
Filosofická fakulta
Universita Karlova v Praze

Weak Formal Systems

diplomová práce
Praha, 2003

studijńı obor: logika-informatika
vypracoval: Jan Henzl
vedoućı práce: Doc. RNDr. Jan Kraj́ıček, DrSc.

Prohlašuji, že jsem tuto práci vypracoval samostatně a použil výhradně
citovaných pramen̊u.

Contents

1 Abstract 4

2 Introduction 5

3 Propositional proof systems 7

4 Examples of propositional proof systems 10

5 Predicate calculus as a propositional proof system 14

6 Weak first order theories 19

7 Theories extending T∞ 28

8 Theories with ”fast growing models” 34

9 Further research 42

10 Symbol index 43

References 44

3

1 Abstract

In this work we study the calculi for first-order logic as propositional proof
systems. It is easy to see (and discussed in this thesis formally) that
predicate calculi can serve as propositional proof systems. The question is
whether they can allow for some shorter proofs.
The motivation for this comes from a problem whether there exists a
polynomially bounded proof system. We will shortly review this problem
(first stated by S.A.Cook and R.A.Reckhow [CR]) in the introduction to
this thesis.
We interpret calculi for predicate logic and some first-order theories as
propositional proof system in the sense of Cook-Reckhow [CR] and we
study their efficiency in terms of polynomial simulations.
We prove that predicate calculus is polynomially equivalent to Frege
systems while a theory saying that there are at least two different elements
is polynomially equivalent to the Quantified propositional calculus. We
prove analogous results also for some stronger theories. Further we define
the notion of a ”weak theory” and show that weak theries can be
polynomially simulated by the Quantified propositional logic too. We
conclude with some negative examples and some open problems.

4

2 Introduction

By the well known result of S.A. Cook [C] the set of propositional
tautologies (TAUT) in DeMorgan language regarded as strings over a finite
alphabet is coNP -complete. Thus the problem whether the set NP is
closed under the complementation is equivalent to the problem if TAUT is
in NP . This problem is further equivalent to a question whether there
exists a propositional proof system in which all propositional tautologies
would have a proof of length polynomial in the length of the tautology.
This question was first studied in [CR]. In that paper a general definition
of a propositional proof system was introduced, allowing to study the
length of a shortest proof of propositional tautology in various proof
systems as a function of the length of the tautology. The smallest upper
bound known for this function is exponential for any proof system. The
difficult question is whether there is a polynomial bound on this function
for some proof system.
The only known results for stronger proof systems are relative. They say
that some proof systems are about equivalent. The paper [CR] comes with
several such results. It compares the standard proof systems called Frege
systems and natural deduction systems on different classes of connective
sets and states that they are equivalent up to a translation of proofs by a
polynomial-time function. The paper alse introduces the so called
Extended Frege systems that allow for shortening of the formulas in proofs
in some cases.
The question is how can we create other propositional proof systems that
might be stronger than the traditional systems. One of the natural ways
that can be used is to extend the calculi of Frege systems into Predicate
calculi and use the nulary predicate symbols as propositional variables.
Such systems are sound and complete because they are an extension of a
Frege system. The question we are interested in is if such systems can
allow for some shorter proofs. Similarly we can further extended the
predicate calculi into first-order theories and study such systems as
propositional proof systems. This provides an unlimited number of ways of
creating new propositional proof systems.
To help us study and compare different proof systems we will introduce in
Chapter 3 a more general definition of a propositional proof system as well
as ways of measuring and comparing the lengths of proofs. Although it is
not known except for some special cases if some proof systems are more
powerful then others there are some results stating that some basic proof

5

systems have the same strength. We will introduce in Chapter 4 the basic
proof systems that were studied by Cook and others such as Frege systems,
extended Frege systems and the Quantified propositional calculi. In the
next Chapter 5 we will formally define the predicate calculi as
propositional proof system to fit the general definition. Further we will
show that such systems are polynomially equivalent to Frege systems up to
an application of a polynomial. The next natural step is to extend
predicate calculi by other axioms and to study the resulted theories. An
interesting result we prove is that some theories are as powerful as
Extended Frege systems or the Quantified propositional calculi. These
results are developed in Chapter 6. In Chapter 7 we will try to find some
very general description of theories equivalent to Quantified propositional
calculus while in the last chapter we will try to examine some theories
about which we do not know if they are not stronger. Chapter 9 will state
some open problems pointing towards possible further research.

6

3 Propositional proof systems

The symbols Σ, Σ1,. . . will denote in the following text a finite alphabet of
cardinality at least 2. The symbol Σ∗ will denote the set of all finite words
over alphabet Σ.
The DeMorgan language for propositional logic consists of {0, 1, ∧, ∨, ¬}
plus the auxiliary symbols like brackets, commas, etc. and symbols for
variables p, q, r, p0, p1,. . . . In a finite alphabet, the variables and
constants are strings (say a letter p followed by a string over 0, 1) in order
to have an unlimited supply of them.
A formula refers to a propositional formula built up in the usual way from
atoms (propositional variables) and connectives from DeMorgan language,
using infix notation.
If A1, . . . , An, B are formulas, then we write A1, . . . , An |= B if B is a
tautological consequence of A1, . . . , An. A derivation (from zero or more
formulas called hypotheses) in such a system is a particular finite sequence
of formulas ending in the formula proved. Each formula must be eather a
hypotheses, or must follow from earlier lines by a rule of inference. If
derivation has no hypotheses, it is called a proof.
The notation A1, . . . , Ak �πP B means that π is a derivation of B from
hypotheses A1, . . . , Ak in the proof system P . (The notation �P means
that there is some derivation π in system P .)
Thus to specify a propositional proof system for our purposes, it is only
necessary to specify a finite system of rules of inference.
We use the following notation for various complexity measures of proofs
and formulas according to [CR]:
|w| will denote the length of a word w in DeMorgan language as a string.
If encoded in a finite alphabet Σ, the length of a variable pi is proportional
to log(i). In the case of formulas, it is more natural to count the size by
the number of occurrences of atoms and of constants in the formula A. We
denote this as l(A). Notice that every atom ocuring in A has the length
(after possible renaming of atoms) |pi| ≤ O(log(l(A)). And so
l(A) ≤ |A| ≤ O(l(A) · log(l(A)). Therefore we will measure the length by
l(A): It is an insignificant change and the l-measure is more natural in our
context. For a derivation π, l(π) is the sum of l(A)s for all formulas A in π.
In following text we will use a more general definition of a proof system
than in the example above:

Definition. 3.1 [CR]

7

1. TAUT will denote the set of propositional tautologies in DeMorgan
language.

2. If L ⊆ Σ∗, a proof system for the language L is a polynomial-time
function f : Σ∗

1 → L for some alphabet Σ1 such that f is onto. If
y = f(x), then we will say that x is a f-proof of y.

3. A proof system is polynomially bounded iff there is a polynomial
p(n) such that for all y ∈ L there is a x ∈ Σ∗

1 such that y = f(x) and
|x| ≤ p(|y|).

4. A propositional proof system is any proof system for the set TAUT.

It is easy to see (and argued for in [CR]) that any conventional proof
system for tautologies naturally fits this general definition of a proof
system.
Although it is doubtful that every propositional proof system fitting this
general definition is natural, the following proposition will explain the
motivation for the general definition and also one of the motivations for
the research on the lengths of the proofs. In the following NP and coNP
are the well known classes in computational complexity.

Theorem. 3.2 [CR] TAUT has a polynomially bounded proof system iff
NP = coNP .

The following definition allows us to compare the strength of two
propositional proof systems, with respect to the lengths of the proofs.

Definition. 3.3 If f1 : Σ∗
1 → L and f2 : Σ∗

2 → L are proof systems for L,
then f2 p-simulates f1 provided there is a polynomial-time function
g : Σ∗

1 → Σ∗
2 such that f1(x) = f2(g(x)) for all x ∈ Σ∗

1.

The following proposition is obvious:

Proposition. 3.4 If a proof system f2 for L p-simulates a polynomially
bounded proof system f1 for L, then f2 is also polynomially bounded.

We will use the notation f1 ≤p f2 to denote that f2 p-simulates f1. It can
be easily seen that the relation ≤p is reflexive and transitive, i.e. it is a
quasi-ordering. If two systems p-simulate each other, they would be
considered as p-equal (f1 ≈p f2).

8

If f1, f2, g are as in the Definition 3.3 and there is a constant c such that
c · l(x) ≥ l(g(x)), then we would say that f2 linearly simulate f1 (also
l-simulate, f1 ≤l f2). If both systems linearly simulate each other, they will
be considered as linearly equal (l-equal, ≈l).
Note that in l-simulation the function g translating the proofs can still be
polynomial-time computable and need not to be linear-time computable.

9

4 Examples of propositional proof systems

Frege systems. In the most usual propositional proof systems, the rules
of inference are formula schemes and an instance of the scheme is obtained
by applying a substitution to the scheme. Such systems are being called
Frege systems.

Definition. 4.1 [CR]
If D1, . . . ,Dk are formulas and p1, . . . , pk are distinct atoms, then
σ = (p1, . . . , pk)← (D1, . . . ,Dk) is a substitution, and σA is a formula
which results by simultaneously replacing pi by Di, i = 1 . . . k, in the
formula A.
A Frege rule is a tuple of formulas (C1, . . . , Cn)/D, where D is a
tautological consequence of C1, . . . , Cn (C1, . . . , Cn |= D in symbols), i.e.
every truth assignment satisfying all C1, . . . , Cn satisfies also D.
If n = 0, the rule is an axiom scheme.
For any substitution σ we say that σD follows from σC1, . . . , σCn by the
rule (C1, . . . , Cn)/D.
An inference system F is a finite set of Frege rules. The notions of a
derivation and the symbol �F for F are defined as in the previous chapter.
By our condition on the definition of a Frege rule, it is clear that if
A1, . . . , An �F B then A1, . . . , An |= B.

Definition. 4.2 [CR]
An inference system F is implicationaly complete if A1, . . . , An �F B
whenever A1, . . . , An |= B. A Frege system is an implicationaly complete
inference system in a complete language.

Example. 4.3 An example of a Frege system could be one which has
connectives ¬, →, the inference rule is Modus Pones (MP):
(A,A→ B)/B, and which has additional six axiom schemes:

F1 : A→ (B → A)

F2 : (C → (B → A))→ ((C → B)→ (C → A))

F3 : (D → (B → A))→ (B → (D → A))

F4 : (B → A)→ (¬A→ ¬B)

F5 : ¬¬A→ A

10

F6 : A→ ¬¬A

Theorem. 4.4 [CR]
All Frege systems over any language containing the DeMorgan language
p-simulate each other and thus they are p-equal. This also holds for the so
called natural deduction systems and Gentzen sequent calculus with cut.

Extended Frege systems. [CR] introduces a proof system that might
allow for shorter proofs than Frege proof systems. They show a way of
shortening proofs on an example of a proof of the ”pigeon-hole principle”.
The device, by which these systems shorten formulas in proofs of Frege
systems, is by introducing new atoms, which serve as abbreviations of
subformulas in formulas of the proof.

Definition. 4.5 [CR] An extended Frege system is a proof system which
consist of a Frege system F together with the extension rule which allows
formulas of the form p ≡ A to be added to the derivation, where A is any
formula and p is any ”new” atom. Atom p must not occur in A, in any
lines preceding p ≡ A, or in any hypotheses to the derivation. p can occur
in the later lines, but not in the last line.
The extended Frege system based on F is denoted EF .

The following propositions are proved for extended Frege systems in [CR]:

Proposition. 4.6 (Soundness of EF) If A1, . . . , An �EF B then
A1, . . . , An |= B.

Proposition. 4.7 A given extended Frege system EF is polynomially
bounded if and only if all extended Frege systems over all languages are
polynomially bounded.
Also, an extended Frege system EF is polynomially bounded if and only if
there is a polynomial bound on the number of lines in proofs in EF .

Quantified propositional calculus. For an easier application in
subsequent proofs, we will take the definition of Quantified propositional
calculus (G) based on Gentzen sequent calculi. However, by the
p-equivalence of Frege systems and sequent calculus showed in [CR], this
system is p-equal to quantified propositional calculi based on Frege
systems from Example 4.3.

11

In sequent calculi, the derivation is not made up from formulas, but from
sequents of formulas. In following definition, the symbols Γ, Π, Δ, Λ
denote (possible empty) sets of formulas.

Definition. 4.8 ([KP]) Calculus G is based on classical propositional
Gentzen sequent calculus:

A : / Γ, ϕ⇒ Δ, ϕ; / ⇒ 1; / 0⇒
W : Γ⇒ Δ / Γ⇒ Δ, ϕ; Γ⇒ Δ / Γ, ϕ⇒ Δ

∨r : Γ⇒ Δ, ϕ / Γ⇒ Δ, ϕ ∨ ψ; Γ⇒ Δ, ϕ / Γ⇒ Δ, ψ ∨ ϕ
∧l : Γ, ϕ⇒ Δ / Γ, ϕ ∧ ψ ⇒ Δ; Γ, ϕ⇒ Δ / Γ, ψ ∧ ϕ⇒ Δ

∧r : 〈Γ⇒ Δ, ϕ〉, 〈Γ⇒ Δ, ψ〉 / Γ⇒ Δ, ϕ ∧ ψ
∨l : 〈Γ, ϕ⇒ Δ〉, 〈Γ, ψ ⇒ Δ〉 / Γ, ϕ ∨ ψ ⇒ Δ

¬l : Γ⇒ Δ, ϕ / Γ¬ϕ⇒ Δ

¬r : Γ, ϕ⇒ Δ / Γ⇒ Δ,¬ϕ
→ r : Γϕ⇒ Δ, ψ / Γ⇒ Δ, ϕ→ ψ

→ l : 〈Γ, ϕ⇒ Δ〉, 〈Π, ψ ⇒ Λ〉 / Γ,Π, ϕ→ ψ ⇒ Δ,Λ

Cut : 〈Γ,⇒ Δ, ϕ〉, 〈Π, ϕ⇒ Λ〉 / Γ,Π⇒ Δ,Λ

and contains also the quantifier rules:

∃r : Γ⇒ Δ, ϕ(ψ) / Γ⇒ Δ,∃pϕ(p)

∀l : ϕ(ψ),Γ ⇒ Δ / ∀pϕ(p),Γ⇒ Δ

∃l : ϕ(p),Γ⇒ Δ / ∃xϕ(x),Γ⇒ Δ

∀r : Γ⇒ Δ, ϕ(p) / Γ⇒ Δ,∀xϕ(x)

with the proviso that p does not occur in the lower sequents of ∀r and ∃l.
Theorem. 4.9 G ≥p EF ≥p F
Proof. Naturally EF ≥p F , as EF is an extension of F , so a proof in F
is a special case of a proof in EF .
It is also well known that G ≥p EF , as shown for example in [K]. The
p-simulation of EF by G also follows from our results Lemma 6.7,
Proposition 6.6 and Proposition 6.2. �

12

On the other hand it is known neither if F ≥p EF nor if EF ≥p G. It is
expected that none of these p-simulations are true. In the first case it is
because there is no hint how to simulate the extension rule in F , while in
the second case it seems difficult to simulate quantifiers in EF .
Notice that a propositional formula with quantifiers can be easily
converted into an equivalent formula without quantifiers (because the
quantified propositional variables can only have two values: 0-false,
1-true), according to the schemes:

∃pϕ(p) ≡ ϕ(0) ∨ ϕ(1)
∀pϕ(p) ≡ ϕ(0) ∧ ϕ(1)

However, by a such translation the length of the formulas doubles, and by
translating a block of quantifiers, the length of the translated formula
might grow exponentially.

13

5 Predicate calculus as a propositional proof
system

In this section we will show how the predicate calculi can serve as
propositional proof systems. This is trivial, as predicate calculi extend
propositional calculi, and the nulary predicates can be seen as
propositional variables. The more important result will be, that classical
predicate calculi are p-equivalent to Frege systems.
The symbol L0 will denote the extension of the DeMorgan language for
predicate calculi by allowing arbitrary many but only nulary predicate
symbols.
A general language L will contain n-ary predicate symbols, for any natural
number n, but no function symbols. Later on, we will allow also constants.
The standard calculi for first-order logic (predicate calculi) are based on
some propositional calculi. They contain the propositional axioms and
rules, with the difference, that the formulas being substituted are now
first-order formulas. In addition they contain some set of quantifier rules
depending on the particular predicate calculus used.
For a convenience we will use two predicate calculi in the following text.
The Hilbert style calculus based on the Frege system from Example 4.3
and Gentzen sequent calculus based on the non-quantifier part of Gentzen
calculus from Definition 4.8. These are p-equivalent as propositional proof
systems, similarly as their propositional parts are by Theorem 4.4 .

Definition. 5.1 Hilbert predicate calculus will have the axioms F1 - F6
and the rule MP from Example 4.3, where now the formulas A, B, C are
first-order formulas in some language of predicate logic. It also contains
the following axiom schemes for quantifiers:

specification: ∀xϕ→ ϕ(x/t), where t is term substitutable in ϕ
distribution: ∀x(ϕ→ ψ)→ (ϕ→ ∀xψ) ϕ does not contain free x,

and the rule of generalization: ϕ/∀x(ϕ).
The quantifier ∃ is defined as ¬∀¬.

Gentzen sequent predicate calculus has the rules from Definition 4.8
except of the propositional quantifier rules. In addition it contains the
following predicate quantifier rules:

∃r : Γ⇒ Δ, ϕ(t) / Γ⇒ Δ,∃xϕ(x)

14

∀l : ϕ(t),Γ⇒ Δ / ∀xϕ(x),Γ⇒ Δ

∃l : ϕ(y),Γ⇒ Δ / ∃xϕ(x),Γ⇒ Δ

∀r : Γ⇒ Δ, ϕ(y) / Γ⇒ Δ,∀xϕ(x)

where in the ∃r, ∀l term t is substitutable for x in ϕ, and in case of ∃l, ∀r
y is substitutable for x in ϕ and does not have any free occurrences in Γ,Δ
or in ∃xϕ (resp. ∀xϕ). See [SV].

Any predicate calculus with language L ⊇ L0 can be naturally interpreted
as a propositional proof system fitting the general Definition 3.1. Just view
the nulary predicates of L0 as propositional variables. If the last line of a
derivation in predicate calculus contains only nulary predicates of L0 and
no quantifiers, it can be seen as a propositional formula. By correctness of
the calculus it is a tautology, and by its completeness any propositional
tautology can be proved in this way.
Further we assume that L is encoded in a finite alphabet Σ. Also, a theory
means a set of axioms and not the set of their consequences. That is, we
consider two different sets of axioms having the same consequences as
different. That is irrelevant when studying provability, but important when
studying lengths of proofs.

Definition. 5.2 Propositional proof system based on a predicate calculus
will be a predicate calculus with a language containing L0, with the
difference that the derivations do not have any premises, and the last line
of a derivation can be only a formula that contain only the nulary
predicates from L0 and no quantifiers. In the case of sequent calculus we
assume the last line of the derivation has the form ⇒ ϕ, where ϕ is a
formula that contain only the nulary predicates from L0 and no quantifiers.

Lemma. 5.3 Let P be a sound predicate calculus in a relational language
L ⊇ L0. Assume that there is a polynomial-time algorithm deciding if a
string in the alphabet Σ is an axiom of P and if a k-tuple of strings is an
instance of a rule of P .
Then P , interpreted as a proof system for propositional logic as above, is a
propositional proof system in the sense of Definition 3.1.

Proof. We have verified the completeness and soundness already. It
remains to verify that it is decidable in polynomial time if a string is a
proof in P of a formula. But that follows from the hypotheses. �

15

Whether we use Hilbert or Gentzen calculi, the propositional proof system
based on it will be denoted as PL0, if it has language only L0, and PL, if
it has general language L.
We also extend the definition of the length of a formula to first-order
formula ϕ: l(ϕ) is the number of occurences of first-order variables,
constants and of nulary predicates in ϕ.

Definition. 5.4 PL= will denote a proof system containing PL, the
binary predicate ”=”, and the axioms of identity:

E1 : ∀x(x = x)

E2 : ∀x∀y(x = y → y = x)

E3 : ∀x∀y∀z(x = y ∧ y = z → x = z)

E4 : ∀x̄∀ȳ(x1 = y1 ∧ . . . ∧ xn = yn → R(x1, . . . , xn) ≡ R(y1, . . . , yn))

where E4 is an axiom scheme for every n-ary predicate symbol R from L.

Because predicate calculi contain also the propositional part (axioms and
rules), the proof systems based on it have at least the same strength as the
propositional calculi, with respect to the length of the proofs. On the other
hand it also has some new tools (predicate axioms, rules), so it is a
question whether it can allow for some shorter proofs. The rest of this
section will try to compare Frege systems with PL0, PL, and PL=.

In the following text many of the propositions will be of the form:
”proof system f2 p-simulates proof system f1” and their proofs will have
the style that any derivation in f1 can be transformed into a derivation in
f2 with the same last line. In such case we will denote the derivation in f1

as π and the translated derivation in f2 as π′. Similarly the formulas ϕ in
π will have their translations in π′ denoted as ϕ′.

Lemma. 5.5 PL0 is linearly equal to its underlying Frege system, and
hence it is polynomially equal to all Frege systems.
Proof. We shall show that both systems can simulate each other in
maximum linear increase of the lengths of the proofs. Let F be the
underlying Frege system.
F ≤l PL0 - Derivation in the Frege system is a special case of a derivation
in PL0 with no quantifiers. So the proof can remain unchanged except

16

that the symbols for propositional variables will be replaced everywhere by
symbols for nulary predicates.
The opposite direction:
F ≥l PL0 - Because system PL0 contains only nulary predicates, it’s
formulas do not contain any predicate variables and therefore the
quantifiers are useless. Any formula in L0 containing quantifiers has the
same logical value as the same formula with the quantifiers removed.
Therefore we remove all quantifiers from all formulas in the derivation π in
PL0 and change the nulary predicates to propositional variables. We need
to verify only that we obtain in this way a derivation π′ in F .
Let us consider translations of several types of inferences in it. In the case
that formula ϕ was obtained from previous formulas ψ,ψ → ϕ by Modus
Pones (MP), in π′ will be obtained in the same way ϕ′ from ψ′, ψ′ → ϕ′.
In the case ∀xϕ was obtained by the generalization rule from ϕ, we have
(∀xϕ)′ = ϕ′: in the new derivation the inference is void.
The last possibility is that a formula with a quantifier appeared in the
derivation as an axiom of the specification ∀xϕ→ ϕ(x/t) or as the
distribution axiom ∀x(ϕ→ ψ)→ (ϕ→ ∀xψ). In such a case formulas
(ϕ′ → ϕ′) resp. (ϕ′ → ψ′)→ (ϕ′ → ψ′) will appear in the derivation π′.
These formulas can be easily proved in a Frege system by a proof of the
length proportional to the length of the formula. �

PL0 can be clearly lineary simulated by both PL and PL=, as it is
included in them. But more holds:

Lemma. 5.6 PL0 linearly simulates PL and PL=.
Proof. Observe that in a derivation of a tautology each line is also a
tautology. Because a tautology must be true in any structure, it must be
true also in the particular structure with only one element. In an
evaluation for such a structure, each predicate P returns always the same
value, depending only on the name of predicate and not on the terms or
variables taking place in it. Further we postulate the fact, that the binary
predicate ” = ” returns always true, because of the axiom ∀x(x = x).
This suggests that we can define a transformation of formulas ϕ of L= to
equivalent formulas ϕ′ in L0, thinking about ϕ′ as the evaluation in a one
element model.
More formally: For ϕ from π define ϕ′ by induction on the complexity of ϕ:

1. (R(x1, . . . , xn)′ := 0, if R is not nulary and different from =.

17

2. (x = y)′ := 1

3. R′ := R if R is nulary

4. the translation commutes with ∧, ∨, ¬
5. (∀xϕ)′ = (∃xϕ)′ = ϕ′

By such a replacement in the whole derivation in PL or in PL= we obtain
an instance of a proof in the system PL0. �

Corollary. 5.7 F , PL0, PL, PL= l-simulate each other.
Proof. Using the last two lemmas and the transitivity of the linear
simulation. �

18

6 Weak first order theories

Now we start adding axioms to PL0 or PL= and we shall investigate how
strong will the resulting theories be as propositional proof systems. In
order to be a propositional proof system, axioms of a theory must not be
contradictory and may not say anything about the predicates from L0. It
will be clear that all the theories have polynomial-time sets of axioms.
The first thing to investigate is the strength of axioms rulling out the one
element model used in the proof of Theorem 5.6.
While we still do not allow function symbols of arity at least 1, we shall
allow now constants in the language.

Definition. 6.1 The following theories extend the predicate logic with
identity PL=:

T0�=1 - is a theory of structures of size at least 2 and two ’named’
elements. It has a language containing constants 0, 1 and an axiom
0 �= 1.

T≥n - with axiom
∃x1 . . . ∃xn(

∧

1≤i<j≤n
(xi �= xj))

is a theory of structures of size at least n.

T∞ - defined as ⋃

n∈N
T≥n

is a theory of infinite structures.

Proposition. 6.2 T0�=1 p-simulates EF .
Proof. To simulate the extension rule we would like for any formula ϕ
find a predicate that will be equal to it. The important difference of T0�=1

from PL is, that T0�=1 allows to derive sequents

⇒ ∃x(x = 1) ≡ ϕ (1)

for any formula ϕ.
To simulate a derivation π in EF , for every its extension axiom p ≡ ϕ,
replace the extension atom p by an atomic formula (xp = 1), where xp is a
new variable. Formulas ψ after such a substitution will be denoted as ψ′.

19

Then add formula (xp = 1) ≡ ϕ′ to the antecedent of every sequent in the
derivation. Thus the extension axioms will transform into rule (A) of
Gentzen sequent calculus.
By such a change we obtain a correct derivation in T0�=1. The derivations
will be ending with a line of the form

(xp1 = 1) ≡ ϕ′
1, . . . , (xpn = 1) ≡ ϕ′

n =⇒ A

where p1, . . . , pn are the defined atoms in order in which they were
introduced by extension axioms p1 ≡ ϕ1, . . . , pn ≡ ϕn in π.
From the definition of EF it follows that for every i = 1 . . . n, pi does not
appear in any of the formulas A,ϕ1, . . . ϕi and therefore xpi does not
appear in any of the formulas A,ϕ′

1, . . . ϕ
′
i. So the rule ∃l can be always

applied on the highest xpi , starting with xpn . Then the formula, on which
the ∃l rule was applied, can be removed by CUT with formula (1). By
repeating n-times this step we obtain the wanted sequent =⇒ A.
The first part of derivation π′ contains the same number of lines as π. The
formulas are maximum 2-times longer than in π, plus every line contains
the formulas (xpi = 1) ≡ ϕ′

i for every extension axiom of π. Because the
total length of the extension axioms is not bigger than l(π), this first part
is of length O(l(π)2). The second part is n-times using rule ∃l, a proof of
formula (1) for the formula ϕ′

i, which is linearly equal to ϕ′
i and CUT . So

it has also length maximum O(l(π)2). �

For the next proposition we will first prove some useful lemmas:

Lemma. 6.3 If a sequent ϕ(P 0),Γ⇒ Δ (resp. Γ⇒ ϕ(P 0),Δ), where P 0

is a nulary predicate not appearing in ϕ, Γ, Δ, is derivable in derivation π,
then any sequent of the form ϕ(ψ),Γ⇒ Δ (resp. Γ⇒ ϕ(ψ),Δ) is
derivable by derivation of the length proportional to l(π) · l(ψ).
Proof. The proof is trivial. By replacing predicates P 0 by ψ in derivation
of ϕ(P 0),Γ⇒ Δ, receive a derivation of sequent ϕ(ψ),Γ⇒ Δ of the same
number of lines and formulas maximum l(ϕ)-times longer. �

Lemma. 6.4 The sequent ψ1 ≡ ψ2, ϕ(ψ1)⇒ ϕ(ψ2) has a proof in G
polynomial in the lengths of ψ1, ψ2 and ϕ.
Proof. We omit the proof as a stronger version of this Lemma will be
introduced in Lemma 7.3. �

20

Now we are ready to improve Proposition 6.2.

Proposition. 6.5 T0�=1 polynomially simulates G.
Proof. If π is a derivation of a tautology in G then it can be considered
as a derivation π′ in T0�=1 (with the difference that propositional variables
(p, q, r) are now being a nulary predicates (P 0, Q0, R0)) until the
quantifier rules are used.
A quantifier rule applied in π on a propositional variable p cannot be
simply applied on nulary predicate P 0 in derivation π′. Thus, in order to
simulate a quantifier rule, we would have to substitute the nulary predicate
by some formula containing a predicate variable xp, which can be
quantified. The value of the formula must depend only on the evaluation of
xp.
In T0�=1, the only predicate that can contain a variable, is the binary
predicate ”=”. Thus we can use, for example, the formula (xp = 1) for
substituting for the predicate symbol P 0. Because the models of T0�=1 are
of size at least two, it can then be either true or false depending only on
the evaluation of the variable xp.
Now we discuss in detail the simulation of the G quantifier rules in π′:
The rules ∃l, ∀r will be simulated differently than ∃r, ∀l. The ∃l in G is

ϕ(p),Γ⇒ Δ
∃qϕ(q),Γ⇒ Δ

where formulas ∃qϕ(q),Γ,Δ do not contain p. Now we would like to
substitute the variable p by the formula (xp = 1), where xp is a new
first-order variable.
Now, by theorem from [K], we may assume that π is in a tree form. So
ϕ(p),Γ⇒ Δ has a separate derivation in π. And this derivation can be, by
Lemma 6.3, changed into a derivation of

ϕ(xp = 1),Γ⇒ Δ

of proportional length. Then apply the rule ∃l of PL to it

∃xϕ(x = 1),Γ⇒ Δ

to get the wanted sequent. The rule ∀r can be simulated in the same way.
In the case of ∃r or ∀l the situation is different. The ∃r in G be

Γ⇒ Δ, ϕ(ψ)
Γ⇒ Δ,∃pϕ(p)

21

We cannot so easily substitute a formula ψ, because it can be a tautology,
or a negation of a tautology, or some variables free in it might be also free
in Γ or Δ. But according to Lemma 6.4, from Γ⇒ Δ, ϕ(ψ) we can derive a
sequent

(xψ = 1) ≡ ψ,Γ⇒ Δ, ϕ(xψ = 1)

where xψ is a new variable, in the length of a derivation depending
polynomially on the lengths of ϕ, ψ. And from that it can be derived

(xψ = 1) ≡ ψ,Γ ⇒ Δ,∃xϕ(x = 1)
∃x((x = 1) ≡ ψ),Γ ⇒ Δ,∃xϕ(x = 1)

by predicate rules ∃r, ∃l. And because ⇒ ∃x((x = 1) ≡ ψ) is derivable
from axioms 0 �= 1 and E1 for any formula ψ, by CUT from that we derive
the wanted sequent

Γ⇒ Δ,∃xϕ(x = 1)

Similarly in simulation of ∀l, from the sequent

Γ, ϕ(ψ)⇒ Δ

we can derive
(xψ = 1) ≡ ψ,ϕ(xψ = 1),Γ⇒ Δ

by Lemma 6.4 and by CUT. The rest is the same.
Because the last line of π by definition does not contain any quantifiers,
the last line of π′ will not contain any predicates ”=” (and first-order
variables).
In the case of ∃l, ∀r, altogether the simulations could only prolong the
derivation by doubling the size of the formulas. And in the case of ∃r, ∀l
the simulation is polynomial in the length of the line on which the rule was
applied.
So there is a polynomial p(x) such that for any proof π in G it holds that
l(π′) ≤ p(l(π)). �

Proposition. 6.6 T∞ ≥l (T≥n) ≥l T0�=1, for n ≥ 2.
Proof. First we show a special case of the second simulation T≥2 ≥l T0�=1:
The theory T≥2 can prove the same formulas as T0�=1 which does not
contain the constants 0, 1. But these constants can be substituted by
variables v0, v1 if the premise v0 �= v1 is included. So every line of π will be

22

changed into a line of π′ by replacing the constants 0, 1 by variables v0, v1,
and by adding the formula v0 �= v1 into the antecedent of the sequent.
In proofs of propositional tautologies, the last line of the derivation would
contain only one propositional formula A in the succedent (with no
first-order variables or constants). Thus the last line of π′ will have the
form:

v0 �= v1 ⇒ A

From that, by twice using ∃l (A does not contain v0, v1), derive

∃v0∃v1(v0 �= v1)⇒ A

But the left part of this sequent is an axiom of T≥2, so by CUT the
formula A is derivable.
The length of π′ is linearly longer then the length of π, with the
multiplicative constant (l(v0 �= v1)) on the number of lines of π, plus it has
two lines being proportional to A at the end. So π′ is being proportional to
π.

T≥n ≥l T≥m for n ≥ m:
The specific axiom of T≥m is provable in T≥n in number of lines depending
only on n and m.

T∞ ≥l T≥n:
By definition T∞ contains the axiom of T≥n for any n. So the derivation in
T≥n is automaticaly a derivation in T∞. �

In the rest of this section we will discuss the power of G. The lemmas
will grow in their strength, so we could have only stated and proved the
last one. But we will proceed gradually because the parts proved will be
later used anyway, and also it will help to keep the text well structured. In
fact, the first two lemmas are slightly stronger (they show a linear
simulation) then it is necessary for the final result.

Lemma. 6.7 G l-simulates T≥2.
Proof. The main idea of this proof is that predicate variables x of π will
have assigned their propositional variables px in π′. The formulas ϕ′ in π′

will be obtained from formulas ϕ of π by substituting all their subformulas
(x = y) by formulas (px ≡ py) and quantifiers ∀x (resp. ∃x) by quantifiers
∀px (resp. ∃px).

23

The lines obtained by PL-rules in the derivation π can be simulated by the
same G-rules in π′. Further observe that axioms of identity E1, E2, E3
and the special axiom of T≥2 are provable in G after such a translation. By
the completeness they have some proofs in G of a constant length. So by
adding these proofs at the beginning of the derivation obtained from π by
translating the formulas, we obtain a correct derivation π′ in G. �

Lemma. 6.8 G l-simulates T≥n where n is any natural number bigger then
2.
Proof. The main idea of translating π in Tn into π′ in G is in an
encoding of predicate variables x into a systems of k propositional
variables where k = �log 2(n)�.
Every predicate variable x in π will be encoded by a tuple of propositional
variables px1 , . . . , p

x
k denoted as p̄x. Thus every formula ϕ in π will be

transformed into a formula ϕ′ in π′ in the following way: Every quantifier
Qx in ϕ will be replaced by the string

Qpx1 . . . , Qp
x
k

denoted by Qp̄x, and every formula of form x = y will be replaced by

((px1 ≡ py1) ∧ . . . ∧ (pxk ≡ pyk))
denoted as p̄x = p̄y. This abbreviated notation will be used through the
rest of this thesis.
Because this new subformula p̄x = p̄y can be satisfied only if all pairs pxi ,
pyi are of the same value, and there is at least n possible different
evaluations of the system of k propositional variables, the formula ϕ′ is a
tautology if ϕ follows from T≥n.
Now let us discuss the formulas ϕ appearing in π and their translations ϕ′

in π′.
If ϕ appeared in π as in propositional axiom ϕ⇒ ϕ, then ϕ′ ⇒ ϕ′ is an
instance of the same axiom schema, and therefore does not have to be
especially proved. Similarly, if ϕ was derived by some propositional rule
from formulas ψ1, ψ2 in previous sequents, observe that ϕ′ can be derived
from formulas ψ′

1, ψ
′
2 in the translated sequents.

If ϕ was derived by a quantifier rule of PL from ψ, then ϕ′ can be derived
by k times using the equivalent rule of G from ψ′. We will show the
simulation of the rule ∃r. The other cases (∀r, ∃l, ∀l) would be similar. ∃r
in PL is:

Γ =⇒ Δ, ψ(t)
Γ =⇒ Δ,∃xψ(x)

24

Now, because the term t in language of T≥n could be only some variable y
appearing in the predicate =, in ψ(t)′ term t will be some system of
variables p̄ in a formula translating =. So this rule will be simulated by
k-times using ∃r in G on the variables p̄:

Γ′ =⇒ Δ′, ψ′(p̄)
Γ′ =⇒ Δ′,∃xkψ′(p1, . . . , pk−1, xk)

...
Γ′ =⇒ Δ′,∃x2 . . . ∃xkψ′(p1, x2, . . . , xk)
Γ′ =⇒ Δ′,∃x̄ψ′(x̄)

Finally, if ϕ is the axiom of identity or the axiom specific to T≥n, then ϕ′

has a proof in G of a length c, where c depends only on n.
Because every line in π is by such a translation represented by c1 lines
maximum c2-times longer then the original line, where c1, c2 are constants
depending only on k, l(π′) ≤ c1c2l(π). �

Proposition. 6.9 G ≥p T∞.
Proof. Infinite number of all possible x’s cannot be encoded by a finite
number of proposional variables. However, any particular derivation π can
use only a finite number of axioms of theory T∞. Therefore there is some
maximum n such that the axiom ∃x1 . . . ∃xn(∧1≤i<j≤n(xi �= xj)) appears
in π. Note that n is bounded by the length of π. So π is also a derivation
of T≥n (or can be polynomially simulated, if shorter axioms of T∞
appeared in π also).
Every predicate variable in π can be again encoded by a system of k
propositional variables, like in Lemma 6.8, where now

k = �log 2(n)� ≤ �log 2(l(π))�

The main difficulty now is that n, (and k) depend on π and not only on
the theory like in the previous proof. Theory T∞ has infinitely many
axioms, and it is not known which of them will appear in π. So we have to
show that the simulation of axioms and their derivations in π′ does not
depend exponentially on n. It can be of the length O(nc) or O(ck), because
k = �log 2(n)�), but not of the length O(nk) or more because then it would
grow faster than any polynomial.

25

If ϕ was derived by a propositional rule in π, ϕ′ can be derived by the same
rule, like in the last argument. Also, if it was derived by some quantifier
rule, ϕ′ has a derivation of k steps in π′ as shown in the last proof.
But if ϕ is an axiom of identity or an axiom specific to T∞, we have to
show that ϕ′ has a short proof in G. The axioms of identity here are E1,
E2 and E3. We will show the proof of E3′, the other two cases are similar:

First, for every i = 1 . . . k, derive

pi ≡ qi ∧ qi ≡ ri =⇒ pi ≡ ri
by a proof of length c1. From these sequents derive

p̄ = q̄ ∧ q̄ = r̄ =⇒ pi ≡ ri
by 2k-times using (∧l), and then connect these sequents into

p̄ = q̄ ∧ q̄ = r̄ =⇒ p̄ = r̄

by k-times using (∧r). This sequent has length 6k. Now derive

=⇒ p̄ = q̄ ∧ q̄ = r̄→ p̄ = r̄

by (→ r), and by ≤ 3k-times using (∀r) derive

=⇒ ∀p̄, q̄, r̄(p̄ = q̄ ∧ q̄ = r̄→ p̄ = r̄)

the required sequent, 9k long. So this proof has length
≤ ck + 2k(4k + 2) + k6k + 6k + 3k9k = O(k2).

If ϕ in π was an axiom of T∞, then a proof of ϕ′ in G will look like this:
From (0 ≡ 1)⇒ or from (1 ≡ 0)⇒ using twice (∧l) derive

c̃i = c̃j =⇒

for every i,j, 1 ≤ i < j ≤ n, where c̃i’s are n distinct k-tuples of 0,1, each
c̃i representing the binary code of the natural number i. There is
n2

2 − n = O(n2) of such pairs. From them derive, using the rule (¬r),
sequents:

=⇒ ¬(c̃i = c̃j)

26

and by using maximum O(n2)-times inferences (∧r) connect them into one
sequent

=⇒
∧

i<j

¬(c̃i = c̃j)

which is O(kn2) long. In the last step use kn-times the rule (∃r) to derive
the final formula

=⇒ ∃p̄1 . . . ∃p̄n(
∧

i≤j
¬(p̄i = p̄j))

which is kn+O(kn2) = O(kn2) long.

So the length of the whole proof is less then
O(kn2) +O(kn2) +O(n2)O(kn2) + knO(kn2) ≤ O(n5) long. �

Corollary. 6.10 G, T0�=1, T≥n, T∞ are p-euivalent.
Proof. By putting together Propositions 6.5, 6.6, and 6.9, and using the
transitivity of the p-simulation. �

27

7 Theories extending T∞

In this chapter we will search for theories extending T≤n and T∞ but that
are still p-equivalent to these. Our aim is to find a very general description
of some such theories.

Definition. 7.1 Theory of exactly n elements - Tn is an extension of
PL=. In addition it has constants c1, . . . , cn and two axioms:

∧

1≤i<j≤n
(ci �= cj)

∀x((x = c1) ∨ . . . ∨ (x = cn))

Proposition. 7.2 If T is a first-order theory with a finite number of
axioms, and has a model of size n, then Tn ≥l T .

Proof. In a concrete model M of T of size n, any predicate P of theory T
can be represented by a disjunctive normal form formula table listing all
possible k-tuples of elements satysfying P in M :

P (x1, . . . , xk) ≡ ((x1 = c11 ∧ . . . ∧ xk = c1k) ∨
...
(x1 = cl1 ∧ . . . ∧ xk = clk))

where l ≤ nk. Because the axioms of T contain only a finite number of
predicates, these predicates are of arity at most k, for some natural
number k. Thus the tables representing them are maximum of size O(nk).
The predicates that do not appear in the axioms of T can be represented
by some fixed small table.
If we substitute the predicates in axioms of T by their tables determined
by some concrete model M of size n, we will receive sentences true in Tn:
This just restates the fact that M models T . By the completeness, these
sentences have in Tn proofs of constant lengths (depending on n but n is
fixed). Let c be the total length of these proofs. And if we make such a
substitution in a derivation π in T and add the proofs of the translated
axioms at the beginning, we will receive a derivation π′ simulating π in Tn.
Because the formulas after the substitution are maximum O(nk) times
longer, l(π′) ≤ l(π)O(nk) + c ≤ O(l(π)). �

28

The following Lemmas will be used in the proof of Proposition 7.9 which
is a stronger version of Proposition 7.2.

Lemma. 7.3 The sequent x1 = y1, . . . , xn = yn, ϕ(x̄) =⇒ ϕ(ȳ) has a proof
in PL= with the length polynomially equal to l(ϕ). Simillary
p1 ≡ q1, . . . , pn ≡ qn, ϕ(p̄) =⇒ ϕ(q̄) has a proof of length polynomially equal
to l(ϕ) in G.

Proof. In this proof the string x̄ = ȳ denotes the conjunction
x1 = y1 ∧ . . . ∧ xn = yn. However the same proof would work also for the
calculus G, where the string p̄ = q̄ would denote the formula
p1 ≡ q1 ∧ . . . ∧ pn ≡ qn.
The derivation is constructed by the induction according to the complexity
of the formula ϕ:
If ϕ is an atomic formula made of predicate P , then

x̄ = ȳ, P (x̄) =⇒ P (ȳ)
x̄ = ȳ, P (ȳ) =⇒ P (x̄)

are simply derivable sequents from the axiom of identity (E4).
If ϕ is of the form ¬ψ, by induction assumption the lemma is true for ψ.
By ¬r, ¬l derive:

x̄ = ȳ, ψ(x̄) =⇒ ψ(ȳ)
x̄ = ȳ,¬ψ(x̄) =⇒ ¬ψ(ȳ)

If ϕ is of the form ψ1 ∧ ψ2, then apply rules ∧l and ∧r as follows:

x̄ = ȳ, ψ1(x̄) =⇒ ψ1(ȳ)
x̄ = ȳ, ψ2(x̄) =⇒ ψ2(ȳ)

x̄ = ȳ, ψ1(x̄) ∧ ψ2(x̄) =⇒ ψ1(ȳ)
x̄ = ȳ, ψ1(x̄) ∧ ψ2(x̄) =⇒ ψ2(ȳ)
x̄ = ȳ, ψ1(x̄) ∧ ψ2(x̄) =⇒ ψ1(ȳ) ∧ ψ2(ȳ)

Similarly, if ϕ is of the form ψ1 ∨ ψ2, use ∨r and ∨l:
x̄ = ȳ, ψ1(x̄) =⇒ ψ1(ȳ)
x̄ = ȳ, ψ2(x̄) =⇒ ψ2(ȳ)
x̄ = ȳ, ψ1(x̄) =⇒ ψ1(ȳ) ∨ ψ2(ȳ)
x̄ = ȳ, ψ2(x̄) =⇒ ψ1(ȳ) ∨ ψ2(ȳ)

x̄ = ȳ, ψ1(x̄) ∨ ψ2(x̄) =⇒ ψ1(ȳ) ∨ ψ2(ȳ)

29

If ϕ begins with the existential quantifier (∃zψ), use the quantifier rules ∃r
and ∃l:

x̄ = ȳ, ψ(x̄) =⇒ ψ(ȳ)
x̄ = ȳ, ψ(x̄) =⇒ ∃zψ(ȳ)

x̄ = ȳ,∃zψ(x̄) =⇒ ∃zψ(ȳ)

For ϕ = ∀zψ similarly first use the rule ∀l, and then ∀r.
Every induction step is done by a constant number of lines and the
induction proceeds for O(l(ϕ)) steps, so the derivation is done in O(l(ϕ))
lines. Because the lengths of the lines are also proportional to l(ϕ) the
derivation has the length O(l(ϕ)2). �

Lemma. 7.4 If ϕ does not have quantifiers and all atomic subformulas of
ϕ can be proved or (dis)proved in a derivation of maximum length k, then
ϕ can be proved or (dis)proved in a derivation proportional to O(l(ϕ)2).

Proof. By induction on the complexity of ϕ construct the derivation of
the formula from its atomic subformulas. While all the induction steps
take a constant number of lines of length ≤ l(ϕ), the whole derivation is
proportional to O(l(ϕ)2). �

Lemma. 7.5 If for all choices ci1 , . . . , cik of constants of Tn formula
ϕ(ci1 , . . . , cik) can be proved in Tn by a derivation of length l in Tn, then
∀x1 . . . ∀xkϕ(x1, . . . , xk) can be proved in Tn by a derivation of length
O(p(l(ϕ)) · nk).
This also holds for the case that there are ∃-quantifiers for some other
variables of ϕ in between the ∀-quantifiers.

Proof. First derive nk sequents, one for each k-tuple of constants:

x1 = c1, . . . , xk = c1 =⇒ ϕ(x1, . . . , xk)
...

x1 = cn, . . . , xk = cn =⇒ ϕ(x1, . . . , xk)

each in p(l(ϕ)) steps by Lemma 7.3, for some polynomial p. In this we use
the proofs of all ϕ(ci1 , . . . , cik) that exists by hypotheses of the Lemma.
Then connect them by ∨l into one sequent

x1 = c1 ∨ . . . ∨ x1 = cn, · · · , xk = c1 ∨ . . . ∨ xk = cn =⇒ ϕ(x1, . . . , xk)

30

which is kn+ l(ϕ) long. Then by k-times ∀l, CUT with the axiom of Tn
and k-times ∀r, derive

∀x(x = c1 ∨ . . . ∨ x = cn) =⇒ ϕ(x1, . . . , xk)
=⇒ ϕ(x1, . . . , xk)
=⇒ ∀x1, . . . , xkϕ(x1, . . . , xk)

If ∃-quantifiers are also included, derive the initial sequents with the right
constants. Then in the second step do the connecting by ∨l in order from
xk to x1 and where needed, use the ∀l, CUT , ∀r rules followed by ∃r rule
on the right constants to put ∃-quantifiers on the right places.
Counting all the lines together, this derivation is O(p(l(ϕ)) · nk) long. �

Lemma. 7.6 There is a polynomial p(x), such that for all n, m, n ≤ m,
there is a p-simulation π → π′ of Tn proofs by Tm proofs such that
l(π′) ≤ p(l(π)).

Proof. From a derivation π in Tn we will obtain a derivation π′ in Tm by
substituting atomic subformulas of form x = y by the formulas x ∼ y:

x = y ∨ ((x = cn ∨ . . . ∨ x = cm) ∧ (y = cn ∨ . . . ∨ y = cm))

The two axioms of Tn and first three axioms of identity (E1,E2,E3)
translated in this way are true in Tm and by Lemma 7.5 can be proved in a
derivation polynomially equal to m. Thus by applying such substitution on
the whole derivation π and adding the proofs of the translated axioms, we
will obtain polynomially simulating derivation π′ in Tm. �

Lemma. 7.7 There is a polynomial p(x), such that for all n = 2k, where k
is a natural number, there is a p-simulation π → π′ of Tn by G such that
l(π′) ≤ p(l(π)).

Proof. This proof is an extension of a proof of Proposition 6.9
(G ≥p T∞). The encoding of predicate = and proving the translation of
axiom ∧

1≤i<j≤n
(ci �= cj)

would be done in the same way. Now we only have to show that the proof
of the translation of the second axiom

∀x((x = c1) ∨ . . . ∨ (x = cn))

31

is of the length polynomial in n:
The notation ñ will stand for the binary code of natural number n. From
simply derivable sequents

pi =⇒ pi ≡ 1
¬pi =⇒ pi ≡ 0

for i = 1 . . . k, derive n sequents

¬p1, . . . ,¬pk =⇒ p̄ = 0̃
...

p1, . . . , pk =⇒ p̄ = ñ

by k-times using ∧r. Then by applying ∨r on each of them derive

¬p1, . . . ,¬pk =⇒ p̄ = 0̃ ∨ . . . ∨ p̄ = ñ
...

p1, . . . , pk =⇒ p̄ = 0̃ ∨ . . . ∨ p̄ = ñ

In these sequents there are couples that differ only in one of the literals pi
in the antecedent of the sequents. Connect all such couples by rule ∨l
applied on the different literals into n/2 sequents. The resulting sequents
again contain such couples differing in only one literal. So apply this
method again and again until you get one sequent

(p1 ∨ ¬p1), . . . , (pk ∨ ¬pk) =⇒ p̄ = 0̃ ∨ . . . ∨ p̄ = ñ

which is 2k + 2nk = O(nk) long. This can be done in n− 1 = O(n) lines.
The last step is n CUT s with the simply derivable sequents =⇒ pi ∨ ¬pi
and k-times ∀r to get the final sequent

=⇒ p̄ = 0̃ ∨ . . . ∨ p̄ = ñ

=⇒ ∀p̄(p̄ = 0̃ ∨ . . . ∨ p̄ = ñ)

Counting all the steps together this proof is O(kn2) long. �

Definition. 7.8 Theory T is weak iff there exists constants k, m and an
integer polynomial p such that:
- T has predicates of arity at most k in its language

32

- every axiom of T has at most m universal quantifiers when written in
prenex form
- every finite part F of T has a model of size at most p(l(F)) that can be
found by a polynomial time algorithm (receiving F as the input).

All theories that were defined in the previous text (T≤n, Tn, T∞) fit this
definition.

Proposition. 7.9 Let T be a weak theory, then G ≥p T .

Proof. Let T , k, m, p be as in Definition 7.8. Let π be a derivation in T .
Then π contains a finite number of axioms, which, according to the
definition of a weak theory, have a model of size n ≤ p(|π|). Thus, similary
as in the proof of Proposition 7.2, the predicates in formulas in π can be
substituted for by tables of size O(nk).
Further, every axiom ϕ of T translated in this way, can be proved in Tn in
a derivation of the length maximum O(l(ϕ′)nm) by Lemma 7.5. Such a
derivation has the length at most O(p(l(π))k+m). Further, by Lemma 7.6,
the derivation can be p-simulated in Tn′ for the first n′ ≥ n that is some
power of 2. Finally, a derivation in Tn′ can be polynomially simulated by
G by Lemma 7.7 �

33

8 Theories with ”fast growing models”

In this chapter we will examine theories that do not satisfy the premises of
Proposition 7.9, i.e are not weak. However, some of them can still be
p-simulated by G using different ways than the table method.
In the following example we will introduce a theory Texp which has the
property that the smallest models of its finite subtheories are growing
exponentially with the size of the subtheories. This theory cannot be
p-simulated by G using the table method, because the formula tables, used
for substituting for the predicate symbols, would be too large. However, it
can still be p-simulated by G by using a more sophisticated substitution
for the predicate symbols.
Let us now give an example of a theory with exponentialy growing models
of its subtheories. The theory defines a set P by an unary predicate
symbol P and has an infinite system of axioms. Every finite part F of
these axioms enforces that the set P has size proportional to l(F),
similarly to the axioms of T∞. Further it has a finite number of axioms
implying, that the size of the whole model is at least exponentially greater
then the set P . This is done using three binary relations S, Q and R,
schematically illustrated on Figure 1.

P

�
�

�
�

� � �� �
c0

S

Q

���
�

�

�
�

�
��

�
R

����

����

����

����

�

�

�

�

Figure 1: Model of subtheory of Texp

Relation S is creating a linearly ordered string on the whole set P starting
in some c0 of P . Relation Q is mapping elements of the model to the

34

elements of the set P . There is at least one element mapped by Q to c0.
About the relation R the theory says, that it is injective and if an element
ci of P has a successor ci+1 in the relation S on P , then every other
element, mapped to ci by relation Q, has at least two different successor in
the relation R and these successor are mapped by Q to ci+1. So for every
ci of P , if ci is being successor by n elements of P in the string S, then
every other element mapped to ci by Q has at least 2n − 1 followers in the
relation R (R creates a binary tree of depth n). And because the string S
starts at c0 and it is covering the whole set P , the whole model must be of
size at least exponential size of the size of P , i.e. of l(F).
Now formally:

Definition. 8.1 Theory Texp is an extension of PL=. It has three binary
predicates S, Q, R and one constant c0.
A binary relation S(x, y) is defined on the set P by an infinite system of
axioms:

sn : ∃x1 . . . ∃xn (x1 = c0 ∧
∧

i=1...n

P (xi) ∧
∧

1≤i<j≤n
(xi �= xj) ∧

S(x1, x2) ∧ . . . ∧ S(xn−1, xn))

For every natural number n, sn is saying that S creates a string on P
starting with c0 and having length n.
The axiom

r1 : ∃yQ(c0, y)

is saying that there is at least one element mapped by the relation Q to c0.
Then there are axioms for the relation R, implying that R is injective:

r2 : ∀x1, x2, y(R(x1, y) ∧R(x2, y) −→ x1 = x2)

and that if x1 has a successor x2 in the relation S, then every y mapped to
x1 by Q has at least two different successors (y1,y2) in the relation R that
are mapped to x2 by Q:

r3 : ∀x1, x2, y(P (x1) ∧ P (x2) ∧ (S(x1, x2) ∧Q(x1, y)) −→
∃y1, y2(R(y, y1) ∧R(y, y2) ∧Q(x2, y1) ∧Q(x2, y2) ∧ y1 �= y2))

35

From these axioms it follows that elements of the string S, starting with
c0 and of the length n, have together at least 2n − 1 elements mapped to
them by Q. So the size of the model of subtheory F of T containing
axioms r1, r2 and r3, is at least 2n − 1, where n is the maximum from
axioms sn appearing in the subtheory.

Similarly, simply by changing the axiom r3, we can define theories with
the models of their subtheories growing by cn, for any fixed natural
number c ≥ 2. Such theories cannot be p-simulated in G by using the table
method, because it would have to use exponentially many constants
representing the elements in the formula tables. However, in G we can
represent the elements by binary codes, using only �log2 c

n� ≤ n �log2 c�
propositional variables.
To show a p-simulation, we will only have to find ’short’ formulas for
substituting the predicates and ’short’ proofs of formulas resulting from
the axioms after the substitution. This method of p-simulation is
illustrated by the following proposition.

Proposition. 8.2 G ≥p Texp

Proof. Let π be a derivation in Texp. Let k be the maximal n from the sn
axioms appearing in π. Then π is also a derivation in the subtheory F of
Texp, containing the axioms r1, r2, r3 and the axioms si for i = 1 . . . k. As
argued above, F has a model M of size 2k. To p-simulate π in G, we will
encode the elements of this model by binary codes into k-tuples of
propositional constants. Then we will find formulas P ′, S′, Q′ and R′ in G
representing the relations P , S, Q and R in M using these binary codes.
These formulas will be used for substituting the predicates in π similarly
as the formula tables were substituting predicates in the proof of
Proposition 7.9. The important thing will be that the length of these
formulas will not grow exponentially with k and further that the formulas
obtained by thr translation of the axioms of Texp will have proofs of the
length polynomial in k. So the encoding of the elements of M should not
be done just randomly, but in a way helpful for writing simple formulas P ′,
S′, Q′ and R′.
One possible encoding, that we will use in this proof, is illustrated by the
Figure 2.
The constant c0 will be substituted by the code 1̃ (i.e. 001 for k = 3). The

36

�
�

�
�

� � �� �
001 011 111
�
�
�
�
�
�
�
�
�
010

�
�

�
�

�
�

�
�

�

�

�

�

100

101

110

Figure 2: Encoding of elements of a model of subtheory of Texp for k = 3.
(Code 001 means: p3 = 0, p2 = 0, p1 = 1)

formulas substituting for the predicates will have the following form:

P ′(p̄) ≡
∧

i=2...k

(pi → pi−1)

S′(p̄, q̄) ≡
∧

i=2...k

(pi−1 ≡ qi) ∧ ¬pk ∧ q1

Q′(p̄, q̄) ≡
∧

i=1...k

(qi → pi)

R′(p̄, q̄) ≡
∧

i=2...k

(pi−1 ≡ qi) ∧ ¬pk

It is easy to see that these formulas are of the length proportional to k.
The last thing to show is that the formulas, obtained by translating the
axioms, have G-proofs of the length polynomially equal to k.
(It would be nice to introduce some general proposition for a simulation by
binary encoding, similar to Proposition 7.9. But although Lemmas 7.4 and
7.5 can be generalized also for the calculus G, it does not help much,
because the number of universal quantifiers in the axioms, translated by
binary encoding to G, grows proportionally with k. So the length of the
general proofs, introduced by Lemma 7.5, would grow exponentially with
k. Thus we have to find short proofs for the specific translations of axioms
”manually”.)

37

The proofs for translated axioms of identity E1, E2 and E3 where shown
in Proposition 6.9. The axioms of identity for predicates (E4) can be
simulated in polynomial length according to Lemma 7.3, which is true also
for the calculus G.
The formulas s′i (i = 1 . . . k) do not contain any universal quantifiers or
free variables and thus can be proved by a derivation of the length
proportional to l(s′i). The same applies to the formula r1′.
For proving r2′, first derive k simple sequents

p1
1 ≡ q2, p2

1 ≡ q2 =⇒ p1
1 ≡ p2

1

...
p1
k−1 ≡ qk, p2

k−1 ≡ qk =⇒ p1
k−1 ≡ p2

k−1

¬p1
k,¬p2

k =⇒ p1
k,≡ p2

k

and connect them using ∧l, ∧r, and use → r and 3k-times ∀r to get:

S′(p1, q̄) ∧ S′(p2, q̄) =⇒ p̄1 = p̄2

=⇒ (S′(p1, q̄) ∧ S′(p2, q̄))→ p̄1 = p̄2

=⇒ ∀p1∀p2∀q((S′(p1, q̄) ∧ S′(p2, q̄))→ p̄1 = p̄2)

This derivations takes O(k) lines of the length at most O(k), so together it
is O(k2) long.
Finally for the longest formula r3′:
From the conjunction of formulas P ′(p̄1), P ′(p̄2), S′(p̄1, p̄2) and Q′(p̄1, q̄)
we will derive formulas Q′(p̄2, Ā), Q′(p̄2, B̄), R′(q̄, Ā), R′(q̄, B̄) and Ā �= B̄,
where Ā, B̄ are tuples of some specific formulas which will be in the last
step of the derivation substituted for by variables r̄1, r̄2 by applying the
rule ∃r.
One way how to choose simply these formulas, as it is seen from the
picture, is by using the variables q̄ and the definition of the formula R′:

Ā : qk−1, . . . , q1, 0
B̄ : qk−1, . . . , q1, 1

To derive Ā �= B̄, apply to sequent 0 ≡ 1 =⇒ rules ∧l and ¬r:
(qk−1 ≡ qk−1 ∧ . . . ∧ q1 ≡ q1 ∧ 0 ≡ 1) =⇒

38

=⇒ ¬(qk−1 ≡ qk−1 ∧ . . . ∧ q1 ≡ q1 ∧ 0 ≡ 1)
=⇒ ¬(Ak ≡ Bk ∧ . . . ∧A1 ≡ B1) (2)

Deriving formulas R(q̄, Ā), R(q̄, B̄) is also simple, because it follows from
the definition:

=⇒ qk−1 ≡ qk−1 ∧ . . . ∧ q1 ≡ q1
¬p1

k, qk → p1
k =⇒ ¬qk

¬p1
k, qk → p1

k =⇒ qk−1 ≡ Ak ∧ . . . ∧ q1 ≡ A2 ∧ ¬qk (3)
¬p1

k, qk → p1
k =⇒ qk−1 ≡ Bk ∧ . . . ∧ q1 ≡ B2 ∧ ¬qk (4)

The formulas in the antecedent (¬p1
k, qk → p1

k) are part of the conjunctions
S(p̄1, p̄2) and Q(p̄1, q̄).
For deriving Q(p̄2, Ā), Q(p̄2, B̄), derive two simple sequents

p2
1 =⇒ A1 → p2

1

p2
1 =⇒ B1 → p2

1

where p2
1 is from S(p̄1, p̄2), and for i = 2, . . . , k derive sequents

Ai ≡ qi−1, qi−1 → p1
i−1, p

1
i−1 ≡ p2

i =⇒ Ai → p2
i

Bi ≡ qi−1, qi−1 → p1
i−1, p

1
i−1 ≡ p2

i =⇒ Bi → p2
i

where Ai ≡ qi−1 (or Bi ≡ qi−1) is by definition of Ai (or Bi), qi−1 → p1
i−1 is

from Q(p̄1, q̄) and p1
i−1 ≡ p2

i from S(p̄1, p̄2), and connect them into

Q′(p̄1, q̄), S′(p̄1, p̄2) =⇒ A1 → p2
1 ∧ . . . ∧Ak → p2

k (5)
Q′(p̄1, q̄), S′(p̄1, p̄2) =⇒ B1 → p2

1 ∧ . . . ∧Bk → p2
k (6)

Then connect sequents (1), . . . , (6) into

S′(p̄1, p̄2) ∧Q′(p̄1, q̄) =⇒ Q′(p̄2, Ā) ∧Q′(p̄2, B̄) ∧R(q̄, Ā) ∧R(q̄, B̄) ∧ Ā �= B̄

and use 2k-times ∃r on the subformulas Ā, B̄:

P ′(p̄1) ∧ P ′(p̄2) ∧ S′(p̄1, p̄2) ∧Q′(p̄1, q̄) =⇒
∃r̄1∃r̄2Q′(p̄2, r̄1) ∧Q′(p̄2, r̄2) ∧R′(q̄, r̄1) ∧R′(q̄, r̄2) ∧ r̄1 �= r̄2

Finally use → r and 3k-times ∀r to get the wanted sequent.
Again there are O(k) lines of the length at most O(k), so the derivation is
O(k2) long. �

39

Theory Texp has exponentially growing smallest models of its finite
subtheories. But it can still be p-simulated by G using a binary encoding
of its variables. The next example will introduce a theory in which the
smallest models of its finite subtheories are growing by cc

n
, where n is the

size of the subtheory and c is some constant.
We will create such a theory by extending theory Texp. Axioms of this new
theory will put all the elements of a model of Texp into a set P2. On the set
P2 will be created a string S2. To make S2 cover the whole P2, we will first
define a linear ordering by a binary relation < on P2 and than define S2 on
<. Further there will be axioms maping new elements of the model to the
elements of S2 by relations Q2, R2 analogously as in Texp.

Example. 8.3 Theory T2exp is an extension of Texp. Further it contains
new predicate symbols: unary P2 and binary <, S2, Q2, R2 and axioms
describing them. First axiom sais that all elements y, that have been
maped to some x by relation Q (in model of Texp, belong to set P2:

∀y(∃xQ(x, y)→ P2(y)

On P2 exists a linear ordering starting in c0 and all pairs of adjoining
elements in the ordering are in relation S2. So the relation S2 creates a
string starting with c0 and covering the whole P2:

∀P2(x), P2(y)(x < y → ¬(y < x)) antisymmetry of <
∀P2(x), P2(y), P2(z)(x < y ∧ y < z → ¬(x < z)) transitivity of <
∀P2(x), P2(y)(x < y ∨ y < x) linearity of <
∀x, y(S2(x, y) ≡ (x < y ∧ ¬∃P2(z)(x < z < y))) S2 is a string
P2(c0) ∧ ∀P2(x)¬x < c0 c0 is first in the string

The last three axioms are analogous to axioms r1,r2 and r3 of Texp, but
with the predicates P2, S2, Q2, R2 in the place of P , S, Q, R.

Now let F be a subtheory of T2exp, containing axioms r1, r2 and r3 of
Texp, and all the special axioms of T2exp. Let k be the maximum n of the
sn axioms appearing in F . Any model of F contains a set P2 of size at
least 2n, by the same argument as with Texp (In fact it is 2n− 1 but we can
assume adding of one more element for convinience in the counting). And
by the same argument the whole model of F is at least exponential to P2,
that is 22n

.

40

Similarly, by changing axiom r3 and its analogies, we can get theories with
models of subtheories growing by cc

n
to the size of the subtheories, where c

is a natural number. And by repeating the same method we can increase
this growing to cc

n
, cc

cn

,
These theories cannot be p-simulated by G using the binary coding
method. Even T2exp would need at least

⌈
log2(cc

n
)
⌉

= O(cn) propositional
variables in binary encoding. So the translated formulas in the simulating
derivations would grow exponentially in their length (with the size of the
subtheories).

41

9 Further research

In the whole thesis we were stating theorems saying that some proof
systems are p-equivalent (or in some cases we were able to show the
p-simulation only one way). On the other hand we were not able to proof
any theorem saying that some proof system cannot p-simulate some other
proof system. Such problems are considered as difficult and there are no
results saying that some proof systems are even stronger then Frege
systems.
One way the research can continue is by examining stronger first-order
theories as propositional proof system. From Chapter 6 we were examining
theories with an infinite model, but with the finite subtheories having
finite models. The next step would be to examine a theory with an infinite
model implied by a finite number of axioms. For example, the theory of
dense linear ordering.
Another natural way of creating possible strong proof systems would be by
extending the system PL into a second-order logic.

42

10 Symbol index

p, q, r, p0, p1, . . . - propositional variables
x, y, z, x0, x1, . . . - first-order variables
A, B, C, . . . - propositional formulas
ϕ, ψ, . . . - first-order formulas or quantified propositional formulas
Γ, Δ, Λ, Π, . . . - sets of formulas
F , EF , G, PL=, . . . - proof systems
π, π′ . . . - derivations
t, s - terms
c, c0, . . . - constants

43

References

[CR] S. A. Cook and R. A. Reckhow, The relative efficiency of
propositional proof systems, The Jornal of Symbolic Logic, vol. 44,
pp. 36-50 (1977).

[C] S. A. Cook, The complexity of theorem proving procedures,
Proceedings of the Third Annual ACM Symposium on the Theory of
Computing, pp. 151-158 (1971).

[K] J. Kraj́ıček, Cambridge University Press, Bounded Arithmetic,
Propositional Logic, and Complexity Theory (1995).

[KP] J. Kraj́ıček and P. Pudlák, Quantified propositional calculi and
fragments of bounded arithmetics, Zeitschr. f. math. Logic und
Grundlagen d. Math. Bd. 36., pp. 29-46 (1990).

[SV] V. Švejdar, Logika, neúplnost, složitost a nutnost (Logic:
Incompleteness, Complexity, and Necessity). Academia Praha, 2002.

44

