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experiments which show that the hard disk algorithm �nds the best packing much easier than

the soft disk algorithm when there are many local close�by optima� on the way to those optima

con�guration space fZgd disconnects at a very late stage of the expansion� Relative chance for

the trajectory to stay in the con�guration subvolume that leads to the global optimum is very

high� It should be also noted that as the number of disks n increases� the presence of multiple

local optima near the global optimum become a rule rather than exception� thus the hard disk

packing method becomes progressively more advantageous than the soft disk packing method�

�� Discussion

Given the advantage of the hard disk method why do researchers use the soft disk

procedure� instead� Probably because it is a simpler algorithm� The structure of the soft

disk program is straightforward� given con�guration Z�t
� compute con�guration Z�t � �t


by adding uniformly to all coordinates �disk positions
 zi�t
 a similarly computed increment

�zi�t
� This �zi�t
 may be the ith coordinate of the gradient of P �Z
 prorated with a certain

step� By contrast� the hard disk algorithmmust discern complex combinatorics of asynchronous

disk collisions and as such is not so easy to program� It involves examining the states only of

nearby disks for processing a collision of a disk� Various data structures are employed to make

the computations e�cient �L�	��
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fZg� has degenerated in the �gure to one dimension� Z��� and Z��� are the two con�gurations

that yield the optima� Z��� yields the global optimum� To make comparison more in favor of

d

⎨Z⎬ 0
Z ( 1 ) Z ( 2 )

d *

Δd 1

Δd 2

V 1 V 2

B 1 B 2

soft disks hard disks

Z( 0 )

Figure ��	� Comparing the chances of hard and soft disk trajectories to reach the optimum

the soft disk procedure� we ignore the fact that the latter �nds optima only approximately� The

initial con�guration space fZg� is partitioned into two basins fZg� � B�
S
B� corresponding

to attractors Z��� and Z���� respectively� in the gradient �eld of P �Z
� Depending on whether

initial con�guration Z��
 belongs to B� or B� the �nal con�guration will be Z��� or Z���� re�

spectively� Under the uniform choice of Z��
 the chance to get to the global optimum Z��� is

the fraction which the volume of B� constitutes in the total volume of fZg� � B�
S
B��

Under the hard disk procedure� rather than taking into account the initial disk con�g�

uration at d � � we consider the con�guration just before the time when the set of reachable

con�gurations disconnects into two subsets� V� and V�� This can be done because the memory

of the initial con�guration will be quickly erased along the ergodic trajectory� At the disconnect

time we have d � d�� The chance to get to the global optimum Z��� is the fraction which the

volume of V� constitutes in the union fZgd� � V�
S
V��

In Figure ��	 it is not clear why the hard disk trajectory is �nding the global optimum

easier than the soft disk trajectory� the fraction of volume of V� in fZgd� seems to be about the

same as the fraction of volume of B� in fZg�� This illusion of equivalence is caused by fZg�
being one�dimensional� Suppose fZg� is a k�dimensional space and like in Figure ��	 let the

remaining increase of diameter from the disconnect point d� up to the optima be �d� and �d��

We will also assume� that the topology of the approaches toward the optima are similar� e�g�� as

in Figure ��	 the angles at the optima cones are equal� Then volumes of sets V� and V� would

relate as ��d�
k to ��d�
k� Considering high dimensionality k of the disk con�guration Z� the

volume of set V� on approach to the local optimum Z��� will be overwhelmingly smaller than

that of V� on approach to the global optimum Z��� and so will be the chance for the trajectory to

converge to Z��� rather than to Z���� The advantage of the hard disk trajectory will be higher in

the cases when disconnect diameter d� is larger� This conclusion is in perfect agreement with the



where more than two disks come into contact� Across such manifolds the velocities of disks

change discontinuously �as functions of initial conditions� as functions of time� the velocities

are discontinuous even at binary collisions
�

Note that the fact that the hard disk algorithm can only treat binary collisions and

recognizes no triple collisions is not essential in the consideration above� �Triple collisions prac�

tically never occur anyway�
 The essential were that when disturbed the triple collision splits

into di�erent sequences of binary collisions and that the after�collision disk velocity changes in

a discontinuous fashion when the collision sequence thus changes�

At the �nal stages of the hard packing procedure� when the con�guration is close to

being tight �like in Figure ���
� the �almost triple and multiple collisions occur very frequently

because the disks are very close to each other� The velocity discontinuity in the hard�packing

procedure coupled with the roundo� noise creates intensive probing micro motions within the

shrinking available con�guration volume as the disk positions converge� The velocities of the

disks do not converge� in particular� do not converge to zero� The disks continue to randomly

vibrate� so to say� By contrast� at the �nal iterations of the soft packing procedure� the gradient

in the steepest descent �analogous to the velocity in the hard packing procedure
 converges to

zero as the disk center positions converge�
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Figure ��	� The outcome of the mirror symmetric triple collision is not mirror symmetric if
treated as a sequence of two binary collisions

�� Advantages of the hard disk procedure

Suppose the expansion rate E in the hard disk procedure is very small and that the

trajectory Z�t
 generated under such E is ergodic for su�ciently large t� The ergodicity means

that given a measurable subset S in the available for a given disk diameter d � d�t
 connected

con�guration set fZgd �which is also assumed to be measurable
� at a random time t the

con�guration Z�t
 is found in S with probability equal to the fraction of volume of S in the

total volume of fZgd� The ergodicity means� in particular� totally �forgetting the initial

con�guration Z��
�

Proving ergodicity in this situation as in many other cases is a very di�cult task� We

assume the ergodicity holds and see which advantage it gives to the procedure� Consider a very

schematic rendering in Figure ��	 where possible trajectories of the hard and soft disk proce�

dures are drawn when there are two local optima� The high dimensional con�guration space



disks� like that in Figure ���� the soft packing procedure would not even produce approximation

good enough to draw the �approximate picture�

�� Implicit randomness of the hard disk method

As mentioned in the introduction� both hard and soft disk packing methods generate a

con�guration trajectory� which can be formally considered as deterministic� If the computations

were performed with the in�nite precision� we could in both cases start with the con�guration Z

resulted after some amount of processing� and by reversing the computations� obtain the initial

con�guration Z� �for example� the disk collision diagram in Figure ��� is time reversible
� Real

computations are subject to the roundo� noise which makes the trajectories non�reversible and

non�deterministic� We argue� that the amounts of the non�determinism are substantially di�er�

ent in these two cases� While the soft method generates essentially a deterministic trajectory�

which �remembers the initial state� we argue that the trajectories generated by hard method

are ergodic� with many probing motions� virtually random� the memory of the initial state is

lost very rapidly�

An indication of the di�erence is in the continuity of the trajectory with respect to the

initial condition� First consider the soft packing� Let Z��
 be initial con�guration of disks and

Z�t
 be the con�guration at time �or after step
 t� Potential P �Z
 have the only singularities

when zi � zj for i �� j and it is usually assured that the trajectory fZ�� 
� � � � � tg

�or sequence of con�gurations Z��
� Z�	
� ���Z�t

 stays well separated from the singularities�

Because of smoothness of the potential� Z�t� 	
 which results from Z�t
 in a steepest descent

or another gradient method continuously depends on Z�t
� Hence given t and � � � we can

always �nd su�ciently small � � � such that if we disturb Z��
 within the ��neighborhood of its

non�disturbed value� then Z�t
 will stay within the ��neighborhood of its non�disturbed value�

In other words� a �nite segment of the trajectory of the soft packing algorithm is continuous

with respect to the initial conditions�

Under the hard packing algorithm such continuity generally does not hold� To see that

consider Figure ��	� which depicts a triple collision� Three disks� 	� �� and � simultaneously

arrive at the corresponding positions z�� z�� and z� with the pre�collision vector velocities v�� v��

and v�� respectively� At the collision time t�� disks 	 and � are in contact� as well as disks � and

�� but not disks 	 and �� The pre�collision position Z
�
� fz�� z�� z�g and velocity V

�
� fv�� v�� v�g

con�gurations are mirror symmetric with respect to the middle vertical line M � There are two

possible orders of processing the triple collision� In one order� disks 	 and � collide �rst and

obtain new velocities v
���
� and v

���
� � and then disks � and � collide and obtain new velocities v

���
�

and v
���
� � The initial velocity of disk � for the second pairwise collision is v���� as if the second

collision occurred later than the �rst one� �The after�collision velocities can be obtained using

the method depicted in Figure ����
 As a result of this order of processing� the after�collision

velocity con�guration V new is not mirror�symmetric� If � and � collide �rst and then 	 and �

collide� the conclusion is the same� but the V new resulted in the latter order of processing is

the mirror�image of the V new under the former order�

Because of the non�symmetry� it is clear that if we make a ��small disturbance to the

initial position con�guration Z so that� in particular� pairs 	�� and ��� do not come to their

collision sites simultaneously� then� no matter how small �� the con�gurations at �nite time

t � t� will be substantially di�erent� Thus� continuity of the dependence of the trajectory

with respect to initial condition is broken in the con�guration space fZg across the manifolds



mented with a �tightening procedure� The input to the latter includes a list of pairs f�i� j
g

of disks� such that jzi � zjj � d� and a list fig of disk indices� such that jzij � 	� in other

words� the lists of contacts� Those contacts should be derived from examining numerically the

steady�state con�guration Z� The contacts are written as equations and an iterative procedure

is set to �nd a solution to this usually overde�ned system� The approximate con�guration Z

is used as a starting point for the iterations� Disk diameter does not enter the equations as a

known value but if a solution is found� the diameter can be derived thereof� The tightening

procedure is implemented with an arbitrary precision� for example� it can be run with 	�� dec�

imal digits� Considering such a precision� if the procedure numerically converges� we conclude

with a justi�able con�dence that the con�guration exists� in particular� all contacts are guessed

correctly�
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Figure ���� The best found packing of �� equal disks in a circle� All contacts are marked with
black dots� An absence of a dot indicates a positive gap�

For a large number of disks it may be di�cult to guess the contacts� though� Figure ���

presents a case in point� The scale and resolution of the picture are not su�cient for correct

identi�cation of the contacts� Numerical examining of the con�guration obtained under the

hard disk algorithm allows one to split the suspected contacts into sets A and B� In A� a gap

between the disks in a pair or the boundary and a disk does not exceed 	���� fraction of a disk

diameter� d� The smallest gap in B is between disks �� and �� and it is equal d � ����� � 	����

This gives a clear identi�cation of the contacts for the tightening procedure� After the

procedure converges� the resulted con�guration has all the contacts �set A
 con�rmed as such

to within d � 	����� All gaps that look like contacts �set B
 are con�rmed as gaps and the

sizes of the gaps are also con�rmed� By contrast� the soft disk packing� although it generates

a similarly looking picture �except for contact identi�cation
� does not separate clearly the

contacts from the gaps�

One can apply the tightening procedure for each possible subset A chosen as guessed

contacts until the procedure converges thereby con�rming the guess� In the given case there

are ���	 ways to choose set A� because jA
S
Bj � 		�� Too many to try! That is how the soft

packing method fails here in favor of the hard packing method� For much larger number of



Figure ���� Another packing of ���� disks in a square with periodic boundary obtained under
a slow disk expansion� E � ����	� If the monovacancy near the center is �lled with the ���	�st
disk� the obtained packing seemingly becomes perfectly symmetric� Might that be the best
packing of ���	 equal disks in a square with periodic boundary� Its experimentally computed
density �when the ���	�th disk is inserted
 is ����	������

For a �xed m� a steady�state of this motion �a Z such that the sum of repulsion forces is

zero for each disk center� such Z is also a local minimum of P �Z

 only approximates a local

maximum of d�Z
 of the original packing problem� One needs to increase m in the course of

the system evolution to �harden the disks� In the limit m � � local minima of P �Z
 are the

same as local maxima of d�Z
� The �hardened disk diameter� when m � �� is �� so the �

must increase together with m or be guessed su�ciently close to the optimum value of d�

Because of its approximate nature� the soft disk packing procedure in �GLNO��� is compli�



Figure ���� A packing of ���� disks in a square with periodic boundary� The packing is obtained
under a fast disk expansion� E � 	��� The packing consists of crystalline grains with many
rattlers �non�constrained disks� they are unshaded
 concentrated along the grain boundaries�
Monovacancies occur within the hexagonally packed grains�

consider the boundary� which can be introduced in several ways� for example by adding in �	


components that repel disk centers from approaching and penetrating it� Potential P �Z
 gives

rise to a certain gradient procedure of descent which results in a sequence Z��
� Z�	
� Z��
���

of con�gurations that can be roughly thought of as representing a deterministic motion of the

con�guration vector Z under the repulsion forces generated by the potential�



proportionally change both the disk expansion speed and linear disk velocities� We normalize

the simulation input by assuming the unity mean initial disk velocity� Thus E becomes the

rate of disk expansion in relation to the mean disk velocity�
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Figure ���� Change of velocities of two disks at their collision

Figures ��� and ��� present two out of many packings thus obtained� The resulting

structure depends on many factors� including initial disk center positions and initial velocities�

By far� the most important parameter is the disk expansion rate E� For smaller E� �nal

con�gurations are more regular and have larger �nal disk diameter d and density� de�ned as

fraction of the region area which is covered by disks� Experiments show that as E � �� while

other parameters stay the same� the chance to obtain the best packing increases� But smaller

E also means longer computing� For example� the packing in Figure ��� of ���	 disks obtained

under a very slow disk expansion E � ����	 �with one extra disk placed into the vacancy near

the packing center
 seems so symmetric� that one may conjecture its optimality�

While the original problem is that of packing hard disks� most researchers prefer to

treat disks as soft ones� wherein the potential imposed is such that a disk center �feels the

presence of other centers at distances larger than those at which disks touch each other� To

be speci�c� consider disk packing in a circle� It is convenient� as is done in �GLNO���� to

substitute the original problem of densest packing of n equal disks in a circle of a given radius

with the problem of sparsest spread of n points inside a circle of unity radius centered at the

origin� In the latter problem we are required to �nd con�guration Z of n points on the plane�

Z � fz�� z�� ���zng� so that jzij � 	 and the quantity d � d�Z

�
� mini�
jjzi � zjj is as large as

possible� The two formulations are equivalent� a sparsest spread Z can be also considered as a

densest packing� The con�guration of disk centers in the packing would coincide with Z� the

disk diameter would be d�Z
� and the enclosing circular region would be centered at the origin

and would have diameter � � d�Z
�

Thus� in a setting where the optimal spread is sought� �GLNO��� proposes potential

P �Z

�
�

X
��i�j�n

�
�

jzi � zjj

��m
�	


where � � � is a scaling factor and m � � controls the speed at which interdisk repulsion forces

diminish with distance� smaller m softer the disks� For simplicity of the discussion� we do not
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Figure ��	� Successive stages in an instance of disk packing



space available while being subject to dynamic interactions with a certain force potential� The

potential is chosen so that disk centers repel each other thereby expressing the optimization

objective� Depending on the form of the potential the procedures can be split into two classes�

packing soft disks and packing hard disks�

Hard disks pack easier than soft ones� The resulting con�gurations are consistently better�

for values of n when both methods work� hard packings deliver larger d� In addition� hard disk

method delivers a stable packing for substantially larger values of n than its soft counterpart�

which gets stuck for such n� This note tries to explain this experimental observation�

It is argued below that while both methods generate formally deterministic disk trajectories�

an operating factor of the hard packing method is its implicit randomization� The trajectory

generated by the hard packing is ergodic� This becomes the method"s key advantage over its

soft packing counterpart when the global optimum is hidden among multiple close�by local

optima� It should be noted that the issues discussed involve hard mathematical problems�

A frontal attack on those problems does not seem feasible� so the discussion below is mostly

heuristic� based on plausible assumptions and on examples� drawn from experience�

�� Hard and soft packings in comparison

Figure ��	 illustrates the work of a hard disk algorithm while packing ���� equal disks

in a square with periodic boundary �torus
� The initial stage at time t � � is represented on

the top square in the �gure where ���� points are randomly scattered� To each point an initial

velocity vector is randomly assigned �not shown
� Some points lie outside the square� they are

periodic images of the corresponding points inside� When t � �� the points grow into disks�

and all disks at each time t have common diameter d � Et� where E � � is a �xed expansion

parameter� The growth continues until the con�guration �jams� at which time one expects to

have a packing�

At t � � disks do not overlap because their sizes are zero� By de�nition� the hard disk

potential causes no force between two disks with centers z� and z� if jz� � z�j � d� Thus� at

t � �� for as long as the distance from the disk to any other disk remains larger than d� the

disk moves along a straight line with a constant velocity� At some time t� � � the �rst contact

occurs� jz� � z�j � d for some disks 	 and �� An in�nite repelling force is generated between

the two disks once jz� � z�j � d� As a result� the time duration is zero when the disks are

staying in contact� During the contact an ideal elastic collision of two particles of equal masses

is simulated� Both disks instantaneously change their velocity vectors so as to conserve total

momentum and energy according to the rule of elastic collision�

The insert in Figure ��	 shows such a collision� The details of velocity change for a

pairwise disk collisions are shown in Figure ��� in the case of expansion rate E � �� For i � 	� �

we have decompositions voldi � v
tang
i � vnormi and vnewi � v

tang
i � vnorm��i of the old and new

vector velocities� respectively� The velocities are represented as the sums of the normal and

tangential components with respect to the tangential line of impact� The exchange of normal

velocity components occur� the new normal velocity component of disk i is the old normal

velocity component of disk � � i� It can be easily shown �and is seen in Figure ���
 that at

t � t� the two disks are moving away from each other� When E � �� normal components of the

after�collision velocities are augmented� so as to assure the non�overlap� This motion continues

until the next collision of at least one of the two participants� at which time a new velocity ex�

change occurs and so on� Note that the evolution of the disk con�guration does not change if we
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Abstract

Two methods for generating dense disk packings inside �D containers are compared

in their e�ciency� Both methods simulate a dynamic system of moving disks with disks

being subject to a repulsion force potential� Depending on the form of the potential� the

disks are treated as hard particles in one method� or soft ones in the other� Whereas the

simulated trajectory of disk con�guration is formally deterministic in both methods� it is

argued that under the hard disk potential� the trajectory is ergodic as if the disk motion

was random� which creates an advantage over the truly deterministic method under the

soft disk potential� The hard disk method is experimentally shown to be able to discern a

delicate distinction of the global optimum from multiple close�by local optima whereas the

soft disk method usually gets stuck when the global optimum is hidden among multiple

local optima�

Key words� dense disk packing� optimization� hard spheres� steepest descent� ergodic

�� Introduction

Consider the task of �tting without overlaps a given number n of equal diameter disks

entirely inside a given �D container so that the disks have the largest diameter possible� A

�recreational simplicity of the formulation of the optimal disk packing problem hides a math�

ematical challenge� Over the years the problem has attracted a substantial attention of mathe�

maticians �see� e�g�� �FG��� �G��� �GMPW�	� �O�	� �S�	� �S��� �V���
� In physics and material

science� packings of disks �and spheres in �D
 have been advanced as representing the short�

range atomic order that exists in solids or the arrangements of particles adsorbed on smooth

surfaces and colloidal suspensions �LS���� There are also connections between optimal packings

and optimal codes �CS��� �GS����

Mathematicians tried to improve packing records using paper� pencil� and perhaps�

round coins� as the primary tools� Because the di�culty of the task increases with n� but the

power and resolution of manual and mechanical methods �one of such is described in �R���


are bounded� the stream of new published disk packings ceased in about mid "��s� The values

of n in most cases were below n � ��� Recently many new interesting disk packings have been

discovered for substantially larger n� The recent surge of disk packing activity is based on

computer procedures �MS��� �M��� �NO��� �MFP��� �GL����

Simulating a dynamic system of moving disks whose steady states correspond to disk

packings is a popular computing method for solving the problem� Such a procedure starts with

a random placement of n disk centers inside the container� Then the disks negotiate the limited


