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Ph.D. Thesis
Prague, 2005



Abstract

We study the extension of the theory S1
2 by instances of the dual (onto) weak

pigeonhole principle for p-time functions, dWPHP(PV )xx2 . We propose a
natural framework for formalization of randomized algorithms in bounded
arithmetic, and use it to provide a strengthening of Wilkie’s witnessing
theorem for S1

2 + dWPHP(PV ).
Then we show that dWPHP(PV ) is (over S1

2) equivalent to a state-
ment asserting the existence of a family of Boolean functions with exponen-
tial circuit complexity. Building on this result, we formalize the Nisan-
Wigderson construction (conditional derandomization of probabilistic p-
time algorithms) in a conservative extension of S1

2 +dWPHP(PV ). We also
develop in S1

2 the algebraic machinery needed for implicit list-decoding of
Reed-Muller error-correcting codes (including some results on a modification
of Soltys’ theory ∀LAP), and use it to formalize the Impagliazzo-Wigderson
strengthening of the Nisan-Wigderson theorem.

We construct a propositional proof system WF (based on a reformulation
of Extended Frege in terms of Boolean circuits), which captures the ∀Πb

1-
consequences of S1

2 + dWPHP(PV ). As an application, we show that WF
and G2 p-simulate the Unstructured Extended Nullstellensatz proof system.

We also consider two theories which have explicit counting facilities in
their language. The first one is the Impagliazzo-Kapron logic; we propose
a modification of the theory, and prove a generalization of the Impagliazzo-
Kapron soundness theorem to ∀∃-consequences of the theory. The second
one is a feasible theory of approximate counting, formulated in a variant of
Kleene’s 3-valued logic. We introduce the theory, and prove a witnessing
theorem for its existential consequences.
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Chapter 1

Introduction

Variants of the pigeonhole principle are ubiquitous in complexity theory and
related areas of mathematical logic. On one hand, PHP serves as a canonical
example of a tautology for proving lower bounds on lengths of propositional
proofs (e.g., Haken’s lower bound for resolution [13], or Ajtai’s lower bound
for constant-depth Frege [1]); on the other hand, weak pigeonhole principle
(provable in I∆0 + Ω1) can be used to formalize certain counting arguments
in bounded arithmetic (e.g., the existence of infinitely many primes [35], or
Ramsey-type combinatorics [32]).

Our main object of study will the theory S1
2 + dWPHP(PV ): the dual

weak pigeonhole principle for polynomial-time functions. Whereas the usual
weak pigeonhole principle says that there is no injection from 2n to n, the
dual weak pigeonhole principle states that there is no surjection from n onto
2n; in bounded arithmetic, the dual version is the weaker one of the two no-
tions. The first important result on S1

2 +dWPHP(PV ) was A. Wilkie’s wit-
nessing theorem (see [20]): ∀Σb

1-consequences of the theory are witnessable
by randomized polynomial-time computable (multi)functions. The theory
was later studied by J. Kraj́ıček [21], and its model theory was investigated
by N. Thapen [47, 48].

Probabilistic algorithms have attracted a lot of attention recently, con-
centrated on derandomization efforts. Results in this direction, also known
as hardness-randomness tradeoffs, show that there are efficient determin-
istic simulations of randomized algorithms, if there exist uniform families
of Boolean functions with large circuit complexity (see e.g. [31, 15, 46]);
there are also some results showing the converse ([18]). This is one of our
motivations for studying the dual weak pigeonhole principle, as Wilkie’s wit-
nessing theorem suggests that dWPHP(PV ) is connected with probabilistic
computation.

1



Chapter 1. Introduction 2

After presenting some background information in chapter 2, we turn
our attention in chapter 3 to the question of definability of randomized
algorithms in S1

2 + dWPHP(PV ). Typical witnessing theorems, such as
the Buss’ theorem, have the form of an equivalence: e.g., a function is Σb

i -
definable in Si2 iff it is in FPΣP

i−1 . Wilkie’s witnessing theorem only shows
one direction of such an equivalence; we would like to complement it by the
converse direction.

Notice that we cannot hope to Σb
1-define all randomized p-time algo-

rithms in S1
2 + dWPHP(PV ): by [48], this would imply that ZPP has a

complete language, which is known to fail for a suitable relativized class
ZPPA. We thus isolate a special subclass of randomized algorithms; the idea
is, instead of merely demanding the success probability of the algorithm to
be large, we require to have a polynomial-time function which proves that
the probability of failure is small by mapping the set of all random witnesses
onto several copies of the set of bad witnesses. Such a condition is easily
expressible in the language of arithmetic. We show that this approach is
natural and well-behaved: we formalize in S1

2 or S1
2 + dWPHP(PV ) usual

properties of randomized algorithms, like success amplification, simulation
by circuits, or closure under composition. As a concrete example, we also
present and analyze a formalized version of the Rabin-Miller primality test-
ing algorithm. We prove that the witnessing functions in Wilkie’s theorem
are definable in S1

2 + dWPHP(PV ), which shows that we have picked the
right class of probabilistic algorithms.

In chapter 4 we will consider Boolean functions with exponential (worst-
case or average-case) circuit complexity within bounded arithmetic. Expo-
nentially hard functions are closely connected with probabilistic algorithms,
by the derandomization results mentioned above. We show that they are
also connected to the dual weak pigeonhole principle. It is not hard to see
that S1

2 + dWPHP(PV ) can formalize Shannon’s counting argument, which
implies that functions with exponential circuit complexity exist [40]; we will
prove a strong converse to this statement: S1

2 +¬dWPHP(PV ) implies that
the circuit complexity of all functions is bounded by a (nonstandard) con-
stant. In particular, we obtain the following characterization: dWPHP(PV )
is (over S1

2) equivalent to the existence of exponentially hard Boolean func-
tions in an arbitrary large number of variables.

Since we have probabilistic algorithms and exponentially hard functions
in S1

2 +dWPHP(PV ), the natural question is whether we can carry out some
derandomization in this theory (or its variant). As we will see, the answer
is positive. We will work in a conservative extension of S1

2 + dWPHP(PV )
with an additional symbol α, which stands for a family of hard Boolean func-
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tions. We formalize the construction of the Nisan-Wigderson pseudorandom
generator; as a result we get that any definable probabilistic algorithm (in
the sense of chapter 3) can be simulated by a p-time function with the oracle
α, if the Boolean functions given by α have exponential average-case circuit
complexity. (We will need to formalize variants of Chernoff’s inequality and
Stirling’s bound in the process; we moved these technical details into the
appendix.)

As proved by Impagliazzo and Wigderson [15], the assumption of av-
erage-case hardness in the Nisan-Wigderson theorem can be weakened to
worst-case hardness. This result can be formalized in our setting as well,
and we show it in section 4.3. We follow the approach of [46], which reduces
hardness amplification to list-decoding of error-correcting codes. This strat-
egy is much simpler than the original sequence of papers culminating in [15],
but still its formalization in S1

2 presented some nontrivial difficulties. We
had to formalize a variant of a factorization algorithm for bivariate polyno-
mials over finite fields, including Gaussian elimination for function fields (we
used a modification of M. Soltys’ theory ∀LAP [42, 44] to deal with linear
algebra issues).

In chapter 5, we study the strength of S1
2 + dWPHP(PV ) in terms of

propositional proof complexity. By a well-known construction [9, 22], arith-
metical ∀Πb

1-sentences can be translated to sequences of propositional for-
mulas. (Almost) every theory T has an associated proof system P : this
roughly means that T proves the consistency of P , and propositional trans-
lations of Πb

1-formulas provable in T have polynomial-size proofs in P . In a
sense, P is a non-uniform version of the ∀Πb

1-fragment of T . We construct
a propositional proof system, called WF , which corresponds to the theory
S1

2 +dWPHP(PV ), thus answering an open problem of [21]. To simplify the
presentation, we first construct a proof system operating with Boolean cir-
cuits, p-equivalent to the Extended Frege proof system; this makes explicit
the folklore idea that Extended Frege is essentially “P/poly-Frege”. We also
show that WF p-simulates the Unstructured Extended Nullstellensatz proof
system from [7].

The last chapter 6 deals with two theories of arithmetic, which are only
loosely connected by having explicit counting in their language. In section
6.1 we will consider the Impagliazzo-Kapron logic [14]. This theory was cre-
ated as a framework for formalization of cryptographic reasoning; it was in-
tended as a tool for incorporating other more specialized deductive systems,
rather than a final product. Impagliazzo and Kapron prove a soundness
theorem, which gives cryptographic interpretation to (∀ → ∀)-consequences
of their theory (more precisely: implications between Π1

1-formulas, whose
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first-order kernel is Π0
1). We propose a modification of the theory, intended

to overcome some inconsistencies in application of the theory in the original
paper [14]. Then we generalize the Impagliazzo-Kapron soundness theorem
to ∀∃-consequences of the theory.

In section 6.2 we will introduce a theory of approximate counting. Exact
counting is computationally difficult: by results of Toda [50], #P is stronger
than the polynomial-time hierarchy. In contrast to this, approximate count-
ing can be done within PH , it can be efficiently realized by randomized
algorithms; vice versa, randomized algorithms are easily definable using ap-
proximate counting. As we have already seen, it is possible to simulate some
special kinds of approximate counting using dWPHP (or other variants of
the pigeonhole principle), but this approach has its drawbacks: it is not
guaranteed to work in general, it employs a lot of ad hoc arguments, and it
increases the quantifier complexity (which is a problem if we have restricted
induction, such as in S1

2). We want something more systematic, and more
explicit; we thus introduce approximate counting quantifiers.

Unlike exact counting quantifiers, it is far from clear what should be
the “right” axioms governing approximate counting. Worse yet, it is a se-
rious problem how to model the inexactness of the approximate counting
quantifiers, or in other words, how to prevent them from being exact. We
attempt to solve this difficulty by working in an extension of Kleene’s 3-
valued logic instead of the classical predicate calculus. It is quite unusual to
use non-classical logics in bounded arithmetic (apart from the intuitionistic
logic, which however has completely different motivation), but we believe
it is the natural thing to do in this situation. One way to think about it
is to consider the computational aspect of the problem: probabilistic com-
plexity classes like BPP or AM are more naturally presented as classes of
promise problems, rather than classes of languages. In a sense, it separates
the syntactical description (e.g., a randomized Turing machine) from ex-
tra universal conditions imposed on its behaviour (e.g., for every input, the
probability of acceptance is either very high or very low).

The contents of chapters 3, 5, and a part of chapter 4 of this thesis were
already published as [16].



Chapter 2

Preliminaries

2.1 Computational complexity

We assume the reader is familiar with elementary notions from complexity
theory. We review here some basic concepts mainly to fix the notation;
missing details can be found in any textbook on computational complexity,
such as [33].

Class P consists of predicates computable on a deterministic Turing ma-
chine in polynomial time; the corresponding class of polynomial-time com-
putable functions is denoted FP . NP is the class of predicates computable
in polynomial time on a nondeterministic Turing machine. Equivalently,
a language L is in NP if there is a relation P (x, y) computable in time
polynomial in |x| such that

x ∈ L iff ∃y P (x, y).

For any language class C, we define coC to be the class of complements of
languages from C.

Relativized classes PA and NPA consist of predicates computable on a
deterministic resp. nondeterministic polynomial-time Turing machine with
oracle access to a language A. The polynomial-time hierarchy is defined by
ΣP

0 = P , ΣP
i+1 = NPΣP

i =
⋃
{NPA; A ∈ ΣP

i }, ΠP
i = coΣP

i , and PH =⋃
i ΣP

i .
We will also often refer to randomized complexity classes. A language L

is in the class BPP , if there exists a polynomial-time computable relation
R(x, y), and a polynomial p(n) such that

x ∈ L⇒ Pry
(
R(x, y)

∣∣ |y| ≤ p(|x|)) ≥ 2/3,

x /∈ L⇒ Pry
(
R(x, y)

∣∣ |y| ≤ p(|x|)) ≤ 1/3.

5



Chapter 2. Preliminaries 6

If the second condition holds in the stronger form

x /∈ L⇒ Pr|y|≤p(|x|)(R(x, y)) = 0,

the language L is in the class RP . We define ZPP = RP ∩ coRP .
Another, maybe more intuitive, way to define randomized classes is to

consider randomized Turing machines. A randomized TM is essentially a
nondeterministic TM; we define a probability measure on the set of possible
computation paths such that individual nondeterministic choices are inde-
pendent and uniform (i.e., each of the two possible branchings is taken with
probability 1/2).

In this setting, L ∈ BPP iff there is a randomized TM M(x) which runs
in time polynomial in |x|, such that

x ∈ L⇒ Pr(M(x) accepts) ≥ 2/3,

x /∈ L⇒ Pr(M(x) accepts) ≤ 1/3.

As above, L ∈ RP if in addition M(x) always rejects for x /∈ L. Apart from
the definition ZPP = RP ∩ coRP , there are other characterizations of ZPP .
First, L ∈ ZPP iff there is a randomized TM which always computes the
correct answer to x ∈ L?, and whose expected running time is polynomial in
|x|. Second, L ∈ ZPP iff there is a (worst-case) polynomial-time randomized
TM M(x) which either rejects, or correctly outputs 0 or 1 according to the
characteristic function of L, and Pr(M(x) rejects) ≤ 1/2.

The constants 2/3, 1/3, etc., in the definitions are somewhat arbitrary.
Assume we have an RP -machine M which accepts x ∈ L with probability
α(n), where n = |x|. We can construct another machine M ′ which repeats
the computation of M k-times, and accepts if at least one of the iterations
accepts. The running time of M ′ is still polynomial if k = nO(1), and the
probability of accepting for x ∈ L is amplified to 1− (1− α(n))k. It follows
that the definition of RP does not change, if we replace the constant 2/3 by
any function α(n) such that n−c ≤ α(n) ≤ 1− 2−n

c
for some constant c.

A similar construction works for BPP as well; in this case, the machine
M ′ will take a majority vote. The probability of error of M ′ will be again
exponentially small in k, due to the following theorem.

2.1.1 Theorem (Chernoff’s inequality) LetX1, . . . , Xk be independent

random variables with values from [0, 1]. Put X = 1
k

∑
iXi. Then

Pr(X − EX ≥ a) ≤ e−2ka2

for any a ≥ 0. �
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Obviously, RP ⊆ NP . M. Sipser [41] has shown how to approximate
probabilities within PH . As a result, BPP ⊆ ΣP

2 ∩ΠP
2 , and in fact, BPP ⊆

ZPPNP [31].
We will need few notions from circuit complexity.

2.1.2 Definition A Boolean circuit C with n inputs and m outputs over a
set B of Boolean connectives is a labelled acyclic graph C, such that each
node is labelled either by an input variable x0, . . . , xn−1, in which case it has
in-degree 0, or by a k-ary connective from B, in which case it has in-degree
k. Additionally, for each j < m there is exactly one node of C labelled by
an output variable yj .

The circuit computes a function C : 2n → 2m in an obvious way (where we
identify {0, 1}n = 2n).

Any language L can be identified with a family of Boolean functions
Ln : 2n → 2, n ∈ ω, where Ln is the restriction of the characteristic function
of L to 2n.

2.1.3 Definition Circuit complexity C(f) of a function f : 2n → 2m is the
minimal size of a circuit which computes f .

A language L is in P/poly, if it is computable by a family of polynomial-
size circuits, i.e., there is a constant c such that C(Ln) ≤ nc for all sufficiently
large n.

A computation of a deterministic Turing machine can be simulated by a
circuit of depth proportional to the time of the computation, and width
proportional to the space. In particular, P ⊆ P/poly. Moreover, a similar
simulation is known to hold for randomized Turing machines, thus BPP ⊆
P/poly.

We will sometimes write p-time, p-size, etc., instead of polynomial-time,
polynomial-size.

2.2 Bounded arithmetic

The research of bounded arithmetic was initiated by R. Parikh [34], who
defined the theory now known as I∆0. An extension I∆0 + Ω1 was later
studied by J. Paris and A. Wilkie; a milestone in this line of research was
S. Buss’ book [5], which introduced the theory S2 (and its fragments) as
a conservative extension of I∆0 + Ω1. We will briefly recapitulate Buss’
theories in the sequel; more details can be found in [5, 20, 12].
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2.2.1 Definition The first-order language L consists of a constant 0, unary
functions S,

⌊ ·
2

⌋
, |·|, binary functions +, ·, #, and binary predicate ≤. The

intended meaning of |x| is the number of digits in the binary representation
of x, i.e., |x| = dlog2(x+ 1)e. The meaning of the smash function is x# y =
2|x||y|.

We let x < y abbreviate x ≤ y ∧ x 6= y, and for every natural number n,
we define its unary numeral as n = S(· · · (S︸ ︷︷ ︸

n

(0)) · · ·).

2.2.2 Definition Bounded quantifiers are the abbreviations

∃x ≤ t ϕ = ∃x (x ≤ t ∧ ϕ),

∀x ≤ t ϕ = ∀x (x ≤ t→ ϕ),

where t is a term with no occurrence of x. A bounded quantifier of the form
∃x ≤ |t| or ∀x ≤ |t| is called sharply bounded.

A formula is bounded if it contains only bounded quantifiers; the set of
all bounded formulas in the language L will be denoted by Σb

∞ (the symbol
∆0

0 is usually reserved for bounded formulas in the language LPA of Peano
arithmetic). A formula consisting of i alternating (possibly empty) blocks of
bounded quantifiers in front of a sharply bounded formula is called a strict
Σb
i -formula if the first block is existential, or strict Πb

i -formula if the first
block is universal.

The classes of Σb
i and Πb

i -formulas are defined similarly, except that we
allow arbitrary sharply bounded quantifiers to intervene in the quantifier
prefix. Up to logical equivalence, Σb

i and Πb
i -formulas are closed under ∧

and ∨; this is often incorporated directly in the definition.
A Σb

i -formula is called ∆b
i in a theory T (shortly ∆b

i(T )), if it is in T

equivalent to a Πb
i -formula.

The hierarchy of bounded formulas is tightly connected with the poly-
nomial-time hierarchy.

2.2.3 Theorem For any i > 0, the class of predicates Σb
i -definable in the

standard model of arithmetic N coincides with ΣP
i . �

2.2.4 Definition The theory BASIC in the language L has the following
32 open axioms.

x ≤ y → x ≤ S(y),

x 6= S(x),

0 ≤ x,
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x < y → S(x) ≤ y,
2x = 0→ x = 0,

x ≤ y ∨ y ≤ x,
x ≤ y ∧ y ≤ x→ x = y,

x ≤ y ∧ y ≤ z → x ≤ z,
|0| = 0,

x 6= 0→ |2x| = S(|x|) ∧ |S(2x)| = S(|x|),
|1| = 1,

x ≤ y → |x| ≤ |y|,
|x# y| = S(|x| · |y|),

0 # x = 1,

x 6= 0→ 1 # (2x) = 2(1 # x) ∧ 1 # S(2x) = 2(1 # x),

x# y = y # x,

|x| = |y| → x# z = y # z,

|x| = |y|+ |z| → x# w = (y # w) · (z # w),

x ≤ x+ y,

x < y → S(2x) < 2y,

x+ y = y + x,

x+ 0 = x,

x+ S(y) = S(x+ y),

(x+ y) + z = x+ (y + z),

x+ z ≤ y + z → x ≤ y,
x · 0 = 0,

x · S(y) = x · y + x,

x · y = y · x,
x · (y + z) = x · y + x · z,

x 6= 0→ (x · y ≤ x · z ≡ y ≤ z),
x 6= 0→ |x| = S(|

⌊
x
2

⌋
|),

x =
⌊y
2

⌋
≡ (y = 2x ∨ y = S(2x)).

2.2.5 Definition Let Γ be a set of formulas. We define the following axiom
schemata, where formulas ϕ are taken from Γ.

• Induction Γ-IND :

ϕ(0) ∧ ∀u ≤ x (ϕ(u)→ ϕ(S(u)))→ ϕ(x).
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• Polynomial induction Γ-PIND :

ϕ(0) ∧ ∀u ≤ x (ϕ(
⌊
u
2

⌋
)→ ϕ(u))→ ϕ(x).

• Length induction Γ-LIND :

ϕ(0) ∧ ∀u ≤ |x| (ϕ(u)→ ϕ(S(u)))→ ϕ(|x|).

• Minimization Γ-MIN :

ϕ(x)→ ∃y ≤ x (ϕ(y) ∧ ∀u < y ¬ϕ(u)).

• Maximization Γ-MAX :

ϕ(0)→ ∃y ≤ x (ϕ(y) ∧ ∀u ≤ x (u > y → ¬ϕ(u))).

• Length minimization Γ-LENGTH -MIN :

ϕ(x)→ ∃y ≤ x (ϕ(y) ∧ ∀u ≤ x (|u| < |y| → ¬ϕ(u)).

• Length maximization Γ-LENGTH -MAX :

ϕ(0)→ ∃y ≤ x (ϕ(y) ∧ ∀u ≤ x (|u| > |y| → ¬ϕ(u))).

For any i ≥ 1, we define a chain of theories Si2 = BASIC + Σb
i -PIND , and

T i2 = BASIC +Σb
i -IND . The unions of these theories are S2 = BASIC +Σb

∞-
PIND , and T2 = BASIC + Σb

∞-IND .

Basic relations between these schemata are summarized below.

2.2.6 Theorem (Buss [5, 6]) Let i ≥ 1.

(i) Si2 ⊆ T i2 ⊆ S
i+1
2 , thus S2 = T2,

(ii) Si+1
2 is ∀Σb

i+1-conservative over T i2,

(iii) Si2 is over BASIC equivalent to Σb
i -LIND , Πb

i -PIND , Πb
i -LIND , Σb

i -

LENGTH -MIN , Σb
i -LENGTH -MAX , Πb

i−1-LENGTH -MIN ,

Πb
i−1-LENGTH -MAX ,

(iv) T i2 is over BASIC equivalent to Πb
i -IND , Σb

i -MIN , Σb
i -MAX , Πb

i−1-

MIN , Πb
i−1-MAX ,

except that for i = 1, one needs to use ∆b
1(S1

2) instead of Πb
0 in items (iii)

and (iv). �
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Theories Si2 and T i2 can be relativized. L(α) denotes the language L

expanded by a new function or relation symbol α. We define Σb
i(α) and

Πb
i(α) as before, but allowing α to appear in atomic subformulas. The

theories Si2(α) and T i2(α) have the respective induction schema expanded to
the new language, but do not contain any other axioms involving α.

S1
2 is a sequential theory: we can encode finite sequences of numbers in

such a way that basic operations on sequences (like concatenation) are ∆b
1-

definable and well-behaved in S1
2 . We will denote by (w)i the ∆b

1-definable
function which extracts the ith element from a sequence w, and lh(w) will
denote the length of a sequence w. Having sequence coding, we can introduce
another useful schema.

2.2.7 Definition Sharply bounded collection BBΓ is the schema

∀i ≤ |x| ∃v ≤ y ϕ(i, v)→ ∃w ∀i ≤ |x| ϕ(i, (w)i),

for every formula ϕ ∈ Γ.

2.2.8 Theorem Let i ≥ 1.

• (Buss [5]) Si2 proves BBΣb
i .

• (Ressayre [39]) Si2 + BBΣb
i+1 is ∀Σb

i+1-conservative over Si2.

�

Rather than using the basic Buss’ language of bounded arithmetic, it
will be more convenient for us to work in a richer language of theory PV ,
introduced by Cook [9]. The language of PV contains function symbols for
all polynomial-time algorithms; it is based on the following characterization
of FP .

2.2.9 Definition Let S0(x) = 2x+ 1 and S1(x) = 2x+ 2. A function f is
defined from functions g, h0, h1, and b by limited (or bounded) recursion on
(binary) notation, if

f(~x, 0) = g(~x),

f(~x, Si(y)) = hi(~x, y, f(~x, y)), i = 0, 1,

f(~x, y) ≤ b(~x, y).

2.2.10 Theorem (Cobham [8]) The closure of constant 0, functions S0,

S1, #, and projections under composition and limited recursion on notation

is exactly the class of polynomial-time computable functions. �
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Cook’s equational theory PV , and Cobham’s result were originally for-
mulated for functions on binary strings, but we present it here for number
functions to be consistent with other theories of bounded arithmetic. We
identify binary strings and natural numbers by the following bijection: given
a number x, the corresponding string is the binary representation of x + 1
without the leading digit 1.

2.2.11 Definition The language of PV , and PV -derivations are intro-
duced by simultaneous induction. Basic function symbols are constant 0,
unary functions S0, S1, Tr, and binary functions #, _, Less. (The in-
tended meaning of _ is concatenation, Tr(x) =

⌊
x−1

2

⌋
, i.e., string x with

its rightmost bit deleted, Less(x, y) is x with |y| rightmost bits deleted, and
x#y is |y| concatenated copies of x, where |y| is the length of y as a string.)
The following defining equations are derivable:

Tr(0) = 0,

T r(Si(x)) = x, i = 0, 1,

x _ 0 = x,

x_ Si(y) = Si(x_ y),

x# 0 = 0,

x# Si(y) = x_ (x# y), i = 0, 1,

Less(x, 0) = x,

Less(x, Si(y)) = Tr(Less(x, y)), i = 0, 1.

PV -derivations are closed under usual rules of equational logic, and the rule

f1(~x, 0) = g(~x)

f1(~x, S0(y)) = h0(~x, y, f1(~x, y))

f1(~x, S1(y)) = h1(~x, y, f1(~x, y))

f2(~x, 0) = g(~x)

f2(~x, S0(y)) = h0(~x, y, f2(~x, y))

f2(~x, S1(y)) = h1(~x, y, f2(~x, y))

f1(~x, y) = f2(~x, y)

where f1, f2, g, h0, and h1 are PV -functions.
For every term t, there is a function symbol ft, and a defining equation

ft(~x) = t(~x).

Let g, h0, h1, b0, and b1 be PV -functions, and πi PV -derivations of equations

Less(hi(~x, y, z), z _ bi(~x, y)) = 0,
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for i = 0, 1. Then there is a PV -function symbol f := fg,h0,h1,b0,b1,π0,π1 , and
defining equations

f(~x, 0) = g(~x),

f(~x, Si(y)) = hi(~x, y, f(~x, y)), i = 0, 1.

Original Cook’s PV , as we just described it, is an equational theory; [24]
introduced a first-order theory PV 1, which is conservative extension of PV .
The theory PV 1 has the same language as PV , its axioms are equations
derivable in PV , and the PIND schema for open formulas. The theory can
be axiomatized by purely universal formulas (and, in fact, that is the way it
was defined in [24]). By a slight abuse of language, we will use the symbol
PV to denote PV 1 in the sequel, and we will also use the same symbol for
the language of PV .

PV can be relativized to PV (α), similarly to Si2(α). In this case, the new
function symbol α is also allowed in the inductive clauses for introduction
of new function symbols in definition 2.2.11; this means that the language
of PV (α) contains symbols for all polynomial-time oracle algorithms.

The hierarchy of Σb
i(PV )-formulas in the language of PV is defined

similarly to 2.2.2, and we let Si2(PV ) be the extension of PV by the Σb
i(PV )-

PIND schema. Notice that symbols from language L, being polynomial-time
computable, have natural counterparts in the language of PV ; in particular,
S1

2(PV ) is an extension of S1
2 .

On the other hand, PV -functions have well-behaved ∆b
1-definitions in

S1
2 . Under this interpretation, every Σb

i(PV )-formula is equivalent to a Σb
i -

formula, thus S1
2(PV ) is a definable (hence conservative) extension of S1

2 .
For these reasons, we will usually ignore the distinction between S1

2 and
S1

2(PV ), and use PV -functions freely to simplify the presentation. If the
reader is unfamiliar with PV , she may simply identify PV -functions with
functions ∆b

1-definable in S1
2 .

Now we introduce the central topic of this thesis.

2.2.12 Definition Let f be a function. Dual weak pigeonhole principle for
f is the formula

∀a > 1 dPHP(f)aa2 ,

where dPHP(f)ab stands for

∃v < b∀u < a f(u) 6= v.

The schema dWPHP(PV ) is the dual weak pigeonhole principle for all PV -
functions f (with parameters).
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Similarly to other variants of the weak pigeonhole principle, dWPHP(PV )
is provable in T 2

2 [35, 28].
Notice that dWPHP(PV ) is finitely axiomatizable over PV : it is equiv-

alent to its instance dWPHP(eval), where eval(C, u) is the PV -function
which evaluates a Boolean circuit C on input u. The exact bound b = a2 in
the definition of dWPHP(PV ) is inessential, since the following are equiva-
lent over S1

2 (this is essentially due to [35]):

(i) ∀a∃b dPHP(PV )ab ,

(ii) dWPHP(PV ),

(iii) ∀a > 0∀c dPHP(PV )a|c|a(|c|+1).

In particular, we will often use the principle with b = 2a.
The theory S1

2 + dWPHP(PV ) was studied in [21] under the name BT
(for “Basic Theory”). We prefer to use the explicit longer name, because we
will also consider the dWPHP(PV ) schema over other base theories (such
as PV ).

Various witnessing theorems are indispensable tools in bounded arith-
metic, and we will need them as well. We quote here two particularly im-
portant results, Parikh’s theorem, and Buss’ witnessing theorem.

2.2.13 Theorem (Parikh [34]) Let T be a ∀Σb
∞-axiomatizable extension

of S1
2 . If T proves ∀x∃y ϕ(x, y), where ϕ is bounded, then there exists a

term t such that

T ` ∀x∃y ≤ t(x) ϕ(x, y). �

2.2.14 Theorem (Buss [5, 6]) Assume that S1
2 ` ∀x∃y ϕ(x, y), with ϕ ∈

Σb
1. Then there exists a PV -function f such that PV ` ∀x ϕ(x, f(x)). �

We will often use the following corollary to Buss’ witnessing theorem:
S1

2 is ∀Σb
1-conservative over PV .

A witnessing theorem for S1
2 + dWPHP(PV ) was found by A. Wilkie;

the result was first published in Kraj́ıček’s book [20].

2.2.15 Theorem (Wilkie) Assume that

S1
2 + dWPHP(PV ) ` ∀x∃y ϕ(x, y),

where ϕ ∈ Σb
1. Then there exists a randomized p-time algorithm f such that

Pr(ϕ(x, f(x))) ≥ 2/3

holds for every natural number x. �
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We also introduce some bits of notation. If M is a model of PV or S1
2 ,

Log(M) denotes the cut {|a|M ; a ∈ M}. We will often use this notation
outside the model-theoretical context, in which case x ∈ Log is a shortcut
for ∃y x = |y|. Similarly, x ∈ LogLog means ∃y x = ||y||.

We denote the set of natural numbers by ω. We also borrow from set
theory the convention n = {0, 1, . . . , n−1}, in particular a “function f : a→
b” is really f : [0, a − 1] → [0, b − 1]. Ordered pairs and sequences will be
denoted by angle brackets, such as 〈x, y〉. The symbol f : a � b means that
f is a function from a onto b.

Many of our results are formalizations of known statements in fragments
of bounded arithmetic, like PV or S1

2 +dWPHP(PV ). To make the notation
more compact, we indicate the theory by the symbol “(T `:)”, which can
be read as “theory T proves:”.

2.3 Propositional proof complexity

The fundamental notion of a general propositional proof system was defined
by S. Cook and A. Reckhow in [10].

2.3.1 Definition Let TAUT denote the set of all classical propositional
tautologies (in de Morgan language, for concreteness). Propositional proof
system is a polynomial-time computable function P such that rng(P ) =
TAUT .

A proof system P polynomially simulates a proof system Q, in symbols
Q ≤p P , if there is a polynomial-time function f such that Q = P ◦ f .

Usual textbook calculi fit into this definition as follows: the relation R(π, ϕ)
expressing that π is a proof of a formula ϕ is p-time decidable, we may
thus construct a propositional proof system P obeying the Cook-Reckhow
definition as

P (〈π, ϕ〉) =

{
ϕ, if R(π, ϕ),

>, otherwise.

Two important examples are the Frege and Extended Frege proof systems,
defined in [10].

2.3.2 Definition A Frege proof system (F ) in a finite basis of Boolean
connectives B is given by a finite, sound, and implicationally complete set
R of rules of the form

ψ1(~p) · · · ψk(~p)
ψ0(~p)

,
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where ψi are formulas over B in propositional variables ~p. An instance of
such a Frege rule is

ψ1(~χ) · · · ψk(~χ)
ψ0(~χ)

,

where ~χ are B-formulas. A Frege proof of a formula ϕ is a sequence of
formulas ϕ0, . . . , ϕn such that ϕn = ϕ, and each ϕi is derived from some
previous ϕj ’s by a Frege rule; i.e., there are j1, . . . , jk < i such that

ϕj1 · · · ϕjk
ϕi

is an instance of a rule from R.

2.3.3 Definition An Extended (or Extension) Frege proof system (EF ) is
defined as follows: an Extended Frege proof of a formula ϕ is a sequence of
formulas ϕ0, . . . , ϕn such that ϕn = ϕ, and each ϕi is either derived from
some ϕj1 , . . . , ϕjk , j1, . . . , jk < i, by a Frege rule, or it is an extension axiom

q ≡ ψ,

where q is a propositional variable which has no occurrence in ψ, ϕj for
j < i, or ϕ.

The set of propositional tautologies is definable by the Πb
1-formula

Taut(ϕ) ≡ ∀x < 2|ϕ| eval(ϕ, x) = 1.

If P is PV -function which defines a propositional proof system, the consis-
tency and reflection principles for P are the ∀Πb

1-sentences

Con(P ) ≡ ∀π P (π) 6= ⊥,
0-RFN (P ) ≡ ∀π Taut(P (π)).

An important link between bounded arithmetic and propositional proof com-
plexity is given by translation of bounded formulas into propositional logic
[9, 22]. For any Πb

1-formula ϕ, there is a canonically constructed sequence
of propositional formulas {‖ϕ‖n; n ∈ ω}, such that ∀xϕ(x) is true in the
standard model iff all ‖ϕ‖n are tautologies.

Roughly, the construction goes as follows. First, we assign to every PV -
function f(x1, . . . , xk) and numbers n1, . . . , nk a (polynomial-size) circuit
{{f}}~n(~p), which computes the restriction f : 2n1 × · · · × 2nk → 2b(n1,...,nk),
where b is a bounding polynomial to f . The formula

‖f‖~n(~p;~r; ~q)
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expresses that the circuit {{f}}~n computes ~r on input ~p, with ~q being the
intermediate steps of the computation (there is an atom qi for every node
of the circuit).

Then we define Boolean formulas ‖ϕ(~x)‖~n(~p; ~q) by induction on complex-
ity of a Πb

1(PV )-formula ϕ. (Atoms ~p correspond to the variables ~x. Atoms
~q are auxiliary, you may think of them as being universally quantified; they
arise from universal quantifiers of ϕ, and from the output and intermediate
atoms ~q, ~r of ‖f‖~n, for functions f appearing in ϕ). The induction steps
are done in an obvious way, and for atomic formulas and their negations we
have

‖f(~x) = g(~x)‖~n := ‖f‖~n(~p;~r; ~q) & ‖g‖~n(~p; ~r′; ~q′)→
∧
i

(ri ≡ r′i),

‖¬f(~x) = g(~x)‖~n := ‖f‖~n(~p;~r; ~q) & ‖g‖~n(~p; ~r′; ~q′)→ ¬
∧
i

(ri ≡ r′i),

‖f(~x) ≤ g(~x)‖~n :=

‖f‖~n(~p;~r; ~q) & ‖g‖~n(~p; ~r′; ~q′)→
∧
i

(
ri &

∧
j>i

(rj ≡ r′j)→ r′i
)
,

‖¬f(~x) ≤ g(~x)‖~n :=

‖f‖~n(~p;~r; ~q) & ‖g‖~n(~p; ~r′; ~q′)→ ¬
∧
i

(
ri &

∧
j>i

(rj ≡ r′j)→ r′i
)
.

The following theorem is then a prototypical example of a connection
between an arithmetical theory, and a propositional proof system.

2.3.4 Theorem (Cook [9])

(i) If PV ` ϕ(x), ϕ ∈ Πb
1, then tautologies ‖ϕ‖n have polynomial-time

constructible proofs in EF .

(ii) PV ` 0-RFN (EF ) �

More information on reflection principles and propositional translations can
be found in chapter 9.3 of [20].



Chapter 3

Randomized computation in

bounded arithmetic

The main purpose of the present section is to develop a framework for ex-
pressing (defining) a certain kind of probabilistic algorithms in bounded
arithmetic. The concept of a definable randomized algorithm is introduced
in section 3.1; in section 3.2 we study basic consequences of the definition,
and in section 3.3 we present a strengthened version of Wilkie’s witnessing
theorem for S1

2 + dWPHP(PV ).

3.1 Definable probabilistic algorithms

As described in the next definition, we deal with a slightly nonstandard class
of randomized algorithms; this choice was motivated by two demands: (i)
we want ZPP , RP , and coRP languages to fit in, (ii) we want to consider
functions as well as predicates. Moreover, it is not natural for randomized
algorithms to compute univalued functions, hence we allow also multifunc-
tions. Formally, an n-ary partial multifunction (pmf) is just an (n+ 1)-ary
relation; by an abuse of language, we write F (~x) = y as a shorthand for
“y is one of the possible values of F (~x)”. Also notice that we left out BPP
algorithms; they would require a different treatment, which does not blend
smoothly with our approach to RP -like algorithms (in particular, the con-
cept of BPP -like multifunctions does not seem to make much sense).

3.1.1 Definition Let F be a partial multifunction, α : ω → [0, 1], and M

a randomized Turing machine. We say that M is an α-PPTM (probabilis-
tic polynomial-time Turing machine) for F iff the following conditions are
satisfied:

18
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(i) The time of any computation of M is polynomial in the length of its
input.

(ii) On any input x, either M computes a number y such that F (x) = y,
or it rejects.

(iii) If x ∈ dom(F ), the probability that the computation of M on input x
rejects is bounded from above by α(|x|).

Let MFRP be the class of all partial multifunctions (pmf) computable by
a 1/2-PPTM .

3.1.2 Remarks

• Trivial amplification shows that the definition of MFRP does not
change, if we replace the constant 1/2 by any function α(n) such that
1− n−c ≥ α(n) ≥ 2−n

c
for some c > 0.

• L ∈ ZPP iff the characteristic function of L is in MFRP .

• L ∈ RP iff L = dom(F ) for some F ∈ MFRP iff the function which is
constantly 0 on L and undefined on its complement is in MFRP .

• An α-PPTM for F is also an α-PPTM for any pmf G such that
dom(F ) = dom(G) and F ⊆ G.

Our next step is to formalize (a strengthened version of) this definition
in bounded arithmetic. First we give an informal description. We take a
PV -function f(~x,w), which simulates the computation of M on input ~x
and a string of random bits w. The machine may touch only a polynomial
number of these random bits, we thus fix an explicit bound w < r(~x).
The output of f(~x,w) is either a number, or a special symbol “∗”, which
corresponds to halting in a rejecting state (we may encode it as a number
by putting “∗” = 0, “n” = n + 1). Now we need to express the condition
(iii). Assume that F (~x) is defined, and let us say that a random string w is
good, if f(~x,w) 6= ∗, otherwise it is bad. We will consider an onto mapping
m : t× r(~x) � s×Bad , where Bad is the set of all bad random strings; such
a mapping explicitly witnesses that the ratio of bad strings is at most t/s,
hence (iii) holds with α = t/s. A formal definition follows:

3.1.3 Definition Let T be a theory containing PV , and t(~x) and s(~x) any
PV -functions. A definable t/s-PPTM consists of PV functions f and r such
that T proves
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(F) ∃w < r(~x) f(~x,w) 6= ∗ → ∃ circuit C ∀w < r(~x) (f(~x,w) = ∗ →
→ ∀i < s(~x)∃v < r(~x)∃j < t(~x) C(v, j) = 〈w, i〉),

where the size of C is tacitly bounded by a polynomial in the length of ~x.
A t/s-PPTM is uniformly witnessed if the formula above holds with C(v, j)
replaced by m(~x, v, j), where m is a PV -function symbol.

A definable t/s-PPTM computes a pmf F (~x), defined by

F (~x) = y iff ∃w < r(~x) f(~x,w) = y 6= ∗.

(Notice that this is Σb
1. Condition (F) itself is ∀Σb

3 for general PPTM ’s,
and ∀Σb

1 for uniformly witnessed PPTM ’s.) We will call such a function
definable t/s-MFRP , or shortly t/s-definable. A definable MFRP is weakly
total iff (F) holds with the condition “∃w < r(~x) f(~x,w) 6= ∗ →” dropped.

3.2 Properties of definable MFRP

3.2.1 Observation Assuming dWPHP(PV ), a weakly total definable t/s-
MFRP is total, provided 2t ≤ s.

Proof: If F (~x) were undefined, the circuit C from 3.1.3 would represent a
surjective mapping of t(~x)r(~x) onto s(~x)r(~x), contradicting dWPHP(PV ).

�

3.2.2 Lemma (PV `:) Let t, s and p be PV -functions such that p(x) ≥
1. Any tp/sp-definable MFRP F has a t/s-definition, which is uniformly

witnessed and/or weakly total, whenever F is. (Hence the symbol t/s may

be interpreted as a quotient.)

Proof: Let f(x,w) and r(x) be as in definition 3.1.3. Put

r′(x) := r(x) · p(x),

f ′(x,w′) := f(x,w′
1),

where we consider w′ as a pair [w′
0, w

′
1], w′

0 < p(x), w′ = w′
1 · p(x) + w′

0.
Let f ′(x,w′) 6= ∗ for some w′ < r′(x). This means that f(x,w′

1) 6= ∗, hence
there is a circuit C such that C(v, j) = 〈w, i〉 for some j < t(x) · p(x) and
v < r(x), whenever i < s(x) · p(x), w < r(x) and f(x,w) = ∗. Define a new
circuit C ′ by

C ′(v′, j′) := 〈[i0, w], i1〉, where C(v′1, [v
′
0, j

′]) = 〈w, i〉.

(As above, we decompose i = [i0, i1], v′ = [v′0, v
′
1], etc.) Given i′ < s(x)

and w′ < r(x) · p(x) such that f ′(x,w′) = ∗, we have [w′
0, i

′] < s(x) · p(x)
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and f(x,w′
1) = ∗, hence there is j < t(x) · p(x) and v < r(x) such that

C(v, j) = 〈w′
1, [w

′
0, i

′]〉. Therefore C ′([j0, v], j1) = 〈[w′
0, w

′
1], i′〉 = 〈w′, i′〉,

j1 < t(x), and [j0, v] < r′(x) as required. �

3.2.3 Lemma (PV + BBΣb
1 `:) Let t, s and p be PV -functions such that

p(x) ≥ 1. Then any t/s-definable MFRP F has a t|p|/s|p|-definition, which

is uniform and/or weakly total, if the original one was. (This lemma also

holds in plain PV , if p is constant.)

Proof: For any fixed numbers a and b, we may identify w < a|b| with a se-
quence 〈wk〉k<|b| of numbers less than a, namely wk =

⌊
w
ak

⌋
mod a. Given f

and r defining F , we put

r′(x) := r(x)|p(x)|,

f ′(x,w) :=

{
∗, if ∀k < |p(x)| f(x,wk) = ∗,
f(x,wk), if k < |p(x)| is minimal such that f(x,wk) 6= ∗.

Clearly, ∃w < r(x) f(x,w) = y iff ∃w < r′(x) f ′(x,w) = y. Assume that C
is a circuit satisfying (F). Define

C ′(v, j) = 〈w, i〉, where C(vk, jk) = 〈wk, ik〉 for each k < |p(x)|.

Let i < s(x)|p(x)| and f ′(x,w) = ∗, w < r′(x). This means that for any k,
f(x,wk) = ∗, hence there are v′ < r(x) and j′ < t(x) such that C(v′, j′) =
〈wk, ik〉. By BBΣb

1 there are sequences v and j such that C(vk, jk) = 〈wk, ik〉
for any k < |p(x)|. Then C ′(v, j) = 〈w, i〉. �

3.2.4 Corollary (PV +BBΣb
1 `:) Assuming s(x) ≥ 1 and t(x)(|p(x)|+1) ≤

s(x)|p(x)| for some p, any t/s-definable MFRP has a 1/q-definition for any

q(x). (I.e., as in the real world, we can boost the probability of error from

1− 1/poly(n) to 1/2poly(n).)

Proof: Straightforward induction shows that (a+ 1)b ≥ ab + bab−1 for any
b ≥ 1, b ∈ Log, in particular (|p(x)| + 1)|p(x)| ≥ 2|p(x)||p(x)|. This implies
s|p||p||p| ≥ t|p|(|p| + 1)|p| ≥ 2t|p||p||p|, hence s|p| ≥ 2t|p|. Thus using lemmas
3.2.3 and 3.2.2, any t/s-definable MFRP has a 1/2-definition, and also a 1/q-
definition by lemma 3.2.3 again, as 2|q| > q. �

3.2.5 Lemma (PV + BBΣb
1 `:) Any 1/2-definable MFRP has a uniformly

witnessed 1/2-definition.
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Proof: Let f and r be the 1/2-definition of F , and let C ≤ c(x) be the
circuit size bound implicit in (F). Put p(x) = 2|c(x)| and define f ′ and r′ as
in the proof of lemma 3.2.3. Finally, define

m(x, v, j) := 〈w, i〉, where eval(j, 〈vk, 0〉) = 〈wk, ik〉 for each k < |p(x)|.

(Here eval(C, x) is the value computed by a Boolean circuit C on input x.)
Assuming C ≤ c(x) is a circuit satisfying (F), the proof of lemma 3.2.3
shows that m witnesses that f ′ and r′ form a 2|c|/2|p|-definition of F (the
third argument of m will be C for all w and i). Lemma 3.2.2 implies that
F has a uniform 1/2-definition, because 2|p| = 2 · 2|c|. �

3.2.6 Definition Let F (~x) and G(y) be partial multifunctions. We say
that G is composable with F , if for all ~x, y and y′ such that F (~x) = y and
F (~x) = y′, y ∈ dom(G) iff y′ ∈ dom(G). Similarly for G(y1, . . . , yn) and
F1(~x), . . . , Fn(~x).

3.2.7 Remark There is a total multifunction F and a partial function G,
both in MFRP (using no randomness at all, in fact), such that their com-
position G ◦ F is a constant partial function with an NP -complete domain
(hence G ◦ F 6∈ MFRP , unless NP = RP). Indeed, choose an NP -complete
predicate Q(x)↔ ∃y (|y| ≤ |x|n &R(x, y)) with R ∈ P , and put

F (x) = y iff y = 0 or R(x, y − 1), |y − 1| ≤ |x|n,
G(0) is undefined,

G(x+ 1) = 0.

Clearly, G is a partial p-time function. Also F ∈ MFRP , because F contains
the constant 0 function. However,

(G ◦ F )(x) =

{
0, if Q(x),

undefined otherwise.

This shows that dealing with a condition like 3.2.6 is unavoidable, if we want
MFRP to be closed under composition (or even to formalize this in bounded
arithmetic).

3.2.8 Lemma (PV +BBΣb
1 `:) Let F1(~x), . . . , Fn(~x), G(y1, . . . , yn) be 1/2-

definable p.m.f., such that G is composable with F1, . . . , Fn. Then their

composition G(F1(~x), . . . , Fn(~x)) is also 1/2-definable. (PV suffices, if G

and Fi’s are uniformly witnessed.)
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Proof: For simplicity we will assume n = 1. By 3.2.4 and 3.2.5 there is
a 1/3-definition of F given by functions f(x,w) and r(x), uniformly wit-
nessed by m(x, v). Similarly let f ′(y, w) and r′(y) be a 1/3-definition of G,
uniformly witnessed by m′(y, v). Using the idea of the proof of lemma 3.2.2,
we may assume that r′(y) | r′(z) whenever y ≤ z. Let b(x) be a PV -function
such that f(x′, w) ≤ b(x) for all x′ ≤ x and w < r(x′). Define

r′′(x) := r′(b(x)) · r(x),

f ′′(x,w) :=

{
∗, if f(x,w0) = ∗,
f ′(f(x,w0), w1 mod r′(f(x,w0))) otherwise,

m′′(x, v, 0) := 〈[w, v1], i〉, where m(x, v0) = 〈w, i〉,

m′′(x, v, 1) :=


〈0, 0〉, if f(x, v0) = ∗,
〈[v0, w +

⌊
v1
q

⌋
· q], i〉, if q = r′(f(x, v0)), and

m′(f(x, v0), v1 mod q) = 〈w, i〉.

We claim that f ′′ and r′′ is a 2/3-definition of G ◦ F , witnessed by m′′.
Clearly, non-∗ values of f ′′(x,w) are just the values of G ◦ F . Assume that
f ′′(x, u) 6= ∗ for some u < r′′(x), and let w < r′′(x), i < 3, and f ′′(x,w) = ∗.
This means that either f(x,w0) = ∗, or f ′(y, w1 mod r′(y)) = ∗, where
y = f(x,w0). In the former case, we put j = 0, and we find v < r(x)
such that m(x, v) = 〈w0, i〉, then we have m′′(x, [v, w1], j) = 〈w, i〉. In the
latter case, put q = r′(y) and j = 1. Since f(x,w0) ∈ dom(G) and G is
composable with F , we have y ∈ dom(G), hence there is v < q such that
m′(y, v) = 〈w1 mod q, i〉. Then m′′(x, [w0, v+q

⌊
w1
q

⌋
], j) = 〈[w0, (w1 mod q)+

q
⌊
w1
q

⌋
], i〉 = 〈w, i〉.

By 3.2.4, we may turn a 2/3-definition of G ◦F into a 1/2-definition. �

3.2.9 Lemma (PV +BBΣb
1+dWPHP(PV ) `:) Let F (x) be a 1/2-definable

pmf. For every n ∈ Log there exists a (polynomial size) circuit C : 2n →
2m ∪ {∗} such that

F (x) is defined ↔ C(x) 6= ∗,
y = C(x) 6= ∗ → F (x) = y,

for any x of length n.

Proof: Fix n, and a uniformly witnessed 1/2n+1-definition of F . We may
assume that r(x) = r is independent on x (for x of length n). The witnessing
function

m(x, v) : 2n × r → 2n+1 × r
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cannot be onto (by dWPHP), we may thus fix 〈i, w〉 ∈ (2n+1× r) r rng(m),
and define C(x) = f(x,w). Clearly F (x) = C(x) if C(x) 6= ∗. Moreover, if
C(x) = ∗ then F (x) is undefined, because otherwise there would be a v < r

such that m(x, v) = 〈i, w〉, a contradiction. �

3.2.10 Example (Rabin-Miller algorithm [36, 29].) There is a coRP -pred-
icate P (x), 1/2-definable in S1

2 , such that S1
2 proves

P (x) iff x > 1 & ∀y < x (y 6= 0→ yx−1 ≡ 1 (mod x)).

Any number satisfying this condition is provably prime, but the converse is
equivalent to the Little Fermat’s Theorem (hence unlikely to be provable in
S1

2 , by [23]).

Proof: Define

r(x) :=

{
1, if x ≤ 1 ∨ 2 | x,
x− 2 otherwise,

f(x,w) :=



∗, if x = 2,

0, if x ≤ 1 ∨ (2 | x& x > 2),

∗, if x > 2 odd, and
∀k (2k | x− 1→ (w + 1)(x−1)/2k ≡ 1 (mod x)),

∗, if x > 2 odd, j 6= 0, and
(w + 1)(x−1)/2j ≡ −1 (mod x),

0 otherwise,

where j < |x| is the least number such that 2j | x− 1 and

(w + 1)(x−1)/2j 6≡ 1 (mod x),

P (x) :↔ ∀w < r(x) f(x,w) = ∗,
Q(x) :↔ x > 1 & ∀y < x (y 6= 0→ yx−1 ≡ 1 (mod x)).

(It would be more natural to consider random choices w ∈ [1, x).) From
now on, we will assume that x > 2 and x is odd, other cases are trivial.

Let x − 1 = y2k, where y is odd and k > 0. Clearly (−1)y ≡ −1 6≡ 1
(mod x), let i ≤ k be the least number such that ∃a ∈ Z∗

x a(x−1)/2i 6≡ 1
(mod x), which exists by the Σb

1-LENGTH -MIN principle. (Here a ∈ Z∗
x

means a < x&(a, x) = 1, which is in PV equivalent to a < x&∃b < x ab ≡ 1
(mod x).)
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Case 1: i = 0. Clearly, neither P (x) nor Q(x) holds. Let b ∈ Z∗
x be such

that bx−1 6≡ 1 (mod x). (Forgetting about S1
2 for a moment, {w; f(x,w +

1) = ∗} is contained in a proper subgroup {w; wx−1 ≡ 1} � Z∗
x, thus there

are at most |Z∗
x|/2 of them, and we may witness this using multiplication

by a fixed element b of a nontrivial coset of this subgroup.) Define

C(x, v) :=

{
〈(b(v + 1) mod x)− 1, 0〉, if (b(v + 1))x−1 ≡ 1 (mod x),

〈v, 1〉 otherwise.

Assume w < r(x) is such that f(x,w) = ∗. Then we have (w + 1)x−1 ≡ 1
(mod x) and (b(w + 1))x−1 6≡ 1 (mod x), hence C(x,w) = 〈w, 1〉. Since
b, w + 1 ∈ Z∗

x, there is v < r(x) such that b(v + 1) ≡ w + 1 (mod x). We
have (b(v + 1))x−1 ≡ 1 (mod x), thus C(x, v) = 〈w, 0〉.

Case 2: i > 0 & ∃b ∈ Z∗
x b(x−1)/2i 6≡ ±1 (mod x). Fix any such b. Obvi-

ously ¬P (x), moreover if we put c ≡ b(x−1)/2i
(mod x), we have x | (c2−1) =

(c−1)(c+1) by minimality of i, but neither x | c−1 nor x | c+1. This means
that x is not prime, and a fortiori ¬Q(x) (as Q(x) would imply Z∗

x = [1, x)).
Similarly to the Case 1, we define

C(x, v) :=

{
〈(b(v + 1) mod x)− 1, 0〉, if (b(v + 1))(x−1)/2i ≡ ±1 (x),

〈v, 1〉 otherwise.

If w < r(x) and f(x,w) = ∗, we have (w + 1)(x+1)/2i ≡ ±1 (mod x), hence
C(x,w) = 〈w, 1〉 and C(x, v) = 〈w, 0〉 for some v < r(x), by essentially the
same argument as above.

Case 3: i > 0 & ∀b ∈ Z∗
x b(x−1)/2i ≡ ±1 (mod x). We need some elemen-

tary number theory.

Claim 1 PV proves the Chinese Remainder Theorem: if a = 〈aj〉j<` is

a sequence of pairwise coprime numbers and b = 〈bj〉j<`, then there is c

such that c ≡ bj (mod aj) for all j < `.

Proof: For any j < `, (aj ,
∏
j′ 6=j aj′) = 1 (by ∆b

1-LIND), hence there is
dj < aj such that cj := dj

∏
j′ 6=j aj′ ≡ 1 (mod aj). Put c =

∑
j<` bjcj . We

have cj ≡ 1 (mod aj) and cj ≡ 0 (mod aj′) for all j′ 6= j, hence c ≡ bj
(mod aj). � (claim 1)

Claim 2 S1
2 proves that

(i) x > 0 is a prime power iff there are no coprime proper divisors u and

v of x such that uv = x.
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(ii) Any x > 0 is uniquely representable as x =
∏
j<` p

ej

j , where 〈pj〉j<` is

an increasing sequence of primes and each ej is nonzero.

Proof: Every number x > 1 is divisible by a prime. To see this, choose
p > 1, p | x with minimal length (using ∆b

1-LENGTH -MIN ). If p = uv,
u > 1, then v | x and |v| < |p|, hence v = 1, i.e., p is a prime.

If x = pe for a prime p, then any proper divisor of x is divisible by p (by
∆b

1-LIND on e), hence p ≤ (u, v) for any u, v > 1 which divide x. On the
other hand, assume that the right hand side of (i) holds, and w.l.o.g. x > 1.
Let p be a prime divisor of x, and let e < |x| be maximal such that pe | x. If
pe < x, we have (pe, x/pe) > 1, thus p | (x/pe) and pe+1 | x, a contradiction.
Hence x = pe is a prime power.

By Σb
1-LENGTH -MAX , there is the maximal k < |x| such that there

exists a sequence a = 〈pj〉j<k of numbers greater than 1, such that
∏
j<k pj =

x. Every pj in any maximal sequence is obviously prime. The sequence of
pj ’s may be arranged in non-decreasing order, and we may group together
occurences of the same prime, yielding x =

∏
j<` p

ej

j as in the statement

of the claim. If x =
∏
j<m q

fj

j is another such representation, ∆b
1-LIND

on j < min(`,m) shows that pj = qj and ej = fj , hence also ` = m.
� (claim 2)

Let us return to the analysis of the Case 3.
First assume that x is not a prime power. Choose coprime a1, a2 > 1

such that a1a2 = x, and b ∈ Z∗
x such that b(x−1)/2i ≡ −1 (mod x) (by

the definition of i). The Chinese Remainder Theorem gives us c such that
c ≡ 1 (mod a1) and c ≡ b (mod a2). We claim that c ∈ Z∗

x: we have
(b, a2) = 1, hence we may find d such that d ≡ 1 (mod a1) and bd ≡ 1
(mod a2), then cd ≡ 1 (mod x). By our assumption, c(x−1)/2i ≡ 1 (mod x)
or c(x−1)/2i ≡ −1 (mod x). However, the former contradicts c(x−1)/2i ≡ −1
(mod a2), while the latter contradicts c(x−1)/2i ≡ 1 (mod a1), because a1

and a2 are odd.
We may thus write x = pe, where p is an odd prime. Assume that

e > 1. Notice that for any u and v, (upe−1 + 1)(vpe−1 + 1) ≡ (u+ v)pe−1 + 1
(mod x). This gives (pe−1 + 1)u ≡ upe−1 + 1 (mod x) by ∆b

1-PIND , in
particular (pe−1 + 1)x−1 ≡ 1− pe−1 (mod x). However pe−1 + 1 ∈ Z∗

x, hence
(pe−1 +1)x−1 ≡ 1 (mod x). This means x | pe−1, a contradiction. Therefore
e = 1 and x = p is a prime.

We have Q(x), because Z∗
p = [1, p) and bx−1 ≡ 1 (mod x) for any b ∈ Z∗

x

by our assumption. Also P (x) holds: if f(x,w) 6= ∗, we would have b2 ≡ 1
(mod x) and b 6≡ ±1 (mod x) (where b ≡ (w + 1)(x−1)/2j

(mod x) for some
j > 0), which we know is impossible for any prime x. �
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3.3 Witnessing dWPHP

The following theorem is implicit in N. Thapen’s alternative proof of Wilkie’s
witnessing theorem, presented in [48].

3.3.1 Theorem (Thapen) Assume that

S1
2 + dWPHP(PV ) ` ∀x∃y ϕ(x, y),

where ϕ is Σb
1. Then for any ` there are k ≥ ` and PV -function symbols G,

g, and h such that

PV ` ∀x∀w < 22|x|k (g(x,w) < 2|x|
k

& (G(g(x,w)) = w ∨ ϕ(x, h(x,w)))).

More generally, there are PV -functions g, h, and a constant k such that

PV ` ∀x∀b ≥ 2|x|
k ∀w < b2 (g(x,w, b) < b

& (G(g(x,w, b)) = w ∨ ϕ(x, h(x,w, b)))).

Proof (sketch): If f(x, y) is a PV -function, there is a parameter-free PV -
function G(z) such that G maps b4 onto b8, whenever there are a, c < b such
that f(c, ·) maps a onto a2. (This is lemma 3.8 of [48].) Take a “universal”
function (e.g., a circuit evaluator) for f . Our assumption on ϕ gives

S1
2 ` ∀x (∃y ϕ(x, y) ∨ ∃a, c¬dWPHP(f(c))aa2).

By Parikh’s theorem, all existential quantifiers may be bounded by a term
t(x), and the properties of G imply

S1
2 ` ∀x (∃y ≤ t(x)ϕ(x, y) ∨ ∀b ≥ t(x)4 ¬dWPHP(G)bb2).

We may write this as

S1
2 ` ∀x∀w ∀b (∃y ≤ t(x)ϕ(x, y)∨ (b ≥ t(x)4 &w < b2 → ∃v < bG(v) = w)),

and an application of Buss’ witnessing theorem gives us g and h as required.
�

3.3.2 Corollary The ∀Σb
1-consequences of S1

2 + dWPHP(PV ) can be ax-

iomatized over PV by dWPHP ′(PV ), where dWPHP ′(f, g) denotes the for-

mula

a > 1→ ∃x < a2 (g(x, a) ≥ a ∨ f(g(x, a), a) 6= x). �
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By Wilkie’s witnessing theorem, ∀Σb
1-consequences S1

2 + dWPHP(PV ) are
witnessed by randomized p-time functions (total MFRP in our notation).
Our next theorem ensures that these witnessing functions can be chosen so
that they are definable and provably total in S1

2 + dWPHP(PV ). (Con-
versely, the statement that certain PV -functions define a uniformly wit-
nessed total MFRP is ∀Σb

1.)

3.3.3 Theorem Let ϕ(~x, y) be a Σb
1-formula such that ∀~x∃y ϕ(~x, y) is prov-

able in S1
2 + dWPHP(PV ). Then for every PV -function s there is F ∈

MFRP such that

(i) F has a uniformly witnessed 1/s-definition in PV ,

(ii) F is weakly total in PV (in particular, F is provably total in PV +
dWPHP(PV )),

(iii) PV ` F (~x) = y → ϕ(~x, y).

In particular, every formula which is ∆b
1 in S1

2 + dWPHP(PV ) is in PV +
dWPHP(PV ) equivalent to a definable ZPP -predicate.

Proof: Fix ` such that PV ` s(x) ≤ 2|x|
`
, and find k ≥ `, and PV -functions

G, g, and h according to the theorem 3.3.1. Define

r(x) := 2|x|
k · 2|x|k ,

f(x,w) :=

{
h(x,w), if G(g(x,w)) 6= w,

∗ otherwise,

m(x, v) := 〈G(v0), v1〉,

where v = [v0, v1] = v1 · 2|x|
k

+ v0 as in 3.2.2. We claim that f and r

define in PV a weakly total 1/2|x|
k
-MFRP , witnessed by m. To see this, let

w < 22|x|k be such that f(x,w) = ∗, and i < 2|x|
k
. Put v = [g(x,w), i]. Then

we have m(x, v) = 〈w, i〉, because G(g(x,w)) = w, and v < r(x), because
g(x,w) < 2|x|

k
.

If we put F (x) = y iff ∃w < r(x) f(x,w) = y 6= ∗, then any value y
of F (x) satisfies ϕ(x, y), because y = h(x,w) for some w < r(x) such that
G(g(x,w)) 6= w. �
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Hard Boolean functions

In this chapter, we will investigate the concept of Boolean functions with
large circuit complexity in the context of bounded arithmetic. In section 4.1,
we establish the equivalence of dWPHP(PV ) and existence of functions with
exponential circuit complexity. In section 4.2 we formalize the construction
of the Nisan-Wigderson pseudorandom generator in a conservative extension
of S1

2 + dWPHP(PV ), to obtain a formalized derandomization result for
definable probabilistic algorithms introduced in chapter 3. In section 4.3 we
formalize the Impagliazzo-Wigderson strengthening of the Nisan-Wigderson
derandomization theorem.

4.1 Hard functions and dWPHP(PV )

4.1.1 Definition Let ε > 0. A number x (viewed as an n-bit binary string,
n = |x|) is ε-hard, if there is no Boolean circuit C on |n| variables such that
|C| ≤ nε, and C(u) = bit(x, u) for all u < n. We write Hardε(x) in such
a case.

A Boolean function f on k ∈ LogLog variables is identified with its truth
table, i.e., a 2k-bit number.

A function f is ε-hard on average (abbreviated Hard∅
ε (f)), if there does

not exist a circuit C of size |C| ≤ 2εk which approximates f , i.e.,

|{u < 2k; C(u) = f(u)}| ≥ (1/2 + 2−εk)2k.

Notice that Hardε(x) and Hard∅
ε (f) are Πb

1.

4.1.2 Lemma (PV + dWPHP(PV ) `:) For every n ∈ Log, there is an x

of length n such that x cannot be computed by a circuit of size n/(2|n|).

29
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Proof: Let e : 2n−1 → 2n be a PV -function, which interprets its input as
a circuit on |n| variables, and outputs the truth table of the circuit. By
dWPHP(e) there is an x ∈ 2nrrng(e). Since any circuit of size m = n/(2|n|)
may be described by a number of length at most 2m(|m|+ 1) ≤ n− 1, x is
not computable by a circuit of size ≤ m. �

4.1.3 Corollary (PV + dWPHP(PV ) `:) For every k ∈ LogLog, there is

a Boolean function f : 2k → 2 such that Hard1−o(1)(f). �

4.1.4 Lemma (PV + dWPHP(PV ) `:) For any k ∈ LogLog, there are

(1/3− o(1))-hard on average functions f : 2k → 2.

Proof: Put n = 2k, and m = (n/k)1/3. Consider the function

g : 22m|m| ×
n(1/2−1/m)∑

i=0

(
n

i

)
→ 2n,

whose first argument is a circuit C : 2k → 2 of size m, its second argument
is a string x ∈ 2n containing at most n(1/2− 1/m) 1’s, and its output is the
truth-table of C XOR’ed by x. Clearly, a function f : 2k → 2 is (1/3−|k|/k)-
hard on average if f 6∈ rng(g). By Chernoff’s inequality, provable in PV by
theorem A.5, the domain of g is a number bounded by

d2
2
3
n1/3k2/3

2n2−2n4/3k2/3n−1
= d2n−

4
3
n1/3k2/3

for some constant d. Since d2n−
4
3
n1/3k2/3

< 2n−1 for n � 0, the function g

cannot be onto, by dWPHP(PV ). �

4.1.5 Theorem (S1
2 `:) Assume that dWPHP(PV ) fails. Then there is

s ∈ Log such that every string x is computable by a circuit of size at most

s.

Proof: Let h : 2m � 22m be a surjection, computable by a circuit C. The
main idea of the proof is: for any i ∈ LogLog, h may be amplified in i steps
into a surjection 2m � (2m)2

i
, and this will allow us to express any x ∈ 22im

by a circuit of size O(|C|i).
Let D : 2× 2m → 2m be the circuit defined by Dj(b, y) = (¬b&Cj(y))∨

(b & Cj+m(y)) for all j < m, where •j is a shorthand for bit(•, j). Fix
i ∈ LogLog, and define a sequence of circuits Ek : 2k × 2m → 2m, k ≤ i by

E0(0, y) := y,

Ek+1(u, y) := Ek(u � k,D(uk, y)), where u � k = u mod 2k,
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and put E := Ei. Notice that the size of E is bounded by i|D|. We claim
that E represents an onto map 2m � 22im in the following sense: for any
x < 22im, there is y < 2m such that Ej(u, y) = xum+j holds for every u < 2i

and j < m. Indeed, we show by induction on k ≤ i that there is a sequence
w of numbers less than 2m such that

lh(w) = 2i−k&

∀v < 2i−k ∀u < 2k ∀j < m Ekj (u, (w)v) = bit(x, (v2k + u)m+ j).

(This is Σb
1, because i ∈ LogLog, i.e., all universal quantifiers are sharply

bounded.) The base step is trivial, we simply view x as a sequence of 2i

numbers less than 2m. Assume that we have found a suitable w for k < i.
Since C is onto, there is a sequence w′ such that C((w′)v) = [(w)2v, (w)2v+1]
for any v < 2i−k−1 (using BBΣb

1). We claim that w′ works for k + 1: given
numbers v < 2i−k−1, u < 2k+1, and j < m, we have

Ek+1
j (u, (w′)v) = Ekj (u � k,D(uk, (w′)v)) = Ekj (u � k, (w)2v+uk

) =

= bit(x, ((2v + uk)2k + u � k)m+ j)

= bit(x, (v2k+1 + u)m+ j).

Let x < 22im, and let y < 2m be its “inverse image” as described above.
We may construct a small Boolean circuit B : 2|n| → 2 computing x as
follows: B(u) = Eu mod m(

⌊
u
m

⌋
, y). For simplicity, we may assume that m is

a power of two, which means that the size of B is bounded by 2m|m|+ i|D|.
In other words, any x of length n is computable by a circuit of size

≤ 2m|m| + |D| · |dn/me| ≤ c|n| for a suitable c ∈ Log. Take any d ∈
Log r LogLog (this is possible, because S1

2 + Exp ` dWPHP(PV )). Then
d > |n|, hence x is computable by a circuit of size at most s := c · d ∈ Log.

�

4.1.6 Corollary Let 0 < ε < 1. There exists a standard constant c such

that the following are equivalent over S1
2 :

(i) dWPHP(PV ),

(ii) ∀k ∈ LogLog (k ≥ c→ ∃f : 2k → 2 Hardε(f)),

(iii) ∀k0 ∈ LogLog ∃k ∈ LogLog (k ≥ k0 & ∃f : 2k → 2 Hardε(f)).

The same holds for hard on average functions, if ε < 1/3.
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Proof: (i) → (ii) follows from 4.1.3 and 4.1.4, (ii) → (iii) is trivial. The
implication (iii)→ (i) follows from 4.1.5, because numbers 2εk, k ∈ LogLog,
are cofinal in Log for any fixed ε. �

4.1.7 Corollary There is a PV -function C(a, x) such that the negation of

dWPHP ′(PV ) implies

∃a∀x C(a, x) is a circuit of size ≤ |a| computing x

over PV . Actually, a can be itself computed by a PV -function from a

counterexample to dWPHP ′(PV ).

Proof: Let g and h be counterexamples to dWPHP ′(PV ), i.e., h : b → b2,
g : b2 → b, g ◦ h = id. Given x, we proceed as in the proof of 4.1.5 to
construct a small circuit for x, but instead of nondeterministically guessing
preimages under h, we use g to find them explicitly (this way we also get
rid of BBΣb

1, and Σb
1-LIND).

Alternatively, we may use Buss’ witnessing theorem. Theorem 4.1.5 tells
us

S1
2 ` ∃b ∀v < 2b (h(v) < b& g(h(v)) = v)→ ∃S ∀x∃C ≤ S (C computes x),

and it is easy to see from its proof that S is actually bounded by a term
t(b), thus

S1
2 ` ∀b∀x (∃v < 2b (h(v) ≥ b ∨ g(h(v)) 6= v) ∨ ∃C ≤ t(b) (C computes x)).

The formula in parenthesis is Σb
1, hence there is a PV -function f such that

PV ` (f(b, x) < 2b& (h(f(b, x)) ≥ b ∨ g(h(f(b, x))) 6= f(b, x))∨
∨ (f(b, x) ≤ t(b) & f(b, x) computes x),

which means

PV + ¬dWPHP ′(PV ) ` ∃b ∀x (f(b, x) ≤ t(b) & f(b, x) computes x).

It suffices to define C(a, x) = min{f((a)0, x), a}, as we can take a = 〈b, t(b)〉.
Notice that the converse to this corollary holds too, in a similar fashion

to lemma 4.1.2. �

We will need the following refinement of lemmas 4.1.2 and 4.1.4 in section
4.2. Notice that we cannot use these lemmas directly to prove the improved
version, as BBΠb

1 is not available. The conclusion is ∀Σb
2, but it is not a

priori clear that the Σb
2-conservativity of BBΣb

2 over S1
2 extends to S1

2 +
dWPHP(PV ), although see 4.2.4.
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4.1.8 Lemma Let ε < 1. There is a constant c such that the following are

provable in PV + dWPHP(PV ):

(i) ∀k ∈ LogLog ∃w ∀i < k (i ≥ c→ (w)i : 2i → 2 & Hardε((w)i)),

(ii) ∀k ∈ LogLog ∃w ∀i < k (i ≥ c→ (w)i : 2i → 2 & Hard∅
ε/3((w)i)).

Proof: As in lemma 4.1.4, choose d such that

2i(1/2−2−δi)∑
j=0

(
2i

j

)
≤ 2d+2i−2·2i(1−2δ)

for all i > 0, where δ = ε/3, and choose c ≥ 2 such that 2 · 2i(1−2δ) ≥
2
3 i2

δi + d+ i for all i ≥ c. Put k = ||b||, and define a PV -function

g :
k−1∑
i=c

22k−2c−i → 22k−2c

as follows: given i < k and x < 22k−2c−i, interpret the first 2k − 2c − 2i bits
of x as a sequence 〈fj ; c ≤ j < k, j 6= i〉 of functions fj : 2j → 2. The next
2δi2δi bits of x describe a circuit C : 2i → 2 of size 2δi, and the rest of x
defines a binary string y of length 2i with at most 2i−1 − 2i(1−δ) ones. (We
need d+2i−2·2i(1−2δ) bits for y, and we have 2i−2δi2δi−i ≥ 2i−2·2i(1−2δ)+d
bits left.) We create a function fi : 2i → 2 by taking the truth-table of C
XOR’ed by y, and we let g output the sequence 〈fj ; c ≤ j < k〉.

If f = 〈fj ; c ≤ j < k〉 is a sequence of functions outside of the range of g,
then all fj are δ-hard on average. The domain of g is at most 22k−2c−c+1 ≤
22k−2c−1, hence g is not onto by dWPHP(PV ). A similar argument works
for ε-hard functions. �

4.2 The Nisan-Wigderson generator

This section presents a derandomization result for definable probabilistic
algorithms within bounded arithmetic. We will follow closely the Nisan-
Wigderson construction [31]; however, we will present the derandomization
in a relativized form: rather than postulating the existence of an explicit
language in E with exponential average-case hardness, we will use an oracle
for a family of hard Boolean functions, and our derandomized algorithms
will have access to this oracle. We thus work in a theory with an extra unary
function symbol α:
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4.2.1 Definition Let 0 < ε < 1 and c be standard constants. The theory
HARD∅

ε,c is an extension of S1
2(α) by the following axioms:

α(x) : 2||x|| → 2,

x > c→ Hard∅
ε (α(x)).

The theory HARDε,c is defined similarly. We will usually ignore c in the
sequel. (To avoid confusion: here ||x|| means double iteration of the length
function, it has nothing to do with the translation of Πb

1-formulas into propo-
sitional logic. We will use this translation only in section 5.)

4.2.2 Observation HARD∅
ε ` HARDε ` dWPHP(PV ). �

4.2.3 Theorem Let T denote the theory HARDε or HARD∅
ε/3, with 0 <

ε < 1. Then T is fully conservative over S1
2 +dWPHP(PV ). More generally,

for any i ≥ 1, T + Si2(α) and T + T i2(α) are conservative extensions of

Si2 + dWPHP(PV ) and T i2 + dWPHP(PV ), respectively. Every countable

model of S1
2 + dWPHP(PV ) has an expansion into a model of T .

Proof: Let A be a countable model of S1
2 + dWPHP(PV ). Choose an

increasing chain p0 ⊆ p1 ⊆ p2 ⊆ . . . of sequences pn ∈ A such that

∀i < lh(pn) (i ≥ c→ (pn)i : 2i → 2 & Hardε((pn)i)),

where c is the constant from lemma 4.1.8, and such that {lh(pn); n ∈ ω} is
cofinal in LogLog(A). Define αA =

⋃
n∈ω p

n, i.e.

αA(a) := (pn)||a||, for any n s.t. lh(pn) > ||a||.

Clearly, 〈A, αA〉 satisfies the hardness conditions from T .

Claim 1 Let ϕ(~x) be a Σb
∞(α)-formula. Denote by ϕ̃(p, ~x) the Σb

∞-formula

which results from ϕ by substitution of (p)||t|| for every subterm α(t). There

is a constant cϕ such that

〈A, αA〉 � ϕ(~a) iff A � ϕ̃(pn,~a)

for any n such that lh(pn) > cϕ||~a||.

Proof: By straightforward induction on complexity of ϕ. If ϕ is atomic, it
suffices to choose cϕ so that all (pn)||t|| are defined. If e.g. ϕ(~x) = ∃y ≤
s(~x)ψ(y, ~x), take cϕ = (d + 1)cψ, where d is such that ||s(~x)|| < d||~x|| for
all ~x. The assertion then follows from the induction hypothesis, because
y ≤ s(~x) and lh(pn) > cϕ||~x|| imply lh(pn) > cψ(||y||+ ||~x||). � (claim 1)
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As a corollary of the claim we get that 〈A, αA〉 � ∀~xϕ(~x), whenever ϕ is
a bounded L(α)-formula, and A � ∀~x∀p ϕ̃(p, ~x). In particular, 〈A, αA〉 �
S1

2(α), and additionally it is a model of Si2(α) or T i2(α), if Si2 or T i2 holds in
A. �

4.2.4 Corollary S1
2 +dWPHP(PV )+BBΣb

2 is ∀Σb
2-conservative over S1

2 +
dWPHP(PV ).

Proof: This follows from 4.2.3, and Σb
2(α)-conservation of BBΣb

2(α) over
S1

2(α) [39], because HARD1/2 is a ∀Πb
1(α)-axiomatized extension of S1

2(α).
�

Now we turn attention to the actual derandomization. First, notice that we
get a certain derandomization result for free, namely for definable MFRP
which are provably total in S1

2 + dWPHP(PV ):

4.2.5 Lemma Let ε > 0, and let F be a definable MFRP , provably total

in S1
2 + dWPHP(PV ). Then there is a PV (α) function f such that

HARDε ` f(~x) = y → F (~x) = y.

Proof: By our assumptions HARDε proves ∀~x∃y F (~x) = y, which is ∀Σb
1.

Moreover, HARDε is a ∀Πb
1(α) extension of S1

2(α), hence the result follows
from the relativized Buss’ witnessing theorem. �

However, we want to derandomize also functions which are not provably
total (e.g., RP -predicates). Moreover, the Nisan-Wigderson construction
will give a stronger result (see 4.2.11): f needs only one oracle query.

4.2.6 Definition ([31]) Let k, `, t,m ∈ Log, k ≤ ` ≤ t. A 〈k, `, t,m〉-
design is a sequence 〈Si〉i<m of subsets Si ⊆ t, such that |Si| = ` and
|Si ∩ Sj | ≤ k for all i < j < m.

4.2.7 Lemma Let 0 < γ < 1. There are constants δ > 0, c > 1, and

a PV -function d such that

PV ` d(x) is a 〈γ`, `, c`, 2δ`〉-design, where ` = ||x||.

Proof: Put c = 2/γ, δ = c−2, and let k = γ`, t = c`, and m = 2δ`.
The function d will iterate through all subsets S ⊆ t, putting S into the
design if |S| = ` and its intersection with all elements of the design so-far
constructed is at most k. We have to show that this algorithm will not
stop with a design shorter than m. Clearly, it suffices to prove that for any
design 〈Sj〉j<i, i < m, there is an Si ⊆ t such that 〈Sj〉j≤i is also a design.
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We will do this by a counting argument (which works directly without any
PHP , as m ∈ Log and k, `, t ∈ LogLog). However, it turns out that instead
of counting subsets S ⊆ t, it is easier to count functions f : t → t which
represent S = S(f) := f−1′′` (thus, choosing uniformly a random f means
to choose S in such a way that Pr(a ∈ S) = `/t for all a < t).

The number of f : t→ t such that |S(f)| ≥ ` is∑
i≥`

(
t

i

)
`i(t− `)t−i ≥ εtt

for some constant ε > 0, by A.4. If S is a subset of t of size `, the number
of f such that |S(f) ∩ S| ≥ k is

∑̀
i=k

(
`

j

)
`j(t− `)`−jtt−` = tt`−`

∑̀
i=k

(
`

j

)
(k/2)j(`− k/2)`−j

≤ tt4−(k/2)2/` = tt2−γ
2`/2

by Chernoff’s inequality (A.5). The number of f such that |S(f) ∩ Sj | ≥ k

for some j < i is thus at most

ttm2−γ
2`/2 = tt2(δ−γ2/2)` ≤ tt2−γ2`/4 < εtt,

hence there is f such that we may put S(f) into the design. (If |S(f)| > `,
we discard some of its elements.) �

4.2.8 Definition ([31]) Let x < 2t, and S ⊆ t, |S| = `. Let {si}i<` be the
increasing enumeration of the set S. Then we put x � S := y, where y < 2`

and bit(y, i) = bit(x, si) for all i < `.
If f : 2` → 2, and S = 〈Si〉i<m is a 〈k, `, t,m〉-design, the Nisan-Wigder-

son generator is a function NWf,S : 2t → 2m defined by

bit(NWf,S(x), i) = f(x � Si).

Let NW be a PV -function such that NW (f, S, x) = NWf,S(x).

4.2.9 Theorem There is a PV -function π(f, S,D, a, z), such that the fol-

lowing property is provable in S1
2 :

Let f : 2` → 2 be a Boolean function such that |{x < 2`; C(x) = f(x)}| ≤
2`−1 + a for any circuit C of size |C| ≤ s. Let S be a 〈k, `, t,m〉-design, and

let D : 2m → 2 be a circuit of size |D| < s−m2k. Put e = am2m+t−`. Then

π(f, S,D, a, ·) : e ∪̇ (2m × {x < 2t; D(NWf,S(x)) = 1}) �

� 2t × {r < 2m; D(r) = 1}.



Chapter 4. Hard Boolean functions 37

4.2.10 Remark The function π witnesses that Prx(D(NWf,S(x)) = 1) ≥
Prr(D(r) = 1)−mε, where ε = a2−`.

Proof: We will find (uniformly in i < m) surjections

Gi : a2m+t−` ∪̇Mi+1 � Mi,

where Mi = {〈~r, x〉; D(f(x � S0), . . . , f(x � Si−1), ri, . . . , rm−1) = 1}. Notice
that M0 = {~r; D(~r) = 1} × 2t, and Mm = 2m × {x; D(NWf,S(x)) = 1}.

Fix i < m, y < 2t−`, and ri+1, . . . , rm−1 < 2. For any u < 2` and j < m

define fyj (u) = f(x � Sj), where x � Si = u and x � (tr Si) = y. Finally put

A0(u) = D(fy0 (u), . . . , fyi−1(u), 0, ri+1, . . . , rm−1),

A1(u) = ¬D(fy0 (u), . . . , fyi−1(u), 1, ri+1, . . . , rm−1).

Each fyj (u), j < i, depends only on |Sj ∩ Si| ≤ k variables, hence it is
computable by a circuit of size 2k. This allows A0 and A1 to be represented
as circuits of size at most 1 + |D|+ i2k ≤ 1 + |D|+m2k ≤ s, hence

|{u; Ar(u) = f(u)}| ≤ 2`−1 + a, r = 0, 1.

By summing these two inequalities we get

2a ≥ |{u; f(u) = A0(u)}|+ |{u; f(u) = A1(u)}| − 2`

= |{u; (A0(u) & ¬(¬f(u) &A0(u))) ∨ (¬f(u) & ¬(¬f(u) &A0(u)))}|
+ |{u; (¬A1(u) & ¬(f(u) & ¬A1(u))) ∨ (f(u) & ¬(f(u) & ¬A1(u)))}|
− 2`

= |{u; A0(u)}| − |{u; ¬f(u) &A0(u)}|+ |{u; ¬f(u)}|
− |{u; ¬f(u) &A0(u)}|+ |{u; ¬A1(u)}| − |{u; f(u) & ¬A1(u)}|
+ |{u; f(u)}| − |{u; f(u) & ¬A1(u)}| − 2`

= |{u; A0(u)}|+ |{u; ¬A1(u)}|
− 2|{u; (¬f(u) &A0(u)) ∨ (f(u) & ¬A1(u))}|

= |{u; D(fy0 (u), . . . , fyi−1(u), 0, ri+1, . . . , rm−1)}|
+ |{u; D(fy0 (u), . . . , 1, ri+1, . . .)}|
− 2|{u; D(fy0 (u), . . . , f(u), ri+1, . . .)}|

= |{〈r, u〉; D(fy0 (u), . . . , r, ri+1, . . .)}|
− |{〈r, u〉; D(fy0 (u), . . . , f(u), ri+1, . . .)}|.

Employing counting functions for the two sets in the last line, we get a
surjection
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gi,y,ri+1,...,rm−1 : 2a ∪̇ {〈r, u〉; D(fy0 (u), . . . , f(u), ri+1, . . . , rm−1)}�

� {〈r, u〉; D(fy0 (u), . . . , r, ri+1, . . . , rm−1)}.

Define Gi : Mi+1 ∪̇ a2m+t−` →Mi by

Gi(~r, x) = 〈r0, . . . , ri−1, r
′
i, ri+1, . . . , rm−1, x

′〉,
if gi,y,ri+1,...,rm−1(ri, x � Si) = 〈r′i, x′ � Si〉,
and x′ � (tr Si) = y,

Gi(2av + w) = 〈r0, . . . , ri−1, r
′
i, ri+1, . . . , rm−1, x

′〉,
if v = 〈y, r0, . . . , ri−1, ri+1, . . . , rm−1〉,
gi,y,ri+1,...,rm−1(w) = 〈r′i, x′ � Si〉, and x′ � (tr Si) = y.

It is straightforward to check that the functions Gi are well defined and
onto, using f(x � Sj) = f

x�(trSi)
j (x � Si).

Now we define π as a composition of G0, . . . , Gm−1. More precisely, we
put

π(f, S,D, a, z) = Gm(z),

where Gi : Mi ∪̇ ai2m+t−` →M0 is defined inductively by

G0(z) = z,

Gi+1(z) =

{
w − a2m+t−`, a2m+t−` ≤ z < a(i+ 1)2m+t−`,

Gi(Gi(z)), otherwise.

Given z ∈ M0, we prove by Σb
1-LIND on i ≤ m that there is a w ∈ Mi ∪̇

ai2m+t−` such that Gi(w) = z, in particular π : Mm ∪̇ am2m+t−` → M0 is
onto, as required. �

4.2.11 Theorem Let F be a MFRP definable in S1
2 + dWPHP(PV ), and

let ε > 0. Then there are PV -functions h and g such that HARD∅
ε proves

∃y y = F (x) ↔ h(x, α(g(x))) 6= ∗,
∃y y = F (x)→ h(x, α(g(x))) = F (x).

Proof: Fix a 1/2-definition of F (x) given by f(x,w), w < r(x). We may
assume w.l.o.g. that r(x) ≥ x. Choose a constant b ≥ 1 such that for all
n� 0, there is a circuit C : 2n × 2m → 2 of size at most mb such that

C(x,w) = 1 iff f(x,w) 6= ∗,

where m = |r(x)|. Choose γ < ε, and let c, δ, and d be as in lemma 4.2.7.
We may assume γ + δ < ε and δ < ε/b, because we may shorten the design
produced by d if necessary.
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Define g(x) = 2m
1/δ

, so that ϕ = α(g(x)) is a Boolean function on
` = |m|/δ variables. Put t = c`, k = γ`, and let S = d(g(x)) (hence S is a
〈k, `, t,m〉-design). Finally, define

h(x, ϕ) =


f(x,NWϕ,S(u)), if u is the smallest u < 2t such that

f(x,NWϕ,S(u)) 6= ∗,
∗, if no such u exists.

Notice that 2t = mc/δ = nO(1), so the loop over all u < 2t may be done by
a PV -function (i.e., it is p-time computable).

Clearly h(x, α(g(x))) = ∗ if F (x) does not have a value, and y is a value
of F (x) if y = h(x, α(g(x))) 6= ∗. It remains to show that h(x, α(g(x))) 6= ∗
if F (x) is defined.

Put s = 2ε` and a = 2(1−ε)`, so that ϕ satisfies the assumptions of
theorem 4.2.9. The size bound on D(w) := C(x,w) is also satisfied: |D| +
m2k ≤ mb +m1+γ/δ < mε/δ = s, because 1 + γ/δ < ε/δ and b < ε/δ.

Assume that we do not find a suitable u < 2t. This means that

∀u < 2tD(NWϕ,S(u)) = 0,

hence by theorem 4.2.9 the function π(ϕ, S,D, a, ·) is a surjection from e =
am2m+t−` to 2t × {w; D(w) = 1}. On the other hand, f is a 1/2-definition
of F and we assume that F (x) is defined, hence we also have a surjection of
2m onto 2 × {w; D(w) = 0}. We may modify this function to map 2m+t−1

onto 2t × {w; D(w) = 0}, and combine it with π to get a surjection from
2m+t−1 + e onto 2m+t.

However, e = 2m+t+(δ−ε)` < 2m+t−2 because δ < ε, hence we obtain a
mapping of 3 ·2m+t−2 onto 4 ·2m+t−2. This contradicts dWPHP(PV ), which
is available in HARD∅

ε . �

4.3 Finite fields in bounded arithmetic

Having succeeded in formalizing the Nisan-Wigderson derandomization re-
sult, the natural next step is to consider the Impagliazzo-Wigderson theorem
[15], which draws the same conclusion assuming only worst-case hardness.
The proof of the Impagliazzo-Wigderson result was later simplified by Sudan,
Trevisan, and Vadhan [46], who realized the connection between hardness
amplification, and list decoding of error-correcting codes; nevertheless, for-
malization of the theorem in bounded arithmetic turned out much harder
than the Nisan-Wigderson construction. The main reason is that the Nisan-



Chapter 4. Hard Boolean functions 40

Wigderson generator is based on simple combinatorics, whereas list decod-
ing of error-correcting codes requires several algebraic tools concerning finite
fields.

The proof is split in several subsections. The main results are presented
in section 4.3.5. The key component, list decoding of Reed-Muller codes, is
contained in section 4.3.4. It is built on list decoding of Reed-Solomon codes
described in section 4.3.3, which in turn requires Gaussian elimination over
function fields (section 4.3.2).

4.3.1 Basic properties of finite fields

This section is an overview of notation and a few elementary results on
finite fields. An interested reader may find broader context in [25], or other
algebra textbooks.

4.3.1 Definition (PV ) A finite field is a sequence

F = 〈q, 0F , 1F ,+F ,−F , ·F ,−1
F 〉,

where q ∈ Log represents the interval [0, q), the rest are tables of operations
on q of the correct arity, and the usual axioms of fields are satisfied. Size of
the field F is q. A univariate polynomial over F is a sequence f of elements
of F , such that (f)lh(f)−1 6= 0 if lh(f) 6= 0. The number lh(f) − 1 is the
degree of f .

4.3.2 Example If p is a prime, we can construct a field Fp of size p: +, −,
and · are arithmetical operations modulo p, and −1 is the modular inverse
computed by the extended gcd algorithm.

4.3.3 Lemma (PV `:) Addition, subtraction, multiplication, division with

remainder, and extended gcd of polynomials over a finite field are well-

defined, and computable by PV -functions.

Proof: Straightforward. �

4.3.4 Example Let F be a finite field of size q, and f an irreducible poly-
nomial of degree d over F , such that qd ∈ Log. We can construct a field of
size qd by identifying elements of qd with polynomials over F of degree less
than d, and performing all operations modulo f . The last lemma ensures
that the field operations are well-defined, and it is straightforward to check
the field axioms.

4.3.5 Lemma (PV `:) Let f ∈ F [x] and a ∈ F . Then f(a) = 0 iff x−a | f .
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Proof: Write f = (x− a)g+ b using the division algorithm. Then f(a) = b.
�

4.3.6 Lemma (PV `:) A nonzero polynomial f ∈ F [x] has at most deg(f)
roots.

Proof: We show by induction on k, that if α1, . . . , αk ∈ F are distinct roots
of f , then

∏
i(x − αi) | f . The base case is trivial, and the induction step

follows from lemma 4.3.5. Since
∏
i(x− αi) is a polynomial of degree k, we

must have k ≤ deg(f) unless f = 0. �

4.3.7 Lemma (PV `:) Let F be a field of size q. There exists a prime

p ≤ q such that F contains Fp.

Proof: For any integer n, define n ∈ F by 0 = 0F , 2n = n+n, 2n+ 1 = n+
n+1F , and −n = −n. Straightforward induction shows that n+m = n+m,
and nm = nm. By PHP q+1

q (PV ), there exist n < m ≤ q such that n = m,
thus n−m = 0. Let p ≤ q be the smallest positive integer such that p = 0.
Since F is an integral domain, p is prime, and it is easy to see that • is an
isomorphic embedding of Fp in F . �

4.3.8 Definition (PV ) The prime p from the last lemma is called the char-
acteristic of F , denoted by χ(F ), and (the subfield of F isomorphic to) Fp
is the prime field of F .

4.3.9 Lemma (PV `:) Let F be a field of size q. Then q is a power of

p = χ(F ).

Proof: Fix D such that pD ≤ q < pD+1. If s is a sequence of elements of F ,
and t a sequence of elements of Fp such that d := lh(s) = lh(t) ≤ D+1, define
f(s, t) =

∑
i<d tisi ∈ F (notice that f can be computed by a PV -function,

resp. a circuit). A sequence s is linearly independent, if f(s, t) 6= 0 for every
t 6= ~0. Since f(s, t + t′) = f(s, t) + f(s, t′), the function f(s, •) : Fdp → F is
injective for a linearly independent s, thus pd ≤ q, and d ≤ D.

The universal quantifier in the definition of independence is sharply
bounded, as pD+1 ≤ qp ∈ Log. We can therefore find a maximal linearly in-
dependent s by greedy search. It follows that f(s, •) is a bijection of Fdp and
F : if a ∈ F , the sequence s∪ 〈a〉 is linearly dependent, i.e.,

∑
i tisi + ta = 0

for some nonzero 〈~ti, t〉. Since s is independent, we must have t 6= 0, thus
a = −t−1

∑
i tisi = f(s, t′), where t′i = −t−1ti. �
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4.3.10 Lemma (PV `:) Let F be a field of size q and characteristic p, and

let k ∈ Log. Define a mapping Φpk : F → F by Φpk(a) = ap
k
. Then Φpk is

an automorphism of F .

Proof: The property of being an automorphism is sharply bounded since
q ∈ Log, thus we can use induction on k; moreover a composition of two
automorphisms is an automorphism, therefore it is sufficient to consider the
case k = 1. Φp obviously preserves all field operations except for addition.
We have

(a+ b)n =
∑
i≤n

(
n

i

)
aibn−i

by induction on n ∈ Log, moreover p |
(
p
i

)
for every 0 < i < p by induction

on i, thus (a+ b)p = ap + bp. Φp is injective because ap 6= 0 if a 6= 0, and it
is surjective by PHP qq−1. �

4.3.11 Lemma (PV `:) Let F be a field of size q. Then Φq is identity, and

the polynomial xq − x is equal to
∏
a∈F (x− a).

Proof: Fix a ∈ F ∗ = F r {0}, we need to show aq−1 = 1. By PHP qq−1,
there is an r < q such that ar = 1. Let r be the smallest such number, and
put G = {ai; i < r}. For each b ∈ F ∗, let f(b) be the least element of bG
in the underlying ordering of q, and define g(b) = 〈f(b), (f(b))−1b〉. It is
easy to see that g is a bijection of F ∗ and rng(f)×G, in particular r = |G|
divides q − 1 = |F ∗|, thus aq−1 = 1.

Since all elements of F are roots of xq − x, we have
∏
a∈F (x − a) |

xq − x. Moreover, both polynomials are monic of degree q, thus they must
be identical. �

4.3.12 Lemma (PV `:) Let F be a field of size q, and q ≤ n ∈ Log. There

exists an extension H of F of size qd such that n ≤ qd < n2. Moreover, we

can construct such an H in time polynomial in n.

Proof: There are q2 monic polynomials of degree 2 over F , but only
(
q
2

)
+q =

q(q+1)/2 of them are reducible. We can thus find an irreducible polynomial
of degree 2 by an exhaustive search, and such a polynomial gives us an
extension of F of size q2. We iterate this process dlog2(logq n)e times. �

4.3.2 Some linear algebra

In the algorithm for finding roots of bivariate polynomials, we will need
to compute gcd’s of bivariate polynomials. The obvious approach, namely
to use the Euclidean algorithm in the Euclidean domain F (x)[y] does not



Chapter 4. Hard Boolean functions 43

work, since we do not know how to prove polynomial bounds on degrees of
elements of F (x) computed by the algorithm. An alternative approach is to
reduce the gcd computation to solving linear systems over F (x).

However, this is also problematic: in order to define Gaussian elimina-
tion, we need again to bound the degree of the polynomials constructed
during the elimination process, and a simple induction on the length of the
computation would only show exponential bounds. The degrees are actually
polynomially bounded, because elements constructed during Gaussian elim-
ination are given by determinants of certain minors of the original matrix;
however, we cannot use this argument if we want to define determinants
using Gaussian elimination. The way out of this vicious circle is to define
determinants in some other way, to prove some of their properties, and only
then proceed to Gaussian elimination. Fortunately, a lot of work in this
direction was already done in M. Soltys’ PhD thesis [42] (an extract of his
thesis appeared in [43] and [44]; we will use [44] as the main reference).

Soltys defines three theories, LA ⊆ LAP ⊆ ∀LAP , for reasoning about
matrix algebra. Originally, LA was defined as a quantifier-free sequent cal-
culus, but it will be more convenient for us to treat it as a usual first-order
theory, as in [49]. LA is a three sorted theory: the individual sorts corre-
spond to elements of a field (or more generally, integral domain), to matrices,
and to indices. The language of the theory contains field (or ring) opera-
tions, basic arithmetical operations for manipulation with indices, functions
which extract the number of rows and columns and individual entries of a
matrix, a form of definition by cases, λ-terms for construction of matrices by
defining their elements, and a function which sums all entries of a matrix.
It has over 30 open axioms (essentially, field (or integral domain) axioms,
and defining equations for other function symbols), and the schema of open
induction on indices. LAP extends LA by a function symbol for matrix pow-
ering. In ∀LAP , the induction schema is extended to ΠM

1 -formulas: these
are formulas of the form ∀A ≤ nϕ, where ϕ is open, n is an index term,
and A ≤ n abbreviates r(A) ≤ n ∧ c(A) ≤ n (i.e., the number of rows and
columns of A is at most n).

LA proves basic ring identities of matrices, but otherwise it seems to be a
rather weak theory. LAP is much more interesting: matrix powering enables
to define the Berkowitz’ algorithm [4] for computing the characteristic poly-
nomial (and thus determinant) by a term of LAP . Some basic properties of
the determinant are provable in LAP directly, and many other (e.g., the co-
factor expansion formula) are (over LAP) implied by the Cayley-Hamilton
theorem. Finally, ∀LAP proves the Cayley-Hamilton theorem.

The language of LAP can be naturally interpreted in the language of
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arithmetic: we fix a definable field (integral domain) R to interpret the
field sort, use logarithmically small number to represent the index sort, and
sequences of field elements for the matrix sort. (If we are dealing with
an infinite R, it is assumed that we pick its most natural realization: for
example, elements of the field Q of rationals are all pairs of coprime integers,
rather than, say, pairs of logarithmically small numbers.)

Soltys shows that S1
2 proves the natural translation of ∀LAP if we take

a finite field as the field sort. Unfortunately for us, this interpretation does
not work for infinite rings like F (x) or Q. It is straightforward to interpret
LAP in these cases, but not the induction axioms, because ΠM

1 -formulas
translate into unbounded universal formulas (even quantification over 1× 1
matrices requires an unbounded quantifier over the ring elements).

We provide more details here to get the records straight, because there
seems to be a confusion on this question in the literature. Soltys and Cook
[43, 44] claim without proof that the interpretation of ∀LAP in S1

2 works
over Q, but this is true only for open (or ΠM

1 ) consequences of ∀LAP , not in
general (even if we restrict ourselves to sequents of ΠM

1 -formulas, which is
the original Soltys’ formulation of ∀LAP). Let (∀LAP)R denote S1

2 extended
by the interpretation of theorems of ∀LAP over an (S1

2 -definable) integral
domain R. To see that S1

2 0 (∀LAP)R for most infinite rings R, we use
the following result of [49]: if t(u) is a ring term, then ∀LAP proves (a
ΣM

1 -formula equivalent to)

∀a∀n ∃X ∀i ≤ n (X1,1 = a ∧ (i > 1→ X1,i = t(X1,i−1))).

If we take t(u) = u2, we get

(∀LAP)R ` ∀a ∈ R ∀n ∈ Log ∃b ∈ Rb = a2n
.

This means that (∀LAP)R ` EXP , if R is Q, Z (take a = 2), F [x] (take
a = x), or just about any reasonable integral domain R which contains an
element of infinite order.

If we consider ∀LAP as a full first-order theory, we can do much better,
at least for R = Z: a block of c universal quantifiers over Z can be simulated
by a quantifier over 1 × c integer matrices, i.e., any universal property of
the integers can be expressed by a ΠM

1 -formula. Moreover, I∆0 + EXP ⊆
(∀LAP)Z proves the MRDP theorem [11], thus any Π0

1-formula is equivalent
to a ΠM

1 -formula, and (∀LAP)Z = IΣ1.
We can remedy the situation by restricting the induction schema.

4.3.13 Definition Let ΠM,b
1 be the class of LAP formulas of the form ∀A ≤

B ϕ, where ϕ is an open formula, B is a matrix term not containing an
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occurrence of A, and A ≤ B is an abbreviation for

r(A) ≤ r(B) ∧ c(A) ≤ c(B)∧
∀i ≤ r(A), j ≤ c(A)∃k ≤ r(B), ` ≤ c(B) Ai,j = Bk,`.

In words, the number of rows and columns of A is bounded by the respec-
tive parameters of B, and each entry of A appears as an entry of B. Let
∀LAP− be the extension of LAP by induction for ΠM,b

1 -formulas. (Notice
that ∀LAP ` ∀LAP−: ∀A ≤ B ϕ is equivalent to

∀A ≤ max(r(B), c(B)) (A ≤ B → ϕ),

and A ≤ B is in ∀LAP equivalent to a ΣM
1 -formula by [49].)

4.3.14 Theorem S1
2 proves the natural translation of ∀LAP−, if we take

F (x) or Q as the base field, where F is a finite field.

Proof: It is straightforward to adapt the interpretation of LAP from [42, 44]
to this situation. Essentially, the open axioms pose no problems, once we
manage to define LAP terms by PV -functions. This can be done by induc-
tion on the complexity of the term; for example, matrix powering is given by
a PV -function, as the degree of coefficients of An is bounded by nd, where
d is an upper bound to degrees of coefficients of A (if the matrix consists of
polynomials; in general, we first compute the product of all denominators p
which has degree at most n2d, compute (pA)n, and divide the result by pn).

To see that ΠM,b
1 -induction holds, notice that ΠM,b

1 -formulas translate
into Πb

1-formulas: if A ≤ B, then the size of A is bounded by the maximal
size of its entries (which is bounded by the size of B), multiplied by the
number of its rows and columns (which are also bounded by the size of B).
Thus, Πb

1-LIND suffices. �

The next theorem shows that we did not weaken the theory too much—
∀LAP− proves the most important Soltys’ results, including some properties
of the determinant which we will need later.

The Cayley-Hamilton theorem asserts that if pA(x) is the characteristic
polynomial of a square matrix A, then pA(A) = 0. Cofactor expansion of
determinant along row i is the identity

|A| =
∑
j

(−1)i+jAi,j |A[i; j]|,

where |A| is the determinant of A, and A[i1, . . . , ik; j1, . . . , j`] denotes the mi-
nor of A obtained by deleting rows i1, . . . , ik and columns j1, . . . , j`. Cofactor
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expansion along columns is defined dually. Multiplicativity of determinant
is the formula |AB| = |A||B|. Axiomatic definition of determinant consists
of the following three conditions:

(i) determinant is multilinear in rows and columns,

(ii) determinant is alternating in rows and columns,

(iii) |I| = 1,

where I is the identity matrix.

4.3.15 Theorem ∀LAP− proves the Cayley-Hamilton theorem, the cofac-

tor expansion formula, axiomatic properties of determinant, and multiplica-

tivity of determinant.

Proof: The first three statements are equivalent over LAP by theorem 4.2
of [44]. An inspection of Soltys’ proof of C-H in ∀LAP (theorem 5.1 of [44])
reveals that it actually uses ΠM,b

1 -induction rather than full ΠM
1 -induction:

the induction hypothesis is directly or indirectly (through corollary 4.1)
applied only to permuted minors of the original matrix. The same argument
applies to the proof of multiplicativity of determinant (theorem 5.2 of [44]).

�

4.3.16 Lemma (∀LAP− `:) For any n× n matrix A such that n ≥ 2,

|A||A[n− 1, n;n− 1, n]| =
|A[n− 1;n− 1]||A[n;n]| − |A[n− 1;n]||A[n;n− 1]|.

Proof: Fix a matrix B, we will show by ΠM,b
1 -induction on n that the iden-

tity is true for all square matrices A ≤ B with at most n rows. The state-
ment holds for matrices of size 2 and 3 by direct computation. Let A be an
(n+ 1)× (n+ 1) matrix, decomposed as

A =

M S Q

R a b

P c d

 ,

and assume the statement is true for all permutations of M . By expansion
on the last row, we have∣∣∣∣∣M Q

R b

∣∣∣∣∣
∣∣∣∣∣M S

P c

∣∣∣∣∣ =
(∑

j

(−1)jrj |M [; j]Q|+ (−1)nb|M |
)
×
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(∑
j

(−1)jpj |M [; j]S|+ (−1)nc|M |
)

= |M |
(
bc|M |+

∑
j

(−1)n+jcrj |M [; j]Q|

+
∑
j

(−1)n+jbpj |M [; j]S|
)

+
∑
j,k

(−1)j+krjpk|M [; j]Q||M [; k]S|.

Similarly,∣∣∣∣∣M S

R a

∣∣∣∣∣
∣∣∣∣∣M Q

P d

∣∣∣∣∣ = |M |
(
ad|M |+

∑
j

(−1)n+jdrj |M [; j]S|

+
∑
j

(−1)n+japj |M [; j]Q|
)

+
∑
j,k

(−1)j+krjpk|M [; j]S||M [; k]Q|,

thus∣∣∣∣∣M Q

R b

∣∣∣∣∣
∣∣∣∣∣M S

P c

∣∣∣∣∣−
∣∣∣∣∣M S

R a

∣∣∣∣∣
∣∣∣∣∣M Q

P d

∣∣∣∣∣
= |M |

(
(bc− ad)|M |+

∑
j

(−1)n+j(crj − apj)|M [; j]Q|

+
∑
j

(−1)n+j(bpj − drj)|M [; j]S|
)

+
∑
j,k

(−1)j+k(rjpk − rkpj)|M [; j]Q||M [; k]S|

= |M |
(

(bc− ad)|M |+
∑
j

(−1)n+j(crj − apj)|M [; j]Q|

+
∑
j

(−1)n+j(bpj − drj)|M [; j]S|
)

+
∑
j<k

(−1)j+k(rjpk − rkpj)
(
|M [; j]Q||M [; k]S| − |M [; j]S||M [; k]Q|

)
.

Similarly, expanding |A| along the last two rows yields∣∣∣∣∣∣∣
M S Q

R a b

P c d

∣∣∣∣∣∣∣ = (ad− bc)|M |+
∑
j

(−1)n+j(apj − crj)|M [; j]Q|
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+
∑
j

(−1)n+j(drj − bpj)|M [; j]S|

+
∑
j<k

(−1)j+k(rkpj − rjpk)|M [; j, k]S Q|,

thus

|M |

∣∣∣∣∣∣∣
M S Q

R a b

P c d

∣∣∣∣∣∣∣−
∣∣∣∣∣M S

R a

∣∣∣∣∣
∣∣∣∣∣M Q

P d

∣∣∣∣∣+

∣∣∣∣∣M Q

R b

∣∣∣∣∣
∣∣∣∣∣M S

P c

∣∣∣∣∣ =

∑
j<k

(−1)j+k(rkpj − rjpk)
(
|M ||M [; j, k]S Q| − |M [; j]Q||M [; k]S|

+ |M [; j]S||M [; k]Q|
)
.

It suffices to show that

|M ||M [; j, k]S Q| − |M [; j]Q||M [; k]S|+ |M [; j]S||M [; k]Q| = 0

for any j < k. Using expansion on columns, a similar computation as above
shows

|M [; j]S||M [; k]Q| − |M [; j]Q||M [; k]S|

=
∑
i<`

(−1)i+`(siq` − s`qi)
(
|M [i; j]||M [`; k]| − |M [i; k]||M [`; j]|

)
and

|M [; j, k]S Q| =
∑
i<`

(−1)i+`(s`qi − siq`)|M [i, `; j, k]|,

thus

|M ||M [; j, k]S Q| − |M [; j]Q||M [; k]S|+ |M [; j]S||M [; k]Q| =∑
i<`

(−1)i+`(s`qi − siq`)
(
|M ||M [i, `; j, k]| − |M [i; j]||M [`; k]|

+ |M [i; k]||M [`; j]|
)
.

However,

|M ||M [i, `; j, k]| − |M [i; j]||M [`; k]|+ |M [i; k]||M [`; j]| = 0

for every i < `: we move the ith and `th row to the bottom of M , do similarly
for the columns (the net change to the expression is a multiplicative factor
of (−1)i+j+k+`, by alternation in rows and columns), and use the induction
hypothesis. �
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Now we have everything we need for Gaussian elimination. Armed with
lemma 4.3.16, we could proceed to define the textbook Gaussian elimination
algorithm over F (x) in S1

2 , and to prove that it is a p-time algorithm (more
precisely, it would go the other way around: polynomial bounds have to be
already built-in to get a PV -function, and we would use lemma 4.3.16 to
prove the soundness of the algorithm).

We will take a different approach, and formalize Gaussian elimination in
∀LAP−. The benefit is that it automatically extends to other S1

2 -definable
fields like Q; in any case, the result is more elegant, as it stresses the field-
agnostic nature of Gaussian elimination. The drawback is that we cannot
directly define the elimination algorithm in ∀LAP−, we have to present the
result as an existential statement. This is inessential, as we will obtain a
PV -function for free from Buss’ witnessing theorem.

4.3.17 Definition (∀LAP−) We let elementary matrices be square matri-
ces which result from the identity matrix by putting a nonzero element c on
position 〈i, j〉 in the matrix, or by swapping the ith and jth row for some
i, j. We denote the first type of elementary matrices by Ei,j(c), and the
second type by E′

i,j . A reduced row-echelon matrix is a matrix A with the
following properties:

(i) The left-most nonzero entry of every nonzero row is 1. This entry is
called the pivot.

(ii) If i < j and row j is nonzero, then the pivot of row i is to the left of
the pivot of row j (and, in particular, row i is nonzero).

(iii) Entries above any pivot are 0.

A is a row-echelon matrix if it satisfies (i) and (ii).

4.3.18 Theorem (∀LAP− `:) For every n × m matrix A there exists a

sequence of elementary n× n matrices E1, . . . , Es such that E1 · · ·EsA is a

reduced row-echelon matrix.

Proof: By a standard argument, ΠM,b
1 -induction is equivalent to induction

for ΣM,b
1 -formulas. We observe several closure properties of ΣM,b

1 -formulas: a
quantifier over a sequence {M(`); ` < k} of n×m matrices can be simulated
by a single quantifier over an n × km matrix M by putting M(`)i,j :=
Mi,`m+j . In particular, we can merge together a block of bounded quantifiers
(if their bounds are independent). Using methods of [49], open formulas in
LAP are closed under bounded index quantifiers (the characteristic function
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of any open formula is definable by a term of LAP , and a bounded universal
index quantifier can then be simulated by a product).

For any matrix B, let Bj1,...,j`
i1,...,ik

be the k× ` minor of B consisting of rows
i1, . . . , ik and columns j1, . . . , j`.

Claim 1 There exists a sequence of elementary n × n matrices E1, . . . , Es
such that the product E1 · · ·EsA is a row-echelon matrix.

Proof: We will show the following statement by induction on k ≤ n, the
claim follows if we take k = n:

There exists a sequence C(1), . . . , C(k) ≤ A of n ×m matrices,
a sequence F (1), . . . , F (k) ≤ I of n× n matrices, and an n×m
matrix B ≤ A such that

• ∀i ≤ k ∃j ≤ n F (i) = E′
i,j ,

• the first k rows of M are in row-echelon form,

• if c is the pivot column of row k, i > k, and j ≤ m, then

Mi,j =
|B1...k,j

1...k,i |
|B1...k

1...k |

for j > c, and Mi,j = 0 for j ≤ c,

where M is the n×m matrix defined as
1∏
`=k

(
n∏

i=`+1

(
Ei,`

(
−
|C(`)1...`1...`−1,i|
|C(`)1...`−1

1...`−1|

)
E`,`

( |C(`)1...`−1
1...`−1|

|C(`)1...`1...`|

))
× F (`)

)
×A.

Notice that the bulleted conditions contain only bounded index quantifiers,
thus the whole thing is a ΣM,b

1 -formula.
The base case k = 0 is trivial, we just take B = A. Assume the statement

is true for k − 1, we will demonstrate it for k. Let c be the pivot column of
row k − 1. Find the least d > c such that Mr,d 6= 0 for some r ≥ k, and fix
one such r. (If there is no suitable d, then M is already in row-echelon form,
and the claim is true.) Put F (k) = E′

k,r, N = F (k)M , and D = F (k)B
(i.e., N and D result from M and B by swapping rows k and r).

Notice that Nk,d 6= 0, we may thus construct a matrix P from N as
follows: first divide row k by Nk,d, then subtract Ni,d times row k from row
i for every i = k + 1, . . . , n. Clearly the first k rows of P are in row-echelon
form. Also Pi,j = 0 for i > k and j ≤ d, and for j > d we have

Pi,j = Ni,j −
Ni,dNk,j

Nk,d
=
|D1...k−1,j

1...k−1,i |
|D1...k−1

1...k−1|
−
|D1...k−1,d

1...k−1,i ||D
1...k−1,j
1...k |

|D1...k−1
1...k−1||D

1...k−1,d
1...k |

.
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By lemma 4.3.16, we have

|D1...k−1,d
1...k ||D1...k−1,j

1...k−1,i | − |D
1...k−1,d
1...k−1,i ||D

1...k−1,j
1...k | = |D1...k−1

1...k−1||D
1...k−1,d,j
1...k,i |,

thus

Pi,j =
|D1...k−1

1...k−1||D
1...k−1,d,j
1...k,i |

|D1...k−1
1...k−1||D

1...k−1,d
1...k |

=
|D1...k−1,d,j

1...k,i |

|D1...k−1,d
1...k |

,

which has the required form, if we take D with column d moved to column
k as the new B. Also

P =
n∏

i=k+1

(
Ei,k(−Ni,d)Ek,k(N−1

k,d)
)
×N

=
n∏

i=k+1

(
Ei,k(−Ni,d)Ek,k(N−1

k,d)
)
× F (k)M,

and we have

N−1
k,d =

|D1...k−1
1...k−1|

|D1...k−1,d
1...k |

,

and

−Ni,d =
|D1...k−1,d

1...k−1,i |
|D1...k−1

1...k−1|
.

It suffices to put C(k) = D1...k−1,d
1...n . � (claim 1)

Claim 2 For any row-echelon matrix M , there exists a sequence of elemen-

tary n×n matrices E1, . . . , Es such that the product E1 · · ·EsM is a reduced

row-echelon matrix.

Proof: Let k be the last nonzero row of M , and let c` be the pivot column
in row `, for ` = 1, . . . , k. We cannot define c` directly as a term in `,
but the following will be sufficient: the formula M`,c = 1 ∧ ∀j < cM`,j = 0
expressing that c is the pivot column of row ` contains only a bounded index
quantifier, therefore it has a characteristic function t(c, `). If we let T be
the matrix such that Tj,` = t(j, `), then (MT )i,` = Mi,c` . We claim that

1∏
`=k

`−1∏
i=1

Ei,`(−Mi,c`)×M

is a reduced row-echelon matrix. To see this, we will prove by open induction
on h = k, . . . , 1 that

N(h) =
h∏
`=k

`−1∏
i=1

Ei,`(−Mi,c`)×M
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is a row-echelon matrix with pivots in same columns as M , N(h) agrees with
M in all columns j < ch, and has zeros above pivots of rows h, . . . , k.

Assume that the statement is true for h+ 1. The effect of

N(h) =
h−1∏
i=1

Ei,h(−Mi,ch)×N(h+ 1)

is to subtract Mi,ch times row h from row i, for every i < h. By assumption,
Mi,ch = N(h + 1)i,ch , thus the result is that entries above the pivot ch are
cleared. Columns j < ch are unchanged, and entries above pivots c` for
` > h remain zero, because N(h+ 1)h,c` = 0. Thus the statement is true for
N(h), and the claim holds. � (claim 2)

The theorem follows by applying claim 1 and claim 2. �

4.3.19 Theorem (PV `:) There is a PV -function which computes a so-

lution to a system of linear equations over F (x) if one exists, and a PV -

function which computes a basis for the space of all solutions of a homoge-

neous linear system over F (x), where F is a finite field.

Proof: By theorems 4.3.18 and 4.3.14, and Buss’ witnessing theorem, there
is a PV -function GE(F,A), which computes a sequence of elementary ma-
trices E1, . . . , Es such that E1 · · ·EsA is a reduced row-echelon matrix.
Let Ax = c be a linear system. We use GE to find E1, . . . , Es, and put
B = E1 · · ·EsA. We compute d = E1 · · ·Esc, and solve the system Bx = d.
(Let X be the set of columns of B which do not contain a pivot. It is easy
to see that Bx = d is solvable iff di = 0 for every zero row i of B, and
the solutions are given by choosing arbitrary xj for j ∈ X, and comput-
ing x` = d` −

∑
j∈X Bk,jxj for ` /∈ X, where k is the row with pivot in

column `.) Clearly any solution to Ax = c is a solution to Bx = d. Con-
versely, elementary matrices are trivial to invert, and thus if Bx = d, we
have Ax = E−1

s · · ·E−1
1 Bx = E−1

s · · ·E−1
1 d = c. �

As mentioned in the introduction to this section, the reason for our inter-
est in linear algebra over function fields was to obtain a gcd algorithm for
bivariate polynomials. The exact statement we want is theorem 4.3.23, and
we finish the present section by its proof.

4.3.20 Lemma (PV `:) There is a PV -function which, given a finite field

F and polynomials f, g ∈ F (x)[y], computes h, a, b ∈ F (x)[y] such that

h = af + bg, and h | f, g.
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Proof: Taking care of trivial cases, we may assume deg(f),deg(g) > 0. Put
df = deg(f) and dg = deg(g), and consider the system of equations

deg(a) < dg, deg(b) < df ,

deg(af + bg) = d,

af + bg is monic

for a fixed d ≤ min(df , dg). This is a linear system with df + dg unknowns
for coefficients of a and b, and df + dg − d equations stating that the dth
coefficient of h := af + bg is 1, and the ith coefficients are 0 for i = d +
1, . . . , df + dg − 1. The system is clearly solvable for d = min(df , dg), and
using theorem 4.3.19, we can find the minimal d such that the system is
solvable, and compute the solutions a, b, and h.

We claim that h = gcd(f, g), i.e., h | f and h | g. Using the division
algorithm, write f = uh+v, deg(v) < deg(h). We have v = (1−ua)f −ubg.
Moreover, we can write v = a′f + b′g with deg(a′) < deg(g), deg(b′) <
deg(f): if we put 1 − ua = wg + a′, deg(a′) < deg(g), we have v = a′f +
(wf − ub)g. Putting b′ = wf − ub, we have deg(b′g) = deg(v − a′f) <
deg(f) + deg(g), thus deg(b′) < deg(f). We can make v monic by dividing
it by its leading coefficient, if v 6= 0. Then v, a′, b′ form another solution
to the linear system with deg(v) < deg(h), thus v = 0 by minimality of h,
which means that h | f . We can show h | g in the same way. �

4.3.21 Definition (PV ) Let f ∈ F [x, y], and write

f(x, y) =
∑
i≤d

fi(x)yi.

The content of f is cont(f) := gcd(f0, . . . , fd).

4.3.22 Lemma (Gauss’ lemma) (PV `:) Let f, g ∈ F [x, y], h ∈ F (x)[y]
be such that f = gh, and cont(g) = 1. Then h ∈ F [x, y].

Proof: Write h = h′/c, where h′ ∈ F [x, y], c ∈ F [x] is nonzero, and
gcd(c, cont(h′)) = 1. Then cf = gh′. Assume that degx(c) > 0 for con-
tradiction. We may assume S1

2(PV ) w.l.o.g. because we are proving a Σb
1-

statement, thus we can find a nonconstant divisor p | c of the smallest
possible degree; it follows that p ∈ F [x] is irreducible, and thus prime (by
extended gcd in F [x]). Since c is coprime with cont(h′), and cont(g) = 1,
we can find the smallest i and j such that p does not divide gi and h′j . The
(i+ j)th coefficient of cf = gh′ is∑

k≤i+j
gkh

′
i+j−k,
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and every term except for gih′j in this sum is divisible by p, but p - gih′j ,
thus (gh′)i+j is not divisible by p. However, (cf)i+j = cfi+j is divisible by
p, a contradiction. �

4.3.23 Theorem (PV `:) There is a PV -function which, given a finite field

F and polynomials f, g ∈ F [x, y], computes h, a, b ∈ F [x, y] and c ∈ F [x]
such that ch = af + bg, h | f, g, and c 6= 0.

Proof: By lemma 4.3.20 and clearing denominators, compute polynomials
h, a, b ∈ F [x, y] and nonzero c ∈ F [x] such that

ch = af + bg,

h | f, g in F (x)[y].

Compute d = cont(h), divide h by d, and multiply c by d. Since d is
invertible in F (x), we still have h | f, g in F (x)[y]. Moreover now cont(h) =
1, thus h | f, g in F [x, y] by Gauss’ lemma. �

4.3.3 List decoding of Reed-Solomon codes

Our next step is a list decoding algorithm for Reed-Solomon codes, which
will be used in the next section as a subprocedure of a list decoder for Reed-
Muller codes. We will not define the actual codes in bounded arithmetic,
to avoid the machinery of coding theory which we would have to introduce.
We just remind the reader briefly here, to get an idea of what is going on.

Reed-Solomon code [38] with alphabet size q, message length k, and
codeword length n works as follows: we identify the alphabet with a finite
field F = GF (q), and messages p ∈ F k with polynomials of degree less
than k. The codeword C(p) is then the evaluation of p at n fixed points
α1, . . . , αn ∈ F . List decoding is the task of finding all messages p, such
that C(p) has a good agreement with a given f ∈ Fn. In the case of Reed-
Solomon codes, this can be rephrased as follows: given a function f : X → F ,
where X ⊆ F , find the list of polynomials p ∈ F [x] of a given degree, which
agree with f on at least t elements of X. This is formalized in theorem
4.3.34.

The list decoding algorithm we use was described by Sudan [45]. Its most
involved component is a factoring algorithm for bivariate polynomials. We
do not know whether it is possible to formalize general bivariate factoring1

in S1
2 , however it will be sufficient to construct a root finding algorithm,

1Univariate factoring is the real problem; the reduction from bivariate to univariate

factoring using Hensel’s lifting is relatively straightforward.
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which is much easier (theorem 4.3.32). Another simplification is that we
can allow the algorithm to be polynomial in the field size, rather than its
logarithm; this makes univariate root finding particularly trivial.

The idea of finding roots of a bivariate polynomial f(x, y) is to find
roots of the univariate polynomial f(0, y), or equivalently, to find roots of
f modulo x, and then to lift them to roots modulo x2k

for sufficiently large
k. This process, called Hensel’s lifting, can be viewed as approximating a
root of f in F ((x)) (the field of formal Laurent series over F ) by Newton’s
iteration.

4.3.24 Definition (PV ) If f ∈ F [x, y], we let f ′(x, y) denote the partial
derivative of f wrt y, i.e., if f =

∑
i fiy

i, where fi ∈ F [x], then f ′(x, y) :=∑
i>0 ifiy

i−1.

4.3.25 Lemma (PV `:) Let f ∈ F [x, y] and p ∈ F [x]. Then h(x, y) =
f(x,y)−f(x,p(x))

y−p(x) is a polynomial, and h(x, p(x)) = f ′(x, p(x)).

Proof: Since (f(x, y) − f(x, p(x)))(p(x)) = 0, we have y − p(x) | f(x, y) −
f(x, p(x)). Deriving the equation f − f(x, p) = (y − p)h yields

f ′ = h+ (y − p)h′,

thus f ′(x, p) = h(x, p). �

4.3.26 Lemma (Hensel’s lifting) (PV `:) Let 0 < k ∈ Log, f ∈ F [x, y],
and p, b ∈ F [x] satisfy

(i) f(x, p(x)) ≡ 0 (mod xk),

(ii) b(x)f ′(x, p(x)) ≡ 1 (mod xk).

Let

p∗(x) ≡ p(x)− b(x)f(x, p(x)) (mod x2k),

b∗(x) ≡ (2− b(x)f ′(x, p∗(x)))b(x) (mod x2k).

Then

(i) p(x) ≡ p∗(x) (mod xk),

(ii) f(x, p∗(x)) ≡ 0 (mod x2k),

(iii) b∗(x)f ′(x, p∗(x)) ≡ 1 (mod x2k).

Moreover, conditions (i) and (ii) determine p∗ uniquely modulo x2k.
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Proof: Clearly f(x, p(x)) ≡ 0 (mod xk) implies p ≡ p∗ (mod xk). Put

q = bf ′(x, p∗)− 1.

Then b∗ ≡ (1− q)b (mod x2k), and q ≡ bf ′(x, p)− 1 ≡ 0 (mod xk), thus

b∗f ′(x, p∗) ≡ (1− q)bf ′(x, p∗) =

= (1− q)(1 + q) = 1− q2 ≡ 1 (mod x2k).

Let h = (f − f(x, p))/(y − p). We have

f(x, p∗) = f(x, p) + (p∗ − p)h(x, p∗)

≡ f(x, p)(1− bh(x, p∗)) (mod x2k).

Also f(x, p) ≡ 0 (mod xk) and

1− bh(x, p∗) ≡ 1− bh(x, p) = 1− bf ′(x, p) ≡ 0 (mod xk),

thus f(x, p∗) ≡ 0 (mod x2k).
Assume that p̃ ≡ p (mod xk) and f(x, p̃) ≡ 0 (mod x2k). Then h(x, p̃) ≡

h(x, p) = f ′(x, p) (mod xk), thus bh(x, p̃) ≡ 1 (mod xk), and p̃ − p ≡ 0
(mod xk) implies

p̃− p ≡ (p̃− p)h(x, p̃)b = (f(x, p̃)− f(x, p))b ≡ −bf(x, p) (mod x2k),

i.e., p̃ ≡ p− bf(x, p) ≡ p∗ (mod x2k). �

4.3.27 Definition (PV ) Let Lift(f, F, S) be the formalization of the fol-
lowing algorithm.

input: F finite field, f ∈ F [x, y], S set of roots of f(0, y)
output: set of roots of f
algorithm:
R← ∅
k ← |degx(f)|
for each α ∈ S do:
p(x)← α

b(x)← (f ′(0, α))−1, or reject if f ′(0, α) = 0
for j ← 1, . . . , k do:
p(x)← (p(x)− b(x)f ′(x, p(x))) mod x2j

b(x)← (b(x)(2− b(x)f ′(x, p(x)))) mod x2j

if f(x, p(x)) = 0 then R← R ∪ {p}
output R
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4.3.28 Lemma (PV `:) Let F be a finite field, f ∈ F [x, y], and S is the set

of all roots of f(0, y) in F . If all of these roots are simple, then Lift(f, F, S)
computes the set of all roots of f .

Proof: Clearly all polynomials output by Lift are roots of f . Let q(x)
be any root of f . Then α := q(0) is a root of f(0, y), and f ′(0, α) 6= 0
because α is simple, thus the lifting stage of the algorithm computes a
polynomial p of degree less than 2k such that p(0) = α and f(x, p(x)) ≡ 0
(mod x2k

). By uniqueness of Hensel’s lifting, we have p ≡ q (mod x2k
).

Since y− q(x) | f(x, y), the degree of q is at most degx(f) < 2k, thus p = q,
and the output of the algorithm includes q. �

We have to deal with polynomials f such that f(0, y) has multiple roots.
The idea is to split f into square-free factors using gcd with its derivative.
Then, for square-free f , we have a good chance of finding α ∈ F such that
f(α, y) is also square-free.

4.3.29 Definition (PV ) Let Split(f, F ) be a formalization of the following
recursive algorithm.

input: F finite field of size q, f ∈ F [x, y]
output: sequence of pairs 〈fi, di〉, fi ∈ F [x, y], di ≤ |degy(f)|
algorithm:
h← gcd(f, f ′) as in theorem 4.3.23
if degy(h) = 0 then output 〈〈f, 0〉〉
if degy(h) < degy(f) then output Split(h, F ) ∪ Split(f/h, F )
write f =

∑
i≤d aiy

i, ai ∈ F [x]
let p be the smallest number such that q is a power of p
g ←

∑
i≤d/p apiy

i

S ← Split(g, F )
output 〈〈fi, di + 1〉; i < lh(S), (S)i = 〈fi, di〉〉

In order to make sure that the algorithm is p-time and PV -definable, we
should avoid the recursion, and use a loop instead: the algorithm would
maintain a list of partial factors which need to be split, and iteratively reduce
them as above. The number of iterations would be explicitly bounded by
degy(f); it will be clear from the next lemma that this bound does not
change the semantics of the algorithm.

4.3.30 Lemma (PV `:) Let F be a finite field of characteristic p, and

f ∈ F [x, y] a nonzero polynomial. Then Split(f, F ) computes a sequence of
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pairs 〈fi, di〉, i < k, such that

f(x, y) =
∏
i<k

fi(x, yp
di ),

and degy(gcd(fi, f ′i)) = 0 for each i < k.

Proof: By induction on the length of the computation. If degy(h) = 0, the
algorithm is obviously correct. If degy(h) < degy(f), the correctness follows
from f = (f/h)h, and the induction hypothesis. (Notice that degy(f/h) <
degy(h), since degy(h) > 0.)

Assume that degy(h) = degy(f). Since h | f ′ and degy(f ′) < degy(f),
we must have f ′ = 0. Notice that p computed by the algorithm is equal to
χ(F ), since χ(F ) is prime, and q is a power of χ(F ), by lemma 4.3.7. We
have

f ′(x, y) =
∑
i≤d

iaiy
i−1,

thus f ′ = 0 implies that ai = 0 for every i not divisible by p. This means that
f(x, y) = g(x, yp), and correctness of the algorithm follows by the induction
hypothesis. �

4.3.31 Definition (PV ) Let BRoots(f, F ) be the following algorithm.

input: F finite field of size q, f ∈ F [x, y]
output: set of all roots of f
algorithm:
R← ∅
〈〈fi, di〉; i < m〉 ← Split(f, F )
for each i < m do:

compute a, b ∈ F [x, y], 0 6= c ∈ F [x] such that
c = afi + bf ′i by theorem 4.3.23

d← deg(c)
if d ≥ q then:

let K be an extension of F of size q′ > d, q′ ≤ d2,
by lemma 4.3.12

else K ← F

search the first d+ 1 elements of K to find α ∈ K s.t. c(α) 6= 0
compute the set S of all roots of fi(α, y) in K by brute force search
P ← Lift(fi(x+ α, y),K, S)
P ← {r(x− α); r ∈ P}
if F 6= K, exclude from P polynomials with coefficients

outside of F
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p← χ(F ), s← pdi , write q = pt

k ← −di mod t
for r ∈ P do:

if r has a nonzero coefficient rj s.t. s - j, skip to the next r
R← R ∪ {

∑
j r

pk

jsx
j}

output R

4.3.32 Theorem (PV `:) Let F be a finite field, and f ∈ F [x, y] a nonzero

polynomial. Then BRoots(f, F ) computes the set of all roots of f .

Proof: By soundness of Split, the first step in the main loop makes sense.
The search for an α which is not a root of c succeeds, because c can-
not have more roots than its degree, as in lemma 4.3.6. Then c(α) =
a(α, y)fi(α, y) + b(α, y)f ′i(α, y) = a(α, y)fi(α, y) + b(α, y)(fi(α, y))′ implies
that gcd(fi(α, y), (fi(α, y))′) = 1, hence all roots of fi(α, y) are simple (i.e.,
fi(α, y) and its derivation have no common roots). Then it follows from the
soundness of Lift that P is the set of all roots of fi.

Observe that if k ≡ −d (mod t), and a ∈ F , then (ap
k
)p

d
= ap

k+d
=

a, since aq = a by lemma 4.3.11. Moreover, (
∑

i gi)
p =

∑
i g
p
i for any

polynomials gi, as in lemma 4.3.10; thus, if r is a polynomial whose only
nonzero coefficients are at positions divisible by s = pd, then r′ =

∑
j r

pk

jsx
j

satisfies (r′)s = r.
Thus, the output of the algorithm contains only polynomials r′ such that

(r′)p
d
i is a root of fi. But fi(x, yp

di ) | f , hence f(x, r′) = 0.
Conversely, let r′ be a root of f . Then r′ is a root of some fi(x, yp

di ),
thus (r′)p

di is a root of fi, and it is included in the set P computed in the
ith iteration of the algorithm. This means that R includes a polynomial r′′

such that (r′′)p
di = (r′)p

di , and it is easy to see from lemma 4.3.10 that such
a polynomial is unique, i.e., r′ = r′′. �

4.3.33 Definition (PV ) The 〈u, v〉-weighted degree of a monomial xiyj

is ui + vj. The 〈u, v〉-weighted degree of a bivariate polynomial f is the
maximum of the 〈u, v〉-weighted degrees of monomials appearing in f with
nonzero coefficients.

4.3.34 Theorem (PV `:) There is a PV -functions which, given a finite

field F , a table of a partial function {〈xi, yi〉; i < n} ⊆ F×F , and parameters

d, and t ≥ 1 +
√

2dn, computes the list of all polynomials p ∈ F [x] of degree

at most d satisfying |{i; p(xi) = yi}| ≥ t.

Proof: The function will formalize the following algorithm: find a nonzero
f ∈ F [x, y] of 〈1, d〉-weighted degree at most t−1 such that ∀i < n f(xi, yi) =
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0 by solving a homogeneous linear system over F , compute the roots p
of f using BRoots, and output those p of degree at most d which satisfy
|{i; p(xi) = yi}| ≥ t.

If p is a polynomial of degree at most d such that |{i; p(xi) = yi}| ≥ t,
then f(x, p(x)) is a univariate polynomial of degree at most t− 1 which has
at least t zeros, thus f(x, p(x)) = 0.

It thus suffices to show that the linear system has a nonzero solution.
The system has n equations, and the number of variables is equal to the
number of monomials of 〈1, d〉-weighted degree at most t− 1, which is

∑
j≤
⌊
t−1
d

⌋(t− 1− jd) =
t− 1 + ((t− 1) mod d)

2
(⌊
t−1
d

⌋
+ 1
)

≥ t− 1
2
(⌊
t−1
d

⌋
+ 1
)
>

(t− 1)2

2d
≥ n,

since t − 1 ≥
√

2dn. Thus the system has more variables than equations,
which implies it has a nontrivial solution. �

4.3.35 Corollary (PV `:) The output list in theorem 4.3.34 has at most√
2n/d elements.

Proof: By the proof of the theorem, each solution p(x) satisfies y − p(x) |
f(x, y), thus the number ` of solutions is at most degy(f) ≤ (t − 1)/d.
Clearly, ` decreases if t increases, hence the worst case is t = 1 +

√
2dn,

which gives ` ≤
√

2n/d. �

4.3.4 List decoding of Reed-Muller codes

The heart of hardness amplification is an efficient list decoding procedure
for Reed-Muller codes, due to Sudan, Trevisan, and Vadhan [46]. Again,
we do not formally introduce the codes as such; Reed-Muller code [30, 37]
is a generalization of Reed-Solomon codes to multivariate polynomials: we
interpret the message as a table of a function z : Hm → F for some H ⊆ F ,
we extend it to a low-degree polynomial p ∈ F [x1, . . . , xm], and output the
table of p on the whole space Fm. Thus, list decoding of a Reed-Muller
code amounts to finding low-degree polynomials p which have a prescribed
agreement with a given function f : Fm → F .

An extra complication is that we need the algorithm to run in time
smaller than qm. Therefore, both input and output is represented implicitly:
the algorithm has oracle access to the function f , and outputs oracle circuits
Cf (x) which can evaluate p on a given point x ∈ Fm.
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In this setting, the only parameter of the decoding algorithm which is
significant for hardness amplification is the size of the circuits C. We thus
will not formalize the decoding algorithm itself, but only prove that a small
C exists for a given f and p. The exact statement is theorem 4.3.43.

We start with a few observations about logarithmically small probability
spaces.

4.3.36 Definition (PV ) A probability space P on n ∈ Log is a sequence of
nonnegative rationals {pi; i < n} such that

∑
i pi = 1. A random variable

X on P is a sequence {xi; i < n} of rationals. We define EX =
∑

i pixi,
and varX = E(X − EX)2. A random event is a subset X ⊆ P . We
identify events with random variables taking values 0 and 1, and define
accordingly Pr(X) = EX. Two variables X, Y on P are independent if
Pr(X = a ∧ Y = b) = Pr(X = a) Pr(Y = b) for every rational a, b.

Observe that we can restrict the universal quantifiers in the definition of
independence to a ∈ rng(X) and b ∈ rng(Y ). The range of a sequence is an
encoded set computable by a PV -function, thus independence is definable
by an open PV -formula. Also notice that

EX =
∑
i

xipi =
∑
a

∑
xi=a

api =
∑
a

aPr(X = a),

where the sum here and below is taken over a ∈ rng(X).

4.3.37 Lemma (Markov’s inequality) (PV `:) If X is a nonnegative

random variable, and a > 0, then

Pr(X ≥ a) ≤ EX
a
.

Proof: aPr(X ≥ a) = a
∑

xi≥a pi ≤
∑

xi≥a xipi ≤
∑

i xipi = EX. �

4.3.38 Lemma (Chebyshev’s inequality) (PV `:) If X is a random

variable, and a > 0, then

Pr(|X − EX| ≥ a) ≤ varX
a2

.

Proof: Pr(|X − EX| ≥ a) = Pr((X − EX)2 ≥ a2). �

4.3.39 Lemma (PV `:) If X and Y are independent random variables,

then EXY = EX EY .
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Proof:

EX EY =
(∑

a

aPr(X = a)
)(∑

b

bPr(Y = b)
)

=
∑
a,b

abPr(X = a) Pr(Y = b)

=
∑
a,b

abPr(X = a ∧ Y = b)

=
∑
c

c
∑
ab=c

Pr(X = a ∧ Y = b)

=
∑
c

cPr(XY = c) = EXY.

�

4.3.40 Lemma (PV `:) If X1, . . . , Xm is a sequence of pairwise indepen-

dent random variables, then var
∑

iXi =
∑

i varXi.

Proof: Let X =
∑

iXi, Yi = Xi − EXi, and Y =
∑

i Yi. Then EYi =
EY = 0, varYi = varXi, and varY = varX. If i 6= j, we have

EYiYj = E(Xi − EXi)(Xj − EXj) = EXiXj − EXi EXj = 0,

thus varY = E(
∑

i Yi)
2 = E

∑
i,j YiYj =

∑
i EY 2

i +
∑

i6=j EYiYj =
∑

i varYi.
�

The list decoding procedure splits in two steps. The first step is, given a
function f and a polynomial p with nonnegligible agreement with f , to find
a circuit which approximates p on most of the inputs. The second step is to
construct a (randomized) circuit which computes p everywhere, given f and
p with agreement close to 1. These two steps correspond to lemmas 4.3.41
and 4.3.42 below.

The idea is to restrict f and p to a random line in Fm, and solve the
resulting univariate polynomial reconstruction problem, which is just Reed-
Solomon decoding.

4.3.41 Lemma (PV `:) Let F be a field of size q, qm ∈ Log, f : Fm → F ,

and p ∈ F [x1, . . . , xm] of total degree d. If

Prz∈Fm(p(z) = f(z)) >
√

8d/q,

then there is an oracle circuit C : Fm → F of size poly(q,m) such that

Prx∈Fm(p(x) = Cf (x)) ≥ 1−
√

8d/q.
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Proof: Put ε =
√

8d/q. For any z, x ∈ Fm, define `z,x(t) = (1 − t)z + tx,
and Lz,x = {`z,x(t); t ∈ F}. Notice that for fixed z, x and uniformly random
t ∈ F , `z,x(t) is a uniformly random element of Lz,x, and for uniformly ran-
dom x, z ∈ Fm the random variables Xt = `z,x(t) are pairwise independent
uniformly distributed elements of Fm (for any t 6= t′, and a, a′ ∈ Fm, there
exists a unique pair 〈z, x〉 such that (1−t)z+xt = a, and (1−t′)z+xt′ = a′).
Define

E(g, z, x) :≡ g ∈ F [x] ∧ deg(g) ≤ d ∧ Prt(g(t) = f(`z,x(t))) ≥ ε/2.

For any z ∈ Fm and a ∈ F , let Cfz,a : Fm → F be the circuit performing the
following computation on a given x ∈ Fm:

• if x = z, output a

• ask the oracle for values of f on Lz,x

• compute the list g1, . . . , g` of all gi s.t. E(gi, z, x) by Reed-Solomon list
decoding

• if ∃!i gi(0) = a, then output gi(1)

Claim 1 Prz,x(Prt(p(`z,x(t)) = f(`z,x(t))) ≤ ε/2) <
√

2/(dq).

Proof: Assume for simplicity that Prz∈Fm(p(z) = f(z)) = ε. Let Xt be
the indicator random variable for the predicate p(`z,x(t)) = f(`z,x(t)), and
X =

∑
iXi = |{t; p(`z,x(t)) = f(`z,x(t))}|. We have EX =

∑
t EXt = qε,

and varX =
∑

t varXt = qε(1− ε) by pairwise independence, thus

Prz,x(X ≤ qε/2) ≤ qε(1− ε)
(qε/2)2

<
4
qε

=
√

2
dq

by Chebyshev’s inequality. � (claim 1)

Claim 2 Prz,x(z 6= x∧∃g (E(g, z, x)∧g(0) = p(z)∧g 6= p◦ `z,x)) ≤
√

2d/q.

Proof: The relation 〈z, x〉 ∼ 〈z0, x0〉 defined by Lz,x = Lz0,x0 is an equiva-
lence, it thus suffices to show that for any fixed z0 6= x0,

α := Prz,x(∃g (E(g, z, x) ∧ g(0) = p(z) ∧ g 6= p ◦ `z,x) | 〈z, x〉 ∼ 〈z0, x0〉)

≤
√

2d/q.

Notice that the equivalence class of 〈z0, x0〉 is uniquely parametrized by

{〈`z0,x0(t), `z0,x0(u)〉; t, u ∈ F, t 6= u},
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thus

α = Prt6=u(∃g E(g, `z0,x0(t), `z0,x0(u)) ∧ g(0) = p(`z0,x0(t))

∧ g 6= p ◦ ``z0,x0 (t),`z0,x0 (u))

= Prt6=u(∃g E(g, z0, x0) ∧ g(t) = p(`z0,x0(t)) ∧ g 6= p ◦ `z0,x0)

= Prt(∃g E(g, z0, x0) ∧ g(t) = p(`z0,x0(t)) ∧ g 6= p ◦ `z0,x0),

since a linear substitution preserves the degree of a polynomial. For any
given g 6= p ◦ `z0,x0 , Prt(g(t) = p(`z0,x0(t))) ≤ d/q, since both g and p ◦ `z0,x0

are polynomials of degree at most d. The number ` of all g such that
E(g, z0, x0) is at most

√
2q/d by corollary 4.3.35, thus α ≤ `d/q =

√
2d/q.

� (claim 2)

Claim 3 Prz,x(Cfz,p(z)(x) = p(x)) ≥ 1−
√

8d/q.

Proof: Since p ◦ `z,x is a polynomial of degree at most d, claim 1 implies
that gi = p ◦ `z,x for some i whp. Such a gi satisfies gi(0) = p(z), and whp
is unique with this property by claim 2, thus Cfz,p(z)(x) = gi(1) = p(x) with

probability at least 1 − (
√

2/(dq) +
√

2d/q) ≥ 1 − 2
√

2d/q = 1 −
√

8d/q.
� (claim 3)

To finish the proof of the lemma, notice that Prz,x(Cfz,p(z)(x) = p(x)) =

Ez Prx(Cfz,p(z)(x) = p(x)) ≤ maxz Prx(Cfz,p(z)(x) = p(x)), thus there exists z

such that Cfz,p(z) has the required properties. �

4.3.42 Lemma (PV `:) Let F be a field of size q, qm ∈ Log, f : Fm → F ,

p ∈ F [x1, . . . , xm] of total degree d < q/8. If

Prz∈Fm(p(z) 6= f(z)) ≤ δ,

then there is an oracle circuit C : Fm×Fm → F of size poly(q,m) such that

for every x ∈ Fm, Pra(p(x) 6= Cf (x, a)) < 3δ.

Proof: Put q′ = q − 1, and define C(x, a) as follows:

• ask the oracle for values of f(`x,a(t)), t ∈ F ∗

• compute (if it exists) g of degree ≤ d such that

|{t ∈ F ∗; g(t) = f(`x,a(t))}| > (q′ + d)/2

by Reed-Solomon decoding

• output g(0)
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Notice that g is unique if it exists, because distinct degree d polynomials
can agree on at most d points. Also notice that we can use the algorithm
from theorem 4.3.34, since

√
2dq < q/2 < (q + d)/2. Thus C is correct if

p◦`x,a has sufficient agreement with f ◦`x,a. The expected number of t ∈ F ∗

such that p(`x,a(t)) 6= f(`x,a(t)) is q′δ, since for a fixed t, elements `x,a(t)
are uniformly distributed in Fm. By Markov’s inequality, we have

Pra(|{t; p(`x,a(t)) 6= f(`x,a(t))}| ≥ (q′ − d)/2) ≤ 2q′δ
q′ − d

=
2δ

1− d/q′
≤ 16δ

7
.

�

4.3.43 Theorem (PV `:) Let F be a field of size q, qm
2 ∈ Log, f : Fm →

F , and p ∈ F [x1, . . . , xm] of total degree d ≤ √q. If

Prz∈Fm(p(z) = f(z)) >
√

8d/q,

then there is an oracle circuit C : Fm → F of size poly(q,m) such that

Cf (x) = p(x) for every x ∈ Fm.

Proof: Let Df (x, a) be the circuit given by lemma 4.3.42, into which we
substitute the circuit from lemma 4.3.41 as its oracle. For any x ∈ Fm, we
have

η := Pra(Df (x, a) 6= p(x)) < 3
√

8d/q < 9q−1/4.

Put k := 10m, and let C(x,~a) : Fm × Fmk → F be the circuit which com-
putes D(x, ai) for i < k, and outputs the majority answer.

Claim 1 For any x ∈ Fm, Pr~a(Cf (x,~a) 6= p(x)) ≤ (2
√
η)k.

Proof: Notice that qmk ∈ Log, we may thus count ~a ∈ Fmk directly. Clearly
Cf (x,~a) = p(x) if Df (x, ai) = p(x) holds for more than k/2 of i’s. The
number of a such that Df (x, a) 6= p(x) is ηqm, thus the number of ~a such
that Cf (x,~a) 6= p(x) is at most∑
i≤k/2

(
k

i

)
(qm − ηqm)i(ηqm)k−i = qmk

∑
i≤k/2

(
k

i

)
(1− η)iηk−i = qmk

∑
i≤k/2

ci,

where ci :=
(
k
i

)
(1 − η)iηk−i. We have ci−1 = ciηi/((k − i + 1)(1 − η)) ≤

ciη/(1− η), thus ci ≤ ck/2(η/(1− η))k/2−i by induction on i, and

∑
i≤k/2

ci ≤ ck/2
∑
i≤k/2

(
η

1− η

)i
< ck/2

1
1− η/(1− η)

= ck/2
1− η
1− 2η

,



Chapter 4. Hard Boolean functions 66

thus ∑
i≤k/2

ci ≤
(
k

k/2

)
(1− η)k/2ηk/2

1− η
1− 2η

< 2kηk/2. � (claim 1)

It follows that

Pr~a(Cf (x,~a) 6= p(x)) ≤ (6q−1/8)10m ≤ (q−1/9)10m = (qm)−10/9,

thus
Pr~a(∃xCf (x,~a) 6= p(x)) ≤ (qm)−1/9 < 1,

and we can fix ~a ∈ Fm such that C ′(x) := C(x,~a) computes p(x) correctly
on all inputs. �

4.3.5 Hardness amplification

The idea of hardness amplification from [46] is as follows: if f is a hard
Boolean function, we encode its truth table by an error-correcting code to
get a table of a new function g := C(f). If C admits efficient implicit list
decoding, then g will be hard to approximate: a small circuit approximating
g can be error-corrected to get a small circuit computing f , contradicting
its assumed hardness. Also C is computable in time polynomial in its input
size, i.e., exponential in the input size of f , thus a uniform exponential-time
family of hard Boolean functions is transformed into a uniform family of
functions hard on average.

Reed-Muller codes from the previous section have almost all the de-
sired parameters, except that we have to concatenate them with Hadamard
codes to make the alphabet binary. Properties of the concatenated codes
are summarized in theorem 4.3.46, and the actual hardness amplification is
formalized in theorem 4.3.47.

We do not need a special list decoding procedure for Hadamard codes,
because a simple brute-force search suffices due to the size of the parameters
involved. However, we do need a Johnson-like bound on the number of
codewords, which is stated in the next lemma.

4.3.44 Definition (PV ) Let q = 2k ∈ Log. Hadamard function Hk : 2k →
2q is given by Hk(x) = λy 〈x, y〉, where 〈,〉 is the inner product modulo 2.
Hamming distance of u, v ∈ 2q is ∆(u, v) := |{x < q; ux 6= vx}|, and relative
Hamming distance is δ(u, v) := 1

q∆(u, v).
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4.3.45 Lemma (PV `:) Let q = 2k ∈ Log, w ∈ 2q, and ε > 0. Then∑
x∈2k

(1− 2δ(w,Hk(x)))2 = 1,

therefore |{x; δ(w,Hk(x)) ≤ 1
2(1− ε)}| ≤ 1/ε2.

Proof: We embed 2q into Zq by replacing i ∈ {0, 1} with (−1)i ∈ {1,−1}.
In the sequel, vectors of length k are considered elements of (Z2)k, i.e.,
additions and inner products are evaluated modulo 2, whereas vectors of
length q are understood as elements of Zq. For any x ∈ 2k, we let Hx =
Hk(x) ∈ {−1, 1}q.

Clearly, 〈w,w〉 = q for any w ∈ {−1, 1}q, in particular 〈Hx,Hx〉 = q. If
x 6= y, we have

〈Hx,Hy〉 =
∑
z

(−1)〈x,z〉(−1)〈y,z〉 =
∑
z

(−1)〈x,z〉+〈y,z〉 =
∑
z

(−1)〈x+y,z〉.

Choose i < k such that xi 6= yi, and let α be the ith elementary vector in
2k. Since z 7→ z + α is a permutation of 2k, we have

2〈Hx,Hy〉 =
∑
z

(−1)〈x+y,z〉 +
∑
z

(−1)〈x+y,z+α〉

=
∑
z

(−1)〈x+y,z〉(1 + (−1)〈x+y,α〉) = 0,

thus 〈Hx,Hy〉 = 0.

Claim 1
∑

xHx〈w,Hx〉 = qw for any w ∈ Zq.

Proof: Let ey be the yth elementary vector in Zq. We have∑
x

Hx〈w,Hx〉 =
∑
x,y

Hxwy〈ey,Hx〉 =
∑
x,y

Hxwy(−1)〈x,y〉,

thus ∑
x

Hx〈w,Hx〉 =
∑
x,y,z

ezwy(−1)〈x,z〉(−1)〈x,y〉

=
∑
y,z

ezwy〈Hz,Hy〉 =
∑
z

ezwzq = qw.

� (claim 1)
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For any w ∈ {−1, 1}q we have

〈w,Hx〉 =
∑
y

wy(−1)〈x,y〉

= |{y; wy = (−1)〈x,y〉}| − |{y; wy 6= (−1)〈x,y〉}|
= q − 2∆(w,Hx),

therefore

q2 = 〈w, qw〉 = 〈w,
∑
x

〈w,Hx〉〉 =
∑
x

〈w,Hx〉2 =
∑
x

(q − 2∆(w,Hx))2.

This means

1 =
∑
x

(1− 2δ(w,Hx))2

≥
∑

δ(w,Hx)≤ 1
2
(1−ε)

(1− 2δ(w,Hx))2

≥ ε2|{x; δ(w,Hx) ≤ 1
2(1− ε)}|,

thus |{x; δ(w,Hx) ≤ 1
2(1− ε)}| ≤ 1/ε2. �

4.3.46 Theorem There is a PV -function C(k, e, z), a constant c, and a

polynomial n(k, e), such that PV proves the following statement.

Assume k, e ∈ Log, |k| ≤ e, and k|k|/|e| ∈ Log. Put Ck,e(z) := C(k, e, z)
for z ∈ 2k. Then Ck,e : 2k → 2n(k,e), and for every y ∈ 2n and x ∈ 2k such

that δ(y, Ck,e(z)) ≤ 1/2 − 1/e, there exists an oracle circuit Dy : k → 2 of

size ec such that Dy(i) = zi for every i < k.

Proof: The function C will work as follows. Given k and e, put d := e3,
and m := |k|/|d|. Construct a field F of size q ≥ d3|k|2 by lemma 4.3.12,
fix a subset H ⊆ F of size d, and an injection b : k → Hm. Put t := |q|,
n′ := qm, n := 2tn′, and identify F with a subset of 2t. Given a z ∈ 2k,
construct (by interpolation) a polynomial p ∈ F [x1, . . . , xm] of degree less
than d in each variable, such that p(b(i)) = zi for every i < k, and output
the sequence λu ∈ FmHt(p(u)).

Notice that |n′| = m|q| = O(m|d|) = O(|k|), thus n = O(qn′) =
poly(e, k). Using this bound, it is straightforward to see that C is p-time
computable.

Assume that δ(y, Ck,e(z)) ≤ 1/2− ε, where ε = 1/e. Split y into blocks
yu of length 2t, indexed by u ∈ Fm. We have

1
2 − ε ≤ Pru∈Fm,a<2t(yu,a 6= (Ck,e(z))u,a) = Eu Pra(yu,a 6= (Ht(p(u)))a),
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thus

Pru(Pra(yu,a 6= (Ht(p(u)))a) ≥ 1
2(1− ε)) ≤ 1− 2ε

1− ε
≤ 1− ε

by Markov’s inequality, i.e., Pru(δ(yu,Ht(p(u))) < 1
2(1−ε)) ≥ ε. For any u ∈

Fm, let ru,0, . . . , ru,` be the sequence of all r ∈ F such that δ(yu,Ht(r)) <
1
2(1− ε), ordered lexicographically. By lemma 4.3.45, ` ≤ e2. We have

ε ≤ Pru(∃j ≤ ` ru,j = p(u)) ≤
∑
j≤`

Pru(ru,j = p(u)),

thus we can fix j ≤ ` such that Pru(ru,j = p(u)) ≥ ε/` ≥ ε3 = 1/d. Define a
function f : Fm → F as f(u) := ru,j . Notice that f can be implemented as a
circuit of size O(q`) = poly(e) with oracle access to y, using a simple brute-
force search. If we plug this circuit in the circuit given by theorem 4.3.43, we
obtain an oracle circuit Cy : Fm → F of size poly(e, q,m) = poly(e) such that
Cy(u) = p(u) for every u ∈ Fm, then it suffices to put Dy(i) := Cy(b(i)).

However, we have to check that assumptions of theorem 4.3.43 are satis-
fied. We already know that qm = poly(k), and m = |k|/|d| = O(|k|/|e|), thus
qm

2
= (qm)m = kO(m) = kO(|k|/|e|) ∈ Log. Also md ≤ d|k| ≤

√
q/d ≤ √q,

and finally
Pru(f(u) = p(u)) ≥ 1/d >

√
8md/q

follows from 8md3 ≤ 8d3|k| < d3|k|2 ≤ q. �

Recall the definition of the theories HARD and HARD∅ from section 4.2.

4.3.47 Theorem For every ε > 0, there exist constants δ > 0 and d > 0,

and a PV -function A, such that

PV ` Hardε(f)→ ||A(f)|| = d||f ||& Hard∅
δ (A(f)).

Proof: Let c and n(k, e) be as in theorem 4.3.47, let c′ be a constant such
that n(k, e) ≤ (ke)c

′
, and put η = ε/(c + 2). If f : 2` → 2, define A(f) =

Ck,e(f) : 2c
′(1+η)` → 2, where k = 2` and e = 2η`. Assume that S is a circuit

of size e which computes A(f) correctly for at least a fraction 1/2 + 1/e of
the inputs. We have e ≤ k ∈ Log, |k| = ` ≤ e, and k|k|/|e| = k1/η ∈ Log,
thus we can apply theorem 4.3.46 to get an oracle circuit D of size ec which
computes f . We can substitute S for the oracle, and obtain a Boolean circuit
of size ec+1 = 2(c+1)η` < 2ε` which computes f , a contradiction. Thus A(f)
is δ-hard on average, where δ = η/d, and d = c′(1 + η). �
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4.3.48 Corollary For every ε > 0 there exists δ > 0, and an interpretation

of HARD∅
δ in HARDε, which leaves LPV absolute. �

The following corollary is a strengthening of theorem 4.2.11.

4.3.49 Corollary Let F be a MFRP definable in S1
2 + dWPHP(PV ), and

let ε > 0. Then there are PV -functions h and g such that HARDε proves

∃y y = F (x) ↔ h(x, α(g(x))) 6= ∗,
∃y y = F (x)→ h(x, α(g(x))) = F (x).

�



Chapter 5

A propositional proof system

associated with dWPHP(PV )

In this section, we will present a propositional proof system WF which
corresponds to the theory S1

2 +dWPHP(PV ), i.e., WF is the strongest proof
system whose consistency is provable in S1

2 +dWPHP(PV ), and tautologies
resulting from translation of ∀Πb

1-consequences of S1
2 + dWPHP(PV ) have

polynomial-size proofs in WF . Obviously, such a system has to contain
Extended Frege; we could indeed formulate WF as an extension of EF , but
it will be more convenient to use a variant of EF which manipulates Boolean
circuits instead of formulas, to get rid of EF ’s extension axioms. We will
describe this variant in the first section1.

5.1 Circuit Frege

5.1.1 Definition Any Boolean circuit C can be “unfolded” into a unique
(possibly huge) formula ϕC . Circuits C andD are similar, written as C ' D,
if ϕC and ϕD are the same formulas.

5.1.2 Lemma Similarity of circuits is polynomial-time decidable.

Proof: As NLOG ⊆ P , it suffices to show ' ∈ coNLOG , which is clearly
accomplished by the following algorithm:

c← output node of C, d← output node of D
loop
`c ← label of c, `d ← label of d {connective or variable}

1Although it is folklore that EF is essentially “a Frege system operating with circuits”,

we were unable to find a reference making this explicit.

71
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if `c 6= `d then REJECT
if `c is a variable or a constant then ACCEPT
non-deterministically choose i smaller than the arity of `c
c← ith input of c, d← ith input of d

end loop �

5.1.3 Definition A CF (circuit Frege) proof system is defined as follows:
choose a finite basis B of Boolean connectives, and a finite, sound, and
implicationally complete set R of Frege rules over B. A CF -proof of a
circuit A is a sequence of B-circuits A0, . . . , Ak = A, such that for every
i ≤ k, either there are j1, . . . , j` < i such that

Aj1 · · ·Aj`
Ai

is an instance of a rule R ∈ R, or there is j < i such that Aj ' Ai. (Lemma
5.1.2 ensures that CF indeed fulfills the definition of a propositional proof
system. Also, when we work with CF in bounded arithmetic, we cannot use
definition 5.1.1 directly as it involves exponentially large objects, we thus
use the algorithm from lemma 5.1.2 instead.)

5.1.4 Lemma Any CF system p-simulates any EF system.

Proof: All EF systems simulate each other, hence we may assume w.l.o.g.
that both proof systems use the same set of connectives and Frege rules.
Let π : ϕ0, . . . , ϕk be an EF -proof, and let

q1 ≡ ψ1

q2 ≡ ψ2(q1)

. . .

q` ≡ ψ`(q1, . . . , q`−1)

be all extension axioms used in π. We define circuits Qi,j(q1, . . . , qj), 0 ≤
j < i ≤ `, as follows:

Qi,i−1(q1, . . . , qi−1) := ψi(q1, . . . , qi−1),

Qi,j−1(q1, . . . , qj−1) := Q′
i,j(q1, . . . , qj−1, ψj(q1, . . . , qj−1)),

where Q′
i,j differs from Qi,j by joining all occurrences of qj together. We

put Qi := Qi,0. It is easy to see that Qi ' ψi(Q1, . . . , Qi−1).
We modify the proof π by putting a (constant size) Frege proof of

qi ≡ qi before every extension axiom qi ≡ ψi, and then we substitute cir-
cuits Q1, . . . , Q` for variables q1, . . . , q` in the whole proof. This makes up
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a correct CF proof π′: substitution does not break Frege rules, and exten-
sion axioms translate to circuits Qi ≡ ψi(Q1, . . . , Qi−1), each preceded by a
similar circuit Qi ≡ Qi.

The size of Qi,j is bounded by |ψj+1| + · · · + |ψi|, in particular the size
of Qi is bounded by |π|, hence the size of π′ is O(|π|2). �

5.1.5 Lemma Any EF system p-simulates proofs of formulas in any CF

system.

Proof: Let π : A0, . . . , Ak = ϕ be a CF proof, where ϕ is a formula. We
assign an extension variable qi =: q[C] to each subcircuit C of each Aj in
such a way that similar circuits get the same variable, and every circuit
gets a variable with higher index than all its subcircuits. The EF proof π′

will start with extension axioms for qi’s, which describe the relation of the
corresponding circuits to their subcircuits. For example, if C = p1∨¬(p2 →
p1), we could have

q1 ≡ p1

q2 ≡ p2

q3 ≡ q2 → q1

q4 ≡ ¬q3
q5 ≡ q1 ∨ q4

Then we extend the proof to contain the sequence q[A0], . . . , q[Ak]. If Ai '
Aj , j < i, we have nothing to do, because q[Ai] = q[Aj ]. Assume that Ai =
χ(B1, . . . , Bm) was inferred by a Frege rule R from Aj1 = ψ1(B1, . . . , Bm),
. . . , Aj` = ψ`(B1, . . . , Bm), where j1, . . . , j` < i. There is a constant size
Frege proof of

q[Aj1 ] ≡ ψ1(q[B1], . . . , q[Bm])

. . .

q[Aj` ] ≡ ψ`(q[B1], . . . , q[Bm])

q[Ai] ≡ χ(q[B1], . . . , q[Bm])

from the extension axioms. By the induction hypothesis our proof already
contains the formulas q[Aj1 ], . . . , q[Aj` ], hence we get a proof of

ψ1(q[B1], . . . , q[Bm])

. . .

ψ`(q[B1], . . . , q[Bm])
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χ(q[B1], . . . , q[Bm])

q[Ai]

by a constant-size simulation of R and Modus Ponens (or rather its variant
for ≡).

We thus have an O(|π|) proof of q[ϕ], and we finish it by an O(|ϕ|2)
proof of q[ϕ] ≡ ϕ and Modus Ponens. �

5.2 WPHP Frege

5.2.1 Definition The WF (WPHP Frege) proof system is defined as fol-
lows: a WF -proof of a circuit A is a sequence of circuits A0, . . . , Ak such
that Ak = A, and every Ai is inferred from some Aj1 , . . . , Aj` , j1, . . . , j` < i

by a Frege rule, or it is similar to some Aj , j < i, or it is a special axiom

m∨
`=1

(r` 6≡ Ci,`(Di,1, . . . , Di,n)),

where n < m, and r` are pairwise distinct variables which do not occur in
A, Ci,`′ , or Aj for j < i, but may occur in Di,1, . . . , Di,n.

5.2.2 Remark In principle, different choices of connectives and Frege rules
give different variants of WF . We ignore this ambiguity, as all such systems
are polynomially equivalent.

We will see in 5.2.8 that we could restrict WF -proofs to contain only
one special axiom, and still get an equivalent system. On the other hand,
we could allow special axioms with the same C’s to share the same sequence
of special variables: the proof of 5.2.3 can be easily modified to show the
consistency of such a system in S1

2 +dWPHP(PV ), hence it is polynomially
equivalent to the original WF by 5.2.8.

5.2.3 Theorem S1
2 + dWPHP(PV ) proves 0-RFN (WF ).

Proof: Let π = 〈A0, . . . , Ak〉 be a WF -proof of a circuit A = Ak, and let
e be a truth assignment to the variables occurring in A. W.l.o.g. we may
assume that every variable in π either occurs in A, or it is a special variable
of a WF -axiom from π. We will show by induction on i ≤ k < |π| that
there is an assignment e′ ⊇ e, which makes Aj true for every j ≤ i (this is
Σb

1-LIND).
If Ai is inferred by a Frege rule from Aj1 , . . . , Aj` , j1, . . . , j` < i, the

induction step from i − 1 to i is easy because the rule is sound: its verifi-
cation consists of checking only finitely many cases involving the inductive
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definition of satisfaction for some top-level subcircuits of the Aj ’s, hence it
goes through in S1

2 .
If Ai ' Aj , j < i, we have e′(Ai) = e′(Aj) by induction on the depth of

the circuit.
Assume that Ai is the special axiom

∨m
j=1(rj 6≡ Cj(D1, . . . , Dn)). Notice

that the truth value of all variables occurring in Cj(s1, . . . , sn) is fixed by
e′, except for the placeholders s1, . . . , sn (the definition of WF implies that
special variables from Ai′ , i′ ≥ i, cannot occur in Cj). Hence the sequence of
circuits C = 〈C1, . . . , Cm〉 computes a function g : 2n → 2m. More precisely,
there is a PV -function symbol f(u, v, x) with the following property: if u is
a sequence of circuits, and v a partial truth assignment, then the j-th bit of
f(u, v, x) is uj(a), where a extends v and the j′-th variable not assigned by v
is given the value bit(x, j′) by a. Then we put g(x) = f(〈C1, . . . , Cm〉, e′, x).
By definition n < m, i.e. 2 ·2n ≤ 2m, hence dWPHP(PV ) implies that there
is y < 2m such that y 6= g(x) for any x < 2n. We extend e′ by putting
e′(rj) = bit(y, j − 1), and we claim that e′(Ai) = 1: if x < 2n is such that
bit(x, j′) = e′(Dj′+1), then the value of Cj( ~Dj′) under e′ is bit(g(x), j − 1),
which is distinct from e′(rj) for some j ≤ m. �

Recall that G is a propositional proof system operating with quantified
Boolean formulas, defined (in [22]) as an extension of the usual Gentzen
sequent calculus by rules for introducing existential and universal quantifiers.
G2 is a fragment of G, which allows only sequents consisting of Σq

2-formulas
(these are, roughly, formulas of the form ∃x1 · · · ∃xk∀y1 · · · ∀y` ϕ, with ϕ

quantifier-free).

5.2.4 Corollary G2 polynomially simulates WF .

Proof: By [35] (see also [28], and chapter 11.2 of [20]), dWPHP(PV ) is
provable in T 2

2 , hence also T 2
2 ` 0-RFN (WF ). By [22], this implies S1

2 `
WF ≤p G2. See also [20], chapters 9.2, 9.3. �

Recall the definition of the ‖ϕ‖ translation of Πb
1(PV )-formulas into propo-

sitional logic from section 2.3. In this translation, it is necessary to encode
the computation of the circuit {{f}}~n by a formula introducing extra aux-
iliary variables, as it is unlikely that PV ` P ⊆ NC1. This seems to
obfuscate things a bit, and we will use a proof system handling Boolean
circuits directly, we thus avoid this inconvenience by introducing a more
natural modified translation, which produces circuits instead of formulas. It
is defined as follows:
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5.2.5 Definition Let ϕ(~x) be a Πb
1(PV )-formula, and b(~x) its bounding

polynomial. We define a Boolean circuit {{ϕ}}~n(~p; ~q) by induction on com-
plexity of ϕ:

{{f(~x) = g(~x)}}~n(~p) :=
∧

i<b(~n)

({{f}}~ni (~p) ≡ {{g}}~ni (~p)),

{{f(~x) ≤ g(~x)}}~n(~p) :=
∧

i<b(~n)

(
{{f}}~ni &

∧
j>i

({{f}}~nj ≡ {{g}}~nj )→ {{g}}~ni
)
,

{{¬ϕ}}~n(~p) := ¬{{ϕ}}~n(~p), ϕ ∈ Σb
0(PV ),

{{ϕ ◦ ψ}}~n(~p; ~q) := {{ϕ}}~n(~p; ~q) ◦ {{ψ}}~n(~p; ~q), ◦ ∈ {&,∨},

{{∀y ≤ |t(~x)|ϕ(~x, y)}}~n(~p; ~q0, . . . , ~qm) :=∧
j≤m
{{y ≤ |t(~x)| → ϕ(~x, y)}}~n,|m|(~p, ~ε; ~qj),

{{∃y ≤ |t(~x)|ϕ(~x, y)}}~n(~p; ~q0, . . . , ~qm) :=∨
j≤m
{{y ≤ |t(~x)|& ϕ(~x, y)}}~n,|m|(~p, ~ε; ~qj),

{{∀y ≤ t(~x)ϕ(~x, y)}}~n(~p; ~q, ~p′) := {{y ≤ t(~x)→ ϕ(~x, y)}}~n,m(~p, ~p′; ~q),

where m = m(~n) is a bounding polynomial to t(~x), and ~ε is the represen-
tation of j as a sequence of |m| binary digits (= truth constants). Notice
that auxiliary variables ~q are introduced only for (non-sharply) bounded
universal quantifiers.

5.2.6 Lemma Let ϕ(~x) ∈ Πb
1(PV ). There are circuits ~C~nϕ, and a p-time

constructible sequence of CF -proofs of

{{ϕ}}~n(~p; ~q)→ ‖ϕ‖~n(~p; ~q, ~q′),

‖ϕ‖~n(~p; ~q, ~C~nϕ(~p, ~q))→ {{ϕ}}~n(~p; ~q).

Proof: This follows by straightforward induction on complexity of ϕ. We
need the following property for the base case: for any PV -function f , there
are circuits ~C~nf , and p-time constructible CF -proofs of

‖f‖~n(~p; {{f}}~n(~p); ~C~nf (~p)),

‖f‖~n(~p;~r; ~q)→
∧
i

(ri ≡ {{f}}~ni (~p)).

We may take subcircuits of {{f}} for ~Cf . The second part essentially states
that the computation of {{f}} is unique, and its proof in CF may be con-
structed by induction on the size of {{f}}. �
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5.2.7 Theorem If S1
2 + dWPHP(PV ) ` ∀xϕ(x), where ϕ ∈ Πb

1, then tau-

tologies ‖ϕ‖n have polynomial size WF -proofs. Actually, these proofs are

constructible by a p-time function, and PV proves this fact.

Proof: Assume that S1
2 + dWPHP(PV ) ` ∀xϕ(x), where ϕ ∈ Σb

0(PV ) for
simplicity. By theorem 3.3.1, there is a constant k, and PV -functions G and
g such that

PV ` 2|x|
k ≤ b& w < b2 → (G(g(x,w, b)) = w ∨ ϕ(x)),

PV ` g(x,w, b) < b.

Given n (bounding x), and m = 2nk (bounding w and b), there are poly(n)-
size CF -proofs (constructible in PV ) of the circuits

{{2|x|k ≤ b}}n,m(~p, ~q) & {{w < b2}}m,m(~r, ~q)→
→ {{G(g(x,w, b)) = w}}n,m,m(~p, ~r, ~q) ∨ {{ϕ(x)}}n(~p),

{{g(x,w, b) < b}}n,m,m(~p, ~r, ~q),

using the simulation of PV by EF [9], and lemmas 5.1.4, 5.2.6. We substi-
tute the binary representation of b := 2n

k
for the variables ~q, i.e., qnk = 1,

qj = 0 for j 6= nk. Then there are poly-size CF -proofs of {{2|x|k ≤ b}}n,m

and {{w < b2}}m,m, hence by modus ponens

{{G(g(x,w, b)) = w}}n,m,m ∨ {{ϕ(x)}}n,

which is the circuit∧
i<m

(ri ≡ {{G}}q(n)
i ({{g}}0, . . . , {{g}}q(n)−1)) ∨ {{ϕ(x)}}n,

where q(n) is the bounding polynomial for g. However,

{{g(x,w, b) < b}}n,m,m

implies
q(n)−1∧
i=nk

¬{{g}}n,m,mi ,

thus we get a proof π of∧
i<m

(ri ≡ {{G}}q(n)
i ({{g}}0, . . . , {{g}}nk−1, 0, . . . , 0)) ∨ {{ϕ(x)}}n.

If we define

Cj(s0, . . . , snk−1) = {{G}}q(n)
j (~s, 0, . . . , 0),
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Di(~p, ~r) = {{g}}n,m,mi (~p, ~r, ~q),

we may rewrite this as∧
i<m

(ri ≡ Ci(D0, . . . , Dnk−1)) ∨ {{ϕ(x)}}n.

Since m = 2nk > nk for every n > 0, and Cj does not contain any of the
rj′ , we may put a special axiom∨

i<m

(ri 6≡ Ci(D0, . . . , Dnk−1))

before the first line of π, and we finish the proof by De Morgan rules and
modus ponens to get a WF -proof of

{{ϕ(x)}}n.

Lemma 5.2.6, and another modus ponens give

‖ϕ(x)‖n. �

5.2.8 Corollary

(i) For any Πb
1-formula ϕ(x), S1

2+dWPHP(PV ) ` (WF ` ‖ϕ‖|x|)→ ϕ(x).

(ii) PV + Con(WF ) axiomatizes strict ∀Πb
1-consequences of the theory

S1
2 + dWPHP(PV ).

(iii) If S1
2 + dWPHP(PV ) ` 0-RFN (P ), where P is a propositional proof

system, then PV ` (P ≤p WF ).

(iv) WF is polynomially simulated by a modified WF proof system, in

which we allow only the first formula of the proof to be a special

axiom.

Proof: (i) follows from 5.2.3 together with S1
2 ` Taut(‖ϕ‖|x|)→ ϕ(x).

(ii): if ϕ ∈ strictΠb
1, the formula Taut(‖ϕ‖|x|) → ϕ(x) just mentioned

is provable already in PV , and Con(WF ) implies 0-RFN (WF ) as WF is
provably closed under substitution and modus ponens. This, together with
5.2.7, shows the harder inclusion of (ii), the other one follows from 5.2.3.

(iii): we have PV ` (WF ` {{P (p) = f → Taut(f)}}) by 5.2.7, and it is
easy to see that PV ` (P (π) = ϕ → CF ` {{P (p) = f}}(π, ϕ)) and PV `
(WF ` {{Taut}}(ϕ)→WF ` ϕ), hence PV ` (P (π) = ϕ→WF ` ϕ).

(iv): the proof of (iii) works for the modified WF -system from (iv) as
well, because the proof constructed in 5.2.7 used only one special axiom;
then (iv) follows from 5.2.3. �
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5.2.9 Definition Let p be a prime. Unstructured Extended Nullstellensatz
of [7] is a proof system for multivariate polynomials over Zp: a UENS p-
refutation of a set of polynomials f0, . . . , fn−1 ∈ Zp[x0, . . . , xm−1] shows
that the fi’s do not have a 0–1 solution (i.e., a common zero at a point from
{0, 1}m). A UENS p-refutation is given by two sequences of polynomials
g0, . . . , g`−1 and g′0, . . . , g

′
`+n+m−1, such that∑

i<`

gig
′
i +
∑
i<n

fig
′
i+` +

∑
i<m

(x2
i − xi)g′i+`+n = 1,

and each gi has the form ∏
j<k

(hi,j − ri,j),

where ri,j are pairwise distinct variables not occurring among x0, . . . , xm−1,
hi,j does not contain any of ri,0, . . . , ri,k−1, and ` < ek/p (where e is the base
of natural logarithm).

The UENS proof system simulates Extended Frege, but the converse is an
open problem. In fact, it was not clear whether any “traditional” proof
system simulates UENS . We show that it is possible to simulate UENS in
WF (hence also in G2).

5.2.10 Theorem For any prime p, the WF proof system polynomially sim-

ulates UENS p.

Proof: By corollary 5.2.8, it suffices to prove the soundness of UENS p in
S1

2 + dWPHP(PV ). It is not clear how to express base e exponentiation in
bounded arithmetic, however we may simply relax the last condition of 5.2.9
to ` < βk/p, where β is any fixed rational such that e < β < (1− 1/p)−p.

Consider any UENS p-refutation as in 5.2.9, and assume for contradiction
that fi(~a) = 0 for all i < n, with aj ∈ {0, 1}. Put t = k`. W.l.o.g. we assume
that every variable in gi and g′i is one of xj or ri′,j . We will find an assignment
b0,0, . . . , b`−1,k−1 ∈ Zp to {ri,j}i<`,j<k such that gi(~a,~b) = 0 for all i, then∑
i<`

gi(~a,~b)g′i(~a,~b) +
∑
i<n

fi(~a)g′i+`(~a,~b) +
∑
i<m

(a2
i − ai)g′i+`+n(~a,~b) = 0 6= 1,

contradicting the definition of a UENS p-proof.
We define a function

F : `× (p− 1)k × pt−k → pt
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by F (i, u0, . . . , uk−1, v0, . . . , vt−k−1) = 〈b0,0, . . . , b`−1,k−1〉, where bi′,j are as-
signed according to ~v if i′ 6= i, and

bi,j =

{
uj , if uj < hi,j(~a,~b),

uj + 1, otherwise.

Notice that the value of hi,j(~a,~b) depends only on ~v, as ri,0, . . . , ri,k−1 do
not occur in hi,j .

It is clear from the definition that the values of F (i, •) are exactly
the assignments ~b such that gi(~a,~b) 6= 0, hence it suffices to show that
rng(F ) 6= pt. Choose a rational constant α > 1 such that βαp < (p/(p−1))p.
Then α`(p − 1)kpt−k < βk/pαk(p − 1)kpt−k < pt, hence F is not onto by
dWPHP(PV )xαx. �

5.2.11 Remark By an easy modification of the proof of 5.2.10, we could
simulate a slightly stronger system than UENS : the extension variables ri,j
could be reused in gi′ , i′ 6= i, and we could allow ri,0, . . . , ri,j−1 to occur
in hi,j . (However, it is quite possible that this modification is polynomially
equivalent to the original UENS .)



Chapter 6

Theories with explicit

counting

This chapter deals with two unrelated bounded arithmetical theories, which
have counting terms or quantifiers in their language. In section 6.1, we
will look at a theory invented by R. Impagliazzo and B. Kapron, aimed at
formalizing cryptographic reasoning. We will propose a modification of the
theory, and generalize the soundness theorem from [14] to ∀∃-consequences.
In section 6.2, we will define and develop a bounded theory of approximate
counting, formulated in a variant of Kleene’s 3-valued logic.

6.1 Impagliazzo-Kapron logic

6.1.1 Description of the theory

The Impagliazzo-Kapron logic, as described in [14], is a multi-sorted theory
in a second-order language. First-order objects are intended to be natural
numbers, or equivalently, binary strings. Second-order objects of sort k >
0 are k-ary functions (intended to be polynomial-time computable). The
language of the theory contains usual arithmetical operations 0, S, +, ·, |·|,
#1, and relation <. The function symbol ◦ denotes string concatenation,
and x{i...j} is the substring of x consisting of bit positions i through j. The
constants s and n denote a non-standard string and its length, respectively.
We have also application function symbols, which apply a k-ary second-
order object f to first-order objects x1, . . . , xk; we will however leave them

1[14] use ⊗ instead of #, to avoid clash with counting terms. We stick to the stan-

dard notation, as the smash function can be easily distinguished from counting terms by

syntactic context.

81
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out in formulas, writing just f(x1, . . . , xk) instead. We have only a first-
order equality relation symbol.

The functions just introduced are called basic functions, and terms using
only basic functions are basic terms. Apart from these, we have also count-
ing terms: for any open formula ϕ, there is a function symbol #(|x| = |t|)ϕ,
denoting the number of strings of length |t| which satisfy ϕ. These count-
ing terms are introduced recursively, i.e., the formula ϕ may also contain
counting terms.

The original Impagliazzo-Kapron theory, which we denote IK−, has the
following axioms.

• BASIC , modified appropriately to the selection of arithmetical func-
tion symbols in the language.

• Security parameter axioms: n = |s|, and n > k for every k ∈ ω.

• Function axioms: functions (i.e., second-order objects, rather than
function symbols of the language) are closed under composition and
bounded recursion on notation. There are function objects for all
projections, non-constant basic function symbols, and constant 0.

• The LIND schema for open formulas.

• Counting axioms:

#(|x| = |y|)> = y # 1,

#(|x| = |y|)ϕ = #(|x| = |y|)(ϕ ∧ ψ) + #(|x| = |y|)(ϕ ∧ ¬ψ),

∀x (|x| = |y| → (ϕ→ ψ))→ #(|x| = |y|)ϕ ≤ #(|x| = |y|)ψ,
#(|x| = 0)C(x) = C(0),

#(|x| = |y|+ 1)C(x) =

#(|x| = |y|)C(2x+ 1) + #(|x| = |y|)C(2x+ 2),

where ϕ is an open formula, and C is a counting term—this is to be
understood as follows: we define

#(|x1| = |y1|)#(|x2| = |y2|)ϕ(x1, x2)

as an abbreviation for

#(|x| = |y1 ◦ y2|)ϕ(x{0...|x1|−1}, x{|x1|...|x|−1}).

One problem with this theory is that it does not prove the existence of con-
stant functions cx(y) = x for arbitrary x. In particular, we cannot construct
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new functions by substitution of a constant value for a variable. This makes
the theory a bit unnatural to work with, leading to subtle errors; indeed,
substitution of constants is implicitly used in several applications in [14],
most importantly in the proof of soundness of a system for computational
indistinguishability (which we will not define here).

For this reason, we define a new theory, IK , to be IK− plus the axiom

∀x∃f f(0) = x.

This is not just a cosmetic change; the soundness theorem for IK− from
[14] does not hold for IK as stated. In essence, IK− is sound for crypto-
graphic reasoning in uniform adversary model, whereas IK works only in
non-uniform setting (i.e., we consider second-order objects to be functions
from FP/poly). This difference is essential for applications to indistinguisha-
bility: soundness of preservation of indistingushability by substitution into
a p-time context seems to require a non-uniform (or at least, randomized)
adversary model.

For technical reasons, we also define IK 0 to be IK without the axioms
n > k.

6.1.2 The soundness theorem

6.1.1 Definition Let q(n) be a polynomial. A function f is q-bounded if
|f(x)| ≤ q(|x|) for every x. Notice that every function from FPA/poly is
q-bounded for some q, where A is an arbitrary oracle.

6.1.2 Theorem Assume that IK proves

∀~f ∀~z ∃~g ∃~y ϕ(~f,~g, ~z, ~y, s),

where ϕ is a bounded formula. Then there exists a constant k such that for

every polynomial q, there is a polynomial p with the following property.

For every q-bounded functions ~f , every ~z, and every x ≥ k, there exist

numbers ~y, and oracle circuits ~C such that

N � ϕ(~f, ~C ~f , ~z, ~y, x),

and the size of ~y and ~C is at most p(|~z|, |x|).

Proof: We start with some simplifications. An IK -proof may contain only
a finite number of the axioms n > k, thus there is a constant k such that

IK 0 ` ∀~f ∀~z ∃~g ∃~y (s ≥ k → ϕ(~f,~g, ~z, ~y, s)).
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Since s ≥ k → ϕ is a bounded formula, we can without loss of generality
assume k = 0, i.e., it suffices to show the theorem for IK 0 in place of IK .
We can get rid of the remaining security parameter axiom by substituting
|s| for n in the whole proof; then we may replace s by a variable, and treat it
as one of the variables ~z. In other words: without loss of generality, ϕ does
not contain s. To simplify the notation, we will also ignore all the vectors,
and consider only the case

IK 0 ` ∀f ∀z ∃g ∃y ϕ(f, g, z, y).

Fix a polynomial q(n), and assume for contradiction that the conclusion
of the theorem is false for every polynomial p(n). This means that each
finite subset of

S := Th(N2) ∪ {∀u |f(u)| ≤ q(|u|)}
∪ {∀|y|, |C| ≤ p(|z|)¬ϕ(f , Cf , z, y); p a polynomial}

is satisfiable, where N2 is the standard model of second-order arithmetic,
z is a new first-order constant, and f is a new second-order constant. By
compactness, there exists a model M of S. Let

I = {y ∈M ; ∃ a standard polynomial p s.t. |y| ≤ p(|z|)},

and let F be the set of all PV (f)-functions with parameters from I, re-
stricted to I. Notice that I is closed under F : it is closed under f because
|f(u)| ≤ q(|u|), and closure under more complicated PV (f)-functions fol-
lows by induction on build-up of the function, using the fact that I is a
cut closed under smash. In particular, I is closed under basic function
symbols of IK 0; it is also closed under the counting functions, because
#(|x| = |y|)ϕ ≤ 2|y| ≤ 2y. (Counting functions are well-defined in M ,
as it is a model of true arithmetic.)

It follows that 〈I, F 〉 is a submodel of M (expanded to the language
of IK 0). As such, it is elementary for open formulas; moreover I is a cut,
thus it is elementary with respect to all bounded formulas. In particular,
〈I, F 〉 � IK 0: the function axioms are satisfied as PV (f) is closed under
limited recursion on notation; the other axioms are bounded, and valid in
M (as M � Th(N)). By the definition of S and elementarity for bounded
formulas, we have

〈I, F 〉 � ∀C ∀y ¬ϕ(f , Cf , z, y).

Let y ∈ I, g ∈ F , and let v ∈ I be the sequence of parameters used to define
g. As in the case of usual arithmetical theories, the formula ϕ has a bounding
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polynomial r: i.e., in order to evaluate ϕ, we only need to know the value of
functions and relation symbols for numbers of length at most r(|y|, |v|, |z|)
(this follows by induction on complexity of ϕ; the only property needed is a
(standard) polynomial bound to all functions involved in ϕ). Since g is given
by a PV (f)-function with parameter v, the restriction of g to 2r(|y|,|v|,|z|) is
computable by an oracle circuit Cf of size polynomial in |y|, |v|, and |z|; it
follows that C ∈ I, and

〈I, F 〉 � ¬ϕ(f , g, z, y).

Since y and g were arbitrary, we get

〈I, F 〉 � IK 0 + ¬∃g ∃y ϕ(f , g, z, y),

which is a contradiction. �

As a corollary to theorem 6.1.2, we derive a soundness theorem for (∀ → ∀)-
consequences of IK , formulated more in line with the original Impagliazzo-
Kapron soundness theorem from [14].

6.1.3 Corollary Let ϕ and ψ be bounded formulas, and assume

IK ` ∀g ∀~z ϕ(~f, g, ~z, s)→ ∀g ∀~z ψ(~f, g, ~z, s).

Let ~f ∈ FP/poly . If for every polynomial q(n), the formula ϕ(~f, C, ~z, x)
holds for all sufficiently large x and all |~z|, |C| ≤ q(|x|), then the same is

true of ψ.

Proof: We rewrite the assumption as

IK ` ∀~f ∀h∀~z ∃g ∃~w (ϕ(~f, g, ~w, s)→ ψ(~f, h, ~z, s)).

Since IK proves that any circuit defines a function, we get

IK ` ∀~f ∀C ∀~z ∃g ∃~w (ϕ(~f, g, ~w, s)→ ψ(~f, C, ~z, s)).

By theorem 6.1.2, there is a polynomial p and a constant k such that the
standard model satisfies

∀x > k ∀C,~z ∃|D|, |~w| ≤ p(|x|, |~z|, |C|) (ϕ(~f,D ~f , ~w, x)→ ψ(~f, C, ~z, x)).

Since ~f are computable by polynomial-size circuits, we can get rid of the
oracles in D if we switch to a larger p(n). If we substitute q into p, we get
a polynomial r such that

∀x > k ∀|C|, |~z| ≤ q(|x|)∃|D|, |~w| ≤ r(|x|) (ϕ(~f,D, ~w, x)→ ψ(~f, C, ~z, x)),
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which means

∀x > k
(
∀|C|, |~z| ≤ r(|x|)ϕ(~f, C, ~z, x)→ ∀|C|, |~z| ≤ q(|x|)ψ(~f, C, ~z, x)

)
.

By assumption, ∀|C|, |~z| ≤ r(|x|)ϕ(~f, C, ~z, x) holds for all sufficiently large
x, thus

∀x� 0∀|C|, |~z| ≤ q(|x|)ψ(~f, C, ~z, x). �

6.2 A theory of approximate counting

This section is devoted to a bounded arithmetical theory with approximate
counting quantifiers. Unlike exact counting (#P ), approximate counting
has a low complexity: it can be realized in randomized polynomial time,
and thus in the second level of the polynomial-time hierarchy. One of our
goals was thus to create a theory which can formalize basic approximate
counting arguments, but still remain “feasible”: e.g., existential theorems of
the theory are witnessable by probabilistic polynomial-time algorithms.

Another motivation stems from definability of randomized computation:
using approximate counting quantifiers, we can easily express algorithms
from probabilistic complexity classes like BPP , MA, AM .

Approximate counting quantifiers can be naturally presented as promise
problems: positive instances of the problem are the cases where the formula
in question is satisfied by many elements, whereas in negative instances it is
satisfied by only few elements. However, predicates and formulas in classi-
cal first-order logic can only express usual languages, not promise problems.
The natural solution is to use a non-classical, 3-valued logic; the truth values
1 (true) and 0 (false) correspond respectively to positive and negative in-
stances of the promise problem, and the third truth value, ∗, corresponds to
the grey area of the remaining instances, where the promise is broken. The
reader can think of ∗ as meaning “undefined”, or better yet, “uncertain”.

In section 6.2.1 we define precisely the logic we want to use, and state
its basic properties (such as the completeness theorem). In section 6.2.2
we introduce the language and theory C1

2 of approximate counting. Section
6.2.3 contains a witnessing theorem for C1

2 .

6.2.1 Kleene’s logic

6.2.1 Definition Kleene’s 3-valued logic [19] is a propositional logic using
truth values {0, ∗, 1} with the only designated value 1. Its connectives are
given by the following tables.
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∧ 0 ∗ 1
0 0 0 0
∗ 0 ∗ ∗
1 0 ∗ 1

∨ 0 ∗ 1
0 0 ∗ 1
∗ ∗ ∗ 1
1 1 1 1

¬
0 1
∗ ∗
1 0

We may also include nullary connectives ⊥ and >, with v(⊥) = 0 and
v(>) = 1.

3-valued first-order models are defined as usual, except that predicate
symbols (and formulas in general) are realized by functions with range in
{0, ∗, 1}. We denote vM (ϕ[e]) the value of a formula ϕ in a model M under
an assignment e. First-order Kleene’s logic has quantifiers ∀ and ∃ with the
following semantics.

vM (∀xϕ[e]) =


1, if ∀a ∈M vM (ϕ[e(x/a)]) = 1,

0, if ∃a ∈M vM (ϕ[e(x/a)]) = 0,

∗ otherwise,

vM (∃xϕ[e]) =


1, if ∃a ∈M vM (ϕ[e(x/a)]) = 1,

0, if ∀a ∈M vM (ϕ[e(x/a)]) = 0,

∗ otherwise.

Kleene’s logic has no reasonable implication connective, which makes it
impossible to formulate a nontrivial theory (e.g., induction axioms). We
thus borrow an implication from the LPF system [17] (see also [2]), given
by the following table.

→ 0 ∗ 1
0 1 1 1
∗ 1 1 1
1 0 ∗ 1

We also define an abbreviation ϕ↔ ψ = (ϕ→ ψ)∧ (ψ → ϕ), which has the
following table.

↔ 0 ∗ 1
0 1 1 0
∗ 1 1 ∗
1 0 ∗ 1

A formula ϕ is satisfied by an assignment e in a model M , if vM (ϕ[e]) = 1.
A formula is valid in a model M , if it is in M satisfied by all assignments.
A formula is a tautology, if it is valid in all models.
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A theory T entails a formula ϕ iff for any model M , if all formulas ψ ∈ T
are valid in M , then ϕ is also valid in M .

A sequent Γ =⇒ ∆ is tautological if any assignment in any model which
satisfies all formulas in Γ also satisfies some formula in ∆. (Equivalently:
the characteristic formula

∧
Γ→

∨
∆ is a tautology.)

We will denote the resulting system as K∀.

6.2.2 Remark The intuition behind our choice of→ is that it behaves like
an internalization of the sequent arrow—it makes the deduction theorem
hold for K∀, and more generally,

Γ, ϕ =⇒ ψ,∆ is tautological iff Γ =⇒ (ϕ→ ψ),∆ is tautological.

(This condition determines the table of → almost completely, it only leaves
open whether the values 1 → 0 and 1 → ∗ are 0 or ∗. It is possible to
give another condition involving ¬(ϕ→ ψ), which makes the table unique.)
One nice feature of this → is that the negation-free fragment of K∀ (i.e.,
{∧,∨,→,⊥,>,∀,∃}) is equivalent to the classical predicate calculus, because
the function f defined as f(0) = f(∗) = 0, f(1) = 1 is a homomorphism
with respect to the connectives and quantifiers, and preserves the set of
designated values.

6.2.3 Remark To put our variant of Kleene’s logic in context, we note
that K∀ is closely connected with 3-valued fuzzy logics. Apart from having
a different “official” implication, the basic Kleene’s logic is a fragment of 3-
valued Gödel logic with involutive negation, and K∀ has the same expressive
power as 3-valued  Lukasiewicz or Gödel logic with Baaz delta [26, 3]: the
 Lukasiewicz connectives and delta are definable as

4ϕ = ¬(ϕ→ ¬ϕ),

ϕ ⊃ ψ = (ϕ→ ψ) ∧ (¬ψ → ¬ϕ),

ϕ& ψ = ¬(ϕ ⊃ ¬ψ),

on the other hand we have

ϕ→ ψ = 4ϕ ⊃ ψ.

From an algebraic point of view, the structure 〈{0, ∗, 1},∨,∧,¬,⊥,>}〉 is
a bounded distributive lattice with an involutive dual automorphism, satis-
fying x∧¬x ≤ y∨¬y (and, in fact, it generates the variety of such algebras).
It follows that the usual associative, commutative, distributive, and de Mor-
gan rules hold in Kleene’s logic.
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6.2.4 Definition The Hilbert-style calculus HK ∀ consists of the following
axioms and rules.

((ϕ→ ψ)→ χ)→ ((χ→ ϕ)→ (ω → ϕ))

ϕ ∧ ψ → ϕ

ϕ ∧ ψ → ψ

ϕ→ (ψ → ϕ ∧ ψ)

ϕ→ ϕ ∨ ψ
ψ → ϕ ∨ ψ

(ϕ→ χ)→ ((ψ → χ)→ (ϕ ∨ ψ → χ))

∀xϕ→ ϕ(x/t)

ϕ(x/t)→ ∃xϕ
¬ϕ→ (ϕ→ ψ)

¬¬ϕ↔ ϕ

¬(ϕ ∧ ψ)↔ ¬ϕ ∨ ¬ψ
¬(ϕ ∨ ψ)↔ ¬ϕ ∧ ¬ψ
¬(ϕ→ ψ)↔ ϕ ∧ ¬ψ
¬∀xϕ↔ ∃x¬ϕ
¬∃xϕ↔ ∀x¬ϕ
ϕ, ϕ→ ψ ` ψ

ψ → ϕ ` ψ → ∀v ϕ
ϕ→ ψ ` ∃v ϕ→ ψ

In the generalization rules, the variable v cannot be free in ψ. (If the reader is
puzzled by the first axiom [27], she may replace it by her favourite complete
axiomatization of the classical implicational fragment.)

6.2.5 Theorem (completeness of HK ∀) A theory T entails a formula ϕ

iff ϕ is HK ∀-provable from T .

Proof (sketch): The propositional case was proved by Avron [2]. Soundness
of HK ∀ is straightforward. As for completeness, first notice that the ¬-free
part of HK ∀ is an axiomatization of the positive fragment of the classical
logic. The deduction theorem for HK ∀, and conservativity of the Henkin
completion follow easily from this observation, as their standard proof only
relies on provability of certain ¬-free schemata. (E.g., the usual theorem
on conservative introduction of constants follows from the deduction theo-
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rem and the second generalization rule; then we can justify adding Henkin
constants by provability of ∃y (∃xϕ(x)→ ϕ(y)) and ∃y (ϕ(y)→ ∀xϕ(x)).)

Assume that T 0 ϕ is a Henkin theory. By Zorn’s lemma, there exists a
maximal theory S ⊇ T in the same language such that S 0 ϕ. Notice that S
is a deductively closed Henkin theory, and moreover it is prime (i.e., it has
the disjunction property), because of the deduction theorem and the axiom

(ψ → ϕ)→ ((χ→ ϕ)→ (ψ ∨ χ→ ϕ)).

We take the term model for the language of S, with satisfaction defined by

v(ψ) =


1, if ψ ∈ S,
0, if ¬ψ ∈ S,
∗ otherwise

for any sentence ψ. We can check that this is indeed a correct definition of
a K∀-model, thus T 2 ϕ. For example, consider a formula ψ ∧ χ. We have
v(ψ ∧ χ) = 1 iff v(ψ) = v(χ) = 1, due to the axioms

ψ ∧ χ→ ψ

ψ ∧ χ→ χ

ψ → (χ→ ψ ∧ χ).

Similarly, v(ψ ∧ χ) = 0 iff v(ψ) = 0 or v(χ) = 0, because S is prime, and
contains the axiom

¬(ψ ∧ χ)↔ ¬ψ ∨ ¬χ. �

6.2.6 Definition Sequent calculus GK ∀ consists of the usual structural
rules (exchange, contraction, weakening, cut), and the following rules.

Γ, ϕ =⇒ ϕ, ∆ Γ, ϕ, ¬ϕ =⇒ ∆

Γ =⇒ ϕ, ∆ Γ =⇒ ψ, ∆
Γ =⇒ ϕ ∧ ψ, ∆

Γ =⇒ ¬ϕ, ¬ψ, ∆
Γ =⇒ ¬(ϕ ∧ ψ), ∆

Γ, ϕ, ψ =⇒ ∆
Γ, ϕ ∧ ψ =⇒ ∆

Γ, ¬ϕ =⇒ ∆ Γ, ¬ψ =⇒ ∆
Γ, ¬(ϕ ∧ ψ) =⇒ ∆

Γ =⇒ ϕ, ψ, ∆
Γ =⇒ ϕ ∨ ψ, ∆

Γ =⇒ ¬ϕ, ∆ Γ =⇒ ¬ψ, ∆
Γ =⇒ ¬(ϕ ∨ ψ), ∆

Γ, ϕ =⇒ ∆ Γ, ψ =⇒ ∆
Γ, ϕ ∨ ψ =⇒ ∆

Γ, ¬ϕ, ¬ψ =⇒ ∆
Γ, ¬(ϕ ∨ ψ) =⇒ ∆
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Γ, ϕ =⇒ ψ, ∆
Γ =⇒ (ϕ→ ψ), ∆

Γ =⇒ ϕ, ∆ Γ =⇒ ¬ψ, ∆
Γ =⇒ ¬(ϕ→ ψ), ∆

Γ =⇒ ϕ, ∆ Γ, ψ =⇒ ∆
Γ, (ϕ→ ψ) =⇒ ∆

Γ, ϕ, ¬ψ =⇒ ∆
Γ, ¬(ϕ→ ψ) =⇒ ∆

Γ =⇒ ϕ, ∆
Γ =⇒ ¬¬ϕ, ∆

Γ, ϕ =⇒ ∆
Γ, ¬¬ϕ =⇒ ∆

Γ =⇒ ϕ(v), ∆
Γ =⇒ ∀xϕ, ∆

Γ =⇒ ¬ϕ(t), ∆
Γ =⇒ ¬∀xϕ, ∆

Γ, ϕ(t) =⇒ ∆
Γ, ∀xϕ =⇒ ∆

Γ, ¬ϕ(v) =⇒ ∆
Γ, ¬∀xϕ =⇒ ∆

Γ =⇒ ϕ(t), ∆
Γ =⇒ ∃xϕ, ∆

Γ =⇒ ¬ϕ(v), ∆
Γ =⇒ ¬∃xϕ, ∆

Γ, ϕ(v) =⇒ ∆
Γ, ∃xϕ =⇒ ∆

Γ, ¬ϕ(t) =⇒ ∆
Γ, ¬∃xϕ =⇒ ∆

Rules ∀-right , ¬∀-left , ∃-left , and ¬∃-right are subject to the eigenvariable
condition: variable v cannot be free in the conclusion of the rule.

Essentially, the positive fragment of the calculus coincides with the cal-
culus for classical logic, but rules for introduction of ¬ are replaced by a set
of rules introducing negations of the individual positive connectives (plus
introduction of double negation, and the ex falso quodlibet axiom).

6.2.7 Definition A sequent is regular if it does not contain free and bound
occurrences of the same variable.

6.2.8 Theorem (completeness of GK ∀) A sequent is tautological iff it

is provable in GK ∀. Moreover, every regular tautological sequent has a

GK ∀-proof which does not use any cut or weakening inferences.

Proof (sketch): The propositional case is again due to Avron [2]. Sound-
ness of GK ∀ is obvious. Completeness of GK ∀ follows from straightforward
simulation of HK ∀, but this way we would not obtain the cut-elimination
theorem.

Assume that a closed sequent Γ0 =⇒ ∆0 in a language L has no cut-free
proof. Let {〈ϕn, tn〉; n ∈ ω} be a sequence with infinitely many appearances
of every pair of a sentence and a close term in language L′ = L∪{cn; n ∈ ω}.
We construct a sequence of cut-free unprovable sequents Γn =⇒ ∆n by
induction on n. If the formula ϕn appears in Γn ∪∆n, we put a “witness”
for it in Γn+1 =⇒ ∆n+1. For example, let ϕn = ¬(α ∨ β): if ϕn ∈ Γn, we
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define Γn+1 = Γn ∪ {¬α,¬β}, ∆n+1 = ∆n; if ϕn ∈ ∆n, we put Γn+1 = Γn,
and

∆n+1 =

{
∆n ∪ {¬α}, if Γn =⇒ ¬α,∆n has no cut-free proof,

∆n ∪ {¬β} otherwise.

There are similar conditions for all connectives and quantifiers, and their
negations. (Terms tn and constants cn are used for witnessing the quanti-
fiers.)

We put Γ =
⋃
n Γn, ∆ =

⋃
n ∆n, and we take the term model for L′ with

satisfaction of atomic formulas defined by

v(ϕ) =


1, if ϕ ∈ Γ,

0, if ¬ϕ ∈ Γ,

∗ otherwise.

We check by induction on complexity of a sentence ϕ that

ϕ ∈ Γ⇒ v(ϕ) = 1,

ϕ ∈ ∆⇒ v(ϕ) 6= 1,

¬ϕ ∈ Γ⇒ v(ϕ) = 0,

¬ϕ ∈ ∆⇒ v(ϕ) 6= 0,

in particular we have a counterexample showing that Γ0 =⇒ ∆0 is not
tautological. �

6.2.2 The theory C1
2

6.2.9 Definition The first-order language LCnt is defined inductively:

(i) LCnt contains the language of PV ,

(ii) if ϕ(y, ~x) is an LCnt -formula, there is a predicate Cntϕ(b, c, d, ~x) in
LCnt .

We will usually write Cby < cϕ(y, ~x) instead of Cntϕ(b, c, d, ~x) (d is implicit
in this notation).

The intended meaning of Cby < cϕ(y) is an approximate counting quanti-
fier. If the number of y < c which satisfy ϕ is at least b, the quantifier is
true; if it is at most a := b − c/|d|, the quantifier is false; otherwise it is
∗ (“undefined”). For convenience, we allow b or a to be negative integers
(which are encoded in arithmetic in a straightforward way).
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As we want to stay within the p-time hierarchy, we must not allow exact
counting as a special case of approximate counting, the gap between a and
b has to be at least a polynomial fraction of c. This motivates the curious
indirect definition of a. (More precisely, some cases of exact counting are
allowed. However if b = a+ 1, we have c ≤ |d|, i.e. c is sharply bounded.)

We make this intuition precise in the next definition.

6.2.10 Definition The standard model for LCnt , N, is an expansion of the
standard model of arithmetic such that

vN(Cntϕ(b, c, d, ~x)) =


1, if |{y < c; vN(ϕ(y, ~x)) = 1}| ≥ b,
0, if |{y < c; vN(ϕ(y, ~x)) 6= 0}| ≤ b− c/|d|,
∗ otherwise.

6.2.11 Definition The class of Σc
0-formulas contains all Σb

0(PV )-formulas,
and it is closed under conjuction, disjunction, negation, sharply bounded
quantifiers, and counting quantifiers.

Σc
1-formulas are built from Σc

0-formulas using disjuction, conjunction,
bounded existential quantifiers, sharply bounded universal quantifiers, and
counting quantifiers.

MA-formulas are built from Σc
0-formulas using disjuction, conjunction,

bounded existential quantifiers, and sharply bounded universal quantifiers.

6.2.12 Definition Promise problem is a pair L = 〈L+, L−〉 of disjoint lan-
guages. Elements of L+ and L− are respectively called positive and negative
instances (or inputs). A promise problem L is in promise-BPP (prBPP),
if there is a probabilistic p-time Turing machine which accepts all positive
inputs with probability at least 2/3, and rejects all negative inputs with
probability at least 2/3. L is in promise-MA (prMA), if there is a predicate
P (x, y, z) decidable in deterministic time |x|O(1) such that

x ∈ L+ ⇒ ∃y Prz(P (x, y, z)) ≥ 2/3,

x ∈ L− ⇒ ∀y Prz(P (x, y, z)) ≤ 1/3.

L is in promise-AM (prAM ), if there is a predicate P (x, y, z) decidable in
deterministic time |x|O(1) such that

x ∈ L+ ⇒ Pry(∃z P (x, y, z)) ≥ 2/3,

x ∈ L− ⇒ Pry(∃z P (x, y, z)) ≤ 1/3.

An ordinary language L is identified with the promise problem 〈L, {0, 1}∗ r
L〉.
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A promise problem L is definable by an LCnt -formula ϕ if

x ∈ L+ ⇒ vN(ϕ(x)) = 1,

x ∈ L− ⇒ vN(ϕ(x)) = 0.

Note that the input of L must contain all free variables of ϕ, including those
“hidden” in the implicit parameters d.

6.2.13 Theorem Let L be a promise problem.

(i) L ∈ prBPP iff L is Σc
0-definable,

(ii) L ∈ prAM iff L is Σc
1-definable.

(iii) L ∈ prMA iff L is definable by an MA-formula.

Proof: We will show the right-to-left direction of (i) by induction on com-
plexity. The base case is trivial, as Σc

0-formulas without counting quanti-
fiers are Σb

0(PV )-formulas, thus decidable in deterministic polynomial time.
Connectives correspond to

L1 ∩ L2 = 〈L+
1 ∩ L

+
2 , L

−
1 ∪ L

−
2 〉,

L1 ∪ L2 = 〈L+
1 ∪ L

+
2 , L

−
1 ∩ L

−
2 〉,

L = 〈L−, L+〉,

and it is easy to see that prBPP is closed under these operations. Sharply
bounded quantifiers are similar. Consider a counting predicate Cntϕ(b, c, d).
Notice that prBPPprBPP = prBPP by usual amplification methods, it thus
suffices to express Cntϕ as a prBPP problem with oracle access to ϕ. The
algorithm simply picks a random y ≤ c, and outputs the oracle answer to
ϕ(y, ~x). For positive inputs, the answer is 1 with probability at least b/c, and
for negative inputs it is at most a/c. The gap is at least 1/|d|, we may thus
amplify the success probability to 2/3 by using polynomially many samples.

For the left-to-right direction, let P (x, z) be a PV -predicate such that

x ∈ L+ ⇒ Pr|z|≤p(|x|)(P (x, z)) ≥ 2/3,

x ∈ L− ⇒ Pr|z|≤p(|x|)(P (x, z)) ≤ 1/3,

for a polynomial p(n). Then L is definable by the formula

CntP (x,z)(2t(x)/3, t(x), 4, x),

where t(x) = 2p(|x|).
The proofs of (ii) and (iii) are similar. �
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6.2.14 Definition The theory C1
2 in the language LCnt has the following

axioms.

(i) equality axioms,

(ii) axioms of PV , and the law of excluded middle for atomic formulas,

(iii) Σc
1-PIND : for any Σc

1-formula ϕ,

ϕ(0) ∧ ∀u ≤ x (ϕ(
⌊
u
2

⌋
)→ ϕ(u))→ ϕ(x),

(iv) axioms about counting quantifiers (ϕ,ψ ∈ Σc
1, ϑ ∈ Σc

0, f is a PV -
function):

(1) ¬Cnt¬ϑ(b, c, d, ~u)↔ Cc−b+dc/|d|ex < cϑ(x, ~u),

(2) ∀v < c (ϕ(v)∨∃y < c−b f(y) = v)∧b ≤ c→ Cb−bc/|e|cx < cϕ(x),

(3)
∀x < c∃y < z f(y) = x ∧Cbx < cϕ(x)→ Cb−bz/|e|cy < z ϕ(f(y)),

(4) ∀x < c∃i < |z|ϕ(x, i) &
∑
i<|z|

(b)i + dc/|e|e ≤ c+ |z|

→ ∃i < |z|C(b)ix < cϕ(x, i),

(5) Cbx < cϕ(x) ∧Cb′x < cψ(x)→ Cb+b′−cx < c (ϕ(x) ∧ ψ(x)),

(6) Cbx < cϕ(x) ∧Cb′x < c′ ψ(x)→

Cb+b′x < c+ c′ ((x < c ∧ ϕ(x)) ∨ (x ≥ c ∧ ψ(x− c))),

(7) Cbx < cCb′y < c′ ϕ(x+ yc) ∧ b ≥ 0 ∧ b′ ≥ 0→ Cbb′v < cc′ ϕ(v),

(8) Cbx < cz ϕ(x mod c) ∨Cbx < cz ϕ(
⌊
x
z

⌋
)→ Cdb/zey < cϕ(y),
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(9) Cbc′+b′c−bb′v < cc′ ϕ(v)→ Cbx < cCb′y < c′ ϕ(x+ yc),

and the following derivation rule, for χ ∈ Σc
1:

(10)
χ→ ∀x < c (ϕ(x)→ ψ(x))

χ→ (Cbx < cϕ(x)→ Cbx < cψ(x))
.

6.2.15 Remark Axiom (ii) actually implies the law of excluded middle for
all formulas which do not contain counting quantifiers, thus C1

2 extends the
classical theory S1

2(PV ). In fact, it contains S1
2 + dWPHP(PV ), which is

easily seen from axiom (2).
The “error terms” in axioms (2) and (3), and the formulation of (10) as

a rule rather than axiom, are needed for witnessing.

6.2.16 Definition The theory C1
2 can be reformulated as a sequent calculus

GC1
2 , extending GK ∀. We add new initial sequents for the open axioms (i)

and (ii). Induction (iii) corresponds to the rule

Γ, ϕ(
⌊
v
2

⌋
) =⇒ ϕ(v), ∆ ,

Γ, ϕ(0) =⇒ ϕ(t), ∆

subject to eigenvariable condition for v. Axioms (1) and (5)–(9), which have
the form ϕ1 → ϕ2, are given as initial sequents Γ, ϕ1 =⇒ ϕ2,∆. (Axioms
(1) and (8) are rewritten as two sequents.) The remaining axioms are given
as

Γ, v < c =⇒ ϕ(v), ∃y < c− b f(y) = v, ∆
(2) ,

Γ, b ≤ c =⇒ Cb−bc/|e|cx < cϕ(x), ∆

Γ, v < c =⇒ ∃y < z f(y) = v, ∆
(3) ,

Γ, Cbx < cϕ(x) =⇒ Cb−bz/|e|cy < z ϕ(f(y)), ∆

Γ, v < c =⇒ ∃i < |z|ϕ(x, i), ∆
(4) ,

Γ,
∑

i<|z|(b)i + dc/|e|e ≤ c+ |z| =⇒ ∃i < |z|C(b)ix < cϕ(x, i), ∆

Λ, v < c, ϕ(v) =⇒ ψ(v)
(10) ,

Λ, Cbx < cϕ(x) =⇒ Cbx < cψ(x)
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with EVC on v, and ϕ,ψ,Λ restricted to Σc
1-formulas.

We also add rules for bounded quantifiers, which are no longer seen as
abbreviations. The rules from definition 7.1.1 of [20] will do, except that we
have to include also rules for negated quantifiers, as in GK ∀.

The notion of a principal formula of a rule is defined as usual, except
that the formulas from Λ in rule (10) are also considered principal.

6.2.17 Lemma C1
2 ` ϕ iff the sequent =⇒ ϕ is provable in GC1

2 .

Proof: Straightforward. �

6.2.18 Theorem A regular sequent provable in GC1
2 has a GC1

2 -proof, in

which every cut-formula has an identical ancestor which is a principal for-

mula of one of the special rules from 6.2.16.

Proof (sketch): We modify the proof of 6.2.8 so that the resulting model
satisfies C1

2 . For example, consider an instance of axiom (2). At certain
stage in the construction, we put

Γn+1 = Γn ∪ {Cb−bc/|e|cx < cϕ(x)},
∆n+1 = ∆n,

if the sequent Γn,Cb−bc/|e|cx < cϕ(x) =⇒ ∆n is unprovable,

Γn+1 = Γn,

∆n+1 = ∆n ∪ {b ≤ c},

if the sequent Γn =⇒ b ≤ c,∆n is unprovable, and

Γn+1 = Γn ∪ {ck < c},
∆n+1 = ∆n ∪ {ϕ(ck),∃y < c− b f(y) = ck}

otherwise, where ck is the first unused constant. In either case, the sequent
Γn+1 =⇒ ∆n+1 is not provable: if it were, we could derive (putting b′ =
b− bc/|e|c)

Γn, v < c =⇒ ϕ(v), ∃y < c− b f(y) = v, ∆n

Γn, b ≤ c =⇒ Cb′x < cϕ(x), ∆n

Γn, Cb′x < cϕ(x) =⇒ ∆n Γn, b ≤ c =⇒ Cb′x < cϕ(x), ∆n

Γn, b ≤ c =⇒ ∆n
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Γn =⇒ b ≤ c, ∆n Γn, b ≤ c =⇒ ∆n

Γn =⇒ ∆n

by the rule for (2) and two cuts, contradicting the unprovability of Γn =⇒
∆n.

The final model thus either satisfies Cb−bc/|e|cx < cϕ(x), or does not
satisfy b ≤ c, or contains an element (namely ck) which does not satisfy
v < c→ (ϕ(v) ∨ ∃y < c− b f(y) = v). In any case, the implication

∀x < c (ϕ(x) ∨ ∃y < c− b f(y) = x) ∧ b ≤ c→ Cb−bc/|e|cx < cϕ(x)

is satisfied.
Other rules are treated in a similar way, with the exception of rule (10),

which requires an extra complication: we must proceed by induction on the
depth of nesting of rules (10) in the proof. �

6.2.3 A witnessing theorem for C1
2

6.2.19 Definition For every Σc
1-formula ϕ(~x), we define a new Σc

0-formula
Witϕ(e, ~x) by induction on complexity (we assume that negations are pushed
down by de Morgan rules):

(i) Witϕ = ϕ, if ϕ ∈ Σb
0, or the topmost symbol of ϕ is a counting

quantifier or its negation,

(ii) Witϕ∧ψ(e, ~x) = Witϕ((e)0, ~x) ∧Witψ((e)1, ~x).

(iii) Witϕ∨ψ(e, ~x) = ((e)0 = 0∧Witϕ((e)1, ~x))∨ ((e)0 = 1∧Witψ((e)1, ~x)).

(iv) Wit∀u≤|t|ϕ(e, ~x) = ∀u ≤ |t|Witϕ((e)u, u, ~x).

(v) Wit∃u≤t ϕ = (e)0 ≤ t ∧Witϕ((e)1, (e)0, ~x).

Any e such that Witϕ(e, ~x) holds is called a witness for ϕ(~x).
A witnessing function for a sequent ϕ1, . . . , ϕn =⇒ ψ1, . . . , ψm is a prob-

abilistic algorithm f(r, e1, . . . , en, ~x) such that if ei, i = 1, . . . , n are witnesses
for ϕi(~x), f outputs with probability at least 1− 1/r a pair 〈j, e〉 such that
e is a witness for ψj(~x) (in the standard model).

6.2.20 Theorem Let Γ =⇒ ∆ be a sequent consisting of Σc
1-formulas. If

Γ =⇒ ∆ is provable in C1
2 , it has a polynomial-time probabilistic witnessing

function.
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Proof: By theorem 6.2.18 and (a suitable version of) the subformula prop-
erty, Γ =⇒ ∆ has a GC1

2 -proof which contains only Σc
1-formulas. We will

construct the witnessing function by induction on the length of the proof.
Initial sequents are witnessed trivially, as their principal formulas are Σb

0

or start with a counting quantifier. A similar argument works for rule (10),
as its conclusion has only one formula in the succedent.

Consider a ∧-right inference

Γ =⇒ ϕ, ∆ Γ =⇒ ψ, ∆ ,
Γ =⇒ ϕ ∧ ψ, ∆

and assume that f1 and f2 witness the assumptions of the rule. We construct
a witnessing function for the conclusion as follows: apply f1 and f2. If one
of them outputs a witness to some formula in ∆, return it; otherwise we
have witnesses e and e′ to the formulas ϕ and ψ, and we return 〈e, e′〉.

Assume that f witnesses the assumption of a ∧-left inference

Γ, ϕ, ψ =⇒ ∆ ,
Γ, ϕ ∧ ψ =⇒ ∆

To witness the conclusion, we simply take the input corresponding to ϕ∧ψ,
decompose it into witnesses for ϕ and ψ, and feed them to f .

The other logical rules are treated similarly.
Let f witness the assumption of an induction rule

Γ, ϕ(
⌊
v
2

⌋
) =⇒ ϕ(v), ∆ .

Γ, ϕ(0) =⇒ ϕ(t), ∆

To witness the conclusion, we iterate f |t|-times to construct witnesses for
ϕ(
⌊
t
2i

⌋
), i = |t|, . . . , 0, starting with a given witness to ϕ(0). We either obtain

a witness to ϕ(t), or get a witness to some formula from ∆ in the process.
Consider an inference

Γ, v < c =⇒ ϕ(v), ∃y < c− b g(y) = v, ∆
(2) ,

Γ, b ≤ c =⇒ Cb−bc/|z|cx < cϕ(x), ∆

with f witnessing its assumption. Given witnesses to Γ, we choose indepen-
dently O(|z|) numbers vi < c, and apply f to them. If we obtain a witness
to ∆, we are done; otherwise all vi happened to satisfy ϕ or to be in the
range of g. The probability of v not being in rng(g) is at least b/c, which
means that Cb−bc/|z|cx < cϕ(x) holds with high probability, and we may
output anything as a witness to the last formula.

A similar argument works for rule (3).
Finally, assume that f witnesses the assumption of
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Γ, v < c =⇒ ∃i < |z|ϕ(x, i), ∆
(4) .

Γ,
∑

i<|z|(b)i + dc/|e|e ≤ c+ |z| =⇒ ∃i < |z|C(b)ix < cϕ(x, i), ∆

We witness the conclusion as follows: choose k = O((|z||e|)2) numbers vj <
c, and apply f . If we get a witness to ∆, we are done. Otherwise we find i <
|z| such that we got at least k(((b)i− 1)/c+ 1/(|z||e|)) witnesses to ϕ(uj , i),
and we output i as a witness to ∃i < |z|C(b)ix < cϕ(x, i). Chernoff’s
inequality guarantees that this choice is correct with high probability. �
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Alexander A. Razborov, and Jǐŕı Sgall, Proof complexity in algebraic
systems and bounded depth Frege systems with modular counting, Com-
putational Complexity 6 (1997), no. 3, pp. 256–298.

[8] Alan Cobham, The intrinsic computational difficulty of functions, in:
Proceedings of the 2nd International Congress of Logic, Methodology
and Philosophy of Science (Y. Bar-Hillel, ed.), North Holland, 1965,
pp. 24–30.

101



Bibliography 102

[9] Stephen A. Cook, Feasibly constructive proofs and the propositional cal-
culus, in: Proceedings of the 3rd Annual ACM Symposium on Theory
of Computing, 1975, pp. 83–97.

[10] Stephen A. Cook and Robert A. Reckhow, The relative efficiency of
propositional proof systems, Journal of Symbolic Logic 44 (1979), no. 1,
pp. 36–50.

[11] Haim Gaifman and Constantinos Dimitracopoulos, Fragments of Pe-
ano’s arithmetic and the MRDP theorem, in: Logic and algorithmic,
Monographie de L’Enseignement Mathématique no. 30, Université de
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[26] Jan  Lukasiewicz, O logice trójwartościowej, Ruch Filozoficzny 5 (1920),
pp. 170–171.

[27] , The shortest axiom of the implicational calculus of propo-
sitions, Proceedings of the Royal Irish Academy 52 (1948), no. A 3,
pp. 25–33.

[28] Alexis Maciel, Toniann Pitassi, and Alan R. Woods, A new proof of the
weak pigeonhole principle, Journal of Computer and System Sciences
64 (2002), no. 4, pp. 843–872.

[29] Gary L. Miller, Riemann’s hypothesis and tests for primality, Journal
of Computer and System Sciences 13 (1976), no. 3, pp. 300–317.

[30] David E. Muller, Application of Boolean algebra to switching circuit de-
sign and to error detection, IEEE Transactions on Computers 3 (1954),
pp. 6–12.

[31] Noam Nisan and Avi Wigderson, Hardness vs. randomness, Journal of
Computer and System Sciences 49 (1994), no. 2, pp. 149–167.

[32] Kerry E. Ojakian, Combinatorics in bounded arithmetic, Ph.D. thesis,
Carnegie Mellon University, Pittsburgh, 2004.



Bibliography 104

[33] Christos H. Papadimitriou, Computational complexity, Addison-Wesley,
1994.

[34] Rohit Parikh, Existence and feasibility in arithmetic, Journal of Sym-
bolic Logic 36 (1971), no. 3, pp. 494–508.

[35] Jeff B. Paris, Alex J. Wilkie, and Alan R. Woods, Provability of the pi-
geonhole principle and the existence of infinitely many primes, Journal
of Symbolic Logic 53 (1988), no. 4, pp. 1235–1244.

[36] Michael O. Rabin, Probabilistic algorithm for testing primality, Journal
of Number Theory 12 (1980), no. 1, pp. 128–138.

[37] Irving S. Reed, A class of multiple-error-correcting codes and the de-
coding scheme, IEEE Transactions on Information Theory 4 (1954),
pp. 38–49.

[38] Irving S. Reed and Gustave Solomon, Polynomial codes over certain
finite fields, SIAM Journal of Applied Mathematics 8 (1960), pp. 300–
304.

[39] Jean-Pierre Ressayre, A conservation result for system of bounded arith-
metic, unpublished manuscript, 1986.

[40] Claude E. Shannon, The synthesis of two-terminal switching circuits,
Bell System Technical Journal 28 (1949), no. 1, pp. 59–98.

[41] Michael Sipser, A complexity theoretic approach to randomness, in: Pro-
ceedings of the 15th Annual ACM Symposium on Theory of Computing,
1983, pp. 330–335.

[42] Michael Soltys-Kulinicz, The complexity of derivations of matrix iden-
tities, Ph.D. thesis, University of Toronto, Department of Mathematics,
2001.

[43] Michael Soltys and Stephen A. Cook, The proof complexity of linear
algebra, in: Proceedings of the 17th Annual IEEE Symposium on Logic
in Computer Science, 2002, pp. 335–344.

[44] , The proof complexity of linear algebra, Annals of Pure and
Applied Logic 130 (2004), pp. 277–323.

[45] Madhu Sudan, Decoding Reed-Solomon codes beyond the error-correc-
tion diameter, in: Proceedings of the 35th Annual Allerton Conference
on Communication, Control and Computing, 1997, pp. 215–224.



Bibliography 105

[46] Madhu Sudan, Luca Trevisan, and Salil Vadhan, Pseudorandom genera-
tors without the XOR lemma, Journal of Computer and System Sciences
62 (2001), no. 2, pp. 236–266.

[47] Neil Thapen, A model-theoretic characterization of the weak pigeon-
hole principle, Annals of Pure and Applied Logic 118 (2002), no. 1–2,
pp. 175–195.

[48] , The weak pigeonhole principle in models of bounded arith-
metic, Ph.D. thesis, Oxford University, 2002.

[49] Neil Thapen and Michael Soltys, Weak theories of linear algebra,
Archive for Mathematical Logic (2004), to appear.

[50] Seinosuke Toda, On the computational power of PP and ⊕P , in: Pro-
ceedings of the 30th Annual IEEE Symposium on Foundations of Com-
puter Science, 1989, pp. 514–519.



Appendix A

Some bounds on binomial

coefficients

Here we show that several well-known inequalities, useful for counting, are
provable in PV when their parameters are restricted to logarithmically small
numbers. One cannot avoid using these technical results, and although it is
not unexpected that the formalization is provable in PV , the only way how
to verify this seems to be to actually prove them in PV .

A.1 Definition Let n ∈ Log, k, i ≤ n. Define[
n

i

]
k

:=
(
n

i

)
ki(n− k)n−i,

(
n
<i

)
:=
∑

j<i

(
n
j

)
,
[
n
<i

]
k

:=
∑

j<i

[
n
j

]
k
.

A.2 Theorem (Stirling’s bound) There is a c > 1 such that PV proves

0 < k < n ∈ Log → 1
c

(
n

k

)
≤ nn

kk(n− k)n−k

√
n

k(n− k)
≤ c
(
n

k

)
.

(We will abbreviate this as “
(
n
k

)
= Θ(· · ·).”)

Proof: Define f(i) :=
[
n
i

]
k
, and

γ(i) := f(i+ 1)/f(i) = k(n− i)/((n− k)(i+ 1)).

We have j < i→ γ(j) > γ(i), because (j + 1)(n− i) < (i+ 1)(n− j). Also

γ(k − 1) = (n− k + 1)/(n− k) > 1 > k/(k + 1) = γ(k),

hence f(i+ 1) > f(i) for i < k, and f(i+ 1) < f(i) for i ≥ k.
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Let i < k. We have k(n− i+1)f(j−1) ≤ (n−k)i f(j) for any 0 < j ≤ i,
hence

(k(n− i+ 1))`f(i− `) ≤ ((n− k)i)`f(i)

for any 0 ≤ ` ≤ i (by ∆b
1-induction on `). Using induction once again, we

find that

(k(n− i+ 1))`(k(n− i+ 1)− (n− k)i)
i−1∑
j=i−`

f(j) ≤

≤ (n− k)i((k(n− i+ 1))` − ((n− k)i)`)f(i),

in particular,

(k(n− i+ 1))i(kn+ k − in)
∑
j<i

f(j)

≤ (n− k)i((k(n− i+ 1))i − ((n− k)i)i)f(i)

≤ (n− k)i(k(n− i+ 1))if(i),

hence ∑
j<i

f(j) ≤ (n− k)i
kn+ k − in

f(i) ≤ (n− k)i
n(k − i)

f(i).

Similarly, ∑
j>i

f(j) ≤ k(n− i)
n(i− k)

f(i) for any i > k.

Put s :=
⌊√

k(n−k)
n

⌋
. Then

1
f(k − s− 1)

∑
j<k−s−1

f(j) ≤ n− k
n

(
k

s+ 1
− 1
)

≤ n− k
n

(√
kn

n− k
− 1

)

=

√
k(n− k)

n
− n− k

n
≤ s+

k

n
,

hence

∑
j≤k

f(j) ≤
∑

j<k−s−1

f(j) +
k∑

j=k−s−1

f(j)

≤
(
s+

k

n

)
f(k − s− 1) + (s+ 2)f(k) ≤

(
2s+ 2 +

k

n

)
f(k).
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Similarly we may show∑
j>k

f(j) ≤
(

2s+ 2− k

n

)
f(k),

hence

nn =
n∑
j=0

f(j) ≤ 4(s+ 1)f(k) ≤ 8sf(k),

in other words(
n

k

)
≥ nn

8skk(n− k)n−k
≥ nn

8kk(n− k)n−k

√
n

k(n− k)
.

Claim 1 PV proves

b ∈ Log, b > 0 → (b+ 1)b+1 ≤ 4bb+1.

Proof: By induction on b. The claim holds if b = 1. Assume b > 1 and
bb ≤ 4(b− 1)b. Straightforward induction on d shows that

cd ≤ (c+ 1)d − d(c+ 1)d−1 +
(
d

2

)
(c+ 1)d−2, d ≥ 2,

hence

(b− 1)b+1(b+ 1)b+1 = (b2 − 1)b+1

≤ b2b+2 − (b+ 1)b2b +
b2 + b

2
b2b−2

= b2b+2 − b2b−1 − 1
2
b2b +

1
2
b2b−1

≤ b2b+2 − b2b+1 = (b− 1)bb+1bb

≤ 4(b− 1)b+1bb+1,

thus (b+ 1)b+1 ≤ 4bb+1. � (claim 1)

Claim 2 PV proves

a, b ∈ Log, b > 0 → (b+ a)b ≤ 4abb.

Proof: The case a = 0 is trivial. If a = 1, we have (b + 1)b+1 ≤ 4bb+1 ≤
4(b+ 1)bb by previous claim, hence (b+ 1)b ≤ 4bb. We proceed by induction
on a. Using the induction hypothesis for a and 1, we have

(b+ a+ 1)b+a ≤ 4(b+ a)b+a ≤ 4a+1bb(b+ a)a ≤ 4a+1bb(b+ a+ 1)a,

hence (b+ a+ 1)b ≤ 4a+1bb. � (claim 2)
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Let i ≤ s. Then in(i− 1) ≤ k(n− k), hence

γ(k − i) =
k(n− k + i)

(n− k)(k − i+ 1)
= 1 +

k + n(i− 1)
(n− k)(k − i+ 1)

≤ 1 +
in

k(n− k)
.

Since (assuming i even) f(k − i/2) ≤ f(k − i)γi/2(k − i), this implies

(k(n− k))i/2f(k − i/2) ≤ (k(n− k) + in)i/2f(k − i),

and, using claim 2,

(k(n− k))
i
2
k(n−k)(f(k − i/2))k(n−k)

≤ (k(n− k) + in)
i
2
k(n−k)(f(k − i))k(n−k)

≤ (4in(k(n− k))k(n−k))i/2(f(k − i))k(n−k)

= (k(n− k))
i
2
k(n−k)2i

2n(f(k − i))k(n−k),

hence
(f(k − i/2))k(n−k) ≤ 2i

2n(f(k − i))k(n−k).

Choose ` such that 2` ≤ s < 2`+1. Then 4` ≤ k(n− k)/n, and an induction
shows that

(f(k − 1))k(n−k) ≤ (f(k − 2`))k(n−k)2
4
3
(4`−1)n

≤ (f(k − 2`))k(n−k)2
4
3
k(n−k) ≤ (3f(k − 2`))k(n−k),

hence f(k − 2`) ≥ f(k − 1)/3 ≥ f(k)/6. This implies

nn ≥
2`∑
j=1

f(k − j) ≥ 2`f(k − 2`) ≥ 2`

6
f(k) ≥ s+ 1

12
f(k),

which means(
n

k

)
≤ 12nn

(s+ 1)kk(n− k)n−k
≤ 12nn

kk(n− k)n−k

√
n

k(n− k)
. �

A.3 Corollary PV proves: for any 0 < k < n ∈ Log,

|k − i| ≤
√
k(n− k)

n
→

[
n

i

]
k

= Θ
([
n

k

]
k

)
.

(Here |·| denotes absolute value, not the length function.) �

A.4 Theorem The following is provable in PV . Let k, n ∈ Log be such

that n > k > 0, and denote s =
√

k(n−k)
n .
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(i) Assume i ≤ s. Then[
n

< k − i

]
k

= Θ
(
s

[
n

k − i

]
k

)
= Θ(nn),

[
n

> k + i

]
k

= Θ
(
s

[
n

k + i

]
k

)
= Θ(nn).

(ii) Assume i ≥ s.[
n

< k − i

]
k

= Θ
((

1− k

n

)(
k

i
− 1
)[

n

k − i

]
k

)
,

[
n

> k + i

]
k

= Θ
(
k

n

(
n− k
i
− 1
)[

n

k + i

]
k

)
.

Proof: It suffices to show the
[
n
<···
]
-part, as

[
n
j

]
k

=
[
n
n−j
]
n−k

.
First assume i ≤ s. We already know from the proof of A.2 that[

n

< k − i

]
k

≤
[
n

< k

]
k

= O

(
s

[
n

k

]
k

)
= O

(
s

[
n

k − i

]
k

)
= O(nn).

If i ≤ s/2, we also have[
n

< k − i

]
k

≥
[

n

< k − s/2

]
k

≥ s

2

[
n

k − s

]
k

= Ω
(
s

[
n

k − i

]
k

)
= Ω(nn).

The case of s/2 < i ≤ s is treated similarly: the proof of
[
n
k−s
]
k

= Ω
([
n
k

]
k

)
can be easily adapted to

[
n

k−2s

]
k
.

Now assume k ≥ i > s. We have already proved that[
n

< k − i

]
k

≤ (n− k)(k − i)
ni

[
n

k − i

]
k

.

If i = k, clearly
[

n
<k−i

]
k

= 0 = k
i − 1. If k > i ≥ k/4, we have[

n
<k−i

]
k[

n
k−i
]
k

≥ 1
γ(k − i− 1)

=
(n− k)(k − i)
k(n− k + i+ 1)

≥ (n− k)(k − i)
kn

≥ (n− k)(k − i)
4ni

.

Let k/4 > i > s, and define f and γ as in the proof of A.2. By the
monotonicity of γ and simple induction, we have

f(k − i− j) ≥ f(k − i)(γ(k − 2i))−j ,
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hence (putting γ = γ(k − 2i))[
n

< k − i

]
k

≥
i∑

j=1

f(k − i− j) ≥ f(k − i)
i∑

j=1

γ−j

= f(k − i) 1
γ − 1

(1− γ−i)

= f(k − i)(n− k)(k − 2i+ 1)
n(2i− 1) + k

(
1−

(
(n− k)(k − 2i+ 1)
k(n− k + 2i)

)i)
.

Notice that

(n− k)(k − 2i+ 1)
n(2i− 1) + k

≥ (n− k)(k − 2i+ 1)
2ni

≥ (n− k)k
4ni

≥ (n− k)(k − i)
4ni

.

Claim 1 ba+b2a ≤ (a+ b)a+b for any a, b ∈ Log.

Proof: Case a = 0 is trivial. If a = 1, we have

(b+ 1)b+1 ≥ bb+1 + (b+ 1)bb ≥ 2bb+1.

Proceed by induction on a. Assuming the hypothesis for a, we have

ba+b+12a+1 ≤ 2b(a+ b)a+b ≤ 2(a+ b)a+b+1 ≤ (a+ b+ 1)a+b+1.

� (claim 1)

Put a = n(2i− 1) + k, b = (n− k)(k− 2i+ 1) (hence a+ b = k(n− k+ 2i)).
We have

2aibi(a+b) ≤ (a+ b)i(a+b).

On the other hand, i2n ≥ k(n− k) implies

ia− (a+ b) = 2i2n− in− kn+ k2 − ik ≥ i2n− i(n+ k) ≥ in(i− 2) ≥ 0,

hence
2a+bbi(a+b) ≤ (a+ b)i(a+b).

This means that

1−
(

b

a+ b

)i
≥ 1− 1

2
=

1
2
,

thus [
n

< k − i

]
k

≥ (n− k)(k − i)
8ni

[
n

k − i

]
k

. �
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A.5 Theorem (Chernoff’s bound) PV proves: for any n, k, i ∈ Log

such that k ≤ n and n > 0,

1
nn

([
n

≤ k − i

]
k

+
[

n

≥ k + i

]
k

)
= O(4−i

2/n).

Proof: The interesting case is to bound
[

n
<k−i

]
k

when 0 < i < k < n.

If i ≤ s =
√

k(n−k)
n , there is also nothing to prove, because i2/n ≤ (1 −

k/n)k/n ≤ 1/4, and the left-hand side is bounded by 1. Assume i > s. We
know from A.2 and A.4 that

1
nn

[
n

< k − i

]
k

≤ c
(

1− k

n

)(
k

i
− 1
)√

n

(k − i)(n− k + i)
×

× kk−i(n− k)n−k+i

(k − i)k−i(n− k + i)n−k+i

for some c. Since i > s, we have(
1− k

n

)(
k

i
− 1
)√

n

(k − i)(n− k + i)
=
n− k
i

√
k − i

n(n− k + i)

≤

√
(n− k)(k − i)
k(n− k + i)

=

√
1− ni

k(n− k + i)
≤ 1.

As with the proof of A.4, it is not hard to show that (1 + 1/a)a ≤ (1 + 1/b)b

and (1 + 1/b)b+1 ≤ (1 + 1/a)a+1 whenever 0 < a ≤ b ∈ Log, hence also
(1 + 1/a)a ≤ (1 + 1/b)b+1 for any a, b, in other words

(1 + 1/b)b+1(1− 1/(a+ 1))a ≥ 1.

Let a, b, j ∈ Log, 0 < j < b. Then(
1 +

1
b− j

)b(
1− 1

a+ j

)a
=
(

1 +
1

b− j

)b−j+1(
1− 1

a+ j

)a+j−1

×
(

1 +
1

b− j

)j−1(
1− 1

a+ j

)−(j−1)

≥
(

1 +
1

b− j

)j−1(
1 +

1
a+ j − 1

)j−1

,

thus[(
1 +

1
b− j

)b(
1− 1

a+ j

)a](b−j)(a+j−1)(a+b)
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≥

[(
1 +

1
b− j

)(b−j)(a+j−1)(
1 +

1
a+ j − 1

)(b−j)(a+j−1)
](j−1)(a+b)

≥ 2(j−1)(a+b−1)2 ≥ 24(j−1)(b−j)(a+j−1),

because (x+ y)2 ≥ 4xy. Therefore

42(j−1)(a+ j)a(a+b)(b− j)b(a+b) ≤ (a+ j − 1)a(a+b)(b− j + 1)a(a+b),

and by induction on i we have

4i
2−i(a+ i)(a+b)(b− i)b(a+b) ≤ aa(a+b)ba(a+b)

for any 0 ≤ i < b. Put a = k − i and b = n− k + i. Then

4i
2−n

(
kk−i(n− k)n−k+i

)n
≤ 4i

2−i
(
kk−i(n− k)n−k+i

)n
≤
(

(k − i)k−i(n− k + i)n−k+i
)n
,

hence
kk−i(n− k)n−k+i

(k − i)k−i(n− k + i)n−k+i
≤ 4(−i2+n)/n = 4 · 4−i2/n,

and finally
1
nn

[
n

< k − i

]
k

≤ 4c · 4−i2/n. �
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