�
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Thus we have found a relativization that makes all NP�hard sets P�superterse�

In fact all NP�complete sets are P�self�encoding if and only if the Boolean Hierarchy

of Wagner and Wechsung �WW��� collapses� Thus any oracle that collapses the

Boolean Hierarchy �CH��� makes all NP�complete sets P�superterse� In �Bei��b�� we

have shown that all NP�hard sets are P�superterse under almost all relativizations�

Open Question �
	
�

� If P �� NP are all NP�hard problems P�superterse�

� Does there exist an oracle A such that PA �� NP
A and some NPA�hard problem

is not PA�superterse�

An important class of problems is �P
� �i�e�� PNP� the class of all decision problems

that can be solved in polynomial time with a polynomial number of queries to a

SAT oracle	� Two examples of sets that are complete for �P� are Uniquely Optimal

Traveling Salesperson �Pap��� and Odd Maximum Satisfying Assignment �Kre���� It

is known that PP
NP

� P
NP� so an unbounded number of queries to a �P� �complete

oracle do not allow us to solve more decision problems in polynomial time than we

can solve in polynomial time with just a single query to that oracle� Therefore all

�P
� �complete sets are P�self�encoding� By Theorem ������i	� every �P� �complete set

is P�superterse unless P � NP� consequently every �P� �hard set is P�superterse unless

P � NP� We formalize this proof below�

Theorem �
	
	 If B is �P� �hard� then B is P�superterse� unless P � NP�

Proof� Let C be a �P� �complete set� We claim that C is P�self�encoding� Proof


Let L � Qk�n�C	� Then L is decided by a polynomial time algorithm that makes n

parallel queries to C� Since C is in �P� � P
NP� we can replace each query with an

equivalent polynomial time computation that uses an NP�complete oracle� Thus L is

decided by a polynomial time algorithm that uses an NP�complete oracle� Therefore

L � P
NP � �P� � Since C is �P� �hard� L �m C� thus L � Q��� C	� Therefore C is

P�self�encoding�

By Theorem ������i	� C is P�superterse unless P � NP� Since B is �P
� �hard�

C �m B� Therefore B is P�superterse unless P � NP�
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��	 Related Work

Amir and Gasarch �AG��� were the �rst to prove a bi�immunity result for ��cheatable

sets� they showed that if A � �� is ��cheatable then A or �� �A contains an in�nite

polynomial�time subset� In other words� no bi�immune tally set is ��cheatable� In

Theorem ������� we proved that result for sets over an arbitrary alphabet� This and

similar problems are discussed in a survey paper �GJY��� by Goldsmith� Joseph� and

Young�

A stronger version of Corollary ����
 is proven in �ABG���
 If FA
�k � FQ�k�B�P	

then every function that is Turing reducible to A in polynomial time is in FQ�k�B�P	�

We have generalized Theorem ������ by showing that if A is self�reducible and cheat�

able� then A � P� We have also shown that if A is cheatable then A is the union

of a set in NP and a set that is polynomial time Turing reducible to a sparse oracle�

consequently A is the union of a set in NP and a set that is accepted by a family of

polynomial size circuits�

Wagner and Wechsung de�ned the Boolean Hierarchy

NP��	� co�NP��	�NP��	� co�NP��	� � � �

in �WW���� Cai and Hemachandra gave many equivalent de�nitions in �CH���� We

give another de�nition of the Boolean Hierarchy


NP�i	 � fL j L �m PARITYSAT
i g�

co�NP�i	 � f#L j L �m PARITYSAT
i g�

In �Bei���� we show that L � Qk�k�SAT	 if and only if L � Q���PARITYSAT
k 	� Thus

the bounded query classes relative to SAT are very closely related to the Boolean

Hierarchy� Cai and Hemachandra �CH��� have constructed oracles that make the

Boolean hierarchy collapse at arbitrary levels� They have also constructed oracles

that make the hierarchy proper� Cai �Cai��� has shown that almost oracles make the

hierarchy proper� Kadin �Kad��� has shown that if the Boolean hierarchy collapses

then the polynomial time hierarchy collapses�

Book and Ko �BK��� have constructed� for each k � �� a sparse set A such that
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for every sparse set B it is true that Qk�k�A�P	 � Qk�k � �� B�P	� This result does

not hold if we remove either the sparseness condition or the time bound�

In �Kre���� Krentel considered polynomial time computations that are allowed

to make q�n	 serial queries to an oracle� where n is the length of the input� He

proved the following� stronger version of Corollary ����

 If A is NP�complete and

q�n	 � ��� �	 log n for some positive real number � then

FQ�q�n	� A�P	 � FQ�q�n	 � �� A�P	

unless P � NP� He also showed that if A is NP�complete� q�n	 � O�log n	� and � � �

then

FQ�q�n	� A�P	 � FQ�n�� A�P	

unless P � NP�

In �Bei��c�� we consider polynomial time computations that are allowed to make

q�n	 queries to an oracle� where n is the length of the input� We generalize Theo�

rem ������� and we use that result to prove a generalization of Theorem ������ which

states that if B is any �P� �complete oracle and

��A	�FQk�q�n	� B�P	 � FQ�q�n	� �� A�P	�

then SAT � DTIME�nO�q�n��	�



Chapter �

Conclusions

We have studied tradeo�s between serial queries to an oracle and parallel queries to

an oracle� We have studied conditions under which m � n queries to an oracle allow

us to compute functions that we cannot compute by making only n queries to an

oracle�

In Chapter �� we showed that 
n � � parallel queries to K allow us to compute

the same functions that we can compute by making n serial queries to K� where K

is an oracle for the halting problem� i�e��

FQk�

n � ��K	 � FQ�n�K	� ���	

This result is not true for arbitrary oracles� because in �BGGO��� it was shown that

there exists an oracle B such that n�� parallel queries to B allow us to solve decision

problems that we cannot solve by making only n serial queries to B� i�e��

Qk�n� �� B	 �� Q�n�B	�

In addition� there exists an oracle B such that two serial queries to B allow us to

solve more decision problems than we can solve by making only one round of parallel

queries to B� i�e��

Qk���B	 � Q�
� B	�

There also exists an oracle A such that n�� parallel queries to A allow us to compute

functions that we cannot compute by making only n serial queries to any oracle B�

�
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i�e��

��B	�FA
n�� �� FQ�n�B	��

Thus equation ���	 does not generalize in any way to arbitrary nonrecursive oracles�

In �BGGO���� it is shown that equation ���	 does not even apply to the jump of an

arbitrary set� because for every nonrecursive set A

��B	�FA�

n�� �� FQ�n�B	��

However� in the polynomial time bounded framework� equation ���	 is half true�

because

FQ�n�B�P	 � FQk�

n � �� B�P	

for every set B�

We have shown that n � � parallel queries to K allow us to solve more decision

problems than we can solve by making only n parallel queries to K� i�e��

Qk�n�K	 � Qk�n� ��K	� ���	

and that n� � serial queries to K allow us to solve more decision problems than we

can solve by making only n serial queries to K� i�e��

Q�n�K	 � Q�n� ��K	� ��
	

In �BG���� we showed that these results are true for the jump of an arbitrary set� i�e��

Qk�n�B
�	 � Qk�n� �� B�	 and Q�n�B�	 � Q�n� �� B�	�

however� neither equation ���	 nor equation ��
	 generalizes to arbitrary nonrecursive

oracles� because in �Bei��d� we constructed a nonrecursive set B such that one query

to B allows us to solve every decision problem that we can solve by making n serial

queries to B� i�e��

Q�n�B	 � Q��� B	

for every n� We can generalize equations ���	 and ��
	 as follows
 For every non�

recursive oracle B and natural number n� n � � parallel queries to B allow us to



CHAPTER �� CONCLUSIONS �
�

compute more functions than we can compute by making only n parallel queries to

B� i�e��

FQk�n�B	 � FQk�n� �� B	�

and n�� serial queries to B allow us to compute more functions than we can compute

by making only n serial queries to B� i�e��

FQ�n�B	 � FQ�n� �� B	�

The last two statements seem intuitively obvious� however� their proof depends on

the Nonspeedup Theorem� which is not obvious�

We showed that n�weak�truth�table reducibility toK is equivalent to n�truth�table

reducibility to K� i�e��

B �n�wtt K � B �n�tt K�

We also classi�ed the functions computable by making more than one round of parallel

queries to K� showing that

FQk�n��K	 � FQk�n��K	 � FQk��n� � �	�n� � �	 � ��K	�

In addition� we considered computations that are allowed to make an unbounded

number of parallel queries during each round� thus obtaining a hierarchy of sets

between those that are truth�table reducible to K and those that are Turing reducible

to K�

In Chapter �� we de�ned computability by a set of functions� and we showed that it

captures the information�theoretic aspects of computability by a bounded number of

queries to an oracle� This concept has been extremely useful in the study of bounded

query classes� Using computability by a set of functions� we proved the Nonspeedup

Theorem� which states that for every nonrecursive set A and every n it is not possible

to answer 
n parallel queries to A by making only n serial queries to another oracle

B� i�e��

��B	�FA
�n �� FQ�n�B	��

This is the tightest general result possible� by equation ���	� In a sense� the Non�

speedup Theorem says that we cannot condense the information content of an oracle

by more than a logarithmic amount�
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If FA
�n�� � FQ�n�A	 for all n� then we say that A is verbose� If FA

n�� �� FQ�n�B	

for any n and B� then we say that A is superterse� We showed that if a set A is not

superterse then A is very far from being superterse� i�e��

FA
k�� � FQ�k�B	� FA

n � FQk��k � 
	 log n�O��	� C	� ���	

for some oracle C� In other words� this theorem says that if we can condense the

information content of an oracle at all� then we can condense its information content

by a logarithmic amount� within a constant�

In �BGGO���� it was shown that every truth�table degree contains a verbose set�

Using that construction and the Nonspeedup Theorem� we showed that every truth�

table degree contains a superterse set� we can also prove this result by using equa�

tion ���	 and the Nonspeedup Theorem�

We proved the following surprising result
 If k serial queries to the nonrecursive

set B allow us to solve every decision problem that we can solve with n parallel queries

to B for every n� then B is superterse� i�e�� if B is nonrecursive then

��n	�Qk�n�B	 � Q�k�B	�� ��n	��A	�FB
n�� �� FQ�n�A	��

The polynomial time bounded version of this result allowed us to show that all �P� �

hard sets are P�superterse unless P � NP� It also allowed us to construct a relativiza�

tion that makes all NP�hard sets P�superterse�

In Chapter �� we described Amir and Gasarch�s discovery �AG��� that the Non�

speedup Theorem is not valid for polynomial time bounded computations� because

there exists a set A �� P such that

��n	�FA
n � FQ��� A�P	��

We proved a Weak Nonspeedup Theorem� which states that if 
k parallel queries to

A can be answered by making only k queries to another oracle B� then any n � 
k

parallel queries to A can be answered by making only 
k � � of the same queries in

parallel� i�e�� if

��B	�FA
�k � FQ�k�B	��
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then any n � 
k parallel queries to A can be answered by making only 
k � � of the

same queries in parallel� If FA
�k � FQ�k�B	 for some k and some B� then we say that

A is cheatable�

Using the Weak Nonspeedup Theorem� we showed that every self�tt�reducible�

cheatable set is in P� This allowed us to show that no NP�hard set is cheatable unless

P � NP� We also showed that if B is self�tt�reducible but not in P or if B is NP�hard

and P �� NP� then n � � parallel queries to B allow us to compute more functions

than we can compute by making only n parallel queries to B� i�e��

FQk�n�B�P	 � FQk�n� �� B�P	�

and n�� serial queries to B allow us to compute more functions than we can compute

by making only n serial queries to B� i�e��

FQ�n�B�P	 � FQ�n� �� B�P	�

In �ABG��� we have shown that every self�reducible� cheatable set is in P�



Appendix A

Chromatic Number of a Recursive

Graph

The theorem below was stated without proof in Section ���� We will prove it by

constructing a pre�x code for the natural numbers �� � � � � n and then applying Kraft�s

inequality �Gal����

Theorem �
	
� If there exists an oracle B and an algorithm that computes ��G	

for recursive graphs by making only f���G		 serial queries to B� then

X
i��


�f�i� � ��

Proof� Let AB be an algorithm relative to B that computes ��G	 by making at

most f���G		 serial queries to B� for some total recursive function f � Let

�n�G	 �

��
� ��G	 if ��G	 � n

unde�ned otherwise�

In �BG���� we showed that FK
n is ��query reducible to the function �n� By the

Nonspeedup Lemma ���
��	� FK
n is not computable by a set of n partial recursive

functions� Therefore� �n is not computable by a set of n partial recursive functions�

We will use this fact later to obtain a contradiction�

�
�
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For each sequence � of k oracle answers� de�ne a function c�n�G	 computed as

follows
 Simulate A assuming that the sequence of oracle answers is �� if A tries to

make a �k � �	st query� if A outputs a number greater than n� or if A outputs a

number i such that k � f�i	� then go into an in�nite loop� otherwise� output the

value output by A� Since we can store the values f��	� � � � � f�n	 in a �nite table� c�n

is a partial recursive function for every n and �� We write f�� �g� to denote the set

of all sequences of bits� By the construction of c�n� whenever �n�G	 is de�ned

�n�G	 � fc�n�G	 j � � f�� �g�g� ���	

Let � be a pre�x of ��� because A is deterministic� if c�n�G	 converges to a value

then c�
�

n �G	 must converge to the same value� We will use this fact later in order to

construct a pre�x code for the natural numbers � through n� By the construction of

c�n� if c
�
n�G	 converges then

c�n�G	 � f�� � � � � ng�

Therefore�

��n	��G	�fc�n�G	 j � � f�� �g�g � f�� � � � � ng��

We claim that

��n	��G	�fc�n�G	 j � � f�� �g�g � f�� � � � � ng�� ���	

Proof by contradiction� Suppose that

��n	��G	�fc�n�G	 j � � f�� �g�g � f�� � � � � ng��

Choose such a natural number n� Then

��G	�card�fc�n�G	 j � � f�� �g�g	 � n��

For � � j � n� de�ne a partial recursive function hj�G	� computed as follows
 Time�

share c�n�G	 for all � until the functions have output j distinct values� output the jth

distinct value� Therefore� for all G such that �n�G	 is de�ned

�n�G	 � fc�n�G	 j � � f�� �g�g	 by ���	

� fhj�G	 j � � j � ng�
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Thus the partial function �n is computable by a set of n partial recursive functions�

This contradiction establishes the claim�

We write j�j to denote the length of the sequence �� By ���	� for every n� there

exists a graph G such that for each i in f�� � � � � ng� there exists a sequence �i of oracle

answers such that c�in �G	 � i� By the de�nition of c�n� it follows that j�ij � f�i	�

As observed above� if i �� j then �i is not a pre�x of �j� Therefore the sequences

��� � � � � �n form a pre�x code for the natural numbers � through n� Therefore� by

Kraft�s Theorem �Gal��� X
��i�n


�j�ij � ��

Since j�ij � f�i	� X
��i�n


�f�i� � ��

Letting n approach in�nity� we obtain the inequality

X
i��


�f�i� � ��
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