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experiments which show that the hard disk algorithm finds the best packing much easier than
the soft disk algorithm when there are many local close-by optima: on the way to those optima
configuration space {7}, disconnects at a very late stage of the expansion. Relative chance for
the trajectory to stay in the configuration subvolume that leads to the global optimum is very
high. It should be also noted that as the number of disks n increases, the presence of multiple
local optima near the global optimum become a rule rather than exception; thus the hard disk
packing method becomes progressively more advantageous than the soft disk packing method.

5. Discussion

Given the advantage of the hard disk method why do researchers use the soft disk
procedure, instead? Probably because it is a simpler algorithm. The structure of the soft
disk program is straightforward: given configuration Z(t), compute configuration Z (¢ + At)
by adding uniformly to all coordinates (disk positions) z;(¢) a similarly computed increment
Az;(t). This Az;(t) may be the ith coordinate of the gradient of P(Z) prorated with a certain
step. By contrast, the hard disk algorithm must discern complex combinatorics of asynchronous
disk collisions and as such is not so easy to program. It involves examining the states only of
nearby disks for processing a collision of a disk. Various data structures are employed to make
the computations efficient [L91].
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{Z} has degenerated in the figure to one dimension. Z(") and Z®) are the two configurations
that yield the optima; Z® yields the global optimum. To make comparison more in favor of

Figure 4.1: Comparing the chances of hard and soft disk trajectories to reach the optimum

the soft disk procedure, we ignore the fact that the latter finds optima only approximately. The
initial configuration space {7} is partitioned into two basins {Z}q = By B2 corresponding
to attractors Z() and Z() respectively, in the gradient field of P(Z). Depending on whether
initial configuration Z(0) belongs to By or By the final configuration will be Z() or Z(2) re-
spectively. Under the uniform choice of Z(0) the chance to get to the global optimum Z® is
the fraction which the volume of By constitutes in the total volume of {7}, = By U Bo.

Under the hard disk procedure, rather than taking into account the initial disk config-
uration at d = 0 we consider the configuration just before the time when the set of reachable
configurations disconnects into two subsets, V4 and V5. This can be done because the memory
of the initial configuration will be quickly erased along the ergodic trajectory. At the disconnect
time we have d = d.. The chance to get to the global optimum Z(?) is the fraction which the
volume of V; constitutes in the union {Z},, = Vi U V5.

In Figure 4.1 it is not clear why the hard disk trajectory is finding the global optimum
easier than the soft disk trajectory: the fraction of volume of V5 in {Z},, seems to be about the
same as the fraction of volume of By in {Z}o. This illusion of equivalence is caused by {7}
being one-dimensional. Suppose {Z}q is a k-dimensional space and like in Figure 4.1 let the
remaining increase of diameter from the disconnect point d, up to the optima be Ad; and Ads.
We will also assume, that the topology of the approaches toward the optima are similar, e.g., as
in Figure 4.1 the angles at the optima cones are equal. Then volumes of sets V; and V5 would
relate as (Ad;)* to (Ady)*. Considering high dimensionality & of the disk configuration 7, the
volume of set V; on approach to the local optimum Z™" will be overwhelmingly smaller than
that of V3 on approach to the global optimum Z) and so will be the chance for the trajectory to
converge to ZW) rather than to Z(). The advantage of the hard disk trajectory will be higher in
the cases when disconnect diameter d, is larger. This conclusion is in perfect agreement with the



where more than two disks come into contact. Across such manifolds the velocities of disks
change discontinuously (as functions of initial conditions; as functions of time, the velocities
are discontinuous even at binary collisions).

Note that the fact that the hard disk algorithm can only treat binary collisions and
recognizes no triple collisions is not essential in the consideration above. (Triple collisions prac-
tically never occur anyway.) The essential were that when disturbed the triple collision splits
into different sequences of binary collisions and that the after-collision disk velocity changes in
a discontinuous fashion when the collision sequence thus changes.

At the final stages of the hard packing procedure, when the configuration is close to
being tight (like in Figure 2.5), the “almost” triple and multiple collisions occur very frequently
because the disks are very close to each other. The velocity discontinuity in the hard-packing
procedure coupled with the roundoff noise creates intensive probing micro motions within the
shrinking available configuration volume as the disk positions converge. The velocities of the
disks do not converge, in particular, do not converge to zero. The disks continue to randomly
vibrate, so to say. By contrast, at the final iterations of the soft packing procedure, the gradient
in the steepest descent (analogous to the velocity in the hard packing procedure) converges to
zero as the disk center positions converge.

Figure 3.1: The outcome of the mirror symmetric triple collision is not mirror symmetric if
treated as a sequence of two binary collisions

4. Advantages of the hard disk procedure

Suppose the expansion rate F in the hard disk procedure is very small and that the
trajectory Z(t) generated under such F is ergodic for sufficiently large ¢. The ergodicity means
that given a measurable subset S in the available for a given disk diameter d = d(t) connected
configuration set {7}, (which is also assumed to be measurable), at a random time ¢ the
configuration Z(t) is found in S with probability equal to the fraction of volume of S in the
total volume of {Z};. The ergodicity means, in particular, totally “forgetting” the initial
configuration Z(0).

Proving ergodicity in this situation as in many other cases is a very difficult task. We
assume the ergodicity holds and see which advantage it gives to the procedure. Consider a very
schematic rendering in Figure 4.1 where possible trajectories of the hard and soft disk proce-
dures are drawn when there are two local optima. The high dimensional configuration space



disks, like that in Figure 2.4, the soft packing procedure would not even produce approximation
good enough to draw the “approximate” picture.

3. Implicit randomness of the hard disk method

As mentioned in the introduction, both hard and soft disk packing methods generate a
configuration trajectory, which can be formally considered as deterministic. If the computations
were performed with the infinite precision, we could in both cases start with the configuration 7
resulted after some amount of processing, and by reversing the computations, obtain the initial
configuration Zy (for example, the disk collision diagram in Figure 2.2 is time reversible). Real
computations are subject to the roundoff noise which makes the trajectories non-reversible and
non-deterministic. We argue, that the amounts of the non-determinism are substantially differ-
ent in these two cases. While the soft method generates essentially a deterministic trajectory,
which “remembers” the initial state, we argue that the trajectories generated by hard method
are ergodic, with many probing motions, virtually random; the memory of the initial state is
lost very rapidly.

An indication of the difference is in the continuity of the trajectory with respect to the
initial condition. First consider the soft packing. Let Z(0) be initial configuration of disks and
Z(t) be the configuration at time (or after step) ¢. Potential P(Z) have the only singularities
when z; = z; for ¢« # j and it is usually assured that the trajectory {Z(7),0 < 7 < t}
(or sequence of configurations Z(0), Z(1),...7(t)) stays well separated from the singularities.
Because of smoothness of the potential, Z(¢ + 1) which results from Z(t) in a steepest descent
or another gradient method continuously depends on Z(t). Hence given ¢ and ¢ > 0 we can
always find sufficiently small 6 > 0 such that if we disturb Z(0) within the é-neighborhood of its
non-disturbed value, then Z(¢) will stay within the e-neighborhood of its non-disturbed value.
In other words, a finite segment of the trajectory of the soft packing algorithm is continuous
with respect to the initial conditions.

Under the hard packing algorithm such continuity generally does not hold. To see that
consider Figure 3.1, which depicts a triple collision. Three disks, 1, 2, and 3 simultaneously
arrive at the corresponding positions zy, z9, and z3 with the pre-collision vector velocities vy, vy,
and vs, respectively. At the collision time %, disks 1 and 2 are in contact, as well as disks 2 and
3, but not disks 1 and 3. The pre-collision position Z = {z1, 23, 23} and velocity V = {vq, vy, v3}
configurations are mirror symmetric with respect to the middle vertical line M. There are two
possible orders of processing the triple collision. In one order, disks 1 and 2 collide first and

(1) (1) (2)

obtain new velocities vy’ and vy ', and then disks 2 and 3 collide and obtain new velocities vy
and v:(f). The initial velocity of disk 2 for the second pairwise collision is vgl) as if the second
collision occurred later than the first one. (The after-collision velocities can be obtained using
the method depicted in Figure 2.2.) As a result of this order of processing, the after-collision
velocity configuration V" is not mirror-symmetric. If 2 and 3 collide first and then 1 and 2
collide, the conclusion is the same, but the V" resulted in the latter order of processing is
the mirror-image of the V" under the former order.

Because of the non-symmetry, it is clear that if we make a é-small disturbance to the
initial position configuration Z so that, in particular, pairs 1-2 and 2-3 do not come to their
collision sites simultaneously, then, no matter how small é, the configurations at finite time
t > t. will be substantially different. Thus, continuity of the dependence of the trajectory

with respect to initial condition is broken in the configuration space {Z} across the manifolds



mented with a “tightening” procedure. The input to the latter includes a list of pairs {(¢,7)}
of disks, such that |z; — z;| = d, and a list {¢} of disk indices, such that |z;| = 1, in other
words, the lists of contacts. Those contacts should be derived from examining numerically the
steady-state configuration Z. The contacts are written as equations and an iterative procedure
is set to find a solution to this usually overdefined system. The approximate configuration Z
is used as a starting point for the iterations. Disk diameter does not enter the equations as a
known value but if a solution is found, the diameter can be derived thereof. The tightening
procedure is implemented with an arbitrary precision; for example, it can be run with 100 dec-
imal digits. Considering such a precision, if the procedure numerically converges, we conclude
with a justifiable confidence that the configuration exists, in particular, all contacts are guessed
correctly.

Figure 2.5: The best found packing of 53 equal disks in a circle. All contacts are marked with
black dots. An absence of a dot indicates a positive gap.

For a large number of disks it may be difficult to guess the contacts, though. Figure 2.5
presents a case in point. The scale and resolution of the picture are not sufficient for correct
identification of the contacts. Numerical examining of the configuration obtained under the
hard disk algorithm allows one to split the suspected contacts into sets A and B. In A, a gap
between the disks in a pair or the boundary and a disk does not exceed 10712 fraction of a disk
diameter, d. The smallest gap in B is between disks 34 and 40 and it is equal d - 6.5.. - 1075,

This gives a clear identification of the contacts for the tightening procedure. After the
procedure converges, the resulted configuration has all the contacts (set A) confirmed as such
to within d - 1072%. All gaps that look like contacts (set B) are confirmed as gaps and the
sizes of the gaps are also confirmed. By contrast, the soft disk packing, although it generates
a similarly looking picture (except for contact identification), does not separate clearly the
contacts from the gaps.

One can apply the tightening procedure for each possible subset A chosen as guessed
contacts until the procedure converges thereby confirming the guess. In the given case there
are 2! ways to choose set A, because |A|J B| = 115. Too many to try! That is how the soft
packing method fails here in favor of the hard packing method. For much larger number of



Figure 2.4: Another packing of 2000 disks in a square with periodic boundary obtained under
a slow disk expansion, £ = 0.001. If the monovacancy near the center is filled with the 2001-st
disk, the obtained packing seemingly becomes perfectly symmetric. Might that be the best
packing of 2001 equal disks in a square with periodic boundary? Its experimentally computed
density (when the 2001-th disk is inserted) is 0.901635...

For a fixed m, a steady-state of this motion (a Z such that the sum of repulsion forces is
zero for each disk center; such 7 is also a local minimum of P(Z7)) only approximates a local
maximum of d(Z) of the original packing problem. One needs to increase m in the course of
the system evolution to “harden” the disks. In the limit m = oo local minima of P(Z) are the
same as local maxima of d(Z). The “hardened” disk diameter, when m — oo, is A, so the A
must increase together with m or be guessed sufficiently close to the optimum value of d.

Because of its approximate nature, the soft disk packing procedure in [GLNO98] is compli-



Figure 2.3: A packing of 2000 disks in a square with periodic boundary. The packing is obtained
under a fast disk expansion, £ = 100. The packing consists of crystalline grains with many
rattlers (non-constrained disks; they are unshaded) concentrated along the grain boundaries.

Monovacancies occur within the hexagonally packed grains.

consider the boundary, which can be introduced in several ways, for example by adding in (1)

components that repel disk centers from approaching and penetrating it. Potential P(Z) gives

rise to a certain gradient procedure of descent which results in a sequence Z(0), Z(1), Z(2)...

of configurations that can be roughly thought of as representing a deterministic motion of the

configuration vector Z under the repulsion forces generated by the potential.



proportionally change both the disk expansion speed and linear disk velocities. We normalize
the simulation input by assuming the unity mean initial disk velocity. Thus E becomes the
rate of disk expansion in relation to the mean disk velocity.

Figure 2.2: Change of velocities of two disks at their collision

Figures 2.3 and 2.4 present two out of many packings thus obtained. The resulting
structure depends on many factors, including initial disk center positions and initial velocities.
By far, the most important parameter is the disk expansion rate F. For smaller £, final
configurations are more regular and have larger final disk diameter d and density, defined as
fraction of the region area which is covered by disks. Experiments show that as £ — 0, while
other parameters stay the same, the chance to obtain the best packing increases. But smaller
E also means longer computing. For example, the packing in Figure 2.4 of 2001 disks obtained
under a very slow disk expansion £ = 0.001 (with one extra disk placed into the vacancy near
the packing center) seems so symmetric, that one may conjecture its optimality.

While the original problem is that of packing hard disks, most researchers prefer to
treat disks as soft ones, wherein the potential imposed is such that a disk center “feels” the
presence of other centers at distances larger than those at which disks touch each other. To
be specific, consider disk packing in a circle. It is convenient, as is done in [GLNO9S8], to
substitute the original problem of densest packing of n equal disks in a circle of a given radius
with the problem of sparsest spread of n points inside a circle of unity radius centered at the
origin. In the latter problem we are required to find configuration Z of n points on the plane,
Z = {z,72,...2,}, so that |z] <1 and the quantity d = d(Z) = min;j|z; — z;| is as large as
possible. The two formulations are equivalent: a sparsest spread Z can be also considered as a
densest packing. The configuration of disk centers in the packing would coincide with Z, the
disk diameter would be d(Z), and the enclosing circular region would be centered at the origin
and would have diameter 2 + d(7).

Thus, in a setting where the optimal spread is sought, [GLNO98] proposes potential

o= £ () &

where A > 0 is a scaling factor and m > 0 controls the speed at which interdisk repulsion forces
diminish with distance, smaller m softer the disks. For simplicity of the discussion, we do not
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space available while being subject to dynamic interactions with a certain force potential. The
potential is chosen so that disk centers repel each other thereby expressing the optimization
objective. Depending on the form of the potential the procedures can be split into two classes:
packing soft disks and packing hard disks.

Hard disks pack easier than soft ones. The resulting configurations are consistently better:
for values of n when both methods work, hard packings deliver larger d. In addition, hard disk
method delivers a stable packing for substantially larger values of n than its soft counterpart,
which gets stuck for such n. This note tries to explain this experimental observation.

It is argued below that while both methods generate formally deterministic disk trajectories,
an operating factor of the hard packing method is its implicit randomization. The trajectory
generated by the hard packing is ergodic. This becomes the method’s key advantage over its
soft packing counterpart when the global optimum is hidden among multiple close-by local
optima. It should be noted that the issues discussed involve hard mathematical problems.
A frontal attack on those problems does not seem feasible, so the discussion below is mostly
heuristic, based on plausible assumptions and on examples, drawn from experience.

2. Hard and soft packings in comparison

Figure 2.1 illustrates the work of a hard disk algorithm while packing 2000 equal disks
in a square with periodic boundary (torus). The initial stage at time £ = 0 is represented on
the top square in the figure where 2000 points are randomly scattered. To each point an initial
velocity vector is randomly assigned (not shown). Some points lie outside the square; they are
periodic images of the corresponding points inside. When ¢ > 0, the points grow into disks,
and all disks at each time ¢ have common diameter d = Kt, where £/ > 0 is a fixed expansion
parameter. The growth continues until the configuration “jams,” at which time one expects to
have a packing.

At t = 0 disks do not overlap because their sizes are zero. By definition, the hard disk
potential causes no force between two disks with centers z; and zy if |27 — 22| > d. Thus, at
t > 0, for as long as the distance from the disk to any other disk remains larger than d, the
disk moves along a straight line with a constant velocity. At some time ¢, > 0 the first contact
occurs: |z1 — 29| = d for some disks 1 and 2. An infinite repelling force is generated between
the two disks once |21 — 23| < d. As a result, the time duration is zero when the disks are
staying in contact. During the contact an ideal elastic collision of two particles of equal masses
is simulated. Both disks instantaneously change their velocity vectors so as to conserve total
momentum and energy according to the rule of elastic collision.

The insert in Figure 2.1 shows such a collision. The details of velocity change for a
pairwise disk collisions are shown in Figure 2.2 in the case of expansion rate £ = 0. For¢ = 1,2
we have decompositions vfld = vfang + o and oY = vfang + 057 of the old and new
vector velocities, respectively. The velocities are represented as the sums of the normal and
tangential components with respect to the tangential line of impact. The exchange of normal
velocity components occur: the new normal velocity component of disk ¢ is the old normal
velocity component of disk 3 — . It can be easily shown (and is seen in Figure 2.2) that at
t > t. the two disks are moving away from each other. When £ > 0, normal components of the
after-collision velocities are augmented, so as to assure the non-overlap. This motion continues
until the next collision of at least one of the two participants, at which time a new velocity ex-
change occurs and so on. Note that the evolution of the disk configuration does not change if we
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Abstract

Two methods for generating dense disk packings inside 2D containers are compared
in their efficiency. Both methods simulate a dynamic system of moving disks with disks
being subject to a repulsion force potential. Depending on the form of the potential, the
disks are treated as hard particles in one method, or soft ones in the other. Whereas the
simulated trajectory of disk configuration is formally deterministic in both methods, it is
argued that under the hard disk potential, the trajectory is ergodic as if the disk motion
was random, which creates an advantage over the truly deterministic method under the
soft disk potential. The hard disk method is experimentally shown to be able to discern a
delicate distinction of the global optimum from multiple close-by local optima whereas the
soft disk method usually gets stuck when the global optimum is hidden among multiple
local optima.

Key words: dense disk packing, optimization, hard spheres, steepest descent, ergodic

1. Introduction

Consider the task of fitting without overlaps a given number n of equal diameter disks
entirely inside a given 2D container so that the disks have the largest diameter possible. A
“recreational” simplicity of the formulation of the optimal disk packing problem hides a math-
ematical challenge. Over the years the problem has attracted a substantial attention of mathe-
maticians (see, e.g., [FG69] [GT0] [GMPWI1] [O61] [ST1] [S79] [V89]). In physics and material
science, packings of disks (and spheres in 3D) have been advanced as representing the short-
range atomic order that exists in solids or the arrangements of particles adsorbed on smooth
surfaces and colloidal suspensions [LLS90]. There are also connections between optimal packings
and optimal codes [CS93] [GS90].

Mathematicians tried to improve packing records using paper, pencil, and perhaps,
round coins, as the primary tools. Because the difficulty of the task increases with n, but the
power and resolution of manual and mechanical methods (one of such is described in [R75])
are bounded, the stream of new published disk packings ceased in about mid "70s. The values
of n in most cases were below n = 20. Recently many new interesting disk packings have been
discovered for substantially larger n. The recent surge of disk packing activity is based on
computer procedures [MS95] [M97] [NO96] [MFP95] [GL96].

Simulating a dynamic system of moving disks whose steady states correspond to disk
packings is a popular computing method for solving the problem. Such a procedure starts with
a random placement of n disk centers inside the container. Then the disks negotiate the limited



