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Abstract

When knowledge is represented in a Banach lattice, relationships between knowledge
correspond to Banach lattice homomorphisms 7" : £ — F. In the context of learning,
one may, for example, think of the teacher’s knowledge as a point = in £, and let Tz be
the target knowledge of the student. A learning algorithm is then a uniformly bounded
sequence w of (linear) positive operators T,, : E — F of finite rank. A subset M of F is
T-learnable by w if the sequence T,z converges to I'x for every x of M. A classical theory
of approximation of Banach lattice homomorphisms, known as the Korovkin theory, is
invoked for finite learnability conditions. For Banach function lattices in the sense of
Luxemburg and Zaanen, a randomised Korovkin-type theorem is proposed. Interpreted
for learning, the result asserts the existence of a finite set M C E of concepts which are
“most difficult to learn” for any learning algorithm: if a random algorithm is likely to
learn these concepts in a weak sense, then it almost surely learns all concepts in I,

1 Introduction

Lattice theory has many lives [16]. In mathematical analysis, for example, lattice structure
occurs naturally in combination with that of a Banach space, resulting in the classical concept
of Banach lattice; see the standard reference [17] or the Appendix in [12] for a primer. The
Fuclidean spaces R™, n > 1, the uniform function algebra C'(X), and the familiar spaces
IP(X,p), 1 < p < oo, all are Banach (function) lattices, with the lattice structure inherited
from the reals. Roughly, a Banach lattice is a Banach space with a projection onto a closed
conic subset of its “positive elements”.

It makes sense to consider models of learning of the COLT type [20] in Banach lattices, quite
apart from all the deeper reasons for representing knowledge by (non-linear) lattice structure
[18]. The step from binary to real-valued concepts is indeed a step from Boolean structures
into Banach lattices. The lattice LP(X, u), for example, is the smallest linear lattice containing
a given o-algebra and complete in the ||-|| p DOrm.

Recall the general idea of computational learning models. Think of some knowledge at hand as
a point x in a Banach space F, and think of the learning target - the approximate representation
of the knowledge - as a point T'x in another Banach space F', so that T : ¥ — F'is a continuous
map. In particular, if the learning target is the point x itself, the operator T" is the identity on
E. A learning algorithm is then naturally a sequence of “computable” operators T, : B — F,



and the algorithm “learns” knowledge T’z if the sequence T, x converges to Tz in a suitable
sense. In the present note all operators in the learning algorithms are assumed linear and of
finite rank. Learning in the strong operator topology is then in general not possible in Banach
spaces [5]: there are bounded linear maps 7' : ' — F between Banach spaces for which Tx
cannot be learned for some x in F. However, learning ¢s possible in a large class of Banach
lattices [7][8], including the Banach function lattices such as C'(X) and L'(X, ). The idea of
learning Banach lattice homomorphisms is further explained in the next Section 3.
Interestingly, the problem of learning Banach lattice homomorphisms by positive algorithms
has a simple solution - the Korovkin theory [1][4]. Korovkin’s striking result [13] was originally
formulated for the identity operator in the lattice C|0, 1] as follows: a sequence of positive linear
operators on C|0, 1] converges uniformly to the identity operator at every function in C[0, 1] if
it converges uniformly at each of the three functions t +— 1, t +— ¢, and t — ¢?; see also [14].
In intuitive language, it is enough in this case to check that an algorithm learns three chosen
concepts in order to conclude that it learns all other concepts as well. The theorem extends to
the general uniform lattice C'(X) on a compact set as an addendum to the Stone-Weierstrass
theorem, and there are abstract generalizations. The the main points of Korovkin theory are
recalled in Section 4 following Schaefer [17]. Finer notions of Korovkin closure naturally lead
to various “theories of convexity” of which linear convexity is a special case; these ideas are
fundamental in analysis [9] but are not pursued here.

Section 5 then takes a brief look at the Korovkin theory in a randomised setting. The point here
is to weaken the sufficient convergence requirement on the finite “testing set” so that ordinary
stochastic analysis may be used to verify them. In particular, this can be easily done if the
algorithm is monotone on the testing set with respect to the lattice order, since, by the Dini
theorem for lattices, strong and weak convergence are the same for monotone sequences.

2 Banach lattices

Recall very briefly the main notions; see otherwise the standard reference [17].

Consider a real Banach space (F, ||-||) with a closed conic subset F, C E of positive elements,
and a projection mapping (“taking the positive part of”) z — x, of E onto E; one then writes
r<yily—zeF,, and puts z_ := (—x), and |z| := 2, —z_, deflining the negative part and
the absolute value of x, respectively. The Banach space F is called a Banach lattice if its norm
is monotone in the sense that |z| < |y| implies ||z|| < ||y|| for all z,y in E. Let, for example,
X be a compact set and let A denote a g-algebra of its subsets. The classical Banach space
C(X) of all real-valued continuous functions on X with the supremum norm |-|| _ is naturally
a Banach lattice, and so are, for 1 < p < oo, the Banach spaces I7(X, 1) of all (equivalence
classes of) A-measurable real-valued functions with (finite) norm ||-|| , defined by the p-th root
of the integral [ |f|" dp.

The notion of a Banach sublattice is defined in the obvious way, and a set S C F is said to
generate F if there is no proper Banach sublattice between S and F. Naturally, a Banach
lattice generated by a finite set is said to be finitely generated. For example, by the Stone-
Weierstrass theorem, the uniform lattice C'(X) on a compact set X in R" is (finitely) generated
by the constant function 1x and the coordinate functions xq, ..., x,, and by the dense inclusion
C(X) C LP(X, p), so are the lattices LP(X, p), 1 < p < o0.

The Banach space dual E' of I/ is then also a Banach lattice with £, consisting of functionals
positive on E. Recall that the positive part U§ of the dual unit ball is compact in the weak™®
topology (ie the o(FE’, F)-topology) and E can be viewed as a set of positive continuous real-
valued functions on UY. One now shows that there exists a unique closed subset S of US such



that every function in F, attains its maximum on S. This set is called the Silov boundary of
E, and is here denoted by S (E,). For example, he dual positive cone of the uniform function
lattice £ = C(X) consists of the positive Borel measures on X, of which the point masses
{6, : € X} constitute the Silov boundary.

Further, the Banach space £ = L(F, F') of bounded linear maps between Banach lattices is
naturally ordered by the positive cone L, of positive maps mapping F, into F,. A map
T € L(E,F) is a lattice homomorphism if it commutes with the absolute value: T'|z| = |T'z|
for all z € F; in particular, a lattice homomorphism is a positive map. For example, the set
of the normalised real-valued homomorphisms on C(X) consists of the evaluation functionals
8z, * € X, and thus coincides with the Silov boundary of C(X). Less trivially, all lattice
homomorphisms 7" : C(X) — C(Y') preserving the constant functions are of the form T'f = fok
for some continuous map k : Y — X; see [17], Ch.III, Th.9.1, for example.

3 Models of learning

In application to models of learning, an element x of a Banach lattice such as C'(X) or IP(X, p)
may be viewed as an encoding of knowledge; it may, for example, represent a behaviour, a con-
cept, or a decision rule. In the lattices IP(X, p1), it is instructive to recall, the lattice operations
applied to the indicator functions of measurable sets, represent the Boolean operations on
the sets. Furthermore, the lattice homomorphisms between such lattices extend the Boolean
morphisms of their algebras of measurable sets, and, by results of the type just quoted, essen-
tially arise from a transformation between their “instance spaces”. Intuitively speaking, lattice
homomorphisms preserve the structure of knowledge when merging instances into concepts.

A learning algorithm may then be represented by a sequence of positive operators of finite
rank, as follows. Let E and I be real Banach lattices, and let T : ¥ — I be a Banach
lattice homomorphism. The goal is to approximate T' by sequences T}, of operators of the
form R, 0 S, : E — R" — F where 5, is thought to “sample” an element x € FE which
is then “approximately reconstructed” by R,. If both R, and S, are positive (and therefore
continuous!), the learning operator T, has the form x — Y cpcp Vpp(®) « Ynp with o, € B,
and Yo, € Fy, 1 < k < n. If, for example, T is the identity operator on C(X) and the
functionals 1, are taken as evaluations, one has T, £(t) = Y 1< p<n @(tnk) - Ynr (L) for ¢t € X,
1 <k < n. Recall the classical Bernstein operators B,, in C([0,1]), in which case £, = % and
yar(t) = (1) (1= F, 0 <k <.

It is thus natural to think of a (linear) theory of learning in Banach lattices as a theory of
approximation of lattice homomorphisms by (linear) positive maps of finite rank. This is, in
principle, classical Banach space theory, see [17], Ch.IV, for example. Empirical problems and
constructivity considerations, however, lead to less classical questions, essentially concerning
the rate of learning. For example, convergence rates in the operator norm are currently studied
in terms of Kolmogorov (metric) entropy [2]. Other questions, such as those about Valiant
learnability [19], combine weak topologies and stochasticity, and do not seem as yet to have
found their way into approximation theory in Banach spaces. In neither of the cases, however,
the role of lattice structure - usually present in applications - and the positivity of approximating
operators, seem to have been fully explored.

Questions of convergence rates of learning are however not of concern in the present note. It will
only be illustrated how lattice structure allows in certain cases to ascertain strong convergence
of learning everywhere (or almost everywhere) by testing for weak convergence (or weak in
measure) on a finite number of concepts.



4 Korovkin theory and Banach function lattices

For Banach lattices E and F' denote by A = Q(F, F') the set of all lattice homomorphisms
T:FE — F,and let Q = Q(F, F) denote the set of all equicontinuous sequences (1,)n>1 of
positive linear maps T,, : E — F. A subset M C F is called a Korovkin family for F if
for all Banach lattices F, all T in Q(FE, F), and all (T},)n>1 in Q(E, F), the lim, T,z = Tx
for z € M implies lim, T,z = Tz for ¢ € E. (Roughly: strong convergence on M implies
strong convergence everywhere). For example, by the quoted result of Korovkin, the uniform
lattice C([0,1]) has a Korovkin family consisting of the three monomials ¢ — t* k = 0,1, 2.
This result has an elementary proof, see the Section 7, and was applied by Korovkin to the
Bernstein operators yielding a simple proof of the Weierstrass theorem for C([0,1]).

An simple answer to the question: which Banach lattices have a finite Korovkin family? was
given by Wollf [21] in the 70’s: the finitely generated lattices. Such lattices can be identified
as the so called Banach function lattices, studied in the 60’s by Luxemburg and Zaanen, see
[17]. TLet X = X,, be a compact set in R" and let M be a vaguely compact set of positive
Radon measures on X whose supports have a union dense in X. For any finite Borel function
f on X define the seminorm pu(f) = SUP e S |f|dp, and let B(X, M) be the vector lattice
of all such functions f for which pr((f) is finite. The lattice B(X, M) is complete under the
seminorm p,y, and, hence, so is the closure C'(X)~ of the set C(X) of all continuous functions

in B(X, M).

Definition 1 The Banach lattice C(X)~ /p,;1(0) is called a Banach function lattice, and is
denoted by £ = E(X, M) = E(X,,, M).

Notice, for example, that C(X) and L'(X,dp) are both Banach function lattices corresponding
to M ={6,: 2 € X} and M = {u}, respectively.

By Wolff ’s theorem, a Banach lattice has a finite Korovkin family if it is finitely generated.
Hence, by the Stone-Weierstrass theorem, all function lattice spaces F(X,, M) have finite
Korovkin families. The converse holds for Banach lattices with quasi-interior elements. Recall
that a positive element z > 0 in a Banach lattice F is called a quasi-interior element of F if
it. distinguishes positive non-zero functionals from zero: ¢ (x) > 0 for all 0 # ¢» € £',. In the
uniform lattice C([0,1]), for example, the quasi-interior elements are the positive functions x
bounded away from zero, info<;<q 2(t) > 0.

Theorem 1 (Schaefer [17]-Wolff [21]) A Banach function lattice E(X,, M) has a system
of n generators, and, consequently, a Korovkin family with 2n + 1 elements. Conversely, any
Banach lattice with quasi-interior positive elements which has a finite system of generators, or,
equivalently, a finite Korovkin family, is isomorphic to a Banach function lattice F(X, M).

Note, as a corollary, that also each of the Banach lattices LP(X,,p), 1 < p < 00, is isomorphic
to a Banach function lattice, since, by the Stone-Weierstrass theorem, each is finitely gener-
ated, and each possesses the quasi-interior element 1y . Banach function lattices may thus be
presented with additional structure.

5 Randomising Korovkin

There are several directions in which one may pursue the Korovkin phenomenon. One such
direction is to use a priori information, such as the monotonicity of a learning algorithm, to
weaken the topology of convergence on a Korovkin family. An extention to a stochastic setting
is then straightforward.



Theorem 2 Let E be a Banach function lattice with a Korovkin family M, let F' be Banach
lattice, and let T : & — F be a lattice homomorphism. Denote by Q = Q(E, F) the set of all
equicontinuous sequences w = (1), )n>1 of positive linear maps £ — F, writing T,, = T, (w) to
indicate the n:th operator in the sequence w. Let A be a o-algebra on Q0 with respect to which
all the evaluations w +— (T(w)x, V) for x € B, 1 € S(F}), n > 1, are measurable. Finally, let
L be a probability measure on ). Then, if for p-almost all w, and all x € M and i € S(F+),
the numerical sequences (T, (w)x, 1) are increasing and converge to (Tx, ) in the measure [,

lim p{w: (T (w)z, ) — (Tz,¢)| >} =0 for all e > 0,

n—0o0

then, for p-almost all w, the operators T,, = T, (w) converge to T almost uniformly on I,

lim sup ||Thz — Tz| =0 for all compact K C E,

and T'x = sup,, T,x forx € E.

Proof. Observe first that for increasing sequences of real random variables the notions
of convergence in measure and convergence almost everywhere coincide, hence the sequences
(Tn(w)z, 1) converge to (Tx,v) for x € M, ¢ € S(F}), and p-almost all w. The proof now
parallels that of Dini’s theorem for Banach lattices, cf [17], Ch. II, Th. 5.9. For 2 € M and
w outside a zero set, the functions ¢ — (T, (w)z,1) are continuous on the o(E', F)-compact
space S (F}y) and converge pointwise monotonously to the continuous function v — (T'z, ).
By Dini’s classical theorem, the convergence is uniform on S (Fy). By the defining property of
the Silov boundary of Fy, this gives lim, o |Thz — Tz » = 0for x € M, and therefore for all
x € E, considering M is a Korovkin family. The convergence is uniform on compact sets in F
by the assumed equicontinuity of the sequence T,,. The last statement is due to the fact that,
in any normed vector lattice, the cone of positive elements is a closed set. B

Obviously, everything works equally well with the operators T;, decreasing on M instead.

It is not clear how to characterize the class of algorithms which are monotone on some Korovkin
family, or how to look for such a Korovkin family for a given algorithm. In application, it may
help to remember that if a family fi,..., fx separates points in X,, then it may be extended
to a Korovkin family for F(X,,, M) by adjoining the constant function 1y, and the squares
f127 t f]%['

It is instructive to exemplify Theorem 2 with the Bernstein operators in C(]0, 1]), recall Section
3, randomised in the following way. Sample points ¢;, 7 > 1, in [0,1] independently and
according to a probability distribution p, and, for each 0 < k& < n, replace the point % in the
Bernstein operator B,, by its closest neighbour in the sequence ¢4, ..., t,. It is easy to see that the
random algorithm so defined satisfies the hypothesis of the theorem for the standard Korovkin
family {t — 1, t — ¢, t +— t%} provided p gives positive mass to every proper subinterval of

0, 1].

6 In conclusion

Reassert briefly some apparently open connections to other mathematical matter. The sampling
operators in a learning algorithm are often the operators of restriction of function to sets, finite
or not. The randomisation of such algorithms then naturally connects to Matheron’s theory of
random sets [15]. In general, however, one may have to stay within a theory of random operators
[6], or in some cases of finite rank, random measures [11]. Rates of random convergence are



obviously possible to define in the spirit of Kolmogorov metric entropy [2], also for non-linear
operators, but I am not aware of current work in this direction. One would like, in particular,
to understand Valiant learnability [19] in this setting. One may finally recall that some classical
problems of analysis have been studied from the perspective of random learning [10], though
the term may not have been used there. Also related is the work in algebraic complexity [3]
where, however, connections with randomised techniques are only very recent.

7 Addendum

To demistify abstract Korovkin theory in lattices, recall briefly an explicit proof of Korovkin’s
original results [14].

First, in all generality, let F = F(X) be the set of all real-valued functions on an abstract set
X, let a be a point in X, and let g, > 0 be a function vanishing at = a. Denote by 1 = 1x
the function on X identically equal to one. Assume now that for every f in a certain subset
H of F, and for every £ > 0, there is a constant C.(f) such that the modulus of the difference
f — f(a) is bounded by & + C.(f) - go- If 11 is a positive linear functional on F then, obviously,
the modulus of p(f) — f(a)u(1) will be bounded by eu(1) + C.(f)p(gs). Hence, if a sequence
of positive linear functionals p; converges to the evaluation functional , at the two functions
1 and g,, it will also converge at every function in H.

Specialisations are straightforward. If, for example, there is a metric d on X, one may put
go(x) = d(x,a), and let H be the set of all the bounded continuous real-valued functions on
the metric space X. The constant C.(f) may here be taken as the quotient between twice the
sup norm of f and the radius of the largest ball around a in which f — f(a) is bounded by e.
Further specialisation to the case X C R, this time with g, as the square of the Fuclidean
distance to a, gives the original Korovkin theorems.
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