
QUERY�LIMITED REDUCIBILITIES

a dissertation

submitted to the department of computer science

and the committee on graduate studies

of stanford university

in partial fulfillment of the requirements

for the degree of

doctor of philosophy

By

Richard Beigel

January ����

I certify that I have read this thesis and that in my opin�

ion it is fully adequate� in scope and in quality� as a

dissertation for the degree of Doctor of Philosophy�

John T� Gill� III
Electrical Engineering
�Principal Adviser	

I certify that I have read this thesis and that in my opin�

ion it is fully adequate� in scope and in quality� as a

dissertation for the degree of Doctor of Philosophy�

Robert W Floyd

I certify that I have read this thesis and that in my opin�

ion it is fully adequate� in scope and in quality� as a

dissertation for the degree of Doctor of Philosophy�

Vaughan R� Pratt

Approved for the University Committee on Graduate

Studies

Dean of Graduate Studies � Research

ii

Abstract

We study classes of sets and functions computable by algorithms that make a limited

number of queries to an oracle� We distinguish between queries made in parallel

�each question being independent of the answers to the others� as in a truth�table

reduction	 and queries made in serial �each question being permitted to depend on

the answers to the previous questions� as in a Turing reduction	�

We de�ne computability by a set of functions� and we show that it captures

the information�theoretic aspects of computability by a �xed number of queries to

an oracle� Using that concept� we prove a very powerful result� the Nonspeedup

Theorem� which states that
n parallel queries to any �xed nonrecursive oracle cannot

be answered by an algorithm that makes only n queries to any oracle whatsoever�

This is the tightest general result possible� A corollary is the intuitively obvious�

but nontrivial result that additional parallel queries to an oracle allow us to compute

additional functions� the same is true of serial queries�

We show that if k � � parallel queries to the oracle A can be answered by an

algorithm that makes only k serial queries to any oracle B� then n parallel queries

to the oracle A can be answered by an algorithm that makes only O�log n	 parallel

queries to a third oracle C�

We also consider polynomial time bounded algorithms that make a �xed number of

queries to an oracle� It has been shown that the Nonspeedup Theorem does not apply

in the polynomial time bounded framework� However� we prove a Weak Nonspeedup

Theorem� which states that if
k parallel queries to the oracle A can be answered by

an algorithm that makes only k serial queries to the oracle B� then any n parallel

queries to the oracle A can be answered by an algorithm that makes only
k � � of

iii

the same queries to A� A corollary is that if A is NP�hard and P �� NP� then extra

parallel queries to A allow us to compute extra functions in polynomial time� the

same is true of serial queries�

iv

Acknowledgements

Many thanks are due to Jon Siegel for accidentally inspiring the topic of bounded

query classes� I would like to thank Al Aho and Don Knuth for commenting on early

versions of this work� I especially thank Don Knuth for his early encouragement of

this research and for his support while I was looking for an advisor�

I warmly thank my readers� Vaughan Pratt and Bob Floyd� I especially thank Bob

Floyd for encouraging me throughout the course of this research� for repeatedly telling

me to generalize� for helping me to �nd an adviser� for simplifying and illuminating

many of my proofs� and for being a personal friend� I am grateful to my advisor�

John Gill� for his endless patience and for his repeated requests that I prove things

that I thought I could not prove�

I thank my regular collaborators� Amihood Amir� Bill Gasarch� Louise Hay� and

JimOwings� whose contributions to notation and whose comments on our co�authored

articles have added much to the clarity of exposition in this dissertation� In addi�

tion� I thank Art Delcher� Simon Kasif� Cathy Schevon� and Dwight Wilson� whose

comments on various technical reports and articles have also improved this exposition�

Thanks are due to Greg Sullivan and Mike Goodrich for proofreading the in�

troduction and the conclusions of this dissertation� Special thanks are due to Bill

Gasarch and Jim Owings for allowing me to include excerpts from their work� and

for proofreading the �nal version of this dissertation�

This dissertation was typeset using Leslie Lamport�s LaTEX macro package for

Donald E� Knuth�s TEX typesetting system� Early versions of this dissertation were

prepared at Stanford University on a machine named Sail� which is run in exemplary

fashion by Martin Frost� money for computer time was provided by the Department

v

of Computer Science� The �nal version of this dissertation was prepared at The

Johns Hopkins University� with money for computer time provided by the Dean of

Engineering�

This research was supported by fellowships from the National Science Foundation

and from the Fannie and John Hertz Foundation�

vi

Contents

Abstract iii

Acknowledgements v

� Introduction �

� Preliminaries �

�� Terminology and Conventions �

�
 Observations about Q and FQ ��

� Bounded Queries to the Halting Problem ��

��� Lemmas About K �

��
 Separating the Bounded Query Classes � � � � � � � � � � � � � � � � �
�

��� A Normal Form for Languages in Qk�n�K	 � � � � � � � � � � � � � � � ��

��� Several Rounds of Parallel Queries ��

��� The Query Complexity Measure ��

����� Halting problems for K�machines � � � � � � � � � � � � � � � � ��

����
 Recursively De�ned Halting Problems � � � � � � � � � � � � � � ��

��� Unbounded Queries ��

��� Chromatic Number of a Recursive Graph � � � � � � � � � � � � � � � � ��

��� Related Work ��

� Nonrecursive Oracles ��

��� Computability by a Set of Partial Recursive Functions � � � � � � � � ��

vii

��
 The Nonspeedup Theorem ��

��� Separation Theorems ��

��� Decision Problems ��

��� Terse and Superterse Sets ��

��� Verbose Sets ��

��� �A
�n �� FQ�n�B	 ��

��� Quantifying Verboseness ��

��� Decision Problems and Superterseness � � � � � � � � � � � � � � � � � ��

���� Discussion and Related Work ��

� Polynomial Time Bounded Reductions ��

��� Computability by a Set of Polynomial Time Functions � � � � � � � � ��

��
 A Weak Nonspeedup Theorem ��

��� A Serial�Parallel Tradeo� ��

��� Cheatable Sets ���

��� P�Terse and P�Verbose Sets ���

��� Decision Problems and P�terse Sets ���

��� NP�Hard and �P
� �Hard Oracles ���

��� Related Work �
�

� Conclusions ���

A Chromatic Number of a Recursive Graph ��	

viii

List of Tables

ix

List of Figures

x

Chapter �

Introduction

This dissertation is concerned entirely with computations that make use of an oracle�

An oracle is an imaginary device with which we equip an ordinary computer� in order

to give the computer additional computational power� Each oracle is associated with

a particular set A of strings �or natural numbers	� the oracle is said to be an oracle

for the set A� When the computer needs to know if the string �or natural number	

x belongs to A� the computer asks the oracle� the computer is then able to use the

oracle�s answer in the remainder of the computation� Although this dissertation will

not be concerned with machine model issues� we refer to Hopcroft and Ullman�smodel

of oracle computation on a Turing machine for the sake of completeness of exposition

�HU��� Section ���� pp�
���
���

Let A be a language� A � ��� A Turing machine with oracle A is a single�

tape Turing machine with three special states q�� qy� and qn� The state q�

is used to ask whether a string is in the set A� When the Turing machine

enters the state q� it requests an answer to the question
 �Is the string

of nonblank symbols to the right of the tape head in A� The answer is

supplied by having the state of the Turing machine change on the next

move to one of the two states qy or qn� depending on whether the answer

is yes or no� The computation continues normally until the next time q�

is entered� when the �oracle answers another question�

�

CHAPTER �� INTRODUCTION

In this way� an oracle allows us to consider the questions� �What if a computer

could solve hyour favorite unsolvable problemi� and �What if a computer could

solve hyour favorite intractable problemi e!ciently� without being faced with an

immediate logical contradiction�

Oracle computations allow us to formalize the notion that one problem is compu�

tationally more di!cult than another� In much previous work �Rog��� HU��� Soa����

the set B has been said to be more computationally di!cult than the set A if A is

decidable by a computer with an oracle for B� but B is not decidable by any computer

with an oracle for A� That notion is essentially qualitative�

In this dissertation� we adopt a quantitative notion of when one problem is com�

putationally more di!cult than another� We �x a set C and we assume that our

computers are equipped with an oracle for C� We say that the set B is computa�

tionally more di!cult than the set A if A is decidable by a computer that makes

only k queries to the oracle for C for some constant k� but B is not decidable by any

computer that makes only k queries to the oracle for C�

Our notion of computational di!culty gives rise to a natural complexitymeasure��

the query complexity for oracle computations� The query complexity of a computation

is the number of queries that the computation makes to its oracle� In Section
���

we de�ne the bounded query classes� which are classes of languages decidable by a

computer that makes a �xed number of queries to a �xed oracle� The bounded query

classes are complexity classes of the query complexity measure�

Throughout this dissertation we examine the following question
 �When does the

ability to ask n� � queries to an oracle for A allow us to solve harder problems than

we could solve with only n queries� This general question admits several variants�

depending on the following issues

� What do we mean by asking n or n � � queries� Must all queries be made in

parallel �each question being independent of the answers to the others� as in

a truth�table reduction	� or may the queries be made in series �each question

�This measure is not always a computational complexity measure in the sense of Blum �see
Section �����

CHAPTER �� INTRODUCTION �

being permitted to depend on the answers to the previous questions� as in a

Turing reduction	�

� What do we mean by problems� Are we considering the di!culty of computing

functions� or of solving decision problems�

� What restrictions do we place on the oracle� Must the n queries be posed to

the oracle for A� as are the n � � queries� or may they be posed to a di�erent

oracle�

In Chapter � we study the bounded query classes relative to an oracle for the

halting problem� and we prove a variety of separation results� In particular� n � �

queries to an oracle for the halting problem allow us to solve more decision problems

than we can solve by making only n queries to an oracle for the halting problem� as

long as we are consistent about serial and parallel queries�

In Chapter � we study the bounded query classes relative to an oracle for an

arbitrary nonrecursive set� and we generalize some of the results from Chapter �� We

prove a very powerful result� the Nonspeedup Theorem� which says that
n parallel

queries to a nonrecursive oracle cannot be answered by an algorithm that makes only

n queries to any oracle whatsoever� This is the tightest general result possible� One

of its corollaries is that n� � queries to an oracle for the nonrecursive set A allow us

to compute more functions than n queries to an oracle for the same set A allow us to

compute� as long as we are consistent about serial and parallel queries�

In Chapter � we study bounded query classes within a polynomial time bounded

setting� Unfortunately� the Nonspeedup Theorem does not generalize in the way we

would �rst expect� In fact� Amir and Gasarch have constructed a set A �� P such that

n queries to an oracle for A do not allow us to compute more functions than we can

compute by making a single query to an oracle for A �AG���� The techniques used

in Chapter � are therefore more subtle and oracle�speci�c than those of Chapter ��

We show that if A is NP�hard and P �� NP then n�� queries to an oracle for the set

A allow us to compute in polynomial time more functions than we can compute in

polynomial time by making only n queries to an oracle for the same set A� as long as

we are consistent about serial and parallel queries�

Chapter �

Preliminaries

��� Terminology and Conventions

When I use a word� it means just what I choose it to mean � neither

more nor less�

" Humpty Dumpty �Car�
�

We write A � B to denote that A is a subset of B� A � B to denote that A is a

proper subset of B� #A to denote the complement� of the set A� A�B to denote the

set di�erence A� #B� maxA to denote the maximum element of the �nite set A� � if A

is empty� jAj or card�A	 to denote the cardinality of the set A� and �A�x	 to denote

the characteristic function of the set A
 � if x � A� � if x �� A� We write N to denote

the set of natural numbers� We write p 	 q to denote the the inclusive�or of the two

logical values p and q
 � if p � � or q � �� � otherwise� and we write p
 q to denote

the exclusive�or of p and q
 � if p �� q� � otherwise� We always use base�
 logarithms�

We assume that the reader has a basic familiarity with recursion theory� includ�

ing Turing machines� partial recursive and total recursive functions� recursive and

recursively enumerable sets� and many�one and Turing reductions� These concepts

�Our default universal set is the set of all strings over some �xed alphabet� Since there is an
e�ective �polynomial time computable	 in fact� one
one correspondence between the set of all strings
over a �xed alphabet and the set of natural numbers	 we can just as easily take our default universal
set to be the set of natural numbers�

�

CHAPTER �� PRELIMINARIES �

are explained in �Rog��� HU��� Soa���� The footnotes occasionally refer to more ad�

vanced material in recursion theory that is not necessary in order to understand the

results in this dissertation�

Because we are not concerned with the particulars of our machine model� we

will use the following terms synonymously
 computer� Turing machine� program�

algorithm� machine� Using standard dovetailing techniques �HU��� Section ����� we

can run countably many computations at once� Thus� we can construct machines

that �timeshare several computations or run several computations �in parallel�

Truth�table reductions are de�ned in �Rog��� HU��� Soa���� and weak truth�table

reductions are de�ned in �Rog��� Soa���� The following notation is standard �Soa���

Notation �
�
�

� A �m B if A is many�one reducible to B�

� A �tt B if A is truth�table reducible to B�

� A �wtt B if A is weak truth�table reducible to B�

� A �T B if A is Turing reducible to B�

Informally� a truth�table �tt�	 reduction from A to B works as follows
 On input x�

our machineM prepares a �nite list of queries� makes the queries toB� plugs the oracle

answers into a total recursive function� and outputs the result of the total recursive

function� which must be equal to �A�x	� A weak truth�table �wtt�	 reduction from A

to B works as follows
 On input x� our machine M prepares a list of queries� makes

the queries to B� performs an arbitrary computation using those oracle answers� and

outputs the result of its computation� which must be equal to �A�x	� The di�erence

between a tt�reduction and a wtt�reduction is the following
 If we are computing A

via a tt�reduction to B then the computation must converge� even if the computation

receives incorrect oracle answers� although the result of the computation is allowed

to be incorrect� however� if we are computing A via a wtt�reduction to B then the

computation is allowed to diverge if it receives incorrect oracle answers�

CHAPTER �� PRELIMINARIES �

Lachlan �Lac��� has constructed an example that illustrates the di�erence between

tt� and wtt�reductions
 Let B be the union of two disjoint r�e� sets A and E� Then

A �wtt B by the following reduction� which makes only � query to B
 First ask

the oracle if x � B� If x �� B then x cannot be in A� so reject� Otherwise� run

the enumerators for the r�e� sets A and E� using a standard timesharing technique�

Either x � A or x � E� so eventually x is enumerated in one of the two sets� If x is

enumerated in E then x cannot belong to A� so reject� If x is enumerated in A� then

accept� There is no obvious tt�reduction from A to B� and in fact Lachlan�s paper

produces the sets A� B� and E via a priority argument that defeats every tt�reduction�

In most cases� when we refer to an oracle� we mean an oracle for a set� Therefore�

we use the terms �oracle and �set interchangeably� Instead of writing �an oracle

for B this convention allows us to write simply �B� In a few instances� we need

to refer to oracles that compute functions� we call such oracles �function oracles in

order to avoid confusion�

When no confusion can arise� we do not distinguish between sets and ����valued

total functions� Thus we identify the set A with its characteristic function �A�

On the other hand� we must distinguish between solving decision problems �i�e��

computing ����valued functions� determining membership in a language	 and com�

puting functions� Many of the fundamental questions in this paper are more easily

answered when they are asked about functions than when they are asked about deci�

sion problems�

We say that n queries to an oracle are made in parallel� or that n parallel queries

are made� if a list of all n queries is formed before any of them is made�� Otherwise

we say that n queries are made in series� or that n serial queries are made� or simply

that n queries are made� The di�erence is that computation is allowed between serial

queries to an oracle� the answer to an earlier query may determine what query is to

be made next�

We de�ne the bounded query classes relative to the oracle A

�In �BK��
	 Book and Ko call parallel queries nonadaptive queries�

CHAPTER �� PRELIMINARIES �

De�nition �
�
�

� MQ�n�A	 is the set of machines with oracle A that make at most n queries to

A�

� FQ�n�A	 is the set of partial functions that are computable by a machine in

MQ�n�A	�

� Q�n�A	 is the set of ����valued total functions that are in FQ�n�A	�

� MQk�n�A	 is the set of machines with oracle A that make at most n queries to

A� all queries being made in parallel�

� FQk�n�A	 is the set of partial functions that are computable by a machine in

MQk�n�A	�

� Qk�n�A	 is the set of ����valued total functions that are in FQk�n�A	�

The preceding de�nitions make sense if the oracle A is replaced with a function

oracle f � In subsequent sections� we assume that the bounded query classes� MQ�

FQ� Q� MQk� FQk� and Qk� have been de�ned relative to function oracles as well as

ordinary oracles�

The members of MQ�n�A	 are called n�query A�machines� The members of

MQk�n�A	 are called n�parallel�query A�machines� Often we think of the oracle A as

being extrinsic from the machine M that computes with it� If M computes with an

unspeci�ed oracle� we call M an oracle machine� When necessary to prevent confu�

sion� we write M �� to denote machineM with an unspeci�ed oracle� We write MA to

denote the A�machine produced by equipping the oracle machineM �� with an oracle

for A�

If MA is an n�query A�machine� it is not necessary that MB be an n�query B�

machine for all B� because the behavior of M is allowed to depend on the answers

from the oracle� Suppose� for example� that� on input x� M computes the least y � x

such that y belongs to the oracle� using the obvious algorithm� If the oracle is equal

to the set of natural numbers� then M only makes one query� However� if the oracle

CHAPTER �� PRELIMINARIES �

is equal to the empty set then M always makes in�nitely many queries �and M does

not even halt	�

We can however� normalize� an n�query A�machine MA� so that M �� does not

make more then n queries even when computing with an oracle other than A� To

perform this normalization� we modify M �� so that it uses a counter in order to keep

track of the number of queries that it makes� If M �� is about to make its �n � �	st

query then we can have M �� halt and reject �or print �	� alternatively we can have

M �� go into an in�nite loop� Our choice of a particular normal behavior for M �� will

depend on our particular needs� The modi�cations to M �� above do not e�ect the

output of MA� If M �� has been normalized in one of these ways� then we call M ��

an n�query oracle machine� We can also normalize M so that M makes exactly n

queries wheneverM halts� by having M examine its counter before halting and make

the necessary number of super$uous queries� This modi�cation does not e�ect the

output of MB for any B�

Similarly� we can normalize an n�parallel�query A�machine MA so that M �� does

not make more than one round of queries� even when computing with an oracle other

than A� We can also guarantee that M makes exactly n parallel queries whenever M

halts�

In contrast with A�machines� ordinary Turing machines �without oracle	 will sim�

ply be called machines� however� when there is a possibility of confusion� ordinary

Turing machines will be called ��machines�

Because we do not distinguish between sets and ����valued total functions� we

think of the elements of Q�n�A	 as being sets� languages� decision problems� or ����

valued total functions according to our convenience�

We de�ne reducibilities that use a bounded number of queries� When the re�

ducibility requires only one query� we obtain an equivalence relation�

De�nition �
�
�

� A is n�query reducible to B �denoted A �n�T B	 if A � Q�n�B	�

� A is n�parallel�query reducible to B �denoted A �n�wtt B	 if A � Qk�n�B	�

CHAPTER �� PRELIMINARIES �

� A is ��query equivalent to B �denoted A
��T B	 if A ���T B and B ���T A�

Thus� n�query reducibility is a variant of Turing reducibility in which only n queries

are allowed� and n�parallel�query reducibility is a variant of weak truth�table re�

ducibility in which only n queries are allowed�

De�nition �
�
� A is n�query complete for C if A � C and C � Q�n�A	�

In other words A belongs to C� and every set B belonging to C is n�query reducible

to A� For example� the halting problem is ��query complete for r�e� � co�r�e�

The class of recursive sets �or total recursive ����valued functions	 is denoted by

SREC� and the class of partial recursive functions is denoted by FREC�

We write f � g to denote the composition of the functions f and g� so that �f �

g	�x	 � f�g�x		� We extend the de�nition of composition to apply to sets of functions

De�nition �
�
� If S� and S� are two sets of functions then

S� � S� � ff� � f� j f� � S� and f� � S�g�

In the next section we show that composition of two bounded serial query classes

corresponds to allowing a number of queries to one oracle followed by a number of

queries to a second oracle�

De�nition �
�
� f k g denotes the concatenation of the functions f and g� as

de�ned below

i� If f and g are functions then

�f k g	�x	 � f�x	� g�x	�

�The comma ��	 operator treats its two operands as lists and concatenates them�

Scalar operands are treated as singleton lists� Thus the comma operator is

associative�	

ii� If S� and S� are sets of functions then

S� kS� � ff� k f� j �f� � S�	 and �f� � S�	g�

We note that k is associative because the comma operator is associative�

CHAPTER �� PRELIMINARIES ��

In the next section we show how concatenation of two bounded parallel query

classes is related to allowing a number of parallel queries to one oracle simultaneous

with a number of parallel queries to a second oracle�

Relative to an oracle A we de�ne two functions� FA
n and �A

n � and two oracles�

PARITYA
n and GEQA� FA

n � de�ned below� is a convenient notation for the results of

n parallel queries to the oracle A�

De�nition �
�
	

FA
n �x�� � � � � xn	 � ��A�x�	� � � � � �A�xn		�

The function �A
n determines how many of n strings are elements of A�

De�nition �
�
�

�A
n �x�� � � � � xn	 �

X
��i�n

�A�xi	�

PARITYA
n determines whether an odd number of n strings are elements of A�

De�nition �
�
�

PARITYA
n �x�� � � � � xn	 � �A

n �x�� � � � � xn	 mod
�

GEQA determines whether at least t out of n strings are elements of A�

De�nition �
�
�

GEQA�t�x�� � � � � xn	 �

��
� � if �A

n �x�� � � � � xn	 � t�

� otherwise�

Following our general convention� we will frequently treat PARITYA
n and GEQA as

sets� rather than as ����valued functions�

��� Observations about Q and FQ

Observation �
�
�

i� FQ��� A	 � FQk��� A	�

ii� Q��� A	 � Qk��� A	�

Proof� The de�nitions of n�serial� and n�parallel�query computation coincide when

n � ��

CHAPTER �� PRELIMINARIES ��

Observation �
�
� If s � t then

i� FQ�s�A	 � FQ�t� A	�

ii� Q�s�A	 � Q�t� A	�

iii� FQk�s�A	 � FQk�t� A	�

iv� Qk�s�A	 � Qk�t� A	�

Proof� A computation that makes no more than s queries makes no more than t

queries�

Observation �
�
�

i� If FQ�s� f	 � FQ�t� g	 then Q�s� f	 � Q�t� g	�

ii� If FQk�s� f	 � FQk�t� g	 then Qk�s� f	 � Qk�t� g	�

Proof� Let S be the set of ����valued total functions �from the set of all strings

to the set of all strings	�

i� Q�s� f	 � S � FQ�s� f	 � S � FQ�t� g	 � Q�t� g	�

ii� Qk�s� f	 � S � FQk�s� f	 � S � FQk�t� g	 � Qk�t� g	�

Observation �
�
� FA
n � FQk�n�A	�

Proof� A program to exhibit the answers to n given queries to A can make those

n queries in parallel�

CHAPTER �� PRELIMINARIES �

Observation �
�
�

i� If f � FQ�s� g	 and g � FQ�t� h	� then f � FQ�st� h	�

ii� If f � FQk�s� g	 and g � FQk�t� h	� then f � FQk�st� h	�

Proof�

i� We can compute f via an algorithm that makes s queries to g� We can answer

each call to g by making t queries to h� Thus� we can compute f by making st

queries to h�

ii� Similar to �i	�

Observation �
�
�

i� f � FQ�s� g	 if and only if FQ��� f	 � FQ�s� g	�

ii� f � FQk�s� g	 if and only if FQ��� f	 � FQk�s� g	�

iii� A � Q�s� g	 if and only if Q��� A	 � Q�s� g	�

iv� A � Qk�s� g	 if and only if Q��� A	 � Qk�s� g	�

Proof�

i� Suppose that h � FQ��� f	� By Observation
�
��� h � FQ�s� g	� There�

fore FQ��� f	 � FQ�s� g	� Conversely� if FQ��� f	 � FQ�s� g	 then

f � FQ��� f	 � FQ�s� g	�

ii� Similar to �i	�

iii� If A � FQ�s� g	 then FQ��� A	 � FQ�s� g	 by �i	� By Observation
�
���

Q��� A	 � Q�s� g	� Conversely� if Q��� A	 � Q�s� g	 then A � Q��� A	 � Q�s� g	�

iv� Similar to �iii	�

CHAPTER �� PRELIMINARIES ��

Observation �
�
	 FQ���FA
n 	 � FQk�n�A	�

Proof� By Observation
�
��� FA
n � FQk�n�A	� Therefore� by Observation
�
���

FQ���FA
n 	 � FQk�n�A	� Conversely� let f � FQk�n�A	� Then f can be computed by

an algorithm that makes only n parallel queries to A� Therefore f can be computed

by an algorithm that makes one call to a function that answers n parallel queries to

A�

Observation �
�
�

i� �A
n � FQk�n�A	�

ii� PARITYA
n � Qk�n�A	�

Proof� Both can be computed by making n parallel queries to A�

Observation �
�
� �A
n � FQ����

�A
n 	�

Proof� �A
n �x�� � � � � xn	 � n��

�A
n �x�� � � � � xn	�

Observation �
�
�
 If A �m B then

i� A � Q��� B	�

ii� ��n	�FQ�n�A	 � FQ�n�B	��

iii� ��n	�FQk�n�A	 � FQk�n�B	��

iv� PARITYA
n �m PARITYB

n �

v� �A
n � FQ����B

n 	�

Proof� Since A �m B� let f be a total recursive function such that x � A if and

only if f�x	 � B�

i� An m�reduction requires only one query�

CHAPTER �� PRELIMINARIES ��

ii� We can modify any n�query A�machine so that instead of querying whether

x � A� it queries whether f�x	 � B� The new machine is an n�query B�machine

that computes the same function�

iii� Similar to �ii	�

iv� �x�� � � � � xn	 � PARITYA
n if and only if �f�x�	� � � � � f�xn		 � PARITYB

n �

v� �A
n �x�� � � � � xn	 � �B

n �f�x�	� � � � � f�xn		�

Observation �
�
�� A function g can be computed by making at most n� parallel

queries to f�� followed by at most n� parallel queries to f�� � � � followed by at most nr

parallel queries to fr if and only if

g � FQk�nr� fr	 � FQk�nr��� fr��	 � � � � � FQk�n�� f�	�

Proof� First� assume that g can be computed by an oracle Turing machine that

makes at most n� parallel queries to f�� followed by at most n� parallel queries to

f�� � � � followed by at most nr parallel queries to fr� Without loss of generality� we

assume that g�s output is stored on a special bu�er tape that is printed as part of the

halt instruction �this prevents the output of g from interfering with the input%output

relations of the r functions that we are composing	�

We compute a function g� as follows
 output the initial instantaneous description

of g �i�e�� the starting tape con�guration and the starting state	�

For � � i � r� we compute a function gi as follows
 The input to gi is an

instantaneous description of a computation� Simulate g� starting from the given

instantaneous description� until g is about to halt or make some parallel queries� If

g is about to make no more than ni parallel queries to fi� continue the simulation

until after the queries are made� and then output the instantaneous description of g�

Otherwise� stop simulating� and then output the instantaneous description�

We compute a function gr�� as follows
 The input to gr�� is an instantaneous

description of a computation� Simulate g� starting from the given instantaneous

description� until g is about to halt or make some queries� In either case� halt�

CHAPTER �� PRELIMINARIES ��

For � � i � r� gi � FQk�ni� ri	� Because g� and gr�� are recursive�

g� � g� � FQk�n�� fr	 and gr�� � gr � FQk�nr� fr	� Therefore

g � �gr�� � gr	 � gr�� � � � � � �g� � g�	

� FQk�nr� fr	 � FQk�nr��� fr��	 � � � � � FQk�n�� f�	�

Conversely� assume that g � gr � gr�� � � � � � g�� where each gi is a function in

FQk�ni� fi	� We evaluate g� and use its output as the input to g�� then we evaluate

g� and use its output as the input to g	� � � � and then �nally we evaluate gr� That

algorithm computes g�x	 by making n� parallel queries to f�� followed by n� parallel

queries to f�� � � � followed by nr parallel queries to fr�

Corollary �
�
��

FQ�a� b� f	 � FQ�a� f	 � FQ�b� f	�

Proof� By Observation
�
���� for every n

FQ�n� f	 � FQk��� f	 � � � � � FQk��� f	� �z �
n

�

Therefore

FQ�a� b� f	 � FQk��� f	 � � � � � FQk��� f	� �z �
a�b

� FQk��� f	 � � � � � FQk��� f	� �z �
a

�FQk��� f	 � � � � � FQk��� f	� �z �
b

� FQ�a� f	 � FQ�b� f	 by Observation
�
���

Observation �
�
�� The function g can be computed by making at most n� parallel

queries to f�� simultaneous with at most n� parallel queries to f�� � � � simultaneous

with at most nr simultaneous queries to fr if and only if

g � FREC � �FQk�n�� f�	 kFQk�n�� f�	 k � � � kFQk�nr� fr		�

CHAPTER �� PRELIMINARIES ��

Proof� First� assume that g can be computed by an oracle Turing machine that

makes at most n� parallel queries to f�� simultaneous with at most n� parallel queries

to f�� � � � simultaneous with at most nr simultaneous queries to fr� We assume that

g is normalized so that g makes exactly n� parallel queries to f�� simultaneous with

exactly n� parallel queries to f�� � � � simultaneous with exactly nr simultaneous queries

to fr� whenever g converges�

We compute a function gi as follows
 Simulate g until g is about to make its

parallel queries� make the ni parallel queries to fi� and output the results of those ni

queries�

We compute a function h as follows
 The input to h consists of the input to

g followed by a sequence of
P

��i�r ni oracle answers� Simulate g using the oracle

answers given by the input sequence� rather than making any queries� Then

g � h � �g� k g� k � � � k gr	

� FREC � �FQk�n�� f�	 kFQk�n�� f�	 k � � � kFQk�nr� fr		�

Conversely� assume that

g � h � �g� k � � � k gr	�

where h is partial recursive� and each gi is a function in FQk�ni� fi	� We assume that gi

is normalized so that it makes exactly ni parallel queries whenever it halts� Then the

following algorithm computes g�x	 by making n� parallel queries to f�� simultaneous

with n� parallel queries to f�� � � � simultaneous with nr parallel queries to fr
 Simulate

g� through gr� and suspend each of them right before it is about to make its oracle

queries� When each of g� through gr is ready to make its oracle queries� continue the

simulation� making all queries simultaneously� When g� through gr have terminated�

simulate h� and print h�s answer�

Corollary �
�
��

FQk�a� b� f	 � FREC � �FQk�a� f	 kFQk�b� f		�

Proof� Let n� � a� n� � b� and f� � f� � f in Observation
�
����

CHAPTER �� PRELIMINARIES ��

Observation �
�
��

i� If FQ�n� �� B	 � FQ�n�B	 then

��m � n	�FQ�m�B	 � FQ�n�B	��

ii� If FQk�n� �� B	 � FQk�n�B	 then

��m � n	�FQk�m�B	 � FQk�n�B	��

Proof�

i� Assume that FQ�n�B	 � FQ�n� �� B	� For all t � ��

FQ�n� t� �� B	 � FQ�n� � � t� B	

� FQ�n� �� B	 � FQ�t� B	 by Corollary
�
��

� FQ�n�B	 � FQ�t� B	 by assumption

� FQ�n� t� B	 by Corollary
�
��
�

Thus FQ�n � t � �� B	 � FQ�n � t� B	 for all t � �� By transitivity�

FQ�m�B	 � FQ�n�B	 for all m � n�

ii� Assume that FQk�n�B	 � FQk�n� �� B	� For all t � ��

FQk�n� t� �� B	 � FQk�n� � � t� B	

� FREC � �FQk�n� �� B	 kFQk�t� B		 by Corollary
�
���

� FREC � �FQk�n�B	 kFQk�t� B		 by assumption

� FQk�n� t� B	 by Corollary
�
����

Thus FQk�n � t � �� B	 � FQk�n � t� B	 for all t � �� By transitivity�

FQk�m�B	 � FQk�n�B	 for all m � n�

CHAPTER �� PRELIMINARIES ��

Observation �
�
�� Let n�� � � � � nr be nonnegative integers� let s � max��i�r ni� and

let

mj � jfni j ni � jgj�

Then

FQ�n�� A	 k � � � kFQ�nr� A	 � FQk�ms� A	 � FQk�ms��� A	 � � � � � FQk�m�� A	�

Proof� If f � FQ�n�� A	 k � � � kFQ�nr� A	 then we can compute f by timesharing

an n��query A�machine� an n��query A�machine� � � � and an nr�query A�machine�

Without loss of generality� we assume that each ni�query A�machine makes exactly

ni queries whenever it halts� We force those machines to synchronize their queries�

thus f is computed by a machine that makes m� parallel queries to A� followed by

m� parallel queries to A� � � � followed by ms parallel queries to A�

Observation �
�
�	

FQ�n�A	 k � � � kFQ�n�A	� �z �
m

� FQk�m�A	 � � � � � FQk�m�A	� �z �
n

Proof� Let r � m and let n� � n� � � � � � nr � n in Observation
�
���� Then

s � n and m� � m� � � � � � ms � m�

Observation �
�
�� �A
n � FQ�dlog �n� �	e�GEQA	�

Proof� �A
n �x�� � � � � xn	 is an integer k such that � � k � n� For any t� a single

query to GEQA will tell us whether k � t� Thus� a binary search determines k by

making dlog �n� �	e queries to GEQA�

The following generalization of Observation
�
��� is key to the classi�cation in

Chapter � of functions computable by machines that make several rounds of parallel

queries to an oracle for the halting problem�

Observation �
�
��

�A
�n��������nr����� � FQk�nr�GEQA	 � FQk�nr���GEQA	 � � � � � FQk�n��GEQA	�

CHAPTER �� PRELIMINARIES ��

Proof�

Let N � �n� � �	 � � � �nr � �	� The value taken on by �A
N�� is an integer k

such that � � k � N � �� thus k has one of N possible values� For any t� a single

query to GEQA will tell us whether k � t� With n� parallel queries� we ask whether

k � N��n� � �	� k �
N��n� � �	� � � � � k � n�N��n� � �	� These queries restrict k

to a range of N��n� � �	 possible values� Similarly� the next n� parallel queries can

restrict k to a range of N���n���	�n���		 possible values� We continue in this way�

until the �nal nr parallel queries restrict k to a range of N���n���	 � � � �nr ��		 � �

possible value� Thus �A
N�� can be computed by making n� parallel queries to GEQA�

followed by n� parallel queries to GEQA� � � � followed by nr parallel queries to GEQA�

By Observation
�
����

�A
N�� � FQk�nr�GEQA	 � FQk�nr���GEQA	 � � � � � FQk�n��GEQA	�

In Chapter �� we will use the following observation to show that

Qk�n�K	 � Qk�n� ��K	�

where K is an oracle for the halting problem�

Observation �
�
�

�A
�n�� � FREC � �FQ����GEQA

n 	 kFQ���PARITYGEQA

n�� 		�

Proof� Suppose that we are to compute �A
�n����x 	� where �x � �x�� � � � � x�n��	� Let

�y � �y�� � � � � y�n��	� where

yi � �i��x 	�

Then

�A
�n����x 	 � �GEQA

�n�� ��y 	�

Let

z � �GEQA

�n�� ��y 	�

t � �GEQA

n �y�� y
� � � � � y�n	�

p � PARITYGEQA

n�� �y�� y	� � � � � y�n��	�

CHAPTER �� PRELIMINARIES
�

Then z �
t or z �
t � �� depending on whether y�t�� � GEQA� Since the parity

function computed above changes value if y�t�� � GEQA� the value of p determines

whether z �
t or z �
t� �� thus z is determined by the values of t and p� In fact

z �

��
�
t� p if t is even

t� � � p otherwise�

Thus� we can compute �A
�n����x 	 � �GEQA

�n�� ��y 	 by making one query to �GEQA

n simul�

taneous with one query to PARITYGEQA

n�� �

A version of Kleene�s recursion theorem is true for k�query A�machines� We will

use the following notation exclusively in connection with the recursion theorem�

Notation �
�
��

i� 	A
e is the function computed by machine e relative to oracle A�

ii�

	A�k
e �x	 �

��
� 	A

e �x	 if 	A
e �x	 converges after making at most k queries

unde�ned otherwise�

Note that 	A�k
e � FQ�k�A	�

Observation �
�
��

i� If f is a total recursive mapping from MQ�k�A	 to MQ�k�A	� then there exists

a machine n � MQ�k�A	 such that 	A
n � 	A

f�n��

ii� If f is a total recursive mapping from MQk�k�A	 to MQk�k�A	� then there exists

a machine n � MQk�k�A	 such that 	A
n � 	A

f�n��

Proof�

i� We prove this by making minor changes to the proof in �Soa��� of the ordinary

recursion theorem� By the s�m�n theorem� there is a total recursive function d

such that

��v� z	�	A
d�v��z	 � 	A�k

�v�v�
�z	��

CHAPTER �� PRELIMINARIES
�

Choose v such that 	v � f � d� then

��z	�	A
d�v��z	 � 	A�k

f�d�v��z	��

Let n � d�v	� Then

��z	�	A
n�z	 � 	A�k

f�n��z	��

By the de�nition of d� machine n � d�v	 is a k�query A�machine� Therefore� by

the de�nition of f � machine f�n	 must also be a k�query A�machine� Therefore�

	A�k
f�n� � 	A

f�n�� so

��z	�	A
n�z	 � 	A

f�n��z	��

Thus� n is a �xed point of f �

ii� Similar to �i	�

Chapter �

Bounded Queries to the Halting

Problem

In this chapter� we study the classes of sets and functions computable by machines

that make a bounded number of queries to an oracle for the halting problem� In

Chapter �� we will generalize some of these results to arbitrary nonrecursive oracles�

��� Lemmas About K

We use K to denote the halting problem� i�e�� the set of machines that halt on empty

input� Since the usual variants of the halting problem are recursively isomorphic �see�

for example� �Soa���	� we lose no generality by considering only this version of the

halting problem� We exhibit some straightforward properties of K�

Lemma �
�
� If A is r�e� then GEQA is r�e�

Proof� Given a nondeterministic acceptor for A� we accept GEQA as follows
 On

input �t�x�� � � � � xn	� run the nondeterministic acceptor for A on each of x� through

xn� keeping track of how many are accepted� If at least t of them are accepted� then

accept� otherwise reject� This nondeterministic algorithm accepts GEQA�

CHAPTER �� BOUNDED QUERIES TO THE HALTING PROBLEM
�

Lemma �
�
� GEQK
m K�

Proof� Because K is r�e�� GEQK is r�e� by Lemma ������ Therefore GEQK �m K�

Conversely� x � K if and only ���x	 � GEQK� so K �m GEQK�

The next lemma shows that we can determine how many of n programs halt by

asking only dlog �n� �	e queries to K�

Lemma �
�
� �K
n � FQ�dlog �n� �	e�K	�

Proof� By Observation
�
����

�K
n � FQ�dlog �n � �	e�GEQK	�

By Lemma ����
� GEQK
m K� Therefore�

FQ�dlog �n� �	e�GEQK	 � FQ�dlog �n� �	e�K	�

by Observation
�
����ii	� Therefore�

�K
n � FQ�dlog �n� �	e�K	�

In order to determine which of n numbers belong to an r�e� set B� we only need

to know how many of them belong to the set B� as shown by the next lemma�

Lemma �
�
� If B is r�e� then FB
n � FQ����B

n 	�

Proof� Here is an algorithm relative to �B
n to determine which of x�� � � � � xn belong

to B
 Let t � �K
n �x�� � � � � xn	� Simulate an enumerator for B until at least t of the

numbers x�� � � � � xn have been enumerated� If xi has been enumerated by that time�

then xi � B� otherwise xi �� B�

CHAPTER �� BOUNDED QUERIES TO THE HALTING PROBLEM
�

Lemma �
�
�

i� FK
n � FQ����K

n 	�

ii� FQk�n�K	 � FQ����K
n 	�

Proof�

i� This follows from Lemma ����� because K is r�e�

ii� By Observation
�
��� FQk�n�K	 � FQ���FK
n 	� By �i	 and Observation
�
���i	�

FQ���FK
n 	 � FQ����K

n 	� Therefore� FQk�n�K	 � FQ����K
n 	� Conversely�

�K
n � FQk�n�K	� so FQ����K

n 	 � FQk�n�K	 by Observation
�
���i	�

The next lemma shows that we can determine which of n programs halt by asking

only dlog �n � �	e serial queries to K�

Lemma �
�
�

i� FK
n � FQ�dlog �n� �	e�K	�

ii� FQk�n�K	 � FQ�dlog �n� �	e�K	�

Proof�

i� By Lemma ������

FK
n � FQ����K

n 	�

By Lemma ������

�K
n � FQ�dlog �n� �	e�K	�

Therefore� by Observation
�
���i	�

FK
n � FQ�dlog �n� �	e�K	�

ii� By Observation
�
��� FQk�n�K	 � FQ���FK
n 	� By �i	 and Observation
�
���i	�

FQ���FK
n 	 � FQ�dlog �n� �	e�K	�

CHAPTER �� BOUNDED QUERIES TO THE HALTING PROBLEM
�

Lemma ������ii	 states a relationship between serial queries and parallel queries

to K� In the next section we will prove a converse to Lemma ������ii	�

Lemma ����� allows us to replace n parallel queries to K by a single query to �K
n �

The next lemma shows how to transform a query to �K
n into a special form�

Lemma �
�
	 There is a total recursive function �y such that for every natural num�

ber n and every n�tuple �x � �x�� � � � � xn	

�K
n ��y ��x 		 � maxfi j yi � Kg � �K

n ��x 	�

where �y � �y�� � � � � yn	�

Proof� By Lemma ������ GEQK is r�e� Therefore� there exists a total recursive

function f such that z � GEQK if and only if f�z	 � K� Let yi � f�i��x 	� If

�i � ���x 	 � GEQK then �i��x 	 � GEQK � so if yi�� � K then yi � K� Therefore�

�K�yi	 � �K�yi��	� Because of this monotonicity condition�

�K
n ��y 	 � maxfi j yi � Kg

� maxfi j �i��x 	 � GEQKg

� maxfi j �K
n ��x 	 � ig

� �K
n ��x 	�

Lemma ����� allows us to replace n parallel queries to K with n queries to K in

such a way that the answers to the queries are monotone� We will use that transfor�

mation explicitly in the remainder of this chapter� instead of referring to the lemma�

The following lemma depends only on the fact that GEQK �m K�

Lemma �
�
�

�K
�n�� � FREC � �FQ����K

n 	 kFQ���PARITYK
n��		�

CHAPTER �� BOUNDED QUERIES TO THE HALTING PROBLEM
�

Proof� By Observation
�
�
��

�K
�n�� � FREC � �FQ����GEQK

n 	 kFQ���PARITYGEQK

n�� 		�

By Lemma ����
� GEQK
m K� Therefore�

FQ����GEQK

n 	 � FQ����K
n 	

by Observation
�
����v	� and

FQ���PARITYGEQK

n 	 � FQ���PARITYK
n 	

by Observation
�
����iv	 and Observation
�
����ii	� Therefore�

�K
�n�� � FREC � �FQ����K

n 	 kFQ���PARITYK
n��		�

We will use Lemma ����� in the next section to show that Qk�n�K	 is a proper

subset of Qk�n� ��K	�

��� Separating the Bounded Query Classes

Lemma �
�
� FQ�n�K	 � FQk�

n � ��K	�

Proof� We show how to simulate an n�query K�machineM by a �
n��	�parallel�

queryK�machine� LetM � MQ�n�K	� Regardless of the oracle thatM uses� we know

that there are at most
i�� possibilities for the ith query " one for each sequence

of answers to previous i � � queries� Thus we have an a priori bound of
n � �

di�erent queries that could be made� regardless of the answers given by the oracle�

It is not in general possible to pre�compute what all these queries might be� because

some purported sequence of oracle answers might force M into a non�terminating

computation�

However� we can construct a query that has the same answer as the ith query

if the ith query is actually made �the answer is irrelevant if the ith query is not

CHAPTER �� BOUNDED QUERIES TO THE HALTING PROBLEM
�

made	� For each Boolean sequence s of i� � potential oracle answers� we construct a

��machineM s that computes as follows
 Using the sequence s to answer the �rst i��

queries� simulateM untilM produces its ith query �go into an in�nite loop ifM halts

before producing i queries	� then simulate M �s ith query q �until q halts	 by using

the universal Turing machine� and then halt� M s makes no queries� furthermore� if

the assumed sequence of i� � oracle answers is correct� then M s halts if and only if

M makes at least i queries and M �s ith query belongs to K�

In other words� for each sequence of potential answers to the �rst i � � queries�

we have shown how to produce a query �namely �does M s halt� 	 that has the same

answer as M �s ith query if the �rst i� � answers are correct and if M actually makes

at least i queries� If the �rst i � � answers are not all correct or if M makes fewer

than i queries� we do not care about the answer to the query that we produce�

By determining whether each machine M s halts� we determine the answers to

all of M �s possible queries� The following algorithm simulates M by making onlyPn��
i��
i �
n � � queries to K
 For each sequence s of fewer than n bits� query K to

determine whether M s halts� Simulate M � by substituting known answers for all of

M �s queries to K� Thus FQ�n�K	 � FQk�

n � ��K	�

Theorem �
�
� FQ�n�K	 � FQk�

n � ��K	�

Proof� By Lemma ������ii	�

��n	�FQk�n�K	 � FQ�dlog �n � �	e�K	��

By replacing n with
n � � in the previous statement� we obtain

FQk�

n � ��K	 � FQ�n�K	�

Conversely� by Lemma ��
���

FQ�n�K	 � FQk�

n � ��K	�

CHAPTER �� BOUNDED QUERIES TO THE HALTING PROBLEM
�

Theorem ��
�� below states that Q�n�K	 � Q�n � ��K	� We prove the theorem

by showing that the halting problem for n�query K�machines is in Q�n � ��K	 but

not in Q�n�K	�

Given a machineMB in MQ�n�B	 we can modifyM �� �in a �xed way	 so thatM ��

never makes more than n queries to its oracle �by having M keep count of how many

queries it makes	� Such a machine is said to be in standard form� It is important

that we choose a �xed way to modify M so that an algorithm can check whether a

machine is in standard form�

Notation �
�
�

� MQ��n�A	 is the set of machines in MQ�n�A	 that are in standard form�

� MQ�
k�n�A	 is the set of machines in MQk�n�A	 that are in standard form�

De�nition �
�
� If C is a set of machines then HC is the halting problem for C�

That is�

HC � fx � C j x halts on empty inputg�

Informally� we call HMQ��n�B� the halting problem for n�query B�machines�

Lemma �
�
� For every set B and natural number n

i� HMQ��n�B� �� Q�n�B	�

ii� HMQ�
k�n�B�

�� Qk�n�B	�

Proof�

i� �This is analogous to the standard proof that the halting problem for ��machines

is unsolvable�	 Given a machine x and an input y we can build another machine

that ignores its input and simulates machine x on input y �by the s�m�n Theo�

rem	� Thus the set of all pairs �x� y	 such that the n�query B�machine x halts on

input y is m�reducible to HMQ��n�B�� Therefore it su!ces to show that this more

general halting problem is not solvable by any n�query B�machine� Suppose

CHAPTER �� BOUNDED QUERIES TO THE HALTING PROBLEM
�

that M were an n�query B�machine that could solve the halting problem for

n�query B�machines on arbitrary input� that is� if x is an n�query B�machine

in standard form then

M�x� y	 �

��
� true if program x halts on input y

false otherwise�

We de�ne a new machine u such that

u�x	

��
� goes into an in�nite loop if M�x� x	 � true

halts otherwise�

Clearly u is an n�query B�machine in standard form� By construction� u fails

to halt on input u if and only if u halts on input u� That is a contradiction�

ii� Simular to �i	�

A di�erent proof is possible� via the Recursion Theorem �
�
�

	 for n�query B�

machines �note that Theorem
�
�

 is easily extended to machines in standard form	

Assume that M is an n�query B�machine that solves the halting problem for n�query

B�machines� De�ne an n�query B�machine program u such that for all x

	B
u �x	 �

��
� unde�ned if M�u	 � true

� otherwise�

�See �Soa��� pages ��&��� for a justi�cation of this informal use of the Recursion

Theorem�	 Then 	B
u converges on empty input if and only if 	B

u diverges on empty

input� The proof for n�parallel�query B�machines is similar�

A special case of the previous lemma is that n queries to K do not allow us to

solve the halting problem for n�query K�machines� However� n � � queries to K do

allow us to solve the halting problem for n�query K�machines� as shown below�

Lemma �
�
� HMQ��n�K� � Q�n� ��K	�

CHAPTER �� BOUNDED QUERIES TO THE HALTING PROBLEM ��

Proof� Suppose that we are to determine whether an n�query machine x in stan�

dard form halts on empty input� The problem would be trivial if x always made

exactly n queries to K� If that were the case� we would simulate x until x had made

its n queries� and then we would ask a �nal query to K in order to determine if the

remainder of x�s computation would terminate� However� if x diverges there is no

guarantee that x uses its full allotment of n queries to K�

We avoid that pitfall as follows
 For � � i � n � � we de�ne a machine xi that

uses the answers to the �rst i � � queries �if that many queries are actually made	

in order to simulate x until x has halted or is about to make another query� If x has

halted then xi halts� otherwise xi simulates x�s ith query qi �until qi halts	 by using

the universal Turing machine� and then xi halts� Thus xi halts if and only if ��	 x

halts without making i queries or �
	 x makes at least i queries and the ith query

made by x is in K�

The following algorithm determines whether an n�queryK�machine halts on empty

input

Step �� Input x� If x is not an n�query K�machine in standard form then reject�

Step �� For i � � to n� � do the following

�a� Construct a machine xi that computes as follows
 Using the values

�K�x�	� � � � � �K�xi��	 computed in step
�b	 as the �rst i � � oracle an�

swers� simulate x on empty input until x has halted or x is about to make

its ith query qi� if x is about to make its ith query qi then simulate qi until

qi has halted�

�b� Ask K whether xi halts�

�� If x makes an ith query qi� then �K�xi	 � �K�qi	� �	

Step �� Output the value of �K�xn��	 that was computed in step
�b	�

We assert that x halts if and only if xn�� halts� Let j be the actual number of queries

made by machine x� By construction� xi � K if and only if qi � K for � � i � j� If

x halts then xj�� through xn�� halt� if x diverges then xj�� through xn�� diverge�

CHAPTER �� BOUNDED QUERIES TO THE HALTING PROBLEM ��

The algorithm constructed above makes exactly n� � queries to K�

Theorem �
�
	 Q�n�K	 � Q�n � ��K	�

Proof� The inclusion is obvious �Observation
�
�
	� Lemmas ��
���i	 and ��
��

imply that

HMQ��n�K� � Q�n� ��K	�Q�n�K	�

Therefore the inclusion is proper�

Corollary �
�
� FQ�n�K	 � FQ�n� ��K	�

Proof� This follows from Theorem ��
�� and Observation
�
���

Corollary �
�
� Qk�

n � ��K	 � Qk�

n�� � ��K	�

Proof� By Theorem ��
��� Q�n�K	 � Q�n � ��K	� By Theorem ��
�
�

Q�n�K	 � Qk�

n � ��K	 and Q�n� ��K	 � Qk�

n�� � ��K	�

From Corollary ��
�� we can prove that more partial functions are computable

with n� � parallel queries to K than with only n parallel queries to K�

Lemma �
�
�
 ��n	�FQk�n�K	 � FQk�n� ��K	��

Proof� Proof by contradiction� Assume that FQk�n���K	 � FQk�n�K	 for some

n� Then� by Observation
�
����

��m � n	�FQk�m�K	 � FQk�n�K	��

In particular FQk�

n � ��K	 � FQk�

n�� � ��K	� Therefore� by Observation
�
���

Qk�

n � ��K	 � Qk�

n�� � ��K	� which contradicts Corollary ��
���

Corollary �
�
�� There is a total function in FQk�n� ��K	� FQk�n�K	�

Proof� By Lemma ��
���� FQk�n�K	 � FQk�n� ��K	� Therefore�

FK
n�� � FQk�n� ��K	 � FQk�n�K	�

CHAPTER �� BOUNDED QUERIES TO THE HALTING PROBLEM �

We have shown that n� � parallel queries are more useful than n parallel queries

for computing functions� Next we show that n � � parallel queries are more useful

than n parallel queries for solving decision problems�

Lemma �
�
�� PARITYK
n�� �� Qk�n�K	

Proof� By contradiction� Assume that PARITYK
n�� � Qk�n�K	� By Lemma ������

�K
�n�� � FREC � �FQ����K

n 	 kFQ���PARITYK
n��		

� FREC � �FQ����K
n 	 kFQk�n�K		 by assumption

� FREC � �FQk�n�K	 kFQk�n�K		 by Lemma ������ii	

� FQk�
n�K	 by Corollary
�
����

Thus�

�K
�n�� � FQk�
n�K	�

and so� by Lemma ������ii	�

FQk�
n � ��K	 � FQ�
n�K	�

which contradicts Lemma ��
����

Theorem �
�
�� Qk�n�K	 � Qk�n� ��K	�

Proof� The containment is obvious� By Lemma ��
��
�

PARITYK
n�� � Qk�n � ��K	�Qk�n�K	�

so the containment is proper�

We have shown that the hierarchy of bounded parallel query classes relative to

K is proper� We have also seen where the bounded serial query classes �t into the

hierarchy

FQk���K	 � FQ���K	 �

FQk�
�K	 � FQk���K	 � FQ�
�K	 � FQk���K	 �

FQk���K	 � FQk���K	 � FQk���K	 � FQ���K	 � FQk���K	 � � � �

� � � � FQk�

n �
�K	 � FQk�

n � ��K	 � FQ�n�K	 � FQ�
n�K	 � � � �

CHAPTER �� BOUNDED QUERIES TO THE HALTING PROBLEM ��

The same relationship is true for decision problems

Qk���K	 � Q���K	 �

Qk�
�K	 � Qk���K	 � Q�
�K	 � Qk���K	 �

Qk���K	 � Qk���K	 � Qk���K	 � Q���K	 � Qk���K	 � � � �

� � � � Qk�

n �
�K	 � Qk�

n � ��K	 � Q�n�K	 � Q�
n�K	 � � � �

��� A Normal Form for Languages in Qk�n�K�

By the de�nition of Qk every language in Qk�n�K	 is weak truth�table reducible to

K� In this section� we show that every language in Qk�n�K	 is� in fact� truth table

reducible to K� Furthermore� the truth table used in the reduction can always be

chosen to be n�ary exclusive�or �parity	 or its complement�

Theorem �
�
� If L � Qk�n�K	 then L ���tt PARITYK
n �

Proof� Let L � Qk�n�K	� Since Qk�n�K	 � Qk����
K
n 	� let �L be computed by a

machine M in MQk����
K
n 	� Because M halts on all inputs� we can assume without

loss of generality that M always makes exactly one query to �K
n �

For � � i � n� we compute a partial function fi�x	 as follows

Step �� SimulateM on input x until M prepares its query �q � �q�� � � � � qn	 to �K
n �

CHAPTER �� BOUNDED QUERIES TO THE HALTING PROBLEM ��

Step �� Timeshare the following two computations until one of them has terminated

�a� Simulate q�� � � � � qn until at least i of them have halted� then simulate M

assuming that its oracle answer is equal to i� and �nally output the value

output by M �

�b� Simulate q�� � � � � qn until at least i�� of them have halted� and then output

the value ��

�� If �K
n ��q 	 � i� then step
�a	 must terminate because the oracle answer is

correct and M halts on all inputs� if �K
n ��q 	 � i then step
�b	 must terminate�

If �K
n ��q 	 � i then step
�a	 and step
�b	 both diverge� Thus step
 terminates�

i�e�� fi�x	 is de�ned� if and only if i � �K
n ��q 	� �	

Thus�

fi�x	 �

�����
����

� or � �don�t care	 if i � �K
n ��q 	

�L�x	 if i � �K
n ��q 	

diverge if i � �K
n ��q 	�

For � � i � n��� we de�ne a ��machine yi�x	 that halts if and only if fi�x	 converges�

fi���x	 converges� and fi�x	 �� fi���x	� Thus�

�K�yi�x		 �

��
� fi�x	
 fi���x	 if i � �K

n ��q 	

� otherwise�

Let t � �K
n ��q 	� Then

f��x	
 PARITYK
n �y��x	� � � � � yn���x		

� f��x	
 ��K�y��x		
 � � �
 �K�yn���x			

� f��x	
 ��K�y��x		
 � � �
 �K�yt���x			
 ��K�yt�x		
 � � �
 �K�yn���x			

� f��x	
 ��f��x	
 f��x		
 � � �
 �ft���x	
 ft�x			
 ��
 � � �
 �	

� f��x	
 ��f��x	
 f��x		
 � � �
 �ft���x	
 ft�x			

� ��f��x	
 f��x		
 � � �
 �ft���x	
 ft���x			
 ft�x	

� ft�x	

� �L�x	�

CHAPTER �� BOUNDED QUERIES TO THE HALTING PROBLEM ��

Since f��x	 is total recursive� L ���tt PARITYK
n �

Corollary �
�
�

i� L � Qk�n�K	 if and only if L �n�tt K�

ii� L � Q�n�K	 if and only if L ���n����tt K�

Proof�

i� The forward implication follows immediately from Theorem ������ The converse

is obvious from the de�nitions�

ii� This follows from �i	� because Q�n�K	 � Qk�

n � ��K	 by Theorem ��
�
�

By de�nition� Qk�n�K	 consists of exactly those languages that are n�wtt reducible

to K� Thus Corollary ����
�i	 implies that n�wtt reducibility to K is equivalent to

n�tt reducibility to K� As mentioned in the introduction� Lachlan showed in �Lac���

that relative to some oracles n�wtt reducibility need not imply n�tt reducibility or

even unbounded tt�reducibility� even when n � �� In �Rog���� it was shown that if

K �tt B then

�A �wtt B	 implies �A �tt B	�

hence� in particular

�A �wtt K	 implies �A �tt K	�

In Rogers�s proof sketch� however� the tt�reduction uses more queries than the wtt�

reduction� and thus those methods do not yield our result that n�wtt reducibility to

K is equivalent to n�tt reducibility to K�

The next Corollary says that PARITYK
n is ��query complete for Qk�n�K	� It is

analogous to Lemma ������ii	�

Corollary �
�
� Qk�n�K	 � Q���PARITYK
n 	�

Proof� By Theorem ������ Qk�n�K	 � Q���PARITYK
n 	� The reverse containment

is obvious�

CHAPTER �� BOUNDED QUERIES TO THE HALTING PROBLEM ��

That tt�reducibility to K via a �xed truth table of norm n implies membership

in Q���PARITYK
n 	 also follows from �Hay���� where it is shown that B �n�tt K via a

reduction whose truth table is independent of the input if and only if

�B �� PARITYK
n 	 or � #B �� PARITYK

n 	�

��� Several Rounds of Parallel Queries

In this section� we determine what functions can be computed if we are allowed to

make n� parallel queries to K� followed by n� parallel queries to K� � � � followed by

nr parallel queries to K�

Lemma �
�
�

FQk��n� � �	 � � � �nr � �	 � �	�K	 � FQk�nr�K	 � FQk�nr���K	 � � � � � FQk�n��K	�

Proof� Let N � �n� � �	 � � � �nr � �	� �� Then

FQk�N�K	 � FQ����K
N 	 by Lemma ������ii	

� FQk�nr�GEQK	 � FQk�nr���GEQK	 � � � � � FQk�n��GEQK	

by Observation
�
���

� FQk�nr�K	 � FQk�nr���K	 � � � � � FQk�n��K	

because GEQK
m K�

Lemma �
�
� FQk�n��K	 � FQk�n��K	 � FQk��n� � �	�n� � �	 � ��K	�

Proof� Let

f � FQk�n��K	 � FQk�n��K	 � FQ����K
n�
	 � FQ����K

n�
	�

by Lemma ������ii	� Then f � f� � f�� where f� � FQ����K
n�
	 and f� � FQ����K

n�
	�

Let M� compute f�� and let M� compute f�� Without loss of generality� we assume

CHAPTER �� BOUNDED QUERIES TO THE HALTING PROBLEM ��

thatM� makes its query whenever it converges and thatM� makes its query whenever

it converges�

For � � r � n�� we de�ne a ��machine xr� that computes as follows
 simulate M�

until M� prepares its query �x�� � � � � xn�	� timeshare the ��machines x�� � � � � xn� until

at least r of them have halted� and halt�

For � � s � n� and � � t � n�� we de�ne a ��machine xs�t� that computes

as follows
 simulate M� until M� prepares its query �x�� � � � � xn�	� timeshare the ��

machines x�� � � � � xn� until at least s of them have halted� complete the simulation of

M� assuming that the answer to its query is equal to s� simulateM�� using the output

of M� as input� until M� prepares its query �y�� � � � � yn�	� timeshare y�� � � � � yn� until

at least t of them have halted� and halt�

We simulateM��M� as follows
 Ask K in parallel whether xr� halts for � � r � n�

and whether xs�t� halts for � � s � n�� � � t � n�� The answers to those queries

to K determine the answer to M��s query to �K
n�

and the answer to M��s query to

�K
n�
� We simulateM� �M� using this information in lieu of making additional oracle

queries� The number of parallel queries used by this simulation is n� � �n� � �	n� �

�n� � �	�n� � �	 � ��

Theorem �
�
�

FQk�n��K	 � FQk�n��K	 � FQk��n� � �	�n� � �	 � ��K	�

Proof� This follows from Lemma ����� and Lemma ����
�

Theorem �
�
�

FQk�nr�K	 � FQk�nr���K	 � � � � � FQk�n��K	 � FQk��n� � �	 � � � �nr � �	� ��K	�

CHAPTER �� BOUNDED QUERIES TO THE HALTING PROBLEM ��

Proof� Proof by induction on r� The result is identically true for r � �� Assume

the result for some r� We will prove it for r � ��

FQk�nr���K	 � FQk�nr�K	 � � � � � FQk�n��K	

� FQk�nr���K	 � �FQk�nr�K	 � � � � � FQk�n��K		

� FQk�nr���K	 � FQk��n� � �	 � � � �nr � �	 � ��K	 by the induction hypothesis

� FQk���n� � �	 � � � �nr � �	 � � � �	�nr�� � �	 � ��K	 by Theorem �����

� FQk��n� � �	 � � � �nr�� � �	 � ��K	�

��� The Query Complexity Measure

De�nition �
�
�

� The query complexity of a computation relative to B is the number of queries

made to B if the computation terminates� in�nite otherwise�

� If a computation makes only one round of parallel queries to B then the parallel�

query complexity of that computation is equal to its query complexity�

A measure is a Blum complexity measure if it satis�es the following two conditions

��	 the complexity assigned to every divergent computation must be in�nite� and �
	

there must be an algorithm to determine whether the complexity of a computation

is at least c� for �nite c �see� for example� �MY��� page ��
�	� We relativize Blum�s

de�nition to apply to computations that use an oracle��

De�nition �
�
� A measure
�M�x	 is a relativized Blum complexity measure for

computations that use oracle B if the measure satis�es the following two conditions

i�
�M�x	 �� if and only if the B�machine M converges on input x�

�Our de�nition is di�erent from that of Lynch	 Meyer	 and Fischer �LMF��
	 because their de�

nition is uniform in the oracle�

CHAPTER �� BOUNDED QUERIES TO THE HALTING PROBLEM ��

ii� The predicate
�M�x	 � c is recursive in B�

Theorem �
�
� Query complexity and parallel�query complexity are relativized Blum

complexity measures for computations that use the oracle B if and only if K �T B�

Proof� First� assume that K �T B� By de�nition� the parallel�query complexity

and query complexity of a computation are �nite if and only if the computation

terminates� so condition �i	 is satis�ed�

We de�ne a �checkpoint of a computation as a halt or a query� A �segment is the

portion of a computation that occurs between checkpoints� Using an oracle for K� we

can determine whether a computation reaches a checkpoint� We can determine if the

serial query complexity of a computation is at least c by simulating the computation

one segment at a time� as follows

Step �� Input a machine M and a string x�

Step �� For i � � to c perform the following steps

�a� Using K� determine whether another checkpoint will be reached� If not

�� then the computation diverges� so its complexity is in�nite� which is at

least c �	 then accept�

�b� �� The computation reaches another checkpoint� �	 Simulate the com�

putation up to the checkpoint� If the checkpoint is a halt �� then the

computation makes fewer than c queries �	 then reject�

�c� �� The checkpoint is a query� �	 Using B� answer the query�

Step �� �� If we reach this step then the computation has made c queries� �	

Accept�

Since K �T B� the algorithm above is recursive in B� Since parallel�query com�

plexity is the same as query complexity� whenever the parallel�query complexity is

de�ned� the same algorithm determines if the parallel�query complexity of a compu�

tation is at least c� Thus� condition �ii	 is also satis�ed� so query complexity and

parallel�query complexity are relativized Blum computational complexity measures�

CHAPTER �� BOUNDED QUERIES TO THE HALTING PROBLEM ��

Conversely� assume that parallel�query complexity or query complexity is a rel�

ativized Blum computational complexity measure� Suppose that we want to know

whether ��machine x halts on empty input� We replace x with an equivalent B�

machine that never uses its oracle� The query complexity of that B�machine�s com�

putation on empty input is either � or in�nity� By condition �ii	� we can determine

whether its query complexity is at least �� via an algorithm that is recursive in B� If

the complexity is at least � then x �� K� otherwise� x � K� Therefore� K �T B�

We will determine the exact query complexity relative to K of several problems�

����� Halting problems for K�machines

We write Kn to denote the halting problem for n�parallel�query K�machines�

De�nition �
�
� Kn � HMQ�
k�n�K��

Lemma �
�
�

HMQ��n�K�
m HMQ�
k��

n���K��

Proof� In the proof of Theorem ��
�
 we showed how to e�ectively convert a

machine in MQ��n�K	 into a machine in MQ��
n � ��K	 that computes the same

function� and vice versa� If one halts� the other halts�

We shall determine the parallel�query complexity of Kn relative to K� If n is of

the form
t � �� then our previous results provide an upper bound on the complexity

of Kn

Kn � HMQ�
k��

t���K�

� HMQ��t�K� by Lemma �����

� Q�t� ��K	 by Lemma ��
��

� Q���K	 � FQ�t�K	

� Q���K	 � FQk�

t � ��K	 by Theorem ��
�

� Q���K	 � FQk�n�K	�

� Qk�
n � ��K	 by Theorem ������

CHAPTER �� BOUNDED QUERIES TO THE HALTING PROBLEM ��

In the next lemma� we prove this result for all n�

Lemma �
�
� Kn � Qk�
n� ��K	�

Proof� The following algorithm solves the halting problem for n�parallel�query

K�machines

Step �� Input x� if x is not an n�parallel�query K�machine in standard form then

reject�

Step �� �� Normalize x� �	 Let 'x be an n�parallel�query K�machine that com�

putes the same partial function as x� and makes exactly n parallel queries to K

whenever it halts�

Step �� For � � i � n� de�ne a ��machine xi that does the following
 simulate 'x

until 'x prepares its list of queries q�� � � � � qn� then simulate qi until qi halts�

�� Thus xi � K if and only if 'x asks a round of parallel queries and the ith

query belongs to K� �	

Compute FK
n �x�� � � � � xn	�

Step �� De�ne a machine x� that computes as follows
 simulate 'x until 'x prepares

its list of queries� using the oracle answers obtained in step �� continue the

simulation of 'x until 'x halts�

Ask K whether x� halts� output that answer�

We consider two cases�

Case �� The machine 'x makes its round of parallel queries�

In this case� step � produces the correct oracle answers� Therefore x� correctly

simulates 'x� so x� halts if and only if 'x halts�

Case �� The machine 'x does not make its round of parallel queries�

In this case� the machine 'x does not halt �because 'x is in normal form	� The

machine x� does not halt because x� goes into a divergent computation waiting

for 'x to make its round of parallel queries�

CHAPTER �� BOUNDED QUERIES TO THE HALTING PROBLEM �

In either case x� halts if and only if 'x halts� Because 'x and x compute the same

partial function� 'x halts if and only if x halts� Thus x� halts if and only if x halts�

The algorithm above makes only n parallel queries to K followed by a single query

to K� Therefore� by Observation
�
����

Kn � FQ���K	 � FQk�n�K	

� FQk�
n � ��K	 by Theorem ������

so Kn � Qk�
n � ��K	 because Kn is a decision problem�

In Theorem ����� below� we show that the preceding result is tight�

Lemma �
�
	 PARITYK
�n�� � Q���Kn	�

Proof� Suppose that we are to determine whether �x � PARITYK
�n����x 	� where

�x � �x�� � � � � x�n��	� By Lemma ����
� K
m GEQK� Therefore we can compute

�y � �y�� � � � � y�n��	 such that yi � K if and only if �i��x 	 � GEQK� We de�ne a

machine M in MQ�
k�n�K	 that does the following
 compute u � �K

n �y�� y
� � � � � y�n	�

simulate y�u�� until it has halted� and then halt� Then

�K
�n����x 	 � �K

�n����y 	 by the construction of �y

�

��
�
u if y�u�� �� K

u� � otherwise�

Thus �K
�n����x 	 is odd if and only if y�u�� halts� By construction� M halts if and only

if y�u�� halts� so PARITYK
�n����x 	 � � if and only if M halts� Therefore� since M is

an n�parallel�query K�machine in standard form�

�x � PARITYK
�n���M � Kn�

Thus

PARITYK
�n�� �m Kn�

CHAPTER �� BOUNDED QUERIES TO THE HALTING PROBLEM ��

Theorem �
�
� Kn is ��query complete for Qk�
n� ��K	�

Proof� By Lemma ������ Kn � Qk�
n � ��K	� Furthermore�

Qk�
n� ��K	 � Q���PARITYK
�n��	 by Corollary �����

� Q���Kn	 by Lemma ������

Since Kn is ��query complete for Qk�
n � ��K	� the parallel�query complexity of

Kn relative to K is exactly
n� ��

Corollary �
�
� Kn � Qk�
n � ��K	�Qk�
n�K	�

Proof� By Theorem ������ Kn � Qk�
n � ��K	 and Qk�
n � ��K	 � Q���Kn	�

If Kn � Qk�
n�K	 then Qk�
n � ��K	 � Qk�
n�K	� contradicting Theorem ��
����

therefore Kn �� Qk�
n�K	�

Having seen that Qk�
n � ��K	 � Q���Kn	� one is led to wonder if a similar

result is true for functions
 Is it possible that FQk�
n���K	 � FQ���Kn	� The next

theorem rules out that possibility�

Theorem �
�
�
 If B is any set in Qk�n�K	� then FQk�
�K	 �� FQ��� B	�

Proof� By contradiction� Let B � Qk�n�K	 and suppose that FQk�
�K	 is a

subset of FQ��� B	� By Theorem ������

FQk��n � ��K	 � FQk�n� ��K	 � FQk�
�K	

� FQk�n� ��K	 � FQ��� B	�

Thus every function in FQk��n � ��K	 is computable by making a machine M that

makes one query to B followed by n � � parallel queries to K� We would like to

simulate M by making n parallel queries to K in order to determine the result of B�

simultaneous with n � � parallel queries to K to determine the result of the entire

computation assuming that B answers no� and simultaneous with n�� parallel queries

to K to determine the result assuming that B answers yes� However� it is possible

CHAPTER �� BOUNDED QUERIES TO THE HALTING PROBLEM ��

that the computation diverges when we assume that B gives the incorrect oracle

answer� As usual� we exploit our oracle K in order to prevent our computations from

diverging� Without loss of generality we can assume that M makes exactly one query

to B followed by exactly n � � parallel queries to K whenever M converges� We

simulate M as follows

Step �� Simulate M until M is about to make a query to B�

Step �� For t � �� � and � � i � n� �� de�ne a machine xti that does the following

simulateM � assuming that the answer to the query to B is t� until M is about

to make its parallel queries q�� � � � � qn�� to K� simulate qi until qi terminates�

Step �� Perform the following two computations simultaneously

�a� Make n parallel queries to K in order to evaluate the query to B�

�b� Compute FK
�n���x

�
�� � � � � x

�
n��� x

�
�� � � � � x

�
n��	�

Step �� Let t equal the answer to the query to B� as computed in step ��a	� simulate

M assuming that the answer to the query to B is t and that the answers to the

parallel queries to K are equal to FK
n���x

t
�� � � � � x

t
n��	� as computed in step ��b	�

This algorithm simulatesM by making only �n�
 parallel queries to K� Therefore�

FQk��n � ��K	 � FQk��n�
�K	�

contradicting Theorem ��
����

Theorem �
�
�� If B is any set� then FQk�
�K	 �� FQ��� B	�

Proof� By contradiction� Assume that FK
� � FQ��� B	� for some B� Let M be

a ��query B�machine that computes FK
� � Without loss of generality� we can assume

that M �� never makes more than one query to its oracle� even if the oracle is di�erent

from B� For t � �� � we de�ne a ��machine M t that simulates M assuming that the

oracle answer is equal to t� Then for all pairs �x� y	� one of M� or M� produces the

correct output FK
� �x� y	�

CHAPTER �� BOUNDED QUERIES TO THE HALTING PROBLEM ��

We de�ne a set A computed as follows
 On input �x� y	� compute FK
� �x� y	� time�

share M� and M� on input �x� y	 until one of them produces the correct answer

FK
� �x� y	� if the �rst one to produce the correct answer isM� then return �� otherwise

return ��

Then MA computes FK
� by making one query to A� which is in Qk�
�K	� That

contradicts Theorem �������

In Chapter � we will show that if A is any nonrecursive set then FA
� is not in

FQ��� B	 for any set B�

����� Recursively De�ned Halting Problems

We consider one class of decision problems� and we analyze their parallel�query com�

plexity relative to K�

De�nition �
�
�� We de�ne Kn recursively

Kn �

��
� K if n � �

HMQ����Kn��� otherwise�

Thus Kn is the halting problem for ��query Kn���machines��

Theorem �
�
��

HMQ����PARITYKn � � Qk�n�
�K	�

Proof� The following algorithm solves the halting problem for ��query PARITYK
n �

machines

Step �� Input M � If M is not a ��query PARITYK
n �machine in standard form then

reject�

�Do not confuse Kn with K�n�	 which is the nth jump of K	 as de�ned in �Rog��	 p� ���
 and in
�Soa��	 De�nition ���
� We will show that Kn �T K	 so the Turing degree of Kn is much lower than
the Turing degree of K�n�� The set Kn is a sort of �
query jump of Kn��	 because Kn �� Q���Kn���
by Lemma ������i��

CHAPTER �� BOUNDED QUERIES TO THE HALTING PROBLEM ��

Step �� For � � i � n� de�ne a ��machine xi that does the following
 simulate M

until M is about to make its query q�� � � � � qn to PARITYK
n � simulate qi until qi

halts�

Step �� For t � �� �� de�ne a ��machine M t that does the following
 simulate M

assuming that the answer to M �s query to PARITYK
n is equal to t�

Step �� Compute FK
n���x�� � � � � xn�M

��M�	�

Step �� Use the oracle answers obtained in step � in order to compute

t � PARITYK
n �x�� � � � � xn	

without making any more queries� �� If M queries its oracle� then the con�

struction guarantees that t is equal to the answer given by the oracle� �	

Step �� Output the value �K�M t	� which was computed in step ��

The algorithm given above makes only n�
 parallel queries to K�

Corollary �
�
�� If B � Qk�n�K	 then

HMQ����B� � Qk�n�
�K	�

Proof� Let B be a set in Qk�n�K	� Then B � Q���PARITYK
n 	� by Corollary ������

Therefore� FQ��� B	 � FQ���PARITYK
n 	 by Observation
�
��� Furthermore� the

proof of Observation
�
�� is constructive� it allows us to transform a machine in

MQ���� B	 into an equivalent machine in MQ����PARITYK
n 	� Therefore�

HMQ����B� �m HMQ����PARITYK
n �
�

Therefore� by Theorem �������

HMQ����B� � Qk�n�
�K	�

CHAPTER �� BOUNDED QUERIES TO THE HALTING PROBLEM ��

Lemma �
�
�� Kn � Qk�
n � ��K	�

Proof� By induction on n� K� � K � Qk���K	� so the base case is established�

Assume that Kn � Qk�
n � ��K	� for some n � �� Therefore�

HMQ����Kn� � Qk�
n � ��K	�

by Corollary ������� Therefore Kn�� � Qk�
n � ��K	 by the de�nition of Kn���

completing the induction�

Lemma �
�
��

PARITYK
�n�� �m HMQ����PARITYK�n���

�

Proof� Suppose that we are to determine whether �x � PARITYK
�n��� where �x �

�x�� � � � � x�n��	� By Lemma ����
� GEQK
m K� Therefore we can compute �y �

�y�� � � � � y�n��	 such that yi � K if and only if �i��x 	 � GEQK� We de�ne a ��query

PARITYK
�n���machine M that does the following

Step �� Simulate y� until y� has halted� �� If �K
�n����x 	 � �� which is even� then

this step diverges� �	

Step �� Let p � PARITYK
�n���y�� y	� � � � � y�n	� �� Let t � �K

�n���y�� y	� � � � � y�n	� �	

Step �� If p � � then halt� �� In this case t is even� �K
�n����x 	 � t � �� which is

odd� �	

Step �� If p � � then simulate y�n�� until y�n�� has halted� �� In this case t is

odd� If t �
n � � then �K
�n����x 	 � t � �� which is even� If t �
n � � then

�K
�n����x 	 �
n or
n � �� depending on whether y�n�� halts� We halt only in

the latter case� �	

We convert M to standard form� The ��query PARITYK
�n���machine M halts if and

only if �x � PARITYK
�n���

CHAPTER �� BOUNDED QUERIES TO THE HALTING PROBLEM ��

Corollary �
�
�	 Qk�
n � ��K	 � Q���Kn	�

Proof� By induction on n� Since Qk���K	 � Q���K	� the base case �n � �	

is established� Assume that the corollary is true for some n � �� where n � ��

Then Qk�
n � ��K	 � Q���Kn��	� so PARITYK
�n�� � Q���Kn��	� Therefore we

can e�ectively transform any machine in MQ����PARITYK
�n��	 into an equivalent

machine in MQ����Kn��	� so

HMQ����PARITYK
�n���

�m HMQ����Kn��� � Kn�

By Lemma �������

PARITYK
�n�� �m HMQ����PARITYK�n���

�

By transitivity�

PARITYK
�n�� �m Kn� ��	

By Corollary ������

Qk�
n� ��K	 � Q���PARITYK
�n��	

� Q���Kn	 by ��	�

Theorem �
�
�� Kn is ��query complete for Qk�
n � ��K	�

Proof� This follows from Lemma ������ and Corollary �������

Theorem �
�
�� If n is an odd number then HMQ����PARITYK
n �

is ��query complete

for Qk�n �
�K	�

Proof� By Theorem �������

HMQ����PARITYKn � � Qk�n�
�K	�

Because n is odd�

PARITYK
n�� �m HMQ����PARITYKn ��

by Lemma ������� Because PARITYK
n�� is ��query complete for Qk�n�
�K	�

Qk�n�
�K	 � Q���HMQ����PARITYK
n �	�

CHAPTER �� BOUNDED QUERIES TO THE HALTING PROBLEM ��

By Theorem ������� the parallel�query�complexity of the halting problem for ��

query PARITYK
n �machines is n �
� for odd n� We do not know the parallel�query�

complexity of the halting problem for ��query PARITYK
n �machines for even n�

��� Unbounded Queries

In Section ��
� we considered languages that are n�parallel�query reducible to K�

and we showed that they form a hierarchy between the recursive languages and the

languages that are weak truth�table reducible to K� In this section� we extend the

hierarchy up through languages that are Turing reducible to K�

We consider reducibilities that allow an unbounded number of queries� If we allow

an unbounded number of serial queries� then the reducibility is the same as Turing

reducibility� If� however� we allow only a bounded number of rounds of parallel queries

�with an unbounded number of parallel queries allowed during some rounds	� then we

obtain reducibilities that are di�erent from all of the reducibilities mentioned earlier

in this dissertation� If r and s are two reducibilities then we say that r�reducibility

is weaker �Odi��� than s�reducibility if for all sets A and B

A �s B � A �r B�

In this section� we de�ne reducibilities that are weaker than weak truth�table re�

ducibility� but stronger than Turing reducibility� Our goal is a generalization of

Theorem ����� in which an unbounded number of parallel queries may be allowed

during some rounds�

We de�ne FB
� to be a function that can compute FB

n for arbitrary n�

De�nition �
�
� For every n�

FB
� �x�� � � � � xn	 � FB

n �x�� � � � � xn	�

We generalize the de�nition of bounded query classes relative to the oracle B

CHAPTER �� BOUNDED QUERIES TO THE HALTING PROBLEM ��

De�nition �
�
�

� MQk���B	 � MQ���FB
� 	�

� FQk���B	 is the set of partial functions that are computable by a machine in

MQk���B	�

� Qk���B	 is the set of ����valued total functions that are in FQk���B	�

Thus� MQk���B	 is the set of machines with oracle B that make at most one

round of parallel queries to B �with no bound on the number of queries made in the

round	� Qk���B	 is the set of languages that are wtt�reducible to B�

We de�ne PARITYB
� to be an oracle that can compute PARITYB

n for arbitrary n�

De�nition �
�
� For every n�

PARITYB
� �x�� � � � � xn	 � PARITYB

n �x�� � � � � xn	�

Theorem �
�
� B � Qk���K	 if and only if B ���tt PARITYK
� �

Proof� If B ���tt PARITYK
� then B � Qk���K	 by the de�nition of Qk���K	�

Conversely� let B be any set in Qk���K	 � Q���FK
� 	� Let B be accepted by a machine

M belonging to MQ���FK
� 	� The following algorithm decides membership in B

Step �� Input x�

Step �� SimulateM on input x untilM prepares its query �q�� � � � � qn	 to FK
� � �� We

only want to �gure out n� �	

Step �� Transform M into a machine that queries FK
n instead of querying FK

� �

Step �� As in the proof of Theorem ������ transform the n�parallel�query K�machine

from step � into a machine that computes via a ��truth�table reduction to

PARITYK
n �

Step �� Output the result of running the machine produced by step � on input x�

The computations in steps � through � are total recursive� step � computes a ��truth�

table reduction to PARITYK
� � Thus� B ���tt PARITYK

� �

CHAPTER �� BOUNDED QUERIES TO THE HALTING PROBLEM ��

The next theorem states that every partial function computable by a machine

that makes an unbounded number of parallel queries to K followed by one query to

K is also computable by a machine that makes only one round of parallel queries to

K�

Theorem �
�
� FQ���K	 � FQk���K	 � FQk���K	�

Proof� Let f � FQ���K	 � FQk���K	� Then f � f� � f� where f� is computed by

a machine M� in FQ���K	 and f� is computed by a machine M� in FQ���FK
� 	� The

following algorithm computes f

Step �� Input x�

Step �� Simulate M� on input x until M� prepares its query �q�� � � � � qn	 to FK
� �

Step �� Transform M� into a machineM �
� that queries FK

n instead of querying FK
� �

�� We only want to �gure out n� �	

Step �� Using the method of Lemma ����
 transform M� �M �
� into an equivalent

�
n� �	�parallel�query K�machine�

Step �� Output the result of running the machine produced by step � on input x�

The computations in steps � through � are total recursive� Step � makes only one

round of parallel queries to K� Therefore f � FQk���K	�

The reverse containment is obvious�

Corollary �
�
� FQk�n�K	 � FQk���K	 � FQk���K	�

Proof�

FQk�n�K	 � FQk���K	 � FQ�n�K	 � FQk���K	

� FQ���K	 � � � � � FQ���K	� �z �
n

�FQk���K	

� FQk���K	�

by repeated application of Theorem ����� and the associativity of composition�

CHAPTER �� BOUNDED QUERIES TO THE HALTING PROBLEM �

We adopt the following notational convenience

De�nition �
�
	

Qk��n��
m� A	 � SREC � FQk���A	 � � � � � FQk���A	� �z �

m

�FQk�n�A	�

Thus Qk��n��m� A	 is the set of decision problems that can be solved by an algorithm

that makes n parallel queries to A followed by m rounds of �unbounded	 parallel

queries to A� This convention is motivated by Theorem ������ which gives an approx�

imately multiplicative rule for combining several rounds of parallel queries to K into

a single round of parallel queries� The analogy between this convention and ordinal

notation will be explained in Section ����

We show that the halting problem for MQ�
k��n��

m�K	 is in Qk��
n� ���m�K	�

Theorem �
�
�

HMQ�
k��n
�

m�K� � Qk��
n� ���m�K	�

Proof� By induction on m� By Lemma ��
��� HMQ�
k�n�K� � Qk�
n � ��K	� estab�

lishing the base case �m � �	� Assume that

HMQ�
k
��n
�m�K� � Qk��
n� ���m�K	�

for some m � �� The following algorithm solves the halting problem for

MQ�
k��n��

m���K	

Step �� Input M � a machine in MQk��n��
m��	� Check whether M is in standard

form� if not then reject� Transform M into a normal form that makes exactly

n parallel queries to K� followed by exactly m� � rounds of parallel queries to

K� whenever M halts�

Step �� De�ne an n�parallel�queryK�machineM � that simulatesM untilM prepares

its second round of parallel queries�

Step �� Determine whether M � halts� if not� then reject� �� By Lemma ��
��� we

can solve the halting problem for n�parallel�query K�machines by making only

n � � parallel queries to K� �	

CHAPTER �� BOUNDED QUERIES TO THE HALTING PROBLEM ��

Step �� Simulate M until M prepares its second round of parallel queries q�� � � � � qj

to K�

Step �� Construct a machine 'M by modifyingM so that it queries FK
j instead of FK

�

on the second round of queries� �� 'M makes n parallel queries to K� followed

by j parallel queries to K� followed by m rounds of parallel queries to K� �	

Step �� Using the technique of Lemma ����
� transform 'M into an equivalent ma�

chine in MQ�
k����n� �	�j � �	 � �	��m�K	�

Step 	� Determine whether the machine constructed in step � halts� if so accept�

otherwise reject� �� By the induction hypothesis� the halting problem for

MQ�
k����n��	�j ��	� �	��m�K	 is in Qk��
�n��	�j ��	� ���m�K	� which is

a subset of Qk��
m���K	� �	

This algorithm makes
n � � parallel queries to K during step �� and m� � rounds

of parallel queries to K during step �� Thus the halting problem for MQ�
k��n��

m�K	

is in Qk��
n� ���m�K	�

By the preceding theorem� the halting problem for ��parallel�query K�machines

is in Qk���K	�FQ���K	� This contrasts with the proof of Lemma ������ in which we

showed that the halting problem for n�parallel�query K�machines is in

Q���K	�FQk�n�K	� Of course� the halting problem for n�parallel�query K�machines

is in Qk�n�K	 � FQ���K	� because

Qk�n�K	 � FQ���K	 � Qk�
n � ��K	 � Q���K	 � FQk�n�K	

by Theorem ������ however� we did not obtain that result directly�

Corollary �
�
� Qk��n��
m�K	 � Qk��
n� ���m�K	

Proof� By Theorem ������ the halting problem for MQ�
k��n��

m�K	 is in

Qk��
n� ���m�K	� By an argument similar to either proof of Lemma ��
��� the

halting problem for MQ�
k��n��

m�K	 is not in Qk��n��m�K	� Therefore� Qk��n��m�K	

is a proper subset of Qk��
n� ���m�K	�

CHAPTER �� BOUNDED QUERIES TO THE HALTING PROBLEM ��

Theorem �
�
�
 Q��n��m�K	 � Q���n� �	��m�K	

Proof� The containment is obvious� We show that the containment is proper by

contradiction� Assume that

Qk��n� ���m�K	 � Qk��n��
m�K	�

Equivalently�

Qk��
m�K	 � FQk�n� ��K	 � Qk��

m�K	 � FQk�n�K	�

Therefore�

��j	�Qk��
m�K	 � FQk�n� ��K	 � FQk�j�K	 � Qk��

m�K	 � FQk�n�K	 � FQk�j�K	��

so� by Theorem ������

��j	�Qk��
m�K	�FQk��j��	�n�
	���K	 � Qk��

m�K	�FQk��j��	�n��	���K	��

and so� by de�nition�

��j	�Qk���j � �	�n �
	� ���m�K	 � Qk���j � �	�n� �	 � ���m�K	�� �
	

If j � n� then

�j �
	�n� �	 � � � �j � �	�n �
	� ��

so

��j � n	�FQk��j �
	�n � �	� ��K	 � FQk��j � �	�n�
	 � ��K	��

Therefore�

��j � n	�Qk��
m�K	�FQk��j�
	�n��	���K	 � Qk��

m�K	�FQk��j��	�n�
	���K	��

so� by de�nition�

��j � n	�Qk���j �
	�n� �	 � ���m�K	 � Qk���j � �	�n�
	� ���m�K	�� ��	

By transitivity� equation ��	 and equation �
	 imply that

��j � n	�Qk���j �
	�n � �	� ���m�K	 � Qk���j � �	�n� �	 � ���m�K	��

CHAPTER �� BOUNDED QUERIES TO THE HALTING PROBLEM ��

That statement is true for j � n� n� �� � � � �
n� Therefore� by transitivity�

Qk���
n�
	�n � �	� ���m�K	 � Qk���n� �	�n� �	 � ���m�K	�

so

Qk��
�n� �	� � ���m�K	 � Qk���n� �	� � ���m�K	�

That contradicts Corollary ������

Theorem �
�
�� Qk��n��
m�K	 � Qk��

m���K	�

Proof�

Qk��n��
m�K	 � Qk��n� ���m�K	 by Theorem ������

� Qk��
m���K	 by de�nition�

We adopt a further notational convenience

De�nition �
�
�� Qk�

�� A	 is the set of decision problems that can be solved by

making an unbounded number of serial queries to A�

Thus Qk�

�� A	� which also might reasonably be called Q���A	� is the set of decision

problems that are Turing reducible to A�

Theorem �
�
�� Qk��n��
m�K	 � Qk�

��K	�

Proof�

Qk��n��
m�K	 � Qk��n� ���m�K	 by Theorem ������

� Qk�

��K	 by de�nition�

CHAPTER �� BOUNDED QUERIES TO THE HALTING PROBLEM ��

This completes our hierarchy of decision problems reducible to K

Qk���K	 � Qk�
�K	 � � � � � Qk�n�K	 � Qk�n� ��K	 � � � �

� Qk���K	 � Qk������K	 � � � � � Qk��n���K	 � Qk��n� ����K	 � � � �
���

� Qk��
m�K	 � Qk�����

m�K	 � � � � � Qk��n��
m�K	 � Qk��n� ���m�K	 � � � �

� Qk��
m���K	 � Qk�����

m���K	 � � � � � Qk��n��
m���K	 � Qk��n� ���m���K	 � � � �

���

� Qk�

��K	�

��� Chromatic Number of a Recursive Graph

A graph G � �V�E	 is said to be recursive if its vertex set V and its edge set E are

countable and recursive� The chromatic number of a graph is the minimum number

of colors that su!ce to color the graph in such a way that no two adjacent vertices

have the same color� If we know that a recursive graph can be colored with a �nite

number of colors� then we can compute its chromatic number with a K�machine� In

fact� given an a priori bound c on the chromatic number of G� the chromatic number

of G can be computed by making dlog �c� �	e serial queries to K� this result is tight

�BG����

In this section� we consider the problem of computing the chromatic number�

��G	� of a graph when we are not given an a priori bound on its chromatic number�

We �nd tight bounds on the query complexity of computing the chromatic number

of a graph� we express the complexity as a function of the chromatic number�

Computing the chromatic number of a recursive graph is a special case of a more

general problem called unbounded searching� which was posed by Bentley and Yao

in �BY���� The problem is as follows
 Player A chooses an arbitrary natural number�

n� Player B is allowed to ask whether a natural number x is less than n� In general

the number of questions that B has to ask in order to determine n is a function f of

n� How small can this function be�

CHAPTER �� BOUNDED QUERIES TO THE HALTING PROBLEM ��

Theorem �
	
� If there is an unbounded searching algorithm that asks only f�n	

questions to determine the number n� then there is an algorithm that computes ��G	

for recursive graphs by making only f���G		 serial queries to K�

Proof� The chromatic number of a graph is some natural number n� In �BG����

it was shown that we can determine if n � t by making one query to K� Thus we

can determine n by using unbounded search� the number of queries we make to K is

equal to the number of questions asked in the unbounded search�

In �Bei���� we showed that for any � � �

f�n	 �

	

 X
��i�log� n

log�i� �n	

�
A� �log log �e� �		 log� n�O��	 ��	

questions are su!cient� but

f�n	 �

	

 X
��i�log� n

log�i� �n	

�
A� �log log e	 log� n�O��	

questions are not su!cient� Those bounds are slightly tighter than the original bounds

provided by Bentley and Yao� We also proved the existence of algorithms that di�er

from optimal by an arbitrarily small total recursive function� Very tight bounds were

provided constructively by Knuth in �Knu����

Theorem �
	
� Let � be any positive real number� There is an algorithm that com�

putes ��G	 for recursive graphs by making only

f�n	 �

	

 X
��i�log� n

log�i� �n	

�
A� �log log �e� �		 log� n�O��	

serial queries to K�

Proof� By equation ��	� there is an unbounded searching algorithm that asks only

f�n	 questions to determine the number n� Therefore� by Theorem ������ there is an

algorithm that computes ��G	 for recursive graphs by making only f�n	 serial queries

to K�

CHAPTER �� BOUNDED QUERIES TO THE HALTING PROBLEM ��

In �Bei��� we proved the following result

Theorem �
	
� Let f be a nondecreasing� total recursive function such that

s �
X
i��

�f�i�

is a recursive real number � i�e�� there is an algorithm that computes each bit of a bi�

nary expansion of s	 and s � �� Then there is an algorithm that solves the unbounded

searching problem by asking at most f�n	 questions�

Corollary �
	
� Let f be a nondecreasing� total recursive function such that

s �
X
i��

�f�i�

is a recursive real number and s � �� Then there is an algorithm that computes ��G	

for recursive graphs by making only f�n	 serial queries to K�

Proof� This follows from Theorem ����� and Theorem ������

Theorem �
	
� If there exists an oracle B and an algorithm that computes ��G	 for

recursive graphs by making only f���G		 serial queries to B� then

X
i��

�f�i� � ��

The proof of this depends on ideas from Chapter �� Therefore� we defer the proof to

Appendix A�

Corollary �
	
� Let

f�n	 �
X

��i�log� n

log�i� �n	� �log log e	 log� n�O��	�

There exists no oracle B such that we can compute ��G	 for recursive graphs by

making only f���G		 serial queries to B�

Proof� By contradiction� By the preceding theorem�
P

i��

�f�i� � �� However� in

�Bei���� we showed that
P

i��

�f�i� diverges�

CHAPTER �� BOUNDED QUERIES TO THE HALTING PROBLEM ��

��	 Related Work

The Qk�n�K	 hierarchy has arisen previously in other contexts� Putnam �Put��� calls

P a k�trial predicate if P is computed by a machine that changes its mind at most k

times on any input�

De�nition �
�
� �Putnam� P is a k�trial predicate if there exists a total recursive f

such that

P �x�� � � � � xn	
 � lim
y	

f�x�� � � � � xn� y	 � �	�

and there are at most k natural numbers y such that

f�x�� � � � � xn� y	 �� f�x�� � � � � xn� y � �	�

Putnam did not examine the hierarchy of k�trial predicates� instead he considered

the set of predicates that are k�trial predicates for some k� He proved �there exists a

k such that P is a k�trial predicate if and only if P belongs to ��
�� the smallest class

containing the recursively enumerable predicates and closed under truth functions�

Ershov �Ers��a� de�nes the following classes

De�nition �
�
� �Ershov� Let F� denote the set of one�one partial recursive one�

place functions�

���
� � (��

� � SREC�

���
n�� � fX j ��f � F�	��Y � (��

n 	�X � f�Y 	�g�

(��
n�� � co����

n�� � fX j ��Y � ���
n��	�X � N� Y �g�

Ershov proves that X � ���
n if and only if X is of the form

R� � �R� � �R	 � � �� �Rn�� �Rn	 � � �		

where R�� � � � � Rn are r�e� ThusX � ���
n if and only ifX is m�reducible to PARITYK

n �

Ershov proves that X � ���
n�� � (��

n�� if and only if �x � X	 is an n�trial predicate�

Ershov also proves that his classes form a hierarchy� e�g�� ���
n is properly contained

in ���
n��� In �Ers��b� and �Ers���� he �nds two di�erent techniques to extend his

hierarchy over the ordinal numbers�

CHAPTER �� BOUNDED QUERIES TO THE HALTING PROBLEM ��

These ideas were treated more recently in �Eps���� which de�nes the n�r�e� sets�

His de�nition can be considered a modi�cation of Putnam�s de�nition of the n�trial

predicates in which f�x�� � � � � xn� �	 is required to be �� Thus ��r�e� sets are the same

as r�e� sets� The class of n�r�e� sets is identical to Ershov�s class� ���
n �

Epstein� Haas� and Kramer de�ne the set of weakly n�r�e� sets� which is equal to

���
n�� �(��

n��� The weakly n�r�e� sets are equivalent to the n�trial predicates� In joint

work with Gasarch and Hay �BGH���� we use this fact in order to show that Qk�n�K	

is equal to the set of weakly n�r�e� sets� we also use this fact in order to �nd di�erent

proofs of many of the results presented in Section ��
 through Section ����

Epstein� Haas� and Kramer also �nd a more intuitive method than Ershov�s to

extend the hierarchy over the ordinals �EHK���� For m � �� it turns out that

Qk��n��
m�K	 is identical to their class� r�n����m� If we de�ne our hierarchy more

subtly� and place di�erent bounds on the number of parallel queries to be made de�

pending on the results of the preceding queries� then we can re�ne our hierarchy so

that it is identical with the one in �EHK����

It is interesting that the Qk�n�K	 hierarchy arises in so many natural ways� For

more related work see �Add��� and �Gol����

Chapter �

Nonrecursive Oracles

In Section ���� we give a new de�nition of computability that enables us to apply

purely combinatorial techniques to our study of bounded�query classes� In Section ��
�

we prove the Nonspeedup Theorem� which says that
n queries to a nonrecursive

oracle A cannot be answered by making only n queries to an oracle B� In Section ����

we show that n � � queries to a nonrecursive oracle B allow us to compute more

functions than n queries to B allow us to compute� In the remainder of the chapter�

we investigate separation results for decision problems� and we de�ne and study terse�

superterse� and verbose sets�

��� Computability by a Set of Partial Recursive

Functions

In this section� we de�ne a new notion of computability that captures the information�

theoretic aspects of n�query oracle computations� The new notion of computability

is independent of the particular oracle being used� thus allowing us to apply purely

combinatorial techniques to the study of bounded�query computations�

��

CHAPTER �� NONRECURSIVE ORACLES �

De�nition �
�
� The partial function h is computable by a set of n partial recursive

functions if there exist n partial recursive functions g�� � � � � gn such that

��x	�if h�x	 converges then h�x	 � fgi�x	 j � � i � ng��

�If gi�x	 does not converge then we exclude its value from the set above� by conven�

tion�	

Thus� the function h is computable by a set of n partial recursive functions if� for

each x� we can e�ectively compute a list of length n that includes h�x	� Informally�

we say that there are only n possible values for h�x	�

Thus� for example� every �� ��valued function is computable by a set of two partial

recursive functions
 let gi�x	 � i � �� However� not every �� ��
�valued function is

computable by a set of two partial recursive functions� because we can diagonalize in

the standard way�

The next theorem implies that computability by a set of partial recursive functions

captures the information�theoretic aspects of computability by an oracle�

Theorem �
�
�

i� If there exists an oracle B such that h � FQ�n�B	� then h is computable by a

set of
n partial recursive functions�

ii� If h is computable by a set of
n partial recursive functions� then there exists an

oracle B such that h � FQk�n�B	� If h is total� then B is in Q��� h	

Proof�

i� Suppose that h is computed by an n�query B�machine M � There are only
n

possible sequences of n oracle answers� For each i� let gi simulate M by using

the ith �lexically	 sequence of oracle answers� instead of querying B� For each

x� one of the sequences of oracle answers must be the correct one� therefore at

least one of the gi�s correctly computes h�x	�

CHAPTER �� NONRECURSIVE ORACLES ��

ii� Suppose that h is computable by a set of
n partial recursive functions� g�� � � � � g�n�

Then n bits of information are su!cient to specify the �rst i such that gi�x	 �

h�x	� We de�ne B to be an oracle that provides those bits� i�e�� �x� j	 � B if

and only if the jth bit of the aforementioned i�� is equal to �� Given an oracle

for B� we compute h�x	 as follows
 make n parallel queries to B in order to

determine �one bit at a time	 an i such that h�x	 � gi�x	� output gi�x	� Thus

h � FQk�n�B	� We determine membership in B as follows

Step �� Input �x� j	�

Step �
�� �� If h is total then we can skip this step� �	 If h�x	 diverges then

reject�

Step �� Compute h�x	�

Step �� Timeshare the computations of g��x	� � � � � g�n�x	 until one of them out�

puts the correct answer h�x	� Let gi�x	 be the �rst to output the correct

answer�

Step �� If the jth bit of i� � is equal to � then accept� otherwise� reject�

If h is total� we omit step ���� so that B � Q��� h	� If h is not total then step ��� is

necessary so that B will be a set� in this case� B is r�e� in h�

This theorem enables us to show that every total function h computable by making

n serial queries to an oracle A can be computed by making n parallel queries to a

di�erent oracle B such that B � Q��� h	�

Corollary �
�
� If h is a total function in FQ�n�A	 then there exists a set B in

Q��� h	 such that h is in FQk�n�B	�

Proof� By Theorem ����
�i	� h is computable by a set of
n partial recursive

functions� Therefore� by Theorem ����
�ii	� there is a set B in Q��� h	 such that h is

in FQk�n�B	�

CHAPTER �� NONRECURSIVE ORACLES ��

��� The Nonspeedup Theorem

Corollary ������ stated that FK
� �� FQ��� B	 for any oracle B� We generalize that

to a result proved independently by Gasarch �Gas���
 If A is any nonrecursive set�

then two parallel queries to A cannot be answered by making only one query to any

set B� In addition� we show that
n parallel queries to a nonrecursive set A cannot be

answered by making only n serial queries to any set B� This is the strongest possible

result� by Theorem ��
�
�

Theorem �
�
� If A is a nonrecursive set and B is any set� then

FA
� �� FQ��� B	�

Proof� By contradiction� Assume that FA
� � FQ��� B	� By Theorem ����
�i	� FA

�

is computable by a set of two partial recursive functions� That is� there exist partial

recursive functions g�� g� such that

��x� y	�FA
� �x� y	 � fg��x� y	� g��x� y	g��

Let
 be the operator that projects an ordered pair onto its �rst component� We take

two cases�

Case ��

��x	��y	�
g��x� y	 �
g��x� y	��

In this case the following is an algorithm to compute �A�x	
 Timeshare g��x� y	

and g��x� y	 for all y until we �nd a y� such that
g��x� y�	 �
g��x� y�	� One

of the two functions gives the right answer� since they agree� they both give the

right answer� Therefore� �A�x	 �
g��x� y�	�

Case ��

��x	��y	�
g��x� y	 ��
g��x� y	��

In this case choose x� such that
g��x�� y	 ��
g��x�� y	 for all y� Let

c � �A�x�	� Then the following is an algorithm to compute �A�y	
 Time�

share g��x�� y	 and g��x�� y	 until one of them produces an output whose �rst

CHAPTER �� NONRECURSIVE ORACLES ��

component is c� Since the other function disagrees with the one that produces

c� the other function must be incorrect� Thus �A�y	 is equal to the second

component of the function that produces c for the �rst component�

In either case� �A is computable� so A is recursive� This contradiction proves the

theorem�

This theorem does not generalize in the obvious way� In fact� by Theorem ��
�
�

FK
�n�� � FQ�n�K	� However� we can prove that this result for halting�problem oracles

is tight� as part of a general result�

Lemma �
�
� Let m�n � �� If FA
n is computable by a set of m partial recursive

functions� then FA
n�� is computable by a set of m� � partial recursive functions�

Proof� Assume that there exist g�� � � � � gm such that

��x�� � � � � xn	�F
A
n �x�� � � � � xn	 � fgi�x�� � � � � xn	 j � � i � mg�� ��	

Let
 be the operator that projects an n�tuple onto its �rst n � � components� We

take two cases�

Case ��

��x�� � � � � xn��	��xn	���i� �� i�		�
gi��x�� � � � � xn	 �
gi��x�� � � � � xn	�� ��	

In this case� for each input� two of the functions g�� � � � � gm agree on the �rst

n� � components� Thus we can de�ne m� � functions of n � � variables that

omit the repeated value� Formally� for � � i � m � �� we de�ne the function

g�i�x�� � � � � xn��	� which is computed as follows

Step �� Input �x � �x�� � � � � xn��	�

Step �� Timeshare the computations of gj��x � y	 for all j and all y until we �nd

j�� j�� and y such that j� � j� and

gj���x � y	 �
gj���x � y	�

as guaranteed by equation ��	�

CHAPTER �� NONRECURSIVE ORACLES ��

Step �� If i � j� then output
gi��x � y	� otherwise� output
gi����x � y	�

Thus g�i is partial recursive for every i� and g��� � � � � g
�
m�� take on the same set of

values as
g�� � � � �
gm� so

��x�� � � � � xn��	�F
A
n���x�� � � � � xn��	 � fg

�
i�x�� � � � � xn��	 j � � i � m� �g��

Therefore FA
n�� is computable by a set of m� � partial recursive functions�

Case ��

��x�� � � � � xn��	��xn	��i� �� i�	�gi��x�� � � � � xn	 �� gi��x�� � � � � xn	�� ��	

In this case� let �x � �x�� x�� � � � � xn��	 be the �n � �	�tuple whose existence

is guaranteed by ��	� Let �c � FA
n���x�� � � � � xn��	� Then the following is an

algorithm to compute �A�y	
 Timeshare g���x � y	 through gm��x � y	� until one of

them produces an output whose �rst n � � components are �c � Then �A�y	 is

equal to the last component� Thus A is recursive� Therefore� FA
n is computable

by a set consisting of one partial recursive function�

Lemma �
�
� �Nonspeedup� If A is nonrecursive then FA
n is not computable by a

set of n partial recursive functions�

Proof� By contradiction� Assume that FA
n is computable by a set of n partial

recursive functions� By repeated application of the previous lemma� we see that FA
�

is computable by a set consisting of one partial recursive function� Therefore A is

recursive�

Theorem �
�
� �Nonspeedup� If A is a nonrecursive set and B is any set then

FA
�n �� FQ�n�B	�

Proof� By contradiction� Assume that FA
�n � FQ�n�B	� Then FA

�n is computable

by a set of
n partial recursive functions by Theorem ����
�i	� This contradicts the

Nonspeedup Lemma�

CHAPTER �� NONRECURSIVE ORACLES ��

We relativize the de�nitions of the bounded query classes�

De�nition �
�
�

� MQC�n�A	 is the set of machines with oracles for A and for C that make at

most n queries to A and an unrestricted number of queries to C�

� FQC�n�A	 is the set of partial functions that are computable by machines in

MQC�n�A	�

� QC�n�A	 is the set of ����valued total functions that are in FQC�n�A	�

� MQC
k �n�A	 is the set of machines with oracles for A and for C that make at

most n queries to A� all queries being made in parallel� and an unrestricted

number of serial queries to C�

� FQC
k �n�A	 is the set of partial functions that are computable by machines in

MQC
k �n�A	�

� QC
k �n�A	 is the set of ����valued total functions that are in FQC

k �n�A	�

Theorem �
�
� �Relativized Nonspeedup� Let A be a set that is not recursive

in the set C� Then for all B

FA
�n �� FQC�n�B	�

Proof� The proof of the Nonspeedup Theorem relativizes�

��� Separation Theorems

The Nonspeedup Theorem enables us to generalize Lemma ��
��� to arbitrary non�

recursive oracles� That is�

Lemma �
�
� If A is nonrecursive then

FQk�n�A	 � FQk�n� �� A	�

CHAPTER �� NONRECURSIVE ORACLES ��

Proof� The containment follows from the de�nition of FQk� Assume that

the containment is not proper� so that FQk�n�A	 � FQk�n � �� A	� Then

FQk�m�A	 � FQk�n�A	 for all m � n� by Observation
�
����ii	� In particular

FQk�

n� A	 � FQk�n�A	� Therefore� FA

�n � FQk�

n� A	 � FQk�n�A	 � FQ�n�A	� By

the Nonspeedup Theorem� A must be recursive�

Theorem �
�
� �Parallel Separation� If A is nonrecursive then there is a total

function in FQk�n � �� A	� FQk�n�A	�

Proof� FA
n�� is a total function in FQk�n��� A	�FQk�n�A	� by Lemma ������

Theorem �
�
� If A is nonrecursive then

FQ�n�A	 � FQ�n � �� A	

Proof� The containment follows from the de�nition of FQ� Assume that

the containment is not proper� so that FQ�n�A	 � FQ�n � �� A	� Then

FQ�m�A	 � FQ�n�A	 for all m � n� by Observation
�
���� In particular

FQ�
n� A	 � FQ�n�A	� Therefore FA
�n � FQk�

n� A	 � FQ�
n� A	 � FQ�n�A	� By the

Nonspeedup Theorem� A must be recursive�

If A is not recursive� then n�� serial queries to A allow us to compute more partial

functions that n serial queries to A allow us to compute� The proof of the preceding

theorem depends only on the Nonspeedup Theorem and Observation
�
��� �Com�

position	� It is tempting to de�ne bounded query classes of total functions and then

try to generalize our proofs directly� Unfortunately� our proof of Observation
�
���

is not valid for total functions� although we do not know whether Observation
�
���

is true for total functions� we suspect that it is not� Since we cannot generalize our

proofs directly to total functions� we use a more complicated technique to show that

n�� serial queries to A allow us to compute more total functions that n serial queries

to A allow us to compute�

Assume that A is nonrecursive� If it were the case that FA
n�� �� FQ�n�A	 then

FA
n�� would be a total function in FQ�n� �� A	� FQ�n�A	� If it were the case that

CHAPTER �� NONRECURSIVE ORACLES ��

FA
�n�� � FQ�n�A	 then FA

�n would be a total function in FQ�n � �� A	 � FQ�n�A	�

Those two cases are the extremes� which suggest the general rule� By the Nonspeedup

Theorem� for every nonrecursive set A and every natural number n� there is a largest

number u such that FA
u � FQ�n�A	� Then FA

u�� is a total function belonging to

FQ�n � �� A	� FQ�n�A	� We formalize this proof below�

Theorem �
�
� �Serial Separation� If A is nonrecursive� then there is a total

function in FQ�n� �� A	� FQ�n�A	�

Proof� Let A be a nonrecursive set� and let n be any natural number� Let

u � maxft j FA
t � FQ�n�A	g�

By the Nonspeedup Theorem� the maximum exists �in fact it is less than
n	� so u is

well de�ned�

FA
u�� � FQ���FA

u 	 kFQ��� A	

� FQ�n�A	 kFQ��� A	 because FA
u � FQ�n�A	

� FQ�n� �� A	�

Since u was chosen as the maximum t such that FA
t � FQ�n�A	� it follows that

FA
u�� �� FQ�n�A	�

Therefore�

FA
u�� � FQ�n� �� A	� FQ�n�A	�

��� Decision Problems

In Chapter � we established tradeo�s between serial and parallel queries to the halt�

ing problem� and we proved separation results for bounded query classes of decision

problems solvable with an oracle for K� In this chapter we have proved several sep�

aration results for bounded query classes of functions computable with an arbitrary

CHAPTER �� NONRECURSIVE ORACLES ��

nonrecursive oracle� In this section� we consider bounded query classes of decision

problems solvable with an arbitrary nonrecursive oracle� and we investigate possible

generalizations of our previous results� We show that our previous results do not

generalize� except in special cases�

By Corollary ����
�i	� n�tt reducibility to K is equivalent to n�parallel�query re�

ducibility to K� Lachlan has shown that n�tt reducibility is di�erent from n�parallel�

query reducibility in the general case �see the discussion after Corollary ����
	� Thus�

Corollary ����
�i	 does not generalize�

One might hope to generalize the separation theorems of Section ��� to apply

to decision problems� instead of just to functions� Theorem ����� below states that

the Parallel Separation Theorem �����
	 does not generalize to decision problems� In

�Bei��d�� we construct a nonrecursive set B such that Q�n�B	 � Q��� B	 for all n�

therefore the Serial Separation Theorem ������	 does not generalize to decision prob�

lems�

Theorem �
�
� There exists a nonrecursive set B such that

Qk���B	 � Q��� B	�

Proof� Let B � PARITYK
� �

Qk���B	 � Qk���PARITYK
� 	

� Qk���K	 because PARITYK
� � Qk���K	

� Qk���PARITYK
� 	 by Theorem �����

� Qk��� B	�

Therefore Qk���B	 � Q��� B	� The reverse containment is obvious�

The following two theorems are from �Bei��d�

Theorem �
�
� If B � Q�n�K	 then

Q�n�B	 � Q�n� �� B	 and Qk�n�B	 � Qk�n� �� B	

CHAPTER �� NONRECURSIVE ORACLES ��

Theorem �
�
� There exists a nonrecursive set B such that Q�n�B	 � Q��� B	 for

every n�

The following theorem is a generalization of Observation
�
��� to ����valued par�

tial functions�

Theorem �
�
� Let B be a set and k a natural number�

i� If there is no
���valued partial function in FQ�k��� B	�FQ�k�B	 then there

is no
���valued partial function in FQ�n�B	� FQ�k�B	 for any n�

ii� If there is no
���valued partial function in FQk�
k�B	� FQk�k�B	 then there

is no
���valued partial function in FQk�n�B	� FQk�k�B	 for any n�

Proof�

i� By induction on n� By assumption� the claim is true for n � k��� Suppose that

the claim is true for some n � k��� Let f be a ����valued partial function that

can be computed by an �n��	�query B�machineM � Without loss of generality�

assume that M makes exactly n� � serial queries to B whenever M halts� For

i � �� �� we de�ne a function fi computed as follows
 simulate M until M is

about to make its �rst serial query� complete the simulation assuming that the

answer to M �s �rst serial query is i� Then fi is a ����valued partial function

in FQ�n�B	� therefore� by the induction hypothesis� fi is in FQ�k�B	� We can

compute f by making M �s �rst query and then k more queries to simulate

either M� or M�� depending on the answer to the �rst query� Thus f is in

FQ�k � �� B	� By assumption f is in FQ�k�B	�

ii� By induction on n� By assumption� the claim is true for n �
k� Suppose

that the claim is true for some n �
k� Let f be a ����valued partial function

that can be computed by an �n � �	�parallel�query B�machine� M � Without

loss of generality� assume that M makes exactly n�� parallel queries whenever

M halts� For i � �� �� we de�ne a function fi computed as follows
 simulate

M until M is about to make its round of n� � parallel queries� make the last

CHAPTER �� NONRECURSIVE ORACLES �

n parallel queries� complete the simulation assuming that the answer to the

�rst parallel query is i� Then fi is a ����valued partial function in FQk�n�B	�

therefore� by the induction hypothesis� fi is in FQk�k�B	� Let

gi�x	 �

�����
����

fi�x	 if the answer to M �s �rst parallel query is i

� if the answer to M �s �rst parallel query is �� i

unde�ned if M makes no queries�

Then f�x	 � g��x	 	 g��x	� and each gi is a partial ����valued function in

FQk�k��� B	� By assumption gi is in FQk�k�B	� Therefore f is in FQk�
k�B	�

which is a subset of FQk�k�B	 by assumption�

We prove some separation results in special cases�

Lemma �
�
� Let B be a set such that K � Q�j�B	� Then� for all k�

Q�k�B	 � Q�jk � j � k�B	�

Proof� The containment is obvious� The following algorithm solves the halting

problem for k�query B�machines

Step �� Input a k�query B�machine M � If M is not in standard form then reject�

NormalizeM so that M makes exactly k serial queries to B wheneverM halts�

Step �� For i � �� � � � � k do the following

�a� Query K to determine if M is going to make another query to B�

�b� If so� then query B to determine the answer� otherwise� reject�

Step �� Query K to determine if the remainder of M �s computation terminates�

This algorithm makes k � � serial queries to K and k serial queries to B� Since

K � FQ�j�B	� the halting problem for k�query B�machines is in Q�jk � j � k�B	�

By Lemma ��
��� the halting problem for k�query B�machines is not in Q�k�B	�

CHAPTER �� NONRECURSIVE ORACLES ��

Theorem �
�
� Let B be a set such that K � Q�j�B	� Then� for all k� there is a

���valued partial function in FQ�k � �� B	� FQ�k�B	�

Proof� Proof by contradiction� Assume that there is no ����valued partial function

in FQ�k��� B	�FQ�k�B	� By Theorem ������ there is no ����valued partial function

in FQ�n�B	�FQ�k�B	 for any n� In particular there is no ����valued partial function

in FQ�jk � j � k�B	 � FQ�k�B	� so Q�jk � j � k�B	 � Q�k�B	� This contradicts

Lemma ������

Next� we show that Lemma ��
�� does not generalize to arbitrary nonrecursive

oracles� even if we consider only decision problems�

Theorem �
�
	 There exists a nonrecursive set B such that

Qk���B	 � Q�
� B	�

Proof� Let B � PARITYK
� �

Qk���PARITYK
� 	 � Qk���PARITYK

� 	 as shown in the proof of Theorem �����

� Qk���K	 by Theorem �����

� Qk���K	 � FQ���K	 by Theorem �����

� Qk���PARITYK
� 	 � FQ���K	 by Theorem �����

� Qk���PARITYK
� 	 � FQ���PARITYK

� 	

because K �m PARITYK
�

� Q�
�PARITYK
� 	�

The following theorem is from �BGGO����

Theorem �
�
� There exists an oracle B such that

Qk�n� �� B	 �� Q�n�B	�

Thus Lemma ����� does not generalize to arbitrary nonrecursive oracles� even if we

consider only decision problems�

CHAPTER �� NONRECURSIVE ORACLES ��

��� Terse and Superterse Sets

A set B is terse� as de�ned in �BGGO���� if it is not possible to answer n parallel

queries to B by making only n � � serial queries to B�

De�nition �
�
� A set B is terse if

��n	�FB
n �� FQ�n � �� B	��

In �BGGO���� it was shown that every r�e� Turing degree� contains an r�e� terse

set� A set B is superterse if it is not possible to answer n parallel queries to B by

making only n� � serial queries to any oracle�

De�nition �
�
� A set B is superterse if

��A	��n	�FB
n �� FQ�n� �� A	��

Theorem �
�
� If B is r�e�� then B is not superterse�

Proof�

FB
�k�� � FQk�

k � ��K	 because B �m K

� FQ�k�K	�

The following corollary appears in �BGGO���

Corollary �
�
� There exist oracles that are terse but not superterse�

Proof� As shown in �BGGO���� there exist r�e� terse sets�

�If r is a reducibility such that r
reducibility is re�exive and transitive	 then we de�ne the
corresponding equivalence relation r
equivalence by A �r B if and only if A �r B and B �r A� An
r
degree is an equivalence class of r
equivalence� See �Rog��	 Soa��
� A degree is r�e� if it contains
an r�e� set�

CHAPTER �� NONRECURSIVE ORACLES ��

The Nonspeedup Theorem provides us with a tool for proving that an oracle is

superterse�

Theorem �
�
� If A is nonrecursive and

��n	�FA
�n�� � FQk�n�B	�

then B is superterse�

Proof� Suppose that B is not superterse� so that� for some set C and some positive

integer n

FB
n � FQ�n� �� C	� ��	

By assumption

FB
�n�� � FQk�n�B	

� FQ�n� �� C	 by equation ��	�

contradicting the Nonspeedup Theorem�

Lemma �
�
�

FK
�n�� � FQk�n�PARITYK

� 	�

Proof� Because FK
�n�� � Q����K

�n��	 by Lemma ������ it su!ces to show that

�K
�n�� � FQk�n�PARITYK

� 	�

Let t � �K
�n���x�� � � � � x�n��	� Then t is an n�bit nonnegative integer� Since PARITYK

�

is ��query complete for Q���K	� each bit of t can be determined by making a single

query to PARITYK
� �

Corollary �
�
	 PARITYK
� is superterse�

Proof� This follows from Lemma ����� and Theorem ������

Thus� there exists a superterse set�

CHAPTER �� NONRECURSIVE ORACLES ��

��� Verbose Sets

The Nonspeedup Theorem provides a quantitative bound on how �nonterse a non�

recursive set can be� We say that a set is verbose if it is as nonterse as the Nonspeedup

Theorem allows� i�e�� a set B is verbose if
n�� parallel queries to B can be answered

by making only n serial queries to B� for all n�

De�nition �
�
� A set B is verbose if

��n	�FB
�n�� � FQ�n�B	��

For example� K is verbose� by Theorem ��
�
� We de�ne semiverboseness analo�

gously to superterseness�

De�nition �
�
� A set B is semiverbose if

��A	��n	�FB
�n�� � FQ�n�A	��

For example� all r�e� sets are semiverbose� as shown in the proof of Theorem ������

Since some r�e� sets are also terse� there exist sets that are semiverbose but not

verbose�

In �BGGO���� it was shown that every truth�table degree contains a verbose set�

The following proof is based on the proof in that paper and on Jockusch�s construction

of a semirecursive� set �Joc����

Theorem �
�
� If A is any nonrecursive set� then there exists a verbose set B that

is truth�table equivalent to A�

Proof� Let f be a recursive function that maps the natural numbers ��� onto the

set of �nite strings over the alphabet f�� �g� then f�� is a recursive function� We

write s� � s� to denote that the �possibly in�nite	 string s� precedes the �possibly

in�nite	 string s� in lexicographic order� Let � be the in�nite string� a�a� � � � � where

ai � �A�i	� Let B � fx j f�x	 � �g�

�A set B is semirecursive if there exists a total recursive �	�
valued function f such that if
f�x� y� � � then �B�x� � �B�y� and if f�x� y� � � then �B�x� � �B�y��

CHAPTER �� NONRECURSIVE ORACLES ��

First we show that B �tt A� We write ��n� to denote the �nite string consisting

of the �rst n characters of �� The following algorithm computes �B�x	
 let n be the

length of the string f�x	� make n parallel queries to A in order to determine ��n�� if

f�x	 � ��n� then output �� else output ��

Second we show that A �tt B� We determine whether n is in B as follows
 For

each string s of length n� query B to determine if f���s	 � B� thereby determining

whether s � �� this determines the �rst n bits of �� and in particular it determines

the nth bit of �� which is �B�n	�

Finally we show that
n � � parallel queries to B can be answered by making

only n serial queries to B� We de�ne a linear ordering on the natural numbers as

follows
 for x� y � N� let x � y if and only if f�x	 � f�y	� We compute FB
�n�� as

follows
 given x�� x�� � � � � x�n��� order them according to �� assume �by renumbering	

that x� � x� � � � � � x�n��� use binary search �n queries	 to �nd the largest i such

that xi � B� then we know that x�� � � � � xi are in B and that xi��� � � � � xn are not in

B�

We included the proof of Theorem ����� because it leads to the following corollary

Theorem �
�
� There is a superterse set in every nonrecursive truth�table degree�

Proof� We use the notation from the proof of Theorem ������ Let S � PARITYB
� �

and let t � �B
�n���x�� � � � � x�n��	�

Then n parallel queries to S allow us to determine t� as follows
 Assume that

x� � x� � � � � � x�n��� For � � i � n� we can determine the ith bit of t by asking

if an odd number of fxj�i j � � j �
n�ig are in B� Once we know t� we know that

x�� � � � � xt are in B and that xt��� � � � � x�n�� are not in B� Thus

FB
�n�� � FQk�n� S	�

By Theorem ������ S is superterse�

CHAPTER �� NONRECURSIVE ORACLES ��

��� �A

n �� FQ�n�B�

If B is de�ned as in the proof of Theorem ������ then FB
n � FQ����B

n 	� for all n�

Therefore� by the Nonspeedup Theorem� for every set S and natural number n�

�B
�n �� FQ�n� S	�

This leads us to conjecture the following� stronger version of the Nonspeedup Theo�

rem�

Conjecture �
	
� Let A be any nonrecursive set� For every set B and natural num�

ber n

�A
�n �� FQ�n�B	�

Theorem �
	
� Let A be any set� Assume that there exist sets B and C such that

B �m A� B is r�e� in C� and B is not recursive in C� Then for every set S and

natural number n

�A
�n �� FQ�n� S	�

Proof� By assumption� B �m A� Therefore �B
k � FQ����A

k 	� for all k� In

particular�

�B
�n � FQ����A

�n	�

By assumption� B is r�e� in C� Therefore� because Lemma ����� relativizes�	

FB
k � FQC����B

k 	� for all k� In particular�

FB
�n � FQC����B

�n	�

In order to obtain a contradiction� suppose that

�A
�n � FQ�n� S	�

Then� by transitivity�

FB
�n � FQC�n� S	�

Since B is not recursive in C� this contradicts the relativized Nonspeedup Theorem�

�See �Rog��	 Soa��
 for a discussion of relativizations�

CHAPTER �� NONRECURSIVE ORACLES ��

Corollary �
	
� Let A be nonrecursive� Assume that there exists C such that A is

r�e� in C� but not recursive in C� Then for every set S and natural number n

�A
�n �� FQ�n� S	�

Proof� Since A �m A� we can let B � A in the preceding theorem�

The hypothesis of Corollary ����� is not true for every nonrecursive set A� �For ex�

ample� let A equal the recursive join �Rog��� Soa��� of K and #K� If A is r�e� in C� then

#A is r�e� in C because #A �m A� Therefore A is recursive in C�	 Thus Corollary �����

is not powerful enough to establish Conjecture ������ In fact� Owings has pointed

out
 that even Theorem ����
 is not powerful enough to establish Conjecture ������

Corollary �
	
� Let A be nonrecursive� Assume that there exists a nonrecursive r�e�

set B such that B �m A� Then for every set S and natural number n

�A
�n �� FQ�n� S	�

Proof� Let C � � in Theorem ����
�

Corollary �
	
� If A is a nonrecursive set in Q�k�K	 then for every set S and

natural number n

�A
�n �� FQ�n� S	�

Proof� In �BGH���� we have shown that if A � Q�k�K	 then A is �
k � �	�r�e� If

A is a nonrecursive n�r�e� set then Epstein� Haas� and Kramer have shown �EHK���

Theorem ��� that there exists a nonrecursive r�e� set B such that B �m A or B �m
#A�

If B �m A then �A
�n �� FQ�n� S	 by Corollary ������ Otherwise B �m

#A� so

�
�A
�n �� FQ�n� S	� Since �

�A
�n � FQ����A

�n	 by Observation
�
��� it follows that �A
�n ��

FQ�n� S	�

�Choose a set A such that the Turing degree of A is minimal� If B �m A then the degree of B
must also be minimal� In �Soa��	 p� ���
 it is shown that no nonzero r�e� degree is minimal	 as a
corollary to the Sacks Splitting Theorem� Relativizing that proof	 we obtain that if B is r�e� in C
but not recursive in C then the degree of B is not minimal� Thus the hypothesis of Theorem �����
is not true for elements of minimal Turing degrees�

�They only claim to prove that B �T A� however their proof sketch yields the stronger result� A
more detailed proof sketch appears in �Eps��	 Theorem � on page ���

CHAPTER �� NONRECURSIVE ORACLES ��

Lemma �
	
�

FA
n � FQ����A

�n��	

Proof� In order to determine which of x� through xn are in A� make
i�� copies

of xi for each i� Ask how many of those
n � � strings are in A� Then xi � A if and

only if the ith bit of that answer is one�

The next theorem is our most concrete progress on Conjecture �����

Theorem �
	
	 Let A be any nonrecursive set� For every set B and natural num�

ber n

�A
��
n
�� �� FQ�n�B	�

Proof� By contradiction� Suppose that

�A
��n�� � FQ�n�B	�

By Lemma ������

FA
�n � FQ����A

��n��	

� FQ�n�B	 by assumption�

which contradicts the Nonspeedup Theorem�

The results in this section have been substantially improved by Owings� who

proves two di!cult theorems in �Owi���� He has shown that if �B
� is computable

by a set of two partial recursive functions� then B is recursive� In addition� he has

shown that if �B
n is computable by a set of n partial recursive functions then B is

recursive in K� By Corollary ������ B cannot be a nonrecursive set in Q�k�K	 for

any k� Thus Conjecture ����� is open only for sets that are Turing reducible to K�

but not bounded�query� reducible to K�

�In �Sac��
	 Sacks has constructed a minimal Turing degree below �
�� Therefore Theorem �����

will not su�ce �see footnote �� to establish the remaining cases of Conjecture ������

CHAPTER �� NONRECURSIVE ORACLES ��

��	 Quantifying Verboseness

So far� the only nonterse sets we have seen are verbose sets� and the only nonsuperterse

sets we have seen are semiverbose sets� In this section� we exhibit some sets that are

neither terse nor semiverbose� We also prove that if a set fails to be terse� then it

fails in a strong way to be terse� if a set fails to be superterse then it comes within a

constant factor of being semiverbose�

De�nition �
�
�

� A set B is k�verbose if

FB
n � FQ�k log n �O��	� B	�

� A set B is k�semiverbose if there exists a set A such that

FB
n � FQk�k log n�O��	� A	�

�The constant term O��	 is allowed to depend in k�	

The next theorem is a useful tool for proving that a set is not semiverbose�

Theorem �
�
� If there exists a nonrecursive set A such that

FA
�n � FQk�m�B	

then for every set C

FB
m �� FQ�n�C	�

Proof� By contradiction� Assume that FA
�n � FQk�m�B	 and FB

m � FQ�n�C	�

Then FA
�n � FQ�n�C	� which contradicts the Nonspeedup Theorem�

Theorem �
�
� For every k �
� PARITYK
k is ��semiverbose� but not semiverbose�

CHAPTER �� NONRECURSIVE ORACLES �

Proof�

FPARITYK

k
n � FQk�n�PARITYK

k 	

� FQk�kn�K	 because PARITYK
k � Qk�k�K	

� FQ�dlog �kn� �	e�K	 by Lemma �����

� FQ�dlog �kn� �	e�PARITYK
k 	 because K �m PARITYK

k �

Since log �kn� �	 � log n�O��	� we conclude that PARITYK
k is ��semiverbose� Let

m � k�n� k �
	 � �� The following algorithm computes �K
m

Step �� Input �x � �x�� � � � � xm	�

Step �� Construct yi such that yi � K if and only if �i��x 	 � GEQK � �� Then

�K
m��y 	 � �K

m��x 	� �	

Step �� Perform the following two computations in parallel

�a� Let s � �K
k���yn�k��� y��n�k���� � � � � yt�n�k���� � � � � y�k����n�k���	�

�� At this point we know that s�n�k�
	 � �K
m��x 	 � �s��	�n�k�
	� �	

�b� For � � i � n � k �
 do the following

let �v i � �yi� yi�n�k��� � � � � yi�t�n�k���� � � � � yi��k����n�k���	�

and let s� � �
PARITYK

k

n�k�� ��v �� � � � � �v n�k��	�

�� If s is even then s� � �K
n�k����v s	� If s is odd then s� � �

�K
n�k����v s	� �	

Step �� If s is even then output s�n � k �
	 � s��

Otherwise� output s�n� k �
	 � n � k � �� s��

We make k�� parallel queries to K in step ��a	� and simultaneously we make n�k��

parallel queries to PARITYK
k in step ��b	� Thus

�K
m � FREC � �FQk�k � ��K	 kFQk�n� k � ��PARITYK

k 		

� FREC � �FQk�k � ��PARITYK
k 	 kFQk�n� k � ��PARITYK

k 		

because K �m PARITYK
k

� FQk�n�PARITYK
k 	 by Corollary
�
����

CHAPTER �� NONRECURSIVE ORACLES ��

Therefore by Lemma ������ii	�

FK
m � FQk�n�PARITYK

k 	�

Equivalently�

FK
k�n�k����� � FQk�n�PARITYK

k 	�

Therefore� by Theorem ����
� for every set C

FPARITYK
k

n �� FQ�blog �k�n� k �
	� �	c� C	�

For large n

dlog �n� �	e � blog �k�n � k �
	 � �	c�

so PARITYK
k is not semiverbose�

Tighter upper and lower bounds are possible�

Corollary �
�
�

� There is a set that is neither terse nor semiverbose�

� There is a set that is neither terse nor verbose�

Proof� The preceding theorem showed that PARITYK
� is such a set�

In studying oracles that are neither terse nor verbose� one might look for an oracle

B such that for every su!ciently large k�

FB
k � FQ�k � �� B	� FQ�k �
� B	�

However� if

FB
k � FQ�k � �� B	

then for every n�

FB
nk � FQ��k � �	� B	 k � � � kFQ�k � �� B	� �z �

n

� FQ��k � �	� B	 � � � � � FQ�k � �� B	� �z �
n

by Observation
�
���

� FQ�n�k � �	� B	�

CHAPTER �� NONRECURSIVE ORACLES ��

Thus� if B is not terse� then there exists r � � such that

FB
n � FQ�rn�B	�

for su!ciently large n� In fact� we can prove an even stronger result�

Theorem �
�
� If FA
j � FQ�k�A	 then for every t � �

FA
jt � FQ�kt� A	�

Proof� By induction on t� The theorem is identically true in the base case �t � �	�

Assume that the theorem is true for t� ��

FA
jt � FQk�j

t��� A	 k � � � kFQk�j
t��� A	� �z �

j

because we can ask the queries in j groups of jt�� queries

� FQ�kt��� A	 k � � � kFQ�kt��� A	� �z �
j

by the induction hypothesis

� FQk�j�A	 � � � � � FQk�j�A	� �z �
kt��

by Observation
�
���

� FQ�k�A	 � � � � � FQ�k�A	� �z �
kt��

by assumption

� FQ�k�kt��	� A	 by Observation
�
���

� FQ�kt� A	�

Corollary �
�
� If A is not terse� then there exists r � � such that

FA
n � FQ�nr� A	�

for su�ciently large n�

Proof� Suppose that FA
k�� � FQ�k�A	� Choose t such that

�k � �	t � n � �k � �	t���

CHAPTER �� NONRECURSIVE ORACLES ��

Then

FA
n � FQk��k � �	t��� A	

� FQ�kt��� A	 by the preceding Theorem�

Furthermore� t � logk�� n� because we chose t such that �k � �	t � n� Therefore�

kt�� � k��logk�� n

� k�klogk�� n	

� k�nlogk�� k	

� n
�

�
���logk�� k��

for su!ciently large n� Consequently�

FA
n � FQ�n

�

�
���logk�� k�� A	�

for su!ciently large n�

Later in this section� we prove an even stronger result about semiverboseness� If

k queries to A can be answered by making fewer than k queries to a second oracle�

then by Theorem ����
�i	 there are fewer than
k possible answers to any k queries to

A� Therefore� given n queries� there are fewer than
k possible answers to any choice

of k of those n queries� In this section� we prove a combinatorial lemma� that shows

that� in that case� there are at most S�n� k	 possible answers to the entire list of n

queries� where

S�n� k	 �
k��X
i��

�
n

i

�

We write �n
k to denote the set of k�element subsequences of �� � � � � n�

De�nition �
�
	

�n
k � f���� � � � � �k	 j � � �� � � � � � �k � ng�

	The author has recently been referred to �COS��
 by Clarke	 Owings	 and Spriggs� Our combi

natorial lemma is essentially a restatement of their theorem on simultaneous m
splitting trees� Our
proof is signi�cantly simpler�

CHAPTER �� NONRECURSIVE ORACLES ��

De�nition �
�
� Let �� be an element of �n
k �

i� If �x � �x�� � � � � xn	 is an n�tuple then

�x ��� 	 � �x��� � � � � x�k	�

ii� If X is a set of n�tuples then

X��� 	 � f�x ��� 	 j �x � Xg�

For example ���� ���
�� �� �� ��	���
� �	 � ���� ���
�	� Intuitively�X��� 	 is the projec�

tion of the set X onto the k components indicated by the sequence �� � For example� if

we write f�� ��
gn to denote the set of all n�tuples whose components are in f�� ��
g�

then f�� ��
gj��� � � � � k	 � f�� ��
gk� provided that k � j�

Lemma �
�
� Let X be a set of n�tuples of bits� and let k be an integer such that

� � k � n� If� for all �� in �n
k

card�X��� 		 �
k	

then

card�X	 � S�n� k	�

Proof� By induction on n� Assume that the lemma is true for �� � � � � n� �� Let X

be a set of n�tuples of bits� The lemma is true when k � n because S�k� k	 �
k � ��

The lemma is true when k � �� because all elements of X agree on each component

so that X has only one element� Let � � k � n�

Let �� be an element of �n��
k � Then �� is also an element of �n

k � so by assumption�

card�X��� 		 �
k�

Because �� is a subsequence of �� � � � � n� ��

X��� 	 � X��� � � � � n� �	��� 	�

Therefore�

card�X��� � � � � n� �	��� 		 �
k�

CHAPTER �� NONRECURSIVE ORACLES ��

By the induction hypothesis�

card�X��� � � � � n� �		 � S�n� �� k	�

If ��y � �	 or ��y � �	 is an element of X then� �y must be an element of X��� � � � � n� �	�

Let Y be the set of �n� �	�tuples �y such that both ��y � �	 and ��y � �	 are elements of

X� Then

card�X	 � card�X��� � � � � n� �		 � card�Y 	�

Let �� be an element of �n��
k�� � Then we claim that

card�Y ��� 		 �
k���

Suppose not� Then

card�Y ��� 		 �
k���

If �y � Y then ��y � �	 � X and ��y � �	 � X� Therefore� if z � Y ��� 	 then ��z � �	 � X���� � n		

and ��z � �	 � X���� � n		� Thus

card�X���� � n			 �
 card�Y ��� 		 �
k�

contrary to our assumption� so our claim is established� Since

card�Y ��� 		 �
k��

whenever �� is an element of �n��
k��� the induction hypothesis implies that

card�Y 	 � S�n� �� k � �	�

Therefore

card�X	 � card�X��� � � � � n� �		 � card�Y 	

� S�n� �� k	 � S�n� �� k � �	

� S�n� k	

because �
n

i

�

�
n� �

i

�

�
n � �

i� �

�

CHAPTER �� NONRECURSIVE ORACLES ��

Lemma �
�
�
 If FA
k is computable by a set of
k � � partial recursive functions�

then FA
n is computable by a set of S�n� k	 partial recursive functions� for every n � k�

Proof� By assumption� there exist partial recursive functions g�� � � � � g�k�� such

that

��q�� � � � � qk	�F
A
k �q�� � � � � qk	 � fgi�q�� � � � � qk	 j � � i �
k � �g��

We say that a pair of k�tuples ��p � �w 	 is consistent if �w � fgi��p 	 j � � i �
k � �g�

We say that a pair of n�tuples ��q � �x 	 is consistent if ��q ��� 	� �x ��� 		 is consistent for

all �� in �n
k � Since FA

n is computed by the set of functions fg�� � � � � g�k��g� the pair

��q �FA
n ��q 		 is consistent for all �q �

We will complete the proof by de�ning partial recursive functions g��� g
�
�� � � � such

that g�i��q 	 is the ith n�tuple �x such that ��q � �x 	 is consistent� First we de�ne the set

T as the set of consistent pairs of n�tuples� Let

T � f��q � �x 	 j ���� � �n
k	��x ��� 	 � fgi��q ��� 		 j � � i �
k � �g�g�

The set T is r�e�� because we are quantifying over a �nite set and each function gi is

partial recursive� Let

X�q � f�x j ��q � �x 	 � Tg�

Thus X�q is the set of vectors �x such that ��q � �x 	 is consistent� Therefore FA
n ��q 	 � X�q �

and for all �� in �n
k

X�q ��� 	 � fgi��q ��� 		 j � � i �
k � �g�

so card�X�q ��� 		 �
k� By Lemma ������� card�X�q 	 � S�n� k	�

Since T is r�e�� let M be a Turing machine that enumerates T without repetition�

We compute g�i��q 	 as follows
 simulateM untilM has enumerated i pairs of the form

��q � �x 	� output the second element of the ith such pair� Thus

X�q � fg�i��q 	 j i � �g�

Since card�X�q 	 � S�n� k	 and the sequence g����q 	� g
�
���q 	� � � � contains no repetitions�

X�q � fg�i��q 	 j � � i � S�n� k	g�

Since FA
n ��q 	 � X�q � the function FA

n is computed by the S�n� k	 partial recursive

functions g��� � � � � g
�
S�n�k��

CHAPTER �� NONRECURSIVE ORACLES ��

Theorem �
�
�� If there exists a set B such that

FA
k � FQ�k � �� B	

then there exists a set C
tt A such that

FA
n � FQk��k �
	 log n�O��	� C	�

Proof� Assume that FA
k � FQ�k � �� B	� By Theorem ����
�i	� FA

k is computable

by a set of
k�� partial recursive functions� By Lemma ��
�
� FA
k�� is computable

by a set of
k�� � � partial recursive functions� Therefore� by Lemma ������� FA
n is

computable by a set of S�n� k � �	 partial recursive functions� By Theorem ����
�ii	�

for every n � k there exists a set Cn � FQ���FA
n 	 such that

FA
n � FQk�dlogS�n� k � �	e� Cn	�

Let C� be the recursive join of Ck� Ck��� � � � � Then� for all n � k

FA
n � FQk�dlog S�n� k � �	e� C�	�

Since S�n� k � �	 � O�nk��	�

FA
n � FQk��k �
	 log n�O��	� C�	�

Let C � A join C�� so that C �tt A ���tt C and

FA
n � FQk��k �
	 log n�O��	� C	�

Corollary �
�
�� If A is not superterse then there exists a natural number k such

that A is k�semiverbose�

Proof� This follows directly from Theorem �������

CHAPTER �� NONRECURSIVE ORACLES ��

Theorem ������ provides an alternative way of proving Theorem ������

Corollary �
�
�� There is a superterse set in every nonrecursive truth�table degree�

Proof� Let A be a nonrecursive set� If A is not superterse� then by Theorem ������

there exists a set B
tt A such that

FA
n � FQk�O�log n	� B	�

If B is not superterse then there exists a set C such that

FB
n � FQk�O�log n	� C	�

so

FB
logn � FQk�O�log log n	� C	�

Therefore

FA
n � FQk�O�log log n	� C	�

which contradicts the Nonspeedup Theorem� Thus either A is superterse� or else B

is a superterse set that is truth�table equivalent to A�

Corollary �
�
�� If A � Q�k�B	 and B is not superterse� then A is not superterse�

Proof� Assume that B is not superterse�

FA
n � Q�k�B	 k � � � kQ�k�B	� �z �

n

because A � Q�k�B	

� FQ�k�B	 k � � � kFQ�k�B	� �z �
n

� FQk�n�B	 � � � � � FQk�n�B	� �z �
k

by Observation
�
���

� FQ���FB
n 	 � � � � � FQ���FB

n 	� �z �
k

�

Since B is not superterse� there exists a set C such that

FB
n � FQk�O�log n	� C	�

CHAPTER �� NONRECURSIVE ORACLES ��

by Theorem ������� Therefore�

FA
n � FQk�O�log n	� C	 � � � � � FQk�O�log n	� C	� �z �

k

� FQ�O�k log n	� C	�

Therefore� A is not superterse�

��
 Decision Problems and Superterseness

De�nition �
�
� A set B is self�encoding if

��k	��n	�Qk�n�B	 � Q�k�B	��

Theorem �
�
� If the set B is self�encoding then B is either superterse or recursive�

Proof� Suppose that B is self�encoding� so that for some k

��n	�Qk�n�B	 � Q�k�B	��

Suppose also that B is not superterse� so that for some set A and some positive

integer j

FB
j � FQ�j � �� A	�

By Theorem ����
�i	� the function FB
j is computable by a set of
j�� �
j � � partial

recursive functions� Therefore� by Lemma ������� FB
n is computable by a set of S�n� j	

partial recursive functions� Since S�n� j	 � O�nj��	� choose n large enough so that

S�n� j	 � nj� Thus FB
n is computable by a set of nj partial recursive functions� By

Theorem ����
�ii	� there exists a set C in Q���FB
n 	 such that

FB
n � FQk�dj log ne� C	

� FREC �

	
BB
Q���FB

n 	 k � � � kQ���FB
n 	� �z �

dj logne

�
CCA because C � Q���FB

n 	

CHAPTER �� NONRECURSIVE ORACLES �

� FREC �

	
BB
Qk�n�B	 k � � � kQk�n�B	� �z �

dj logne

�
CCA

� FREC �

	
BB
Q�k�B	 k � � � kQ�k�B	� �z �

dj logne

�
CCA because Qk�n�B	 � Q�k�B	

� FREC �

	
B
FQk�dj log ne� B	 � � � � � FQk�dj log ne� B	� �z �

k

�
CA by Observation
�
����

For all n� the function FB
n is computable by a set of S�n� j	 partial recursive func�

tions� as shown above� Since S�n� j	 � O�nj��	� choose n large enough so that

S�dj log ne� j	 � �log n	j � Therefore there is a set C � such that

FQk�dj log ne� B	 � FQk�dj log log ne� C
�	�

by Theorem ����
�ii	� Therefore�

FB
n � FREC � FQk�dj log log ne� C

�	 � � � � � FQk�dj log log ne� C
�	� �z �

k

� FQ�kdj log log ne� C �	�

Choose n large enough so that n �
kdj log logne� By the Nonspeedup Theorem� B

must be recursive�

Corollary �
�
� Let A be nonrecursive� If B is ��query complete for Qk���A	 then

B is superterse�

Proof� LetB be ��query complete for Qk���A	� ThenB � Qk���A	 and Qk���A	 �

Q��� B	� For every n�

Qk�n�B	 � Qk���A	 because B � Qk���A	

� Q��� B	�

Thus B is self�encoding� By Theorem ����
� B is superterse or recursive� Because

A � Q��� B	� the set B is not recursive� Therefore B is superterse�

CHAPTER �� NONRECURSIVE ORACLES ��

Corollary �
�
� If there exists k such that no
���valued partial function belongs to

FQk�
k�B	� FQk�k�B	�

then B is superterse or recursive�

Proof� Assume that there is no ����valued partial function in FQk�
k�B	� FQk�k�B	�

By Theorem ������ii	� there is no ����valued partial function in FQk�n�B	� FQk�k�B	

for any n� Therefore� there is no ����valued total function in FQk�n�B	� FQk�k�B	�

Therefore� for every n�

Qk�n�B	 � Qk�k�B	 � Q�k�B	�

so B is self�encoding� By Theorem ����
� B is superterse or recursive�

Corollary �
�
� Let B be a nonrecursive set in Q�j�A	� where A is not superterse�

Then for every k there is a
���valued partial function in

Qk�
k�B	�Qk�k�B	�

Proof� By Corollary ������� B is not superterse� Since B is not recursive either�

there must be a ����valued partial function in Qk�
k�B	�Qk�k�B	� by the preceding

corollary�

���� Discussion and Related Work

Since the appearance of the original draft of this chapter� several papers and technical

reports have been published on the topic of bounded queries to a nonrecursive set

�BGGO��� BG��� Bei��a� BGO��� Owi��� Bei��d��

Material from Sections ���� ��
� ���� and ��� has been included in �BGGO��� by

Beigel� Gasarch� Gill� and Owings� In �BGGO���� it was shown that all semirecursive

sets are verbose� Using similar techniques� we can construct sets that are �k � �	�

semiverbose but not k�semiverbose �BG��

CHAPTER �� NONRECURSIVE ORACLES ��

Material from Section ��� has been included in �BG���� in which we de�ned sup�

portive and parallel supportive sets� A set B is supportive if Q�n�B	 � Q�n� �� B	

for all n� A set B is parallel supportive if Qk�n�B	 � Qk�n � �� B	 for all n� In

�BG���� we showed that the jump of every set is supportive and parallel support�

ive� all generic sets are supportive and parallel supportive� all semirecursive sets are

supportive and parallel supportive� every truth�table degree contains a set that is

supportive and parallel supportive� and every r�e� Turing degree contains an r�e� set

that is supportive and parallel supportive� We also showed that the jump of every

Turing degree contains a set that is not parallel supportive�

In �Bei��d�� we showed that almost all sets are supportive and parallel support�

ive� and that all nonrecursive r�e� sets are supportive and parallel supportive� We

constructed a set that is neither supportive nor parallel supportive�

Our paper �Bei��a� consists of the material from Section ����

In �BGO���� Beigel� Gasarch� and Owings de�ne bounded query classes for non�

deterministic computation� and we study nondeterministic terseness�

Chapter �

Polynomial Time Bounded

Reductions

In the preceding chapters we considered machines that could perform arbitrary e�ec�

tive computations� In this chapter� we restrict our attention to machines that run in

polynomial time� We de�ne the bounded query classes for polynomial time bounded

computations� and we attempt to generalize the results from the preceding chapters

to polynomial time bounded computations� In Section ��
� we prove a weak analogue

of the Nonspeedup Theorem� In Section ���� we use the Weak Nonspeedup Theorem

to show that that k�� queries to an NP�hard oracle allow us to compute more func�

tions in polynomial time than only k queries to the same oracle allow us to compute

in polynomial time� unless P � NP� In Section ���� we discover that the Nonspeedup

Theorem does not generalize to polynomial time bounded computations �AG���� and

we study the sets for which the generalization fails� In Section ���� we prove a gener�

alization of Theorem ����
� In Section ��� we use that theorem to show that �P� �hard

sets are polynomial superterse and to produce a relativization that makes all NP�hard

sets polynomial superterse�

We de�ne the bounded query classes for polynomial time

� MQ�n�A�P	 is the set of machines with oracle A that run in polynomial time

and make at most n queries to A�

��

CHAPTER �� POLYNOMIAL TIME BOUNDED REDUCTIONS ��

� FQ�n�A�P	 is the set of total functions that are computable by a machine in

MQ�n�A�P	�

� Q�n�A�P	 is the set of ����valued total functions that are in FQ�n�A�P	�

� MQk�n�A�P	 is the set of machines with oracle A that run in polynomial time

and make at most n queries to A� all queries being made in parallel�

� FQk�n�A�P	 is the set of total functions that are computable by a machine in

MQk�n�A�P	�

� Qk�n�A�P	 is the set of ����valued total functions that are in FQk�n�A�P	�

��� Computability by a Set of Polynomial Time

Functions

The material in this section is analogous to the material in Section ����

De�nition �
�
� The total function h is computable by a set of k polynomial time

functions if there exist k polynomial time functions g�� � � � � gk such that

��x	�h�x	 � fgi�x	 j � � i � kg��

Thus� the function h is computable by a set of k polynomial time functions if� for each

x� we can compute in polynomial time a length�k list that includes h�x	� Informally�

we say that there are only k possible values for h�x	�

Theorem �
�
�

i� If there exists an oracle B such that h � FQ�k�B�P	 then h is computable by a

set of
k polynomial time functions�

ii� If h is computable by a set of
k polynomial time functions then there exists an

oracle B � Q��� h�P	 such that h � FQk�k�B�P	�

Proof� The constructions in the proof of Theorem ����
 run in polynomial time�

CHAPTER �� POLYNOMIAL TIME BOUNDED REDUCTIONS ��

This theorem enables us to show that every function h computable in polynomial

time by making n serial queries to an oracle A can be computed in polynomial time

by making n parallel queries to a di�erent oracle B such that B � Q��� h�P	�

Corollary �
�
� If h is in FQ�n�A�P	 then there exists a set B in Q��� h�P	 such

that h is in FQk�n�B�P	�

Proof� By Theorem ����
�i	� h is computable by a set of
n polynomial time

functions� Therefore� by Theorem ����
�ii	� there is a set B in Q��� h�P	 such that h

is in FQk�n�B�P	�

��� A Weak Nonspeedup Theorem

In �AG���� Amir and Gasarch have shown how to produce a set B of arbitrarily

large time complexity such that FB
n � FQ��� B�P	 for every n� Thus the Nonspeedup

Theorem does not apply to polynomial time computation� however� we can prove

a weak version of the Nonspeedup Theorem for polynomial time computation� In

Section ���� we will use the Weak Nonspeedup Theorem to prove that FQk�n�B�P	 �

FQk�n� �� B�P	 for every NP�hard set B and every n� unless P � NP�

De�nition �
�
� If C is a collection of sets and X is a set� then X separates C if for

all S� S � in C

S �� S� � S �X �� S� �X�

This section�s main result will follow from the following combinatorial lemma�

which says that k � � points are su!cient to separate k sets� The lemma� which

appears in �Owi��� was �rst stated and proved by Owings �Owi���� We present

Owings�s proof�

Lemma �
�
� If jCj � k � � then there exists a set X that separates C such that

jXj � k � ��

CHAPTER �� POLYNOMIAL TIME BOUNDED REDUCTIONS ��

Proof� By induction on k� The base case �k � �	 is trivial� Assume that the

lemma is true for some value of k � �� Let S�� S� be distinct elements of C� and let

x � �S� � S�	 � �S� � S�	� Let

C� � fS � C j x � Sg and C� � fS � C j x �� Sg�

Let k� � jC�j and k� � jC�j� By the induction hypothesis� there exists a set X�

that separates C� such that jX�j � k� � �� and there exists a set X� that separates

C� such that jX�j � k� � �� Let X � X� � X� � fxg� Then X separates C and

jXj � k� � � � k� � � � � � k� � k� � � � k � ��

We also present a di�erent proof of Lemma ��
�
� which is based on our original

proof of the Weak Nonspeedup Theorem in �Bei���� In our proof we �rst show that

there is a �nite set Y of m points that separates C� We construct X by taking two

cases
 If there is one point that is �necessary in order to separate two of the sets in

C then we put the necessary point in X� If none of the points is necessary in order to

separate any two of the sets in C then we remove any point from Y � In either case�

we reduce to a smaller problem and proceed inductively�

Proof� We write A�B to denote �A�B	� �B �A	� the symmetric di�erence of

A and B� If x � A�B then we say that the point x separates A from B� and we say

that the sets A and B di�er on x�

For each pair of sets S� S� � C� we can choose a single point that separates S from

S �� thus there exists a set Y that separates C such that jY j �
�
k

�

�
� Therefore� it

su!ces to show that if jCj � k and a �nite set separates C then there is a set X that

separates C such that jXj � k � ��

We prove that statement by induction on k� The base case �k � �	 is trivial�

Assume that the statement is true for some value of k � �� and let C be a collection

of k � � distinct sets�

We prove� by induction on m� that if Y separates C and jY j � m then there exists

a set X that separates C such that jXj � k� The base case �m � �	 is trivial because

k � �� Suppose that the statement is true for some m � �� suppose that Y separates

C� and suppose that jY j � m� ��

CHAPTER �� POLYNOMIAL TIME BOUNDED REDUCTIONS ��

Let D � fS � Y j S � Cg� We claim that if X separates D� then X separates C�

Proof
 Assume that X separates T � Let S and S� be distinct elements of C� Then

S � Y �� S � � Y because Y separates C� Therefore S � Y �X �� S� � Y �X� because

X separates D� Therefore S �X �� S� �X� proving the claim� Thus it su!ces to �nd

a set X that separates D such that jXj � k� We consider two cases�

Case �� There exist two sets T� T � in D that di�er on exactly one point�

Let x be the unique element of T �T �� There cannot be three sets that di�er

only on the single point x� However� there may be other pairs of sets in D that

di�er only on the point x� Let there be p such pairs including �T� T �	� Let D�

consist of one element from each such pair� Let D� consist of the other element

from each such pair� Let D	 consist of the remaining elements of D� Then

jD�j � jD�j � p� and jD	j � k �
p � ��

By the induction hypothesis �for k	 there exists a set X� that separates

fT � fxg j T � D� � D	g such that jX�j � p � �k �
p � �	 � � � k � p� Let

X � X� � fxg� We claim that X separates D� Proof
 Let T� T � be distinct

elements of D� We take three cases�

Case �a�� T and T � are both in D� � D	�

By our choice of x� it follows that T�fxg �� T ��fxg� We chose X� so that

X� separates T � fxg from T � � fxg� Therefore X� separates T from T ��

Case �b�� T � D� � D	 and T � � D��

Let T �� � T ��fxg� By construction� the set T �� is in D�� If T �� � T � then

x separates T from T �� Otherwise� X� separates T � fxg from T �� � fxg�

Since T �� � fxg � T � � fxg� the set X� separates T � fxg from T � � fxg�

Therefore X� separates T from T ��

Case �c�� T and T � are both in D��

Let T �� � T �fxg� and let T ��� � T ��fxg� Then T �� and T ��� are distinct

elements of D�� Therefore X� separates T �� � fxg from T ��� � fxg� so X�

separates T � fxg from T � � fxg� Therefore� X� separates T from T ��

CHAPTER �� POLYNOMIAL TIME BOUNDED REDUCTIONS ���

In each case� X � X� � fxg separates T from T �� Therefore X separates D�

Since jXj � k � p� � � k� the claim is proven�

Case �� Every pair of sets T� T � in D di�ers on at least two points�

Each T in D is a subset of Y � Because jY j � m � �� any set of m points in

Y separates D� By the induction hypothesis �for m	 there exists a set X that

separates T such that jXj � k�

Lemma �
�
� If FA
k is computable by a set of k polynomial time functions� then any

k queries to A can be answered by a polynomial time algorithm that asks only k � �

of the same queries in parallel�

Proof� By assumption� there exist k polynomial time functions g�� � � � � gk such

that

��x�� � � � � xk	�F
A
k �x�� � � � � xk	 � fgi�x�� � � � � xk	 j � � i � kg��

Without loss of generality� assume that if i �� j then gi�x�� � � � � xk	 �� gj�x�� � � � � xk	

for all x�� � � � � xk� Let �x � �x�� � � � � xk	 and let X � fx�� � � � � xkg� For i � �� � � � � k let

Si � fx � X j gi�x	 � �g � X

We say that the set S agrees with the set A on X if S �X � A �X� Because FA
n is

computed by g�� � � � � gk� one of the sets S�� � � � � Sk agrees with A on X� Thus we can

determine FA
k ��x 	 by computing a natural number i such that Si agrees with A on X�

Because the functions g�� � � � � gk produce distinct outputs� the sets S�� � � � � Sk are

distinct� By Lemma ��
�
� there is a �k��	�element set X � � fx��� � � � � x
�
k��g that sep�

arates fS�� � � � � Skg� Since S�� � � � � Sk are subsets ofX� points outside ofX cannot help

to separate fS�� � � � � Skg� therefore� without loss of generality� we may assume that

X � is a subset of X� Because one of the sets S�� � � � � Sk agrees with A on X� at least

one of the sets S�� � � � � Sk agrees with A on X �� Because X � separates fS�� � � � � Skg�

exactly one of the sets S�� � � � � Sk agrees with A on X �� This set must also agree with

CHAPTER �� POLYNOMIAL TIME BOUNDED REDUCTIONS ���

A on X� Thus we can determine FA
k ��x 	 by computing the unique i such that Si agrees

with A on X ��

The following algorithm computes FA
k

Step �� Input x�� � � � � xk�

Step �� Compute S�� � � � � Sk as above�

Step �� By using the construction implicit in Lemma ��
�
 �� or by trying all k

possibilities �	 �nd a set of k � � points fx��� � � � � x
�
k��g � fx�� � � � � xkg that

separates fS�� � � � � Skg�

Step �� Compute FA
k���x

�
�� � � � � x

�
k��	�

Step �� Find i such that

FA
k���x

�
�� � � � � x

�
k��	 � FSi

k���x
�
�� � � � � x

�
k��	�

Step �� Output gi�x�� � � � � xk	�

Theorem �
�
� If FA
�k � FQ�k�B�P	 then

i� for every n �
k� any n queries to A can be answered by a polynomial time

algorithm that asks only
k � � of the same queries in parallel�

ii� for every n� FA
n � FQ�k�B�P	�

Proof� Assume that FA
�k � FQ�k�B�P	�

i� By Theorem ����
�i	� FA
�k is computable by a set of
k polynomial time functions�

Thus by Lemma ��
��� the answers to
k parallel queries to A can be determined

in polynomial time by making �in parallel	 only
k�� of the same
k�� queries

to A�

If n �
k then we can replace
k of the n parallel queries with only
k � � of

them� thereby eliminating one of the n queries� We keep eliminating queries in

this way until we are left with only
k � � of the original n parallel queries�

CHAPTER �� POLYNOMIAL TIME BOUNDED REDUCTIONS ��

ii� This is obvious if n �
k� If n �
k then

FA
n � FQk�

k � �� A�P	 by �i	

� FQk�

k� A�P	

� FQ�k�B�P	 by assumption�

��� A Serial�Parallel Tradeo

In this section� we generalize Lemma ��
��� which states that

FQ�n�K	 � FQk�

n � ��K	�

In the recursion theoretic framework of the preceding chapters� that result is not true

for all oracles� However� in the polynomial time bounded framework of the current

chapter� that result is true for all oracles�

A well�known theorem of Nerode �Rog��� Theorem ��XIX� states that if A is

Turing reducible to B by a reduction that terminates regardless of the oracle answers�

then A is truth�table reducible to B� Because polynomial time reductions always

terminate� we obtain a similar result for polynomial time bounded query reductions�

Theorem �
�
� For every set A and natural number k�

FQ�k�A�P	 � FQk�

k � �� A�P	�

Proof� Let f � FQ�k�A�P	 and let f be computable in time p�n	 for some poly�

nomial p� We can simulate the computation of f for all possible sequences of oracle

answers in time O�
kp�n		� because we can truncate any computation that runs for

more than p�n	 steps� During the simulation we prepare a list of all
k � � possible

queries� We make the
k � � queries in parallel� and then simulate f with the correct

sequence of oracle answers�

CHAPTER �� POLYNOMIAL TIME BOUNDED REDUCTIONS ���

Corollary �
�
� If FA
�k � FQ�k�B�P	 then for every n

FQ�n�A�P	 � FQ�k�B�P	�

Proof� Assume that FA
�k � FQ�k�B�P	�

FQ�n�A�P	 � FQk�

n � �� A�P	 by Theorem �����

� FQ�k�B�P	 by Theorem ��
���ii	�

Corollary �
�
� There exists a set B of arbitrarily great time complexity such that

for every k

FQ�k�B�P	 � FQ��� B�P	�

Proof� In �AG���� Amir and Gasarch have shown how to construct a set B of

arbitrarily great time complexity such that FB
k � FQ��� B�P	 for every k� In particular

FB
�k�� � FQ��� B�P	� Therefore� by Theorem �����

FQ�k�B�P	 � FQk�

k � �� B�P	 � FQ��� B�P	�

��� Cheatable Sets

In this section� we study the class of sets for which the polynomial time version of

the Nonspeedup Theorem fails�

De�nition �
�
�

� A set A is k�cheatable if ��B	�FA
�k � FQ�k�B�P	��

� A set A is cheatable if A is k�cheatable for some k�

The name cheatable is motivated by Theorem ��
���i	� which states that if B is

cheatable then any n queries to B can be answered by a polynomial time algorithm

CHAPTER �� POLYNOMIAL TIME BOUNDED REDUCTIONS ���

that asks only a �xed number �independent of n	 of the same questions� If the answers

to a true�false test are given by a cheatable set� then a student up to no good would

only need to copy a �xed number of answers in order to determine them all�

As mentioned in Section ��
� Amir and Gasarch have constructed ��cheatable sets�

The proof below is based on their proof in �AG����

Theorem �
�
� �Amir and Gasarch� There exists a ��cheatable set that is not in

P�

Proof� De�ne tow�n	 recursively as follows

tow�n	 �

��
� � if n � �

tow�n��� if n � ��

By the time hierarchy theorem �HU��� Theorem �
��� p�
���� there exists a set

L � �� that is in DTIME��tow�n� �		�	� but not in DTIME�tow�n � �		 � Let

A � f�tow�y� j �y � Lg�

If A � DTIME�nk	� then L � DTIME��tow�n		k	 � DTIME�tow�n � �		� contra�

dicting our choice of L� therefore A �� P� Given x� � tow�y�	 � x� � tow�y�	� the

running time to determine if x� is in A is quadratic in the length of x�� Therefore a

single query to A �to determine �A�x�		 and a polynomial amount of running time

�to determine �A�x�		 allow us to compute FA
� �x�� x�	� Therefore� A is ��cheatable�

Theorem �
�
�

i� If FQ�k � �� B�P	 � FQ�k�B�P	 then B is k�cheatable�

ii� If FQk�k � �� B�P	 � FQk�k�B�P	 then B is k�cheatable�

CHAPTER �� POLYNOMIAL TIME BOUNDED REDUCTIONS ���

Proof�

i� Using the same proof as of Observation
�
����i	� we see that

��n � k	�FQ�n�B�P	 � FQ�k�B�P	��

In particular FQ�
k� B�P	 � FQ�k�B�P	� so FB
�k � FQ�k�B�P	�

ii� Using the same proof as of Observation
�
����ii	� we see that

��n � k	�FQk�n�B�P	 � FQk�k�B�P	��

In particular FQk�

k� B�P	 � FQk�k�B�P	� so

FB
�k � FQk�k�B�P	 � FQ�k�B�P	�

Self�reducible sets were de�ned by Schnorr in �Sch���

De�nition �
�
� A set B is self�reducible if there exists a polynomial time bounded

oracle machine M such that for every string x the machine MB determines whether

x is in B by querying only strings that are shorter than x�

We say that a set B is self�tt�reducible if we can determine in polynomial time the

answer to any query x to B by asking several parallel queries to B� all of which are

shorter than x�

De�nition �
�
� The set B is self�tt�reducible if there exist polynomial time com�

putable functions f and �q such that for every string x

�B�x	 � f�x�F���q �x			�

and each component of �q �x	 is shorter than x�

Theorem �
�
� If B is self�tt�reducible and cheatable� then B � P�

CHAPTER �� POLYNOMIAL TIME BOUNDED REDUCTIONS ���

Proof� Since B is self�tt�reducible� there exist polynomial time computable func�

tions f and �q such that for every string x

�B�x	 � f�x�F���q �x			�

and each component of �q �x	 is shorter than x� Assume that B is k�cheatable� The

following recursive algorithm computes FB
�k��

Step �� Input �x � �x�� � � � � x�k��	�

Step �� If each component of �x is equal to the empty string� then compute FB
�k����x 	

by table lookup� and return the value�

Step �� Compute �y by concatenating �q �x�	� � � � � �q �x�k��	� If the length of �y is less

than
k then pad �y with empty strings� so that the length of �y is
k�

Step �� As in the proof of Theorem ��
���i	� we can compute FB
� ��y 	 in polynomial

time by determining the answers to only
k � � of the same queries� Let �z �

�z�� � � � � z�k��	 be those queries� Recursively compute FB
�k����z 	� and use the

answer in order to compute FB
� ��y 	�

Step �� Return the value of �f�x��FB
� ��q �x�			� � � � � f�x�k���F

B
� ��q �x�k��				�

Since each component of �q �xi	 is shorter than xi� the depth of the recursion is bounded

by the length of the longest component of �x � Each recursive call runs in polynomial

time� so the algorithm runs in polynomial time� Since FB
�k�� is computable in poly�

nomial time� the set B is computable in polynomial time�

Corollary �
�
	 If B is self�tt�reducible and B �� P then

i� FQ�k�B�P	 � FQ�k � �� B�P	�

ii� FQk�k�B�P	 � FQk�k � �� B�P	�

Proof� Let B be a self�tt�reducible set that is not in P�

CHAPTER �� POLYNOMIAL TIME BOUNDED REDUCTIONS ���

i� By contradiction� Assume that FQ�k�B�P	 � FQ�k � �� B�P	� By Theo�

rem ������ B is cheatable� By assumption� B is self�tt�reducible and B �� P�

This contradicts Theorem ������

ii� Similar to �i	�

By Theorem ������ every self�tt�reducible� cheatable set is in P� In Section ���� we

will show that if P �� NP then no NP�hard set is cheatable� We would like to show

that other classes of sets contain no cheatable sets� in particular� we would like to

show that cheatable sets are� in some sense� easy� In the next theorem� we show that

any ��cheatable set must be easy in�nitely often� In �BS���� Balcazar and Sch)oning

formalized the notion of being easy in�nitely often� which was previously considered

by Berman and Hartmanis �BH��� and by Rabin �Rab����

De�nition �
�
� A set A is bi�immune for a class C if neither A nor #A has an in�nite

subset that belongs to C�

Thus A is easy in�nitely often if and only if A is not bi�immune for P� Theo�

rem ������ below shows that every ��cheatable set is easy in�nitely often�

Lemma �
�
� If A is ��cheatable then there is a polynomial time algorithm that takes

as input two queries to A and either determines the answer to one of the queries or

else determines whether the two answers are equal or unequal�

Proof� Let A be a ��cheatable set� By Theorem ��
���i	� we can answer any two

queries x� y to A by asking only one of them� Let M be a polynomial time bounded

machine that performs that computation�

The polynomial time algorithm below takes as input two queries x and y and

produces one of the following six answers
 ��A�x	 � �� ��A�x	 � �� ��A�y	 � ��

��A�y	 � �� ��A�x	 � �A�y	� or ��A�x	 �� �A�y	�

Step �� Input two queries x� y�

Step �� Simulate M until M is about to make its query q� let p be the other query�

CHAPTER �� POLYNOMIAL TIME BOUNDED REDUCTIONS ���

Step �� Simulate M for both possible oracle answers� thus determining a Boolean

function f such that �A�p	 � f��A�q		�

Step �� If the Boolean function f is identically true then output that �A�p	 � �� If

f is identically false then output that �A�p	 � �� If f is the identity function

then output that �A�p	 � �A�q	� If f is the complement of the identity function

then output that �A�p	 �� �A�q	�

Theorem �
�
�
 No ��cheatable set is bi�immune for P�

Proof� By the Nonspeedup Theorem� A must be recursive� so let M be a ma�

chine that decides membership in A� Call the algorithm of the preceding lemma

Algorithm A�

Our proof will proceed as follows
 We de�ne in�nitely many sparse� in�nite� dis�

joint sets S�� S�� � � � � We run AlgorithmA on every pair of consecutive elements of Si�

Either we determine the answer to one query in one of the pairs� or else we produce

a long chain of queries� such that we know the relationship between �A�x	 and �A�y	

for consecutive elements x and y of the chain� In the latter case� we compute the

answer to the smallest element of the chain� thereby determining the answer to the

largest element of the chain� In either case� at least one element of Si is easy� Since

the sets S�� S�� � � � are disjoint� there are in�nitely many easy points�

Let fi�n	 � �n�i� and let Si � ffi�n	 j n � �g� The construction below produces

two sets Bi
� and Bi

� such that the the set Bi
� is a subset of #A� the set Bi

� is a subset

of A� and jBi
� � Bi

�j � ��

Stage �
 Let base � fi��	� Let equal � �� Go to stage ��

Stage n � �
 Let x � fi�n	� let y � fi�n � �	� and run Algorithm A on input x� y�

We take six cases� depending on the output of A�

�A�x	 � �
 Let Bi
� � fxg and Bi

� � �� Exit the construction�

�A�x	 � �
 Let Bi
� � fxg and Bi

� � �� Exit the construction�

CHAPTER �� POLYNOMIAL TIME BOUNDED REDUCTIONS ���

�A�y	 � �
 Let Bi
� � fyg and Bi

� � �� Exit the construction�

�A�y	 � �
 Let Bi
� � fyg and Bi

� � �� Exit the construction�

�A�x	 � �A�y	
 Do nothing�

�A�x	 �� �A�y	
 Let equal � �� equal�

If M does not converge within n steps on input base� then go to stage n� ��

�� Otherwise� if equal � � then �A�y	 � �A�base	� else �A�y	 �� �A�base	� �	

If �A�base	 � equal then let Bi
� � fyg and Bi

� � �� otherwise� let Bi
� � fyg and

Bi
� � �� Exit the construction�

Let

B� �
S
i��B

i
� and B� �

S
i��B

i
��

We can determine whether z is of the form fi�n	 in polynomial time� If

z � fi�n	� then we can determine whether z is in B� or B� �or neither	 by run�

ning the construction above through stage n � jzj� Algorithm A runs in polynomial

time� The remainder of time in each stage is dominated by the simulation of n steps

of a Turing machine computation� The simulation can be performed in O�n�	 time

�HU��� Theorem �
���� Thus B� � P and B� � P�

For every i� the set Bi
� � Bi

� is nonempty� so B� � B� is in�nite� Therefore B� or

B� is in�nite� Thus B� is an in�nite polynomial time subset of #A� or B� is an in�nite

polynomial time subset of A�

Gasarch has found a simpler proof of our result �Gas���� We present his proof�

Proof� We take two cases�

Case �� For in�nitely many values of n� when we run Algorithm A on input ��n� �n��	�

the algorithm tells us �A��n	 or �A��n��	� In this case� let

Bv � f�n j Algorithm A on input ��n��� �n	 or ��n� �n��	 yields �A��n	 � vg�

for v � �� �� Then B� is an in�nite polynomial time subset of #A� or B� is an

in�nite polynomial time subset of A�

CHAPTER �� POLYNOMIAL TIME BOUNDED REDUCTIONS ���

Case �� There exists m such that for every natural number n � m� when we run Al�

gorithmA on input ��n� �n��	� the algorithm tells us whether �A��n	 � �A��n��	�

In this case� the following algorithm determines whether �n � A
 If n � m then

determine the answer by table lookup� If n � m then determine whether �m � A

by table lookup� run Algorithm A on ��m� �m��	� on ��m��� �m��	� � � � � and on

��n��� �n	� and determine whether �n � A by following the chain of answers

given by Algorithm A�

Let Bv � f�n j �A��n	 � vg� for v � �� �� Then B� is an in�nite subset of #A� or

B� is an in�nite subset of A�

De�nition �
�
�� A set S is P�countable if S � fg�i	 j i � Ng� where g is ���� and

both g and g�� are polynomial time computable�

Allender has proved that if S is P�printable �HY��� then S is sparse and P�countable

�All��� Theorem ��
	�� However� P�countable sets need not be sparse�

De�nition �
�
�� A set A is locally bi�immune for a class C if there exists a P�

countable set S such that neither S �A nor S � #A has an in�nite subset that belongs

to C�

Theorem �
�
�� No ��cheatable set is locally bi�immune for P�

Proof� Let A be a ��cheatable set� let g be a ��� function such that g and g��

are polynomial time computable� and let S � fg�i	 j i � Ng� We perform the same

construction as in the proof of Theorem ������� except that we let x � g�fi�n		 and

y � g�fi�n��		 �so that we will construct subsets of S	� and instead of simulatingM

for n steps on input base we simulateM for jyj steps on input base� Because g and fi

are ��� functions� y � g�fi�n��		 is unbounded� therefore the modi�ed construction

converges� Either B� is an in�nite subset of S� #A� or B� is an in�nite subset of S�A�

Thus� we have proved that every cheatable set is easy in�nitely often on every

P�countable set�

CHAPTER �� POLYNOMIAL TIME BOUNDED REDUCTIONS ���

��� P�Terse and P�Verbose Sets

In this section� we generalize de�nitions from Chapter �� such as terseness and verbose�

ness� to polynomial time computation� We show that if a set A is not P�superterse

then n parallel queries to A can be answered in polynomial time by making only

O�log n	 queries to some oracle�

De�nition �
�
�

� A set A is polynomial terse �P�terse	 if

��n	�FA
n �� FQ�n� �� A�P	��

� A set A is polynomial superterse �P�superterse	 if

��B	��n	�FA
n �� FQ�n� �� B�P	��

� A set A is polynomial verbose �P�verbose	 if

��n	�FA
�n�� � FQ�n�A�P	��

� A set A is polynomial k�verbose �P�k�verbose	 if

FA
n � FQ�k log n�O��	� A�P	�

� A set A is polynomial k�semiverbose �P�k�semiverbose	 if there exists a set B

such that

FA
n � FQk�k log n�O��	� B�P	�

� A set A is polynomial self�encoding �P�self�encoding	 if

��k	��n	�Qk�n�A�P	 � Q�k�A�P	��

The de�nition of P�terseness is due to Amir and Gasarch �AG����

The following lemma is a generalization of Lemma ������� We have to be slightly

careful in order to produce functions that run in polynomial time� otherwise the proof

is the same�

CHAPTER �� POLYNOMIAL TIME BOUNDED REDUCTIONS ��

Lemma �
�
� If FA
k is computable by a set of
k � � polynomial time functions�

then FA
n is computable by a set of S�n� k	 polynomial time functions� for every n � k�

Proof� By assumption� there exist polynomial time functions g�� � � � � g�k�� such

that

��q�� � � � � qk	�F
A
k �q�� � � � � qk	 � fgi�q�� � � � � qk	 j � � i �
k � �g��

We say that a pair of k�tuples ��p � �w 	 is consistent if �w � fgi��p 	 j � � i �
k � �g� If

m � k� we say that a pair of m�tuples ��q � �x 	 is consistent if ��q ��� 	� �x ��� 		 is consistent

for all �� in �m
k � Since F

A
k is computed by the set of functions fg�� � � � � g�k��g� the pair

��q �FA
n ��q 		 is consistent for every n�tuple �q �

We will complete the proof by de�ning polynomial time functions g��� g
�
�� � � � such

that g�i��q 	 is the ith n�tuple �x such that ��q � �x 	 is consistent�

We can test in polynomial time whether a pair of k�tuples is consistent� because

each function gi is polynomial time computable and
k�� is a constant� If m � k� we

can test in polynomial time whether a pair of m�tuples is consistent� because there

are only
�
m

k

�
choices for �� � We de�ne a function g�i� which is computed as follows

Step �� Input �q � �q�� � � � � qn	�

Step �� Compute a list Lk containing all k�tuples �x�� � � � � xk	 such that

��q ��� � � � � k	� �x�� � � � � xk		 is consistent�

Step �� For j � k � � to n do the following

�a� Let Lj be an empty list�

�b� For each element �x of Lj�� and for b � �� � do the following

if ��q ��� � � � � j	� ��x � b		 is consistent then insert ��x � b	 into Lj �

Step �� If the length of Ln is at least i then output the ith element of Ln� otherwise�

output the �rst element of Ln�

Let Xj be the set of elements on the list Lj at the end of step ��b	� Then

��q ��� � � � � j	� �x 	 is consistent for every j�tuple �x in Xj � Therefore� for every �� in �j
k

Xj��� 	 � fgi���q ��� � � � � j		��� 		 j � � i �
k � �g�

CHAPTER �� POLYNOMIAL TIME BOUNDED REDUCTIONS ���

so card�Xj��� 		 �
k � � �
k� By Lemma ������ card�Xj	 � S�j� k	 � S�n� k	�

which is a polynomial in n� Since Lj contains no repetitions� the length of Lj is is

bounded by a polynomial in n� Therefore g�i is computable in polynomial time� Since

Ln contains every n�tuple �x such that ��q � �x 	 is consistent�

FA
n ��q 	 � fg

�
i��q 	 j i � �g�

The length of Ln is at most S�n� k	� therefore g�i��q 	 � g����q 	 for every i � S�n� k	�

Therefore�

FA
n ��q 	 � fg

�
i��q 	 j � � i � S�n� k	g�

Theorem �
�
� If there exists a set B such that

FA
k � FQ�k � �� B�P	

then there exists a set C
Ptt A such that

FA
n � FQk��k � �	 log n�O��	� C�P	�

Proof� Assume that FA
k � FQ�k��� B�P	� By Theorem ����
�i	� FA

k is computable

by a set of
k�� �
k � � polynomial time functions� Therefore� by Lemma ����
� FA
n

is computable by a set of S�n� k	 polynomial time functions� By Theorem ����
�ii	�

for every n � k there exists a set Cn � Qk���F
A
n �P	 such that

FA
n � FQk�dlog �S�n� k		e� Cn�P	�

A review of the proof shows that the polynomial time bounds are the same for

Ck� Ck��� � � � � Let C� be the recursive join �Rog��� Soa��� of Ck� Ck��� � � � � Then

C� is polynomial time truth�table reducible to A� and for all n � k

FA
n � FQk�dlog �S�n� k		e� C��P	�

Since S�n� k	 � O�nk��	�

FA
n � FQk��k � �	 log n �O��	� C��P	�

CHAPTER �� POLYNOMIAL TIME BOUNDED REDUCTIONS ���

Let C � A join C�� so that C �Ptt A �P��tt C and

FA
n � FQk��k � �	 log n�O��	� C�P	�

Corollary �
�
� If A is not P�superterse� then there exists a natural number k such

that A is P�k�semiverbose�

Proof� This follows immediately from Theorem ������

��� Decision Problems and P�terse Sets

Theorem �
�
� If the set B is P�self�encoding then

��k	��n	�Q�n�B�P	� Qk�k�B�P	��

Proof� Assume that B is P�self�encoding so that for some j

��n	�Qk�n�B�P	 � Q�j�B�P	�� ��	

Let k �
j � �� By Theorem ������

Q�n�B�P	 � Qk�

n � �� B�P	 by Theorem �����

� Q�j�B�P	 by equation ��	

� Qk�

j � �� B�P	 by Theorem �����

� Qk�k�B�P	�

If the set B is P�self�encoding� then extra queries to B do not allow us to solve

extra decision problems� The next theorem shows that if B is P�self�encoding but

not P�superterse� then extra queries to B do not even allow us to compute extra

functions�

CHAPTER �� POLYNOMIAL TIME BOUNDED REDUCTIONS ���

Theorem �
�
� If the set B is P�self�encoding but not P�superterse� then B is cheat�

able�

Proof� The proof is the same as the proof of Theorem ����
� except that we omit

the last step� which applies the Nonspeedup Theorem�

��� NP�Hard and �P

�Hard Oracles

In this section� we apply the results of the previous sections to NP�hard and �P� �hard

oracles� We show that n � � queries to an NP�hard oracle allow us to compute in

polynomial time more functions than we can compute in polynomial time with only

n queries to the same oracle� unless P � NP� We show that all �P� �hard sets are

superterse unless P � NP�

Theorem �
	
� Let B be an NP�complete set� The following four statements are

equivalent

i� P � NP�

ii� B is cheatable�

iii� ��k	�FQ�k � �� B�P	 � FQ�k�B�P	��

iv� ��k	�FQk�k � �� B�P	 � FQk�k�B�P	��

Proof�

�i�� �ii�iii�iv�� Assume that P � NP� Then B � P�

�ii�� �i�� Assume that B is cheatable� Because B is NP�complete� SAT is m�

reducible to B� Therefore� SAT is cheatable� Furthermore� SAT is self�tt�

reducible because any Boolean formula can be reduced to the two Boolean

formulas obtained by setting the �rst variable to � and to �� By Theorem ������

SAT � P� so P � NP�

CHAPTER �� POLYNOMIAL TIME BOUNDED REDUCTIONS ���

�iii�� �ii�� Follows from Theorem ������i	�

�iv�� �ii�� Follows from Theorem ������ii	�

A set B is said to be NP�hard if all problems in NP are m�reducible to B��

Corollary �
	
� Let B be an NP�hard set� If P �� NP then

i� B is not cheatable�

ii� ��k	�FQ�k�B�P	 � FQ�k � �� B�P	��

iii� ��k	�FQk�k�B�P	 � FQk�k � �� B�P	��

Proof�

i� By contradiction� Let B be an NP�hard set� and assume that B is cheatable� Let

C be any NP�complete set� Then C �m B� so C is cheatable� By Theorem ������

P � NP� a contradiction�

ii� By contradiction� Assume that FQ�k � �� B�P	 � FQ�k�B�P	�� By Theo�

rem ������i	� B is cheatable� This contradicts �i	�

iii� By contradiction� Assume that FQk�k � �� B�P	 � FQk�k�B�P	�� By Theo�

rem ������ii	� B is cheatable� This contradicts �i	�

Part �ii	 was also proven by Krentel in �Kre����

Let B be any NP�complete set� We have shown that extra queries to B allow

us to compute extra functions in polynomial time� provided that P �� NP� How�

ever� it is not known whether extra queries to B allow us to solve extra decision

problems in polynomial time� For example� Blass and Gurevich �BG�
�� Valiant

and Vazirani �VV���� and Papadimitriou and Yannakakis �PY��� have considered the

�Others have de�ned NP
hardness in terms of Turing reductions� The results to follow do not
apply to that kind of NP
hardness�

CHAPTER �� POLYNOMIAL TIME BOUNDED REDUCTIONS ���

class DP � fL� � L� j L�� L� � NPg� it is not known whether P �� NP implies that

DP �� co�NP � NP�

It is well known that if NP � co�NP then the Meyer�Stockmeyer polynomial time

hierarchy �MS�
� Sto��� collapses into NP� That observation relativizes�� Therefore�

if we pick A to be an oracle such that NPA � co�NPA but PA �� NP
A �BGS���� then�

computing relative to A� ��query reducibility to an NPA�complete set is identical with

Turing reducibility to an NPA�complete set� Thus� there is a relativized world in which

P �� NP� but extra queries to an NP�complete set do not allow us to solve extra decision

problems� If B is NP�complete� Cai and Hemachandra �CH��� have constructed rela�

tivizations for each value of k that make

Qk�k�B�P	 � Qk�k � �� B�P	 � Qk���B�P	�

The next result states that if extra queries to an NP�complete set do not allow

us to solve extra decision problems in polynomial time� then all NP�hard sets are P�

superterse� unless P � NP� We tend to disbelieve the hypothesis �because it implies

that the polynomial�time hierarchy collapses �Kad���	 and we tend to believe the

conclusion �because it is true under almost all relativizations �Bei��b�	� However�

neither belief has been proven true� and it is reassuring to know that at least one of

them must be true� unless P � NP�

Theorem �
	
� Assume that P �� NP� and let B be a P�self�encoding set�

i� If B is NP�hard then B is P�superterse�

ii� If B is NP�complete then all NP�hard sets are P�superterse�

Proof�

i� By contradiction� Assume that B is NP�hard and P�self�encoding� but not P�

superterse� Since B is P�self�encoding but not P�superterse� B is cheatable� by

Theorem ����
� Since B is NP�hard and cheatable� P � NP� by Corollary ����
�

That is a contradiction�

�See �BGS��
 by Baker	 Gill	 and Solovay for a discussion of relativizations�

CHAPTER �� POLYNOMIAL TIME BOUNDED REDUCTIONS ���

ii� By �i	 B is P�superterse� If C is NP�hard� then B �m C� so C must be super�

terse�

We can relativize the bounded query classes for polynomial time in the same way

as we relativized the bounded query classes in Chapter �� We relativize some of the

de�nitions from this Chapter�

De�nition �
	
�

� The set B is PA�superterse if

��C	��n	�FB
n �� FQA�n� �� C�P	��

� The set B is PA�self�encoding if

��k	��n	�QA
k �n�B�P	 � QA�k�B�P	��

� The set B is A�cheatable if

��C	��k	�FB
�k � FQA�k�C�P	��

Theorem �
	
� There is an oracle A such that all NPA�hard sets are PA�superterse�

Proof� Proof by contradiction� There is an oracle A such that NPA � co�NPA

but PA �� NP
A �BGS���� Let C be any NPA�complete set� Since NPA � co�NPA the

relativized polynomial time hierarchy collapses to NPA� so

��n	�QA
k �n�C�P	 � QA��� C�P	��

Therefore� C is PA�self�encoding� The proof of Theorem ������ii	 relativizes� since

P
A �� NP

A and C is both NPA�complete and PA�self�encoding� all NPA�hard sets are

P
A�superterse�

CHAPTER �� POLYNOMIAL TIME BOUNDED REDUCTIONS ���

Thus we have found a relativization that makes all NP�hard sets P�superterse�

In fact all NP�complete sets are P�self�encoding if and only if the Boolean Hierarchy

of Wagner and Wechsung �WW��� collapses� Thus any oracle that collapses the

Boolean Hierarchy �CH��� makes all NP�complete sets P�superterse� In �Bei��b�� we

have shown that all NP�hard sets are P�superterse under almost all relativizations�

Open Question �
	
�

� If P �� NP are all NP�hard problems P�superterse�

� Does there exist an oracle A such that PA �� NP
A and some NPA�hard problem

is not PA�superterse�

An important class of problems is �P
� �i�e�� PNP� the class of all decision problems

that can be solved in polynomial time with a polynomial number of queries to a

SAT oracle	� Two examples of sets that are complete for �P� are Uniquely Optimal

Traveling Salesperson �Pap��� and Odd Maximum Satisfying Assignment �Kre���� It

is known that PP
NP

� P
NP� so an unbounded number of queries to a �P� �complete

oracle do not allow us to solve more decision problems in polynomial time than we

can solve in polynomial time with just a single query to that oracle� Therefore all

�P
� �complete sets are P�self�encoding� By Theorem ������i	� every �P� �complete set

is P�superterse unless P � NP� consequently every �P� �hard set is P�superterse unless

P � NP� We formalize this proof below�

Theorem �
	
	 If B is �P� �hard� then B is P�superterse� unless P � NP�

Proof� Let C be a �P� �complete set� We claim that C is P�self�encoding� Proof

Let L � Qk�n�C	� Then L is decided by a polynomial time algorithm that makes n

parallel queries to C� Since C is in �P� � P
NP� we can replace each query with an

equivalent polynomial time computation that uses an NP�complete oracle� Thus L is

decided by a polynomial time algorithm that uses an NP�complete oracle� Therefore

L � P
NP � �P� � Since C is �P� �hard� L �m C� thus L � Q��� C	� Therefore C is

P�self�encoding�

By Theorem ������i	� C is P�superterse unless P � NP� Since B is �P
� �hard�

C �m B� Therefore B is P�superterse unless P � NP�

CHAPTER �� POLYNOMIAL TIME BOUNDED REDUCTIONS �
�

��	 Related Work

Amir and Gasarch �AG��� were the �rst to prove a bi�immunity result for ��cheatable

sets� they showed that if A � �� is ��cheatable then A or �� �A contains an in�nite

polynomial�time subset� In other words� no bi�immune tally set is ��cheatable� In

Theorem ������� we proved that result for sets over an arbitrary alphabet� This and

similar problems are discussed in a survey paper �GJY��� by Goldsmith� Joseph� and

Young�

A stronger version of Corollary ����
 is proven in �ABG���
 If FA
�k � FQ�k�B�P	

then every function that is Turing reducible to A in polynomial time is in FQ�k�B�P	�

We have generalized Theorem ������ by showing that if A is self�reducible and cheat�

able� then A � P� We have also shown that if A is cheatable then A is the union

of a set in NP and a set that is polynomial time Turing reducible to a sparse oracle�

consequently A is the union of a set in NP and a set that is accepted by a family of

polynomial size circuits�

Wagner and Wechsung de�ned the Boolean Hierarchy

NP��	� co�NP��	�NP��	� co�NP��	� � � �

in �WW���� Cai and Hemachandra gave many equivalent de�nitions in �CH���� We

give another de�nition of the Boolean Hierarchy

NP�i	 � fL j L �m PARITYSAT
i g�

co�NP�i	 � f#L j L �m PARITYSAT
i g�

In �Bei���� we show that L � Qk�k�SAT	 if and only if L � Q���PARITYSAT
k 	� Thus

the bounded query classes relative to SAT are very closely related to the Boolean

Hierarchy� Cai and Hemachandra �CH��� have constructed oracles that make the

Boolean hierarchy collapse at arbitrary levels� They have also constructed oracles

that make the hierarchy proper� Cai �Cai��� has shown that almost oracles make the

hierarchy proper� Kadin �Kad��� has shown that if the Boolean hierarchy collapses

then the polynomial time hierarchy collapses�

Book and Ko �BK��� have constructed� for each k � �� a sparse set A such that

CHAPTER �� POLYNOMIAL TIME BOUNDED REDUCTIONS �
�

for every sparse set B it is true that Qk�k�A�P	 � Qk�k � �� B�P	� This result does

not hold if we remove either the sparseness condition or the time bound�

In �Kre���� Krentel considered polynomial time computations that are allowed

to make q�n	 serial queries to an oracle� where n is the length of the input� He

proved the following� stronger version of Corollary ����

 If A is NP�complete and

q�n	 � ��� �	 log n for some positive real number � then

FQ�q�n	� A�P	 � FQ�q�n	 � �� A�P	

unless P � NP� He also showed that if A is NP�complete� q�n	 � O�log n	� and � � �

then

FQ�q�n	� A�P	 � FQ�n�� A�P	

unless P � NP�

In �Bei��c�� we consider polynomial time computations that are allowed to make

q�n	 queries to an oracle� where n is the length of the input� We generalize Theo�

rem ������� and we use that result to prove a generalization of Theorem ������ which

states that if B is any �P� �complete oracle and

��A	�FQk�q�n	� B�P	 � FQ�q�n	� �� A�P	�

then SAT � DTIME�nO�q�n��	�

Chapter �

Conclusions

We have studied tradeo�s between serial queries to an oracle and parallel queries to

an oracle� We have studied conditions under which m � n queries to an oracle allow

us to compute functions that we cannot compute by making only n queries to an

oracle�

In Chapter �� we showed that
n � � parallel queries to K allow us to compute

the same functions that we can compute by making n serial queries to K� where K

is an oracle for the halting problem� i�e��

FQk�

n � ��K	 � FQ�n�K	� ���	

This result is not true for arbitrary oracles� because in �BGGO��� it was shown that

there exists an oracle B such that n�� parallel queries to B allow us to solve decision

problems that we cannot solve by making only n serial queries to B� i�e��

Qk�n� �� B	 �� Q�n�B	�

In addition� there exists an oracle B such that two serial queries to B allow us to

solve more decision problems than we can solve by making only one round of parallel

queries to B� i�e��

Qk���B	 � Q�
� B	�

There also exists an oracle A such that n�� parallel queries to A allow us to compute

functions that we cannot compute by making only n serial queries to any oracle B�

�

CHAPTER �� CONCLUSIONS �
�

i�e��

��B	�FA
n�� �� FQ�n�B	��

Thus equation ���	 does not generalize in any way to arbitrary nonrecursive oracles�

In �BGGO���� it is shown that equation ���	 does not even apply to the jump of an

arbitrary set� because for every nonrecursive set A

��B	�FA�

n�� �� FQ�n�B	��

However� in the polynomial time bounded framework� equation ���	 is half true�

because

FQ�n�B�P	 � FQk�

n � �� B�P	

for every set B�

We have shown that n � � parallel queries to K allow us to solve more decision

problems than we can solve by making only n parallel queries to K� i�e��

Qk�n�K	 � Qk�n� ��K	� ���	

and that n� � serial queries to K allow us to solve more decision problems than we

can solve by making only n serial queries to K� i�e��

Q�n�K	 � Q�n� ��K	� ��
	

In �BG���� we showed that these results are true for the jump of an arbitrary set� i�e��

Qk�n�B
�	 � Qk�n� �� B�	 and Q�n�B�	 � Q�n� �� B�	�

however� neither equation ���	 nor equation ��
	 generalizes to arbitrary nonrecursive

oracles� because in �Bei��d� we constructed a nonrecursive set B such that one query

to B allows us to solve every decision problem that we can solve by making n serial

queries to B� i�e��

Q�n�B	 � Q��� B	

for every n� We can generalize equations ���	 and ��
	 as follows
 For every non�

recursive oracle B and natural number n� n � � parallel queries to B allow us to

CHAPTER �� CONCLUSIONS �
�

compute more functions than we can compute by making only n parallel queries to

B� i�e��

FQk�n�B	 � FQk�n� �� B	�

and n�� serial queries to B allow us to compute more functions than we can compute

by making only n serial queries to B� i�e��

FQ�n�B	 � FQ�n� �� B	�

The last two statements seem intuitively obvious� however� their proof depends on

the Nonspeedup Theorem� which is not obvious�

We showed that n�weak�truth�table reducibility toK is equivalent to n�truth�table

reducibility to K� i�e��

B �n�wtt K � B �n�tt K�

We also classi�ed the functions computable by making more than one round of parallel

queries to K� showing that

FQk�n��K	 � FQk�n��K	 � FQk��n� � �	�n� � �	 � ��K	�

In addition� we considered computations that are allowed to make an unbounded

number of parallel queries during each round� thus obtaining a hierarchy of sets

between those that are truth�table reducible to K and those that are Turing reducible

to K�

In Chapter �� we de�ned computability by a set of functions� and we showed that it

captures the information�theoretic aspects of computability by a bounded number of

queries to an oracle� This concept has been extremely useful in the study of bounded

query classes� Using computability by a set of functions� we proved the Nonspeedup

Theorem� which states that for every nonrecursive set A and every n it is not possible

to answer
n parallel queries to A by making only n serial queries to another oracle

B� i�e��

��B	�FA
�n �� FQ�n�B	��

This is the tightest general result possible� by equation ���	� In a sense� the Non�

speedup Theorem says that we cannot condense the information content of an oracle

by more than a logarithmic amount�

CHAPTER �� CONCLUSIONS �
�

If FA
�n�� � FQ�n�A	 for all n� then we say that A is verbose� If FA

n�� �� FQ�n�B	

for any n and B� then we say that A is superterse� We showed that if a set A is not

superterse then A is very far from being superterse� i�e��

FA
k�� � FQ�k�B	� FA

n � FQk��k �
	 log n�O��	� C	� ���	

for some oracle C� In other words� this theorem says that if we can condense the

information content of an oracle at all� then we can condense its information content

by a logarithmic amount� within a constant�

In �BGGO���� it was shown that every truth�table degree contains a verbose set�

Using that construction and the Nonspeedup Theorem� we showed that every truth�

table degree contains a superterse set� we can also prove this result by using equa�

tion ���	 and the Nonspeedup Theorem�

We proved the following surprising result
 If k serial queries to the nonrecursive

set B allow us to solve every decision problem that we can solve with n parallel queries

to B for every n� then B is superterse� i�e�� if B is nonrecursive then

��n	�Qk�n�B	 � Q�k�B	�� ��n	��A	�FB
n�� �� FQ�n�A	��

The polynomial time bounded version of this result allowed us to show that all �P� �

hard sets are P�superterse unless P � NP� It also allowed us to construct a relativiza�

tion that makes all NP�hard sets P�superterse�

In Chapter �� we described Amir and Gasarch�s discovery �AG��� that the Non�

speedup Theorem is not valid for polynomial time bounded computations� because

there exists a set A �� P such that

��n	�FA
n � FQ��� A�P	��

We proved a Weak Nonspeedup Theorem� which states that if
k parallel queries to

A can be answered by making only k queries to another oracle B� then any n �
k

parallel queries to A can be answered by making only
k � � of the same queries in

parallel� i�e�� if

��B	�FA
�k � FQ�k�B	��

CHAPTER �� CONCLUSIONS �
�

then any n �
k parallel queries to A can be answered by making only
k � � of the

same queries in parallel� If FA
�k � FQ�k�B	 for some k and some B� then we say that

A is cheatable�

Using the Weak Nonspeedup Theorem� we showed that every self�tt�reducible�

cheatable set is in P� This allowed us to show that no NP�hard set is cheatable unless

P � NP� We also showed that if B is self�tt�reducible but not in P or if B is NP�hard

and P �� NP� then n � � parallel queries to B allow us to compute more functions

than we can compute by making only n parallel queries to B� i�e��

FQk�n�B�P	 � FQk�n� �� B�P	�

and n�� serial queries to B allow us to compute more functions than we can compute

by making only n serial queries to B� i�e��

FQ�n�B�P	 � FQ�n� �� B�P	�

In �ABG��� we have shown that every self�reducible� cheatable set is in P�

Appendix A

Chromatic Number of a Recursive

Graph

The theorem below was stated without proof in Section ���� We will prove it by

constructing a pre�x code for the natural numbers �� � � � � n and then applying Kraft�s

inequality �Gal����

Theorem �
	
� If there exists an oracle B and an algorithm that computes ��G	

for recursive graphs by making only f���G		 serial queries to B� then

X
i��

�f�i� � ��

Proof� Let AB be an algorithm relative to B that computes ��G	 by making at

most f���G		 serial queries to B� for some total recursive function f � Let

�n�G	 �

��
� ��G	 if ��G	 � n

unde�ned otherwise�

In �BG���� we showed that FK
n is ��query reducible to the function �n� By the

Nonspeedup Lemma ���
��	� FK
n is not computable by a set of n partial recursive

functions� Therefore� �n is not computable by a set of n partial recursive functions�

We will use this fact later to obtain a contradiction�

�
�

APPENDIX A� CHROMATIC NUMBER OF A RECURSIVE GRAPH �
�

For each sequence � of k oracle answers� de�ne a function c�n�G	 computed as

follows
 Simulate A assuming that the sequence of oracle answers is �� if A tries to

make a �k � �	st query� if A outputs a number greater than n� or if A outputs a

number i such that k � f�i	� then go into an in�nite loop� otherwise� output the

value output by A� Since we can store the values f��	� � � � � f�n	 in a �nite table� c�n

is a partial recursive function for every n and �� We write f�� �g� to denote the set

of all sequences of bits� By the construction of c�n� whenever �n�G	 is de�ned

�n�G	 � fc�n�G	 j � � f�� �g�g� ���	

Let � be a pre�x of ��� because A is deterministic� if c�n�G	 converges to a value

then c�
�

n �G	 must converge to the same value� We will use this fact later in order to

construct a pre�x code for the natural numbers � through n� By the construction of

c�n� if c
�
n�G	 converges then

c�n�G	 � f�� � � � � ng�

Therefore�

��n	��G	�fc�n�G	 j � � f�� �g�g � f�� � � � � ng��

We claim that

��n	��G	�fc�n�G	 j � � f�� �g�g � f�� � � � � ng�� ���	

Proof by contradiction� Suppose that

��n	��G	�fc�n�G	 j � � f�� �g�g � f�� � � � � ng��

Choose such a natural number n� Then

��G	�card�fc�n�G	 j � � f�� �g�g	 � n��

For � � j � n� de�ne a partial recursive function hj�G	� computed as follows
 Time�

share c�n�G	 for all � until the functions have output j distinct values� output the jth

distinct value� Therefore� for all G such that �n�G	 is de�ned

�n�G	 � fc�n�G	 j � � f�� �g�g	 by ���	

� fhj�G	 j � � j � ng�

APPENDIX A� CHROMATIC NUMBER OF A RECURSIVE GRAPH �
�

Thus the partial function �n is computable by a set of n partial recursive functions�

This contradiction establishes the claim�

We write j�j to denote the length of the sequence �� By ���	� for every n� there

exists a graph G such that for each i in f�� � � � � ng� there exists a sequence �i of oracle

answers such that c�in �G	 � i� By the de�nition of c�n� it follows that j�ij � f�i	�

As observed above� if i �� j then �i is not a pre�x of �j� Therefore the sequences

��� � � � � �n form a pre�x code for the natural numbers � through n� Therefore� by

Kraft�s Theorem �Gal��� X
��i�n

�j�ij � ��

Since j�ij � f�i	� X
��i�n

�f�i� � ��

Letting n approach in�nity� we obtain the inequality

X
i��

�f�i� � ��

Bibliography

�ABG��� Amihood Amir� Richard Beigel� and William I� Gasarch� Some connec�

tions between bounded query classes and nonuniform complexity� In Pro�

ceedings of the �th Annual Conference on Structure in Complexity Theory�

pages
�
&
��� �����

�Add��� J� W� Addison� The method of alternating chains� In Theory of Models�

pages �&��� Amsterdam� ����� North�Holland Publishing Co�

�AG��� Amihood Amir and William I� Gasarch� Polynomial terse sets� Inf� �

Comp�� ��
��&��� April �����

�All��� Eric W� Allender� The complexity of sparse sets in P� In Alan L� Selman�

editor� Structure in Complexity Theory� pages �&��� Springer�Verlag� June

����� Lecture Notes in Computer Science

��

�Bei��� Richard Beigel� Query�limited reducibilities� Working draft� May �����

�Bei��a� Richard Beigel� Functionally supportive sets� Technical Report ������

The Johns Hopkins University� Dept� of Computer Science� �����

�Bei��b� Richard Beigel� SATA is terse with probability �� Technical Report ������

The Johns Hopkins University� Dept� of Computer Science� �����

�Bei��c� Richard Beigel� A structural theorem that depends quantitatively on

the complexity of SAT� In Proceedings of the �nd Annual Conference on

Structure in Complexity Theory� pages
�&�
� IEEE Computer Society

Press� June �����

���

BIBLIOGRAPHY ���

�Bei��d� Richard Beigel� Supportive sets " II� Technical Report ������ The Johns

Hopkins University� Dept� of Computer Science� �����

�Bei��� Richard Beigel� Unbounded searching algorithms� SICOMP� ����	
�

&

���� June �����

�Bei��� Richard Beigel� Bounded queries to SAT and the Boolean hierarchy� The�

oretical Computer Science� ���
	
���&

�� July �����

�BG� Richard Beigel and William I� Gasarch� O�log n	 verboseness� Manuscript

in preparation�

�BG�
� Andreas Blass and Yuri Gurevich� On the unique satis�ability problem�

Inf� � Control� ��
��&��� ���
�

�BG��� Richard Beigel and William I� Gasarch� Supportive and parallel�

supportive sets� Technical Report ����� University of Maryland� Dept�

of Computer Science� �����

�BG��� Richard Beigel and William I� Gasarch� On the complexity of �nding the

chromatic number of a recursive graph I
 The bounded case� Annals of

Pure and Applied Logic� ����	
�&��� November �����

�BGGO��� Richard Beigel� William I� Gasarch� John T� Gill� and James C� Owings�

Terse� superterse� and verbose sets� Inf� � Comp�� ���
��&��� �����

�BGH��� Richard Beigel� William I� Gasarch� and Louise Hay� Bounded query

classes and the di�erence hierarchy� Archive for Mathematical Logic�

��
	
��&��� December �����

�BGO��� Richard Beigel� William I� Gasarch� and James C� Owings� Jr� Nondeter�

ministic bounded query reducibilities� Annals of Pure and Applied Logic�

���
	
���&���� �����

�BGS��� T� Baker� J� Gill� and R� Solovay� Relativizations of the P �� NP

question� SICOMP� �
���&��
� �����

BIBLIOGRAPHY ��

�BH��� L� Berman and J� Hartmanis� On isomorphism and density of NP and

other complete sets� SICOMP� �
���&�

� �����

�BK��� Ronald V� Book and Ker�I Ko� On sets truth�table reducible to sparse

sets� SICOMP� ��
���&���� �����

�BS��� J� L� Balc*azar and U� Sch)oning� Bi�immune sets for complexity classes�

MST� ��
�&��� �����

�BY��� Jon Louis Bentley and Andrew Chi�Chih Yao� An almost optimal algo�

rithm for unbounded searching� IPL� ���	
�
&��� August �����

�Cai��� Jin�yi Cai� On Some Most Probable Separations of Complexity Classes�

PhD thesis� Cornell University� Ithaca� NY� �����

�Car�
� Lewis Carroll� Alice�s Adventures in Wonderland and Through the Looking

Glass� Macmillan Publishing Co�� Inc�� New York� ���
�

�CH��� Jin�yi Cai and Lane A� Hemachandra� The Boolean hierarchy
 Hardware

over NP� In Alan L� Selman� editor� Structure in Complexity Theory�

pages ���&�
�� Springer�Verlag� June ����� Lecture Notes in Computer

Science

��

�COS��� Steve Clarke� Jim Owings� and James Spriggs� Trees with full subtrees� In

Proceedings of the �th Southeastern Conference on Combinatorics� Graph

Theory� and Computing� pages ���&��
� �����

�EHK��� Richard L� Epstein� Richard Haas� and Richard L� Kramer� Hierarchies

of sets and degrees below
�� In Logic Year ������
� volume ��� of Lec�

ture Notes in Mathematics� pages �
&��� Berlin� ����� Springer�Verlag�

Volume ��� of Lecture Notes in Mathematics�

�Eps��� Richard L� Epstein� Degrees of Unsolvability
 Structure and Theory� vol�

ume ��� of Lecture Notes in Mathematics� Springer�Verlag� Berlin� �����

BIBLIOGRAPHY ���

�Ers��a� Yu� L� Ershov� A hierarchy of sets� I� Algebra i Logika� ���	
��&���

January&February ����� English Translation� Consultants Bureau� NY�

pp�
�&���

�Ers��b� Yu� L� Ershov� A hierarchy of sets� II� Algebra i Logika� ���	
��&��� July&

August ����� English Translation� Consultants Bureau� NY� pp�
�
&
�
�

�Ers��� Yu� L� Ershov� A hierarchy of sets� III� Algebra i Logika� ���	
��&���

January&February ����� English Translation� Consultants Bureau� NY�

pp�
�&���

�Gal��� P� E� Gallager� Information Theory and Reliable Communication� Wiley�

New York� �����

�Gas��� William I� Gasarch� ����� Personal communication�

�Gas��� William I� Gasarch� ����� Personal communication�

�GJY��� Judy Goldsmith� Deborah Joseph� and Paul Young� Self�reducible� p�

selective� near�testable� and p�cheatable sets
 The e�ect of internal struc�

ture on the complexity of a set� Technical Report �������
� Dept� of

Computer Science� University of Washington� Seattle� June ����� An ex�

tended abstract appeared in Proceedings of the �nd Annual Conference

on Structure in Complexity Theory� IEEE Computer Society Press� June

����� pp� ��&���

�Gol��� E Mark Gold� Limiting recursion� JSL� ����	

�&��� March �����

�Hay��� Louise Hay� Convex subsets of
n and bounded truth�table reducibility�

Discrete Mathematics�
���	
��&��� January �����

�HU��� John E� Hopcroft and Je�rey D� Ullman� Introduction to Automata

Theory� Languages� and Computation� Addison�Wesley� Reading� Mas�

sachusetts� �����

BIBLIOGRAPHY ���

�HY��� J� Hartmanis and Y� Yesha� Computation times of NP sets of di�erent

densities� Theoretical Computer Science� ��
��&�
� �����

�Joc��� C� G� Jockusch� Jr� Semirecursive sets and positive reducibility� T� AMS�

���
�
�&���� May �����

�Kad��� Jim Kadin� The polynomial time hierarchy collapses if the Boolean hier�

archy collapses� SICOMP� ����	
�
��&�
�
� December �����

�Knu��� Donald E� Knuth� Supernatural numbers� In David A� Klarner� edi�

tor� The Mathematical Gardner� pages ���&�
�� Wadsworth International�

Belmont� California� �����

�Kre��� Mark W� Krentel� The complexity of optimization problems� JCSS�

����	
���&���� �����

�Lac��� Alistair H� Lachlan� Some notions of reducibility and productiveness�

Zeitsch� f� math� Logik und Grundlagen d� Math�� ��
��&��� �����

�LMF��� N� A� Lynch� A� R� Meyer� and M� J� Fischer� Relativization of the theory

of computational complexity� T� AMS�

�

��&
��� �����

�MS�
� A� Meyer and L� J� Stockmeyer� The equivalence problem for regular

expressions with squaring requires exponential space� In Proceedings of

the ��th Annual IEEE Symposium on Switching and Automata Theory�

pages �
�&�
�� ���
�

�MY��� Michael Machtey and Paul Young� An Introduction to the General Theory

of Algorithms� Elsevier North�Holland� Inc�� New York� �����

�Odi��� Piergiorgio Odifreddi� Strong reducibilities� Bulletin of the American

Mathematical Society� ���	
��&��� �����

�Owi��� James C� Owings� Jr�� ����� Personal communication�

�Owi��� James C� Owings� Jr� A cardinality version of Beigel�s Nonspeedup The�

orem� JSL� ����	
���&���� September �����

BIBLIOGRAPHY ���

�Pap��� Christos H� Papadimitriou� On the complexity of unique solutions� J�

ACM� ���
	
��
&���� April ����� Also appeared in Proceedings of the ��rd

Annual IEEE Symposium on Foundations of Computer Science� pp� ��&

�� ���
�

�Put��� Hilary Putnam� Trial and error predicates and the solution to a problem

of Mostowski� JSL� ����	
��&��� March �����

�PY��� C� H� Papadimitriou and M� Yannakakis� The complexity of facets �and

some facets of complexity	� JCSS�
�

��&
��� �����

�Rab��� M� O� Rabin� Degree of di!culty of computing a function and a partial

ordering of recursive sets� Technical Report
� The Hebrew University�

Jerusalem� �����

�Rog��� Hartley Rogers� Jr� Theory of Recursive Functions and E�ective Com�

putability� McGraw Hill� New York� �����

�Sac��� G� E� Sacks� A minimal degree less than
�� Bulletin of the American

Mathematical Society� ��
���&���� �����

�Sch��� C� P� Schnorr� Optimal algorithms for self�reducible problems� In Proceed�

ings of the �rd International Colloquium on Automata� Languages� and

Programming� pages �

&���� �����

�Soa��� Robert I� Soare� Recursively Enumerable Sets and Degrees� Perspectives

in Mathematical Logic� Springer�Verlag� Berlin� �����

�Sto��� L� J� Stockmeyer� The polynomial�time hierarchy� Theoretical Computer

Science� �
�&

� �����

�VV��� L� G� Valiant and V� V� Vazirani� NP is as easy as detecting unique

solutions� Theoretical Computer Science� ��
��&��� �����

BIBLIOGRAPHY ���

�WW��� G� Wechsung and K� Wagner� On the Boolean closure of NP� In Proceed�

ings of the ���� International Conference on Fundamentals of Computa�

tion Theory� pages ���&���� Springer�Verlag� ����� Volume ��� of Lecture

Notes in Computer Science�

