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Chapter �� Introduction and preliminaries

��� Introduction

The notion of �e
ective procedure� or algorithm was born in the early thirties� building on
the work of Church� G�odel� Kleene� Post and Turing ��Chur���� �Chur���� �G�ode�� �Klee��
�Post���� �Turi���� �Turi���	� They developed several formalizations of this concept� such
as ��calculus� partial recursive functions and the Turing Machine formalism� This was the
base of Recursive Function Theory� where recursive problems were de�ned as those that
are solvable by an algorithm�

The construction of actual computers led to the consideration of feasibly solvable prob�
lems instead of recursive or theoretically solvable ones� This distinction was related to
the explosive growth of the exponential function� which implies that algorithms based on
exhaustive search may be infeasible in practice� Therefore an increasing attention was paid
in the sixties to the amount of computational resources used in the solution of a recursive
problem� Speci�cally� the resources considered were mainly time and space�

With the work of Hartmanis� Stearns and Lewis ��HartSt�� �LewiStH�� �SteaHaL�	 Com�
plexity Theory started a division of recursive problems into complexity classes according
to the amount of resources used in their resolution� The computing model used here
was the Turing Machine� which corresponds to a simple mathematical representation of a
computer �see �HopcUl� for a complete description	� The problems that can be solved in
time polynomial in the length of the input are considered feasibly solvable� and form the
class denoted P� But there exist many problems for which no polynomial time algorithm
is known� many important ones� among them� have the property of being easy to check�
that is� once a solution is found� it can be checked in polynomial time that it is indeed a
solution� This leads to the de�nition of the class NP as the class of �easy�to�check� prob�
lems� there are many important problems in this class� for instance those dealing with the
satisfability of boolean formulas or with the existence of a hamiltonian path in a graph� and
some practical operation research problems such as the distribution of crews into planes�
It would be very interesting to know whether P and NP coincide� In the seventies� some
techniques analogous to those in Recursive Function Theory� for instance the concept of
�completeness� ��Cook�� �Karp�	� started to be developed and then used to attack the P
versus NP problem� This constitutes the beginning of the �eld of Structural Complexity�
which we develop next�

Structural Complexity describes complexity classes using various types of resources in�
cluding time� space� nondeterministic time and space� Boolean circuit size and depth� and
alternating time and space� We will not de�ne here all the mentioned resources� let us just
say that the word �nondeterministic� refers to the use of nondeterministic algorithms� that
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are a generalization of the usual algorithms with the extra possibility of choosing among
several instructions that follow a given one� and that the word �alternating� is �indirectly	
related to the use of parallel algorithms� in which several instructions can be run at the
same time� The problems considered are mainly decisional ones� which are denoted as
languages� and we say that an algorithm recognizes a language when it solves the cor�
responding decisional problem� The main open problems in Structural Complexity have
the form �Is the class of languages that can be recognized with an amount f of resource
� included in the class of those recognized with an amount g of resource �� The above
mentioned P versus NP problem can be formulated as �Is the class of languages that can be
recognized with nondeterministic polynomial time included in the class of the polynomial
time recognizable languages� Other examples involve comparisons of polynomial time
�P	 versus polylogarithmic parallel time with polynomial size hardware �NC	� exponential
time �E	 versus polynomial size circuits �P�poly	� and polynomial space �PSPACE	 versus
polynomial time �P	�

The notions of oracle Turing Machine� reduction and complete language are introduced in
order to compare the complexity of speci�c languages� An oracle Turing Machine is an
ordinary Turing Machine equipped with direct access to a particular language A� which
is called oracle� The oracle Turing Machine operates as an ordinary one� with the extra
possibility of� given a string q� computing in a single step the answer to �q � A� � For each
oracle A� we can de�ne complexity classes according to the resources used to recognize a
language� when we can access oracle A� This means that� for each oracle A� we have a
particular computation universe where the solution of A is given for free� A great e
ort was
done to �nd out which answers to open problems of the form C � D� hold when translated
into some such universe� trying to get some light on the solution of the open problem �see
�BakeGiS� for the �rst work in this line	� Given a problem such as C � D�� we say that
it is nonrelativizable when there exist oracles A and B such that C � D using oracle A
and C �� D using oracle B� that is� the solution of the problem is di
erent in the contexts
of oracles A and B� A nonrelativizable problem is considered di!cult because most of
the techniques used in Structural Complexity are independent of the oracle used� �Just
a few new results have shown that nonrelativizable problems are not impossible to solve�
for instance� Shamir has shown in �Sham� that PSPACE� IP� while there exist oracles for
which the opposite holds �FortSi��	

If we can recognize a language A with an oracle B� this means that B is at least as hard to
recognize as A� since an algorithm for B would produce an algorithm for A� This de�nes a
partial preorder of languages� denoted �T and called Turing reducibility� with the meaning
that A �T B if A can be recognized using B as oracle� Polynomial time reducibilities
appear when considering only oracle Turing Machines that work in polynomial time� In
general� given a restriction r on the oracle access� we say that a language L �p

r �reduces
to a language A when L can be recognized in polynomial time using A as oracle with the
access restrictions indicated by r� We say that a language A is �p

r �hard for a class C when
every language in C �p

r �reduces to A� and that A is �p
r �complete for C when A is �p

r �hard
and A � C� Intuitively a complete language A for a class C is the most di!cult language in
the class� since an easy algorithm for A would give an easy algorithm for any language in
C� The most common polynomial time reducibilities are �p

T� which means no restriction
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on oracle access� �p
tt� which means that each query does not depend on the answers to

previous queries� and �p
m� which allows only one query per input and with the additional

restriction that the input is accepted if and only if the query is in the oracle� There is
a whole range of polynomial time reducibilities of the form �p

q�n��tt and �p
q�n��T� where

q�n	 is a function bounding the number of queries allowed on inputs of length n�

As Sch�oning explains in the introduction of �Sch�o���� the �rst approach to the theory
of complexity was mainly quantitative� since it corresponds to examining the amount of
resources used in the solution of a particular problem� Structural Complexity became qual�
itative with the abstraction to complexity classes� This qualitative aspect seems inherent
because a complexity class is or is not contained in another� a language is or is not complete
for a class� etc� Despite that� a quantitative view can be also introduced in the study of
complexity classes� as we explain below�

Consider a random experiment in which a language A is chosen by using an independent
toss of a fair coin to decide whether each string is in A� This experiment de�nes Lebesgue
probability distribution� usually referred to as Lebesgue measure� A probabilistic distribu�
tion on X can be viewed as a way of size classi�cation of subsets of X� where probability
� subsets are the smallest ones and probability � subsets are the largest ones� Bennett
and Gill start in ���� to use Lebesgue distribution to add a probabilistic quantitative as�
pect to Structural Complexity with results of the form �a language is in the class C with
probability � �

Let us brie"y examine their results� In �BennGi�� they study the class of oracles for which
the class de�ned by polynomial time is di
erent from that de�ned by nondeterministic
polynomial time� showing that an oracle A separates P from NP with probability one� In
the same paper they prove that with probability one for an oracle A� P equals the class of
probabilistic polynomial time� denoted as BPP� After this� other similar results were ob�
tained� for instance� an oracle A separates the polynomial time hierarchy from polynomial
space with probability one �Cai �Cai�� Babai �Baba�	� But there is still something missing
in this approach� since our main interest are recursive languages� and a language is recur�
sive with probability � using Lebesgue probability distribution� Thus we know that most
oracles separate P from NP� but we can infer nothing about the behaviour of recursive
oracles from this result�

In ���� Lutz started to remedy this situation� He de�ned resource�bounded measure
as a way to provide size distinction for recursive classes� Lutz takes two main classes�
exponential time� denoted E� and exponential space� denoted ESPACE� as comparison
patterns� and� for each class X� tries to establish a size comparison between X �E and E�
or between X � ESPACE and ESPACE�

The main concepts in Lutz s theory are measure � in C and measure � in C� the class C being
either E or ESPACE� Intuitively� a class X has measure � in C when X � C is negligibly
small compared to C� and a class X has measure � in C when X � C and C have similar
sizes� �We will give the precise de�nitions in section ����	 Intermediate values � � � � �
of measure in E �ESPACE	 could also be de�ned� but it is not necessary because all the
complexity classes we are interested in� if at all measurable� have always either measure �
or �� This is a consequence of a variant of the Kolmogorov ��� law� which states that a class
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that is closed under �nite variations can only be in one of three cases for both measure in
E and in ESPACE� namely being non�measurable� having measure � and having measure
� �Lutz�
�� Indeed� all the classes studied in Complexity Theory are closed under �nite
variations� since membership of a language into a class is not a
ected by adding or deleting
a �nite number of strings�

Lutz gave a �rst de�nition of resource�bounded measure in his Ph�D� dissertation in ����
�see �Lutz���	� and a new one in ���� generalizing it �see �Lutz�
�	� Due to some technical
inconveniences� the �rst formulation was mainly useful to prove results in ESPACE� while
with the second one results in both E and ESPACE are easier to obtain�

The �rst goal of Lutz s approach is to extend existence results� of the form �there is a
language in C that is not in X�� to abundance results of the form �most languages in C
are not in X�� formally expressed as �the class X has measure � in C�� The interest of
an abundance result is that it shows the typical behaviour of languages in a class� and
therefore is more informative than an existence result that could as well correspond to an
exception in the class� For instance the results in �Lutz�
� extend Kannan s result that
�there is a language in ESPACE that does not have polynomial size circuits� �Kann� to
�the class of languages with polynomial size circuits has measure � in ESPACE�� which
means that most languages in ESPACE do not have polynomial size circuits� Abundance
results in E are treated in Chapters � and � of this dissertation�

Another application of resource�bounded measure is in relation with the probabilistic
method �developed in �AlonSp�� �Erd�o�� �Erd�oSp�� �Spen�	� Let A be a set where a prob�
ability distribution has been de�ned� If we want to prove an existence result of the form
�there exists x � A such that property # holds for x � it may be easier to prove that the
subset of the elements of A for which the property holds does not have probability �i�e�
measure	 �� The easiness here comes from the use of powerful measure techniques that
involve proving abundance� as opposed to constructing a particular object�

We can consider resource�bounded measure as a probabilistic method for a class C� In
order to prove that there exists a language in C with property #� it may be easier to prove
that the class fL

�� L has property #g does not have measure � in C� We will see a case
where this is indeed true in Chapter ��

A third aspect of resource�bounded measure is as a formal tool in Structural Complexity
for the construction of new working hypothesis� characterization of complexity classes� etc�
A �rst example is Lutz s characterization of the class BPP in terms of measure in ESPACE
in �Lutz��a�� There exist resource�bounded measure hypothesis implying widely believed
results that could not be obtained from reasonable classical complexity hypothesis� For
instance Lutz shows in �Lutz��b� that if E does not have measure � in ESPACE then
P $ BPP� In Chapter � we discuss another useful resource�bounded measure hypothesis
and its consequences�

The objective of this work is to study in deep resource�bounded measure� its possible
generalizations to other complexity classes and its applications in the three exposed ways�
namely the extension from existence to abundance results� the probabilistic method� and
the identi�cation of useful Structural Complexity hypothesis�

These applications concern mainly measure in E� for which very few results existed before
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the new formulation of Lutz s measure in ����� The classes E �de�ned by linear exponential
time	 and E� �polynomial exponential time	 have a rich and well studied reducibility
structure� and are known to contain intractable problems� which makes them very suitable
as base of comparison to other less known classes� such as NP� There is an interesting
survey of measure in these classes in �Lutz���� There� the results in Chapters �� � and �
are described in a broader context� A great part of the results to be described from now
on are joint work with J�H� Lutz� as indicated in the references�

In this chapter we start by summarizing the main contributions of this Ph�D� dissertation�
Then we review some common notation from Structural Complexity and �nally we give a
complete introduction to resource�bounded measure in sections ���� ��� and ����

��� Main contributions

Extension to new classes

We have already mentioned Lutz s measure for the classes E and ESPACE as base classes�
to which the other classes are compared� In the introduction we explained the interest
of comparing with E� as developed in �Lutz���� But there is also a technical point in the
de�nition of resource bounded measure that makes it nontrivial to de�ne a measure for
any class below E� This di!culty is related to the use of characteristic sequences� Given a
language A and a string x� the partial characteristic sequence �A�x contains the answer to
y � A� for every y smaller than x� The de�nition of resource�bounded measure for a class
C assumes that� given A � C� for each string x� the initial segment �A�x can be computed
within the resources allowed in C for an input of the length of x� Remark that this last
condition requires at least exponential time�

We study in Chapter 
 the technical di!culties of translating Lutz s de�nition into PSPACE�
the class of languages that can be recognized with polynomial space� We prove that the
natural candidate of measure in PSPACE is not valid unless the unlikely consequence
PSPACE $ E� holds� We then propose a valid de�nition based on on�line computable
functions� and use it to prove that a class of self�reducible languages has measure � in
PSPACE� This chapter describes and extends results from �Mayo�
b��

Measure versus Category� the P�bi�immune languages

A language A is P�bi�immune if neither A nor its complement has an in�nite subset in P�
We investigate in Chapter � the abundance of P�bi�immune languages in E� We prove that
the class of P�bi�immune languages has measure � in E� This implies that almost every
language in E is P�bi�immune� which extends the existence result in �BermHa��

Baire Category is a topological theory where there exist a concept of small class �denoted
as meager or �rst�category	 and a concept of big class �co�meager	� This classi�cation
is incomparable with Lebesgue measure in the sense that there exist measure � classes
that are co�meager and vice versa� Lutz de�nes in �Lutz��� a resource�bounded version of
Baire Category� We prove that category in E and measure in E are incomparable as in the
classical case� since the class of P�bi�immune languages is not meager or co�meager in E�
while it has measure � in E� as indicated above� Notice that in this case the incomparability
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example is a naturally de�ned class� while in the classical case the examples were more
arti�cial� The results described in this chapter appear in �Mayo�
a��

Application to nonuniform models

Structural Complexity also studies nonuniform complexity classes as a way of comparing
uniform and nonuniform computation models� A nonuniform computing model� for exam�
ple a Boolean circuit� works only with inputs of a �xed length� In order to recognize an
in�nite language A� a countable family of nonuniform devices is needed� such that for each
natural n� an element of the family recognizes exactly the words of length n in A� We
can then de�ne nonuniform complexity classes by measuring the resources used by these
families� for instance we can consider Boolean circuit size or depth� number of states in
�nite automata� branching program depth� etc�

In this context� we start by studying the class P� log� de�ned as the class of languages that
can be recognized in polynomial time with a nonuniform advice of logarithmic length� We
characterize this class in terms of Boolean circuits and then show that it has measure � in
E�

The class P%poly contains those languages that can be recognized by a family of polynomial
size circuits� In �KarpLi�� P%poly is also characterized as the class of languages that are
�p
T�reducible to a sparse language� where a language is sparse when it has at most a

polynomial number of strings for each length�

The open problem of whether exponential time is included in P%poly is hard since it
does not relativize� In Chapter � we �rst study the relation between E and a subclass
of P%poly� namely the subclass of languages that are �p

n��tt�reducible to a sparse set for
� � � �denoted as Pn��tt�SPARSE		� This class is almost the largest subclass of P%poly
for which we can use techniques that relativize in order to investigate its relation with
E� since the question E � Pn�tt�SPARSE	� is already nonrelativizable� In fact we prove
that Pn��tt�SPARSE	 has measure � in E� that is� almost every language in E is not
in Pn��tt�SPARSE	� Applying the probabilistic method� this shows that there exists a
language in E that is not in Pn��tt�SPARSE	� thus E does not have sparse �p

n��tt�hard
languages� This result� which had not been proven before and that strengthens Watanabe s
���� result for �p

O�log n��tt�complete languages �Wata��c� is� to our knowledge� the �rst

application of resource�bounded measure as a probabilistic method�

We also study P%poly inside the exponential time hierarchy that lies between the classes
E and ESPACE� and is de�ned in �HartImS� as a family of classes with an increasing
nondeterministic power� We use the �approximate counting techniques from Stockmeyer
�Stoc���� to obtain the result that P%poly has measure � in the third level of the exponential
time hierarchy� Some of the results involving P� log appear in �HermMa�� the results
involving the class Pn��tt�SPARSE	 appear in �LutzMa��a��

Measure of the class NP

The hypothesis �NP does not have measure � in E� �roughly� that NP contains more than
a negligible subset of exponential time	� cannot be proven or refuted from our present
knowledge� Even more� both by proving and by refuting it one would obtain solutions to
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nonrelativizable open problems on the relations between NP� P and E� In Chapter � we
present evidence that �NP does not have measure � in E� is a reasonable hypothesis with
many credible consequences�

The �rst such consequence deals with the di
erence in NP of the completeness notions
corresponding to the reducibilities �p

T �Cook	 and �p
m�Karp�Levin	� Since these are re�

spectively the least and most restrictive reductions� the corresponding complete languages
are believed to be di
erent for many classes� and indeed it is known that there are �p

T�
complete languages for E and NE that are not �p

m�complete �see �BuhrHoT�� �KoMo� and
�Wata��b�	�

Under the hypothesis that NP does not have measure � in E� we show in Chapter � that
there is a language that is �p

T�complete but not �p
m�complete� for NP� This conclusion�

widely believed to be true �see �LongYo�	� is not known to follow from P �$ NP or other
traditional complexity�theoretic hypotheses�

We prove additional consequences of NP does not have measure � in E� including the
separation of many truth�table reducibilities in NP �e�g�� k queries versus k & � queries	�
the class separation E �$ NE� and the existence of NP search problems that are not reducible
to the corresponding decision problems�

Our results in Chapter � give us yet another consequence of the hypothesis that NP does
not have measure � in E� namely that� for every real � � �� no �p

n��tt�hard language for
NP is sparse� All this chapter is from �LutzMa��b��

R�Cones

Given a reducibility R� we can picture the upper semi�lattice de�ned by the preorder
relation R on the class of all languages� Fix a language A and look at the two classes
formed respectively by languages that are R�reducible to A and languages to which A is
R�reducible� These two classes can be viewed as the two parts of the cone starting in vertex
A� We call the �rst one the R�lower cone of A� and the second one the R�upper cone of A�
We want to study the size of the upper and lower cones of a language A as a way of having
information on the usefulness of A as oracle and on the amount of oracles A reduces to� In
this line� Tang and Book study in �TangBo� the Lebesgue measure of R�cones for various
reducibilities R� and Juedes and Lutz study in �JuedLu��a� the resource�bounded measure
of �p

m�cones in E�

We say that a language A is R�weakly�hard for a class C when the R�lower cone of A
does not have measure � in C� and that A is R�weakly�complete when A is R�weakly�hard
and A � C� Intuitively� A is weakly�hard when a non�negligible subclass of C is reducible
to A� Clearly every complete set A is weakly�complete� since its lower cone contains the
whole C� It is interesting to know whether the opposite holds� that is� whether every
weakly�complete problem is complete� Since complete problems are considered the most
intractable in a class� a negative answer would imply the existence of a third level of
intractability in C� between the lowest level and the level of complete sets� Lutz s new
technique of �martingale diagonalization �Lutz��a� gives a construction of a language that
is weakly�complete but not complete in the usual sense for the class E with reducibility
�p
m� In joint work with S� Fenner and J�H� Lutz we have extended this technique to the
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class of all recursive languages with reducibility �T �FennLuM��

Given a reducibility R� the class ALMOST�R is de�ned as the class of languages A such that
the R�upper cone of A has Lebesgue probability �� The �ALMOST�R� formalism� studied
for instance in �Book��� and �BookLuW�� provides characterizations of some interesting
complexity classes� among others� P$ALMOST��p

m�Ambo�� P$ALMOST��p
btt �TangBo��

BPP$ALMOST��p
T ��Ambo�� �BennGi�	� BPP$ALMOST��p

tt �TangBo�� AM$ALMOST�
�NP
T ��Cai�� �NisaWi�	� PH$ALMOST��PH

T ��Cai�� �NisaWi�	 and IP$ALMOST�IP �Breu��
The notion of Martin�L�of algorithmically random language is the strongest de�nition of
random language that is considered to represent randomness of individual in�nite se�
quences� Book� Lutz and Wagner ��Book���� �BookLuW�	 have characterized the classes
of the form ALMOST�R as the class of recursive languages that can be R�reduced to
Martin�L�of algorithmically random languages� For each natural n� we consider a subclass
of Martin�L�of random languages� denoted n�random languages� and obtain new charac�
terizations of the ALMOST�R classes �joint work with R� Book	� These characterizations
have the form �A language A in '�

n �the nth level of the Kleene arithmetical hierarchy	 is
in ALMOST�R if and only if A is R�reducible to an n�random language � This gives us an
idea of� for instance� how di!cult can �p

T�oracles for BPP be� We also see that n�random
oracles are useless for the class '�

n � REC� These results are described in �BookMa��

There is an active ongoing research on the topics in this chapter ��AmboNeT�� �AmboTeZ��
�JuedLu��b�	� we include a summary of the new results and a description of the open
problems�

��� Preliminaries

We start by �xing some notation on strings and languages� We will use the alphabet
( $ f�	 �g� A string is a �nite sequence x � f�	 �g�� We write jxj for the length of x� The
unique string of length � is �� the empty string� If x and y are two strings� then x � y if
jxj � jyj or jxj $ jyj and x precedes y in alphabetical order� We call this order relation on
strings lexicographical order� Let s�	 s�	 s�	 � � � be the standard enumeration of the strings
in f�	 �g� in lexicographical order� A sequence is an element of f�	 �g� � If x is a string
and y is a string or sequence� then xy is the concatenation of x and y� If x is a string and
k � IN�f�g� then xk is the k�fold concatenation of x with itself� If x is a string and y is a
string or sequence� then x v y i
 there exists a string or sequence z such that y $ xz� and
x v y if x v y and x �$ y� If w is a string or sequence and � � i � jwj then w�i� denotes
the ith bit of w�

A language is a set of strings� A class is a set of languages� For each language A and
n � IN we denote as A�n the set of all strings in A of length n� and as A�n the set of all
strings in A of length less or equal to n�

Given a set A� we denote as P�A	 the power set of A� that is� the set of all subsets of A�

We will use the characteristic sequence �L of a language L� de�ned as follows�

�L � f�	 �g� and �L�i� $ � i
 si belongs to L�
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We identify through characteristic sequences the class P�f�	 �g�	 of all languages over
f�	 �g with the set f�	 �g� of all sequences� Let w � f�	 �g�� We de�ne Cw� the cylinder
generated by w� as the class of languages fx � f�	 �g� j w v xg�

The complement of a class of languages X is Xc $ f�	 �g� � X� The complement of
a language L � f�	 �g� is )L $ f�	 �g� � L� using characteristic sequence notation� if
L � f�	 �g� then )L � f�	 �g� is such that for each i � IN� )L�i� �$ L�i��� For a class
X � f�	 �g� we de�ne the class of complements as co�X $ f)L

�� L � Xg�

The symmetric di�erence of two sets A and B� denoted A'B� is de�ned by A'B $
�A �B	 � �A �B	�

Next we introduce Lebesgue measure on f�	 �g� � Consider a random experiment in which
a language A is chosen by using independent tosses of a fair coin to decide whether each
string x � f�	 �g� is in A� This experiment de�nes Lebesgue probability distribution on
f�	 �g� � Given a class X � f�	 �g�� we denote as Pr�X	 the probability associated to the
event A � X� when A is randomly chosen according to Lebesgue distribution� The value
Pr�X	 is not de�ned for every subset of f�	 �g� � and we say that a set X is Lebesgue�
measurable if Pr�X	 is de�ned� The partial function Pr�P�f�	 �g�	 	 ��	 �� is called
Lebesgue measure on f�	 �g� � In the next section we give an equivalent constructive
de�nition of Lebesgue measure on f�	 �g� to be used in the formulation of resource�
bounded measure�

Although Lebesgue measure is usually de�ned on subsets of real numbers� notice that we
can identify f�	 �g� with the unit interval ��	 �� by associating to each x � f�	 �g� the real
number that has ��x as its standard binary representation� Via this identi�cation Lebesgue
measure on f�	 �g� can be translated into Lebesgue measure on ��	 ���

Given two properties of languages Q� R� we will denote as PrC �Q�C	� the Lebesgue measure
of the class fC

�� Q�C	g� that is

Pr
C

�Q�C	� $ Pr�fC
�� Q�C	g		

and we will denote as PrC �Q�C	
�� R�C	� the conditional probability of Q�C	 given R�C	�

that is�

Pr
C

�Q�C	
�� R�C	� $

Pr�fC
�� Q�C	g � fC

�� R�C	g	

Pr�fC
�� R�C	g	

�

Let X be a class of languages� We say that X is closed under �nite variations if when
A � X and jA'Bj � � then B � X� We say that X is closed under �nite translations if
B � X when A � X and there exists w � f�	 �g� such that A $ w 
B�

Next we �x some notation on Complexity Classes� For a complete introduction to Turing
Machines and Complexity Classes see for instance �BalcD��G��

Our computation model is the multi�tape oracle Turing machine� with a read�only input
tape and a write�only oracle tape� We will work with oracle Turing machines that halt on
every oracle and every input� For a Turing machine M and a language A� L�M	 denotes
the set accepted by M with the empty oracle� and L�M	A	 stands for the set accepted by
machine M with oracle A� Given t� IN 	 IN� we say that a Turing machine M recognizes
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a language L in time t when on each input x� M halts with output L�x	 in time less or
equal than t�jxj	� Analogously� M recognizes a language L in space t when on each input
x� M halts with output L�x	 using memory space less or equal than t�jxj	� fMi

�� i � INg
is a standard enumeration of all deterministic oracle Turing machines�

For each nondecreasing function t� IN 	 IN� we denote as DTIME�t	 the class of all lan�
guages that can be recognized by a deterministic machine in time t� and as DSPACE�t	
the class of all languages that can be recognized by a deterministic machine in space t�
Let NTIME�t	 be the class of languages than can be recognized by a nondeterministic
machine in time t� and let NSPACE�t	 be the class of languages that can be recognized by
a nondeterministic machine in space t� DTIMEF�t	 and DSPACEF�t	 are the correspond�
ing classes of functions that can be computed in time t and space t� respectively� Unless
indicated otherwise� when we bound the space used in the computation of a function we
are also bounding the output space� For each language A� let DTIMEFA�t	 be the class
of all fuctions that can be computed by a deterministic machine in time t when having
access to oracle A� and analogously we de�ne DSPACEFA�t	�

For each class F of functions from IN to IN� we write DTIME�F	 for
S
t�F DTIME�t	� and

analogously for NTIME�F	� DSPACE�F	� NSPACE�F	� DTIMEF�F	 and DSPACEF�F	�
For each language A� DTIMEFA�F	 denotes

S
t�F DTIMEFA�t	� and in the same way we

have DSPACEFA�F	� Let C be a class of languages� Then

DTIMEFC�F	 $
�
A�C

DTIMEFA�F	

and with a similar meaning DSPACEFC�F	 is de�ned�

Let RE be the class of recursively enumerable languages� and REC be the class of recursive
languages� We use the following notation for classes of languages

P $
S

k�IN
DTIME�nk	 E $

S
c��

DTIME�
cn	

E� $
S

k�IN
DTIME�
n

k

	

NP $
S

k�IN
NTIME�nk	 NE $

S
c��

NTIME�
cn	

LINSPACE $
S
c��

DSPACE�cn	ESPACE $
S
c��

DSPACE�
cn	�

PSPACE $
S

k�IN
DSPACE�nk	 E�SPACE $

S
k�IN

DSPACE�
n
k

	

Let all be the class of all functions f � f�	 �g� 	 f�	 �g�� and rec be the class of recursive
functions in all� We will denote di
erent classes of functions as follows�

p $
S

k�IN
DTIMEF�nk	 pspace $

S
k�IN

DSPACEF�nk	

p� $
S

k�IN
DTIMEF�
�logn�

k

	 p�space $
S

k�IN
DSPACEF�
�logn�

k

	�
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For each class C� p�C	 $
S
k�IN DTIMEFC�nk	�

We �x a one to one pairing function h	 i from f�	 �g� � f�	 �g� onto f�	 �g� such that the
pairing function and its associated projections� hx	 yi �	 x and hx	 yi �	 y are computable
in polynomial time� and such that for x	 y � f�	 �g�� x � hx	 yi� y � hx	 yi� For k 
 
 and
strings y�	 � � � 	 yk� hy�	 � � � 	 yki stands for hhh� � � y�	 y�i	 � � �i	 yki�

For a function f � f�	 �g� 	 f�	 �g�� we write fn for the n�fold composition of f with itself�

The boolean value of a condition 
 is denoted with ��
���

A relativized class is a function C � f�	 �g� �	 P�f�	 �g�	� A recursive presentation of
a relativized class C of languages is a total recursive function f � IN �	 IN such that
for every language A and every i � IN� every computation of Mf�i��A	 is halting and
C�A	 $ fL�Mf�i�	 A	 j i � INg� A relativized class is recursively presentable if it has a
recursive presentation�

A reducibility is a relativized class� A bounded reducibility is a relativized class that is
recursively presentable� If R is a reducibility� then we use the notation A �R B to indicate
that A � R�B	�

If R is a reducibility and C is a set of languages� write R�C	 for
S
A�C R�A	�

Given a reducibility R� we say that a language A is R�hard for a class C if C � R�A	� and
that A is R�complete for C if A � C and A is R�hard for C�

We will discuss a variety of specialized polynomial�time reducibilities� in addition to the
well�known reducibilities �p

T and �p
m� These include �p

q�n��T �Turing reducibility with

q�n	 queries on inputs of length n	� �p
q�n��tt �truth�table reducibility with q�n	 queries

on inputs of length n� where q� IN 	 IN is a query�counting function	� �p
tt�truth�table

reducibility	� and �p
btt �bounded truth�table reducibility	� We now indicate the meanings

of these specialized reducibilities�

Let A	B � f�	 �g�� The condition A�p
TB means that there is a polynomial time�bounded

oracle Turing machine M such that A $ L�M	B	� For q� IN 	 IN� the condition A�p
q�TB

means that there is a polynomial time�bounded Turing machine M such that A $ L�M	B	
and M makes � q�jxj	 oracle queries on each input x � f�	 �g��

Given a query�counting function q� IN 	 IN� a q�query function is a function f with domain
f�	 �g� such that� for all x � f�	 �g��

f�x	 $ �f��x		 ���	 fq�jxj��x		 � �f�	 �g�	q�jxj��

Each fi�x	 is called a query of f on input x� A q�truth table function is a function g with
domain f�	 �g� such that� for each x � f�	 �g�� g�x	 is the encoding of a boolean function
g�x	� f�	 �gq�jxj� 	 f�	 �g� A �p

q�n��tt�reduction is an ordered pair �f	 g	 such that f is a

q�query function� g is a q�truth table function� and f and g are computable in polynomial
time�

Let A	B � f�	 �g�� A �p
q�n��tt�reduction of A to B is a �p

q�n��tt�reduction �f	 g	 such

that� for all x � f�	 �g��

��x � A�� $ g�x	���f��x	 � B�������fq�jxj��x	 � B��	�
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In this case we say that A �p
q�n��ttB via �f	 g	� and denote it A $ �f	 g	�B	� We say

that A is �p
q�n��tt�reducible to B� and write A �p

q�n��ttB� if there exists �f	 g	 such that

A $ �f	 g	�B	�

The condition A�p
ttB means that there exists a polynomial q such that A�p

q�n��ttB� The

condition A�p
bttB means that there exists a constant k such that A�p

k�ttB� �This is
equivalent to saying that there exists a possibly di
erent constant k such that A�p

k�TB�	

PH is the polynomial time hierarchy� de�ned as follows

�i	 (p
� $ NP�

�ii	 for every n � �� (p
n�� $ NP�(p

n	�

�iii	 for every n � �� #p
n $ co�(p

n�

�iv	 for every n � �� 'p
n $ P�(p

n��	�

�v	 PH$
S
n�� (p

n�

We will denote with AH the arithmetical hierarchy of languages� that is�

�i	 (�
� $ RE $ fA � f�	 �g� j A is recursively enumerableg�

�ii	 for every n � �� (�
n�� $ RE�(�

n	�

�iii	 for every n � �� #�
n $ co�(�

n�

�iv	 for every n � �� '�
n $ (�

n � #�
n�

�v	 AH $
S
n�� (�

n�

We use the following form of the Cherno
 bound�

Lemma ���� �Cher�� �HageR�u�	 Let � � �� let N � IN� Then

�N�X
k��

�
N

k

�
� 
N 
 e�

��N
� �

In particular� taking � $ �
j�� � where j � IN�

N
j��X
k��

�
N

k

�
� 
N 
 e

� N

��j���� �

Proof � See �HageR�u��

Finally� we introduce the concept of Kolmogorov complexity� We �x a Universal Turing
Machine U � Using it we can denote the unbounded Kolmogorov Complexity of a word w
as follows

De�nition ���� K�w	 $ minfjxj�U�x	 $ wg�

The Kolmogorov complexity of a string w is the length of the shortest program� which�
when given as input to U � will lead U to write down w as output� The choice of U as
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the base Universal Machine is irrelevant� as long as a Universal Machine is used� since the
Kolmogorov complexity would change only by an additive constant�

Hartmanis introduces in �Hart� a tool we will use in Chapter �� time�bounded Kolmogorov
Complexity� We follow the notation in �Hart�� Using U and functions f and g � N 	 N
de�ne the class of time�bounded Kolmogorov complexity sets K�f	 g� as follows

De�nition ���� L � K�f	 g� i
 �x � L �w	 jwj � f�jxj	 such that U�w	 $ x in time
� g�jxj	�

Thus� K�f	 g� is the class of the sets whose strings can be compressed by a factor of f � and
which can also be recovered from their compressed form within the time bound g�

Observe that� despite the similarity of notation� K�w	 denotes a function from words to
nonnegative integers� while K�f	 g� is a class of languages�

For families of functions F � G we have

De�nition ���� L � K�F 	G� i
 there exists f � F � g � G such that L � K�f	 g��

We will use the class K�log	 poly�� where log $ O�logn	 and poly $ fnO���g�

��� Resource�bounded measure

In this section we present resource�bounded measure� a method to classify complexity
classes depending on their size� Resource�bounded measure was introduced by Lutz in
�Lutz�
�� �The earlier formulation of �Lutz��� has a number of technical inconveniences�
and is not used anymore�	 This theory is a generalization of a powerful mathematical tool�
Lebesgue measure� Let us explain the meaning of �generalization here�

Our goal is to de�ne a measure in C� where C can take one of the following values E� E��
ESPACE� E�SPACE and REC� Intuitively� a measure in C is a function ��P�C	 	 ��	 ��
with some additivity properties� whose main purpose is to classify by size criteria the
subclasses of C� Given a recursive class C� we could de�ne a measure � in C as a restriction
of Lebesgue measure to P�C	� But this would be useless� because since every countable class
has Lebesgue measure � �that is� minimal size	 and recursive classes are always countable�
� would be identically ��

In order to obtain a non�trivial measure on the mentioned recursive classes� Lutz takes
a constructive de�nition of Lebesgue measure and bounds the resources allowed in the
process� Intuitively� we restrict the measurable sets to those from the Lebesgue measurable
ones that can be �feasibly measured � We next give this constructive de�nition of Lebesgue
measure by using betting games� where we will be able to bound the resources used by the
player�

We consider a game in which there is a player with starting capital � � c� � R and a
hidden language L� The player bets part of his money on the successive bits of �L� making
money on a double or nothing fashion� The game goes as follows

Step 
� The player bets a�� a part of c�� either that � � L or that � �� L� If he wins� he
gets double� that is 
� a�� and his capital is now c� $ c� & a�� If he loses� he gets nothing
and his capital is now c� $ c� � a��
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Step n� n � ��With the information ��s� � L�� � � � ��sn�� � L��� the player bets an� a part
of cn� either that sn � L or that sn �� L� If he wins� he gets double� that is 
 � an� and
his capital is now cn�� $ cn & an� If he loses� he gets nothing and his capital is now
cn�� $ cn � an�

The game goes on eternally� and we say that the player succeeds if he gets in�nite money�
that is to say� if the upper limit of fcng is in�nite as n goes to in�nity�

The player tries to �nd a betting strategy that is always useful� A strategy for this game is
a function a� f�	 �g� 	 f�	 �g� ��	�	 that tells the player how much to bet� depending on
the information the player has� That is� if ��s� � L�� � � � ��sn�� � L�� $ w	 w � f�	 �g�� and
a�w	 $ �b 	 u	� the player should bet an amount of an $ u that ��sn � L�� $ b� according to
the strategy a�

We can now compute the capital a player has when using this strategy a and represent it
via a function da� f�	 �g� 	 ��	�	� with the meaning that� if ��s� � L�� � � � ��sn�� � L�� $
w	 w � f�	 �g�� then the player s capital� after having bet on s�	 � � � 	 sn�� according to a�
is cn $ da�w	� The value da��	 thus represents the starting capital c��

From a we can compute da and vice versa�

a�w	 $

� �
�	 da�w�	 � da�w	

��
�	 da�w�	 � da�w	

� if da�w�	 
 da�w	
if da�w�	 
 da�w	

Let b � f�	 �g�

da�wb	 $

�
da�w	 & u
da�w	 � u

if a�w	 $ �b 	 u	
if a�w	 $ �� � b 	 u	�

From now on we will represent a strategy a by its capital function da� which we call a
martingale�

De�nition ���� A martingale is a function d� f�	 �g� 	 ��	�	 satisfying

d�w	 $
d�w�	 & d�w�	



����	

for all w � f�	 �g��

Martingales were extensively used by Schnorr ��Sch���� �Sch��a�� �Sch��b�� �Sch���	 in his
investigation of random and pseudorandom sequences�

����	 is the only condition that a function must ful�ll to be a martingale and it is imposed
by the double or nothing fashion in which we de�ned the game� Notice that if d is a
martingale then for each w � f�	 �g�� d�w	 � 
jwj 
 d��	�

A martingale will be successful for a language L if the player using this martingale is
successful when playing with L as the hidden language�

De�nition ��	� A martingale d is successful for a language x � f�	 �g� i


lim sup
n��

d�x�� � � � n�	 $ ��
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For each martingale d� we denote the set of all languages for which d is successful as S��d��
that is

S��d� $
�
x
�� lim sup

n��
d�x�� � � �n�	 $ �

	
�

�This notation is chosen for consistency with other measure values� see section ����	

We are now ready to de�ne Lebesgue measure�

De�nition ��
� A class X � f�	 �g� has Lebesgue�measure 
 i
 there exists a martingale
d such that X � S��d�� that is� for any L � X� d is successful for L�

Intuitively� a class X has measure � when there exists a single strategy that is good for
predicting any language in the class X�

De�nition ���� A class X � f�	 �g� has Lebesgue�measure � i
 Xc �the complement of
X	 has Lebesgue measure ��

We only de�ne measure � and measure � because we are always interested in classes that
are closed under �nite variations� and from the Kolmogorov ��� law �Theorem 
��� in
�Oxto�	� these classes can only have measure � or measure �� if they are measurable at all�

The de�nition we just introduced is just a restatement of more classical formulations of
Lebesgue measure� for instance the one we sketched in the preliminaries�

Going back to the initial problem of de�ning a non trivial measure inside REC� E� E��
ESPACE or E�SPACE� what we do next is to restrict the martingales that can witness
that a class has measure �� We will require the martingales to be recursive and computable
within certain time and space bounds� depending on the class where we are de�ning a
measure�

Since martingales are real�valued functions and we want to use restrictions based on com�
puting resources� we start by showing that rational valued martingales are su!cient to
de�ne Lebesgue measure� In fact we use dyadic rationals� that is� rational numbers with a
�nite binary expansion�

Let D $ fm
�n j m	n � INg be the set of nonnegative dyadic rational numbers� For
purposes of computational complexity we represent each q � D as hu	 vi� where u and v
are the binary representations of the integer and fractional parts of q� respectively� In the
same way� when we consider k � IN� we are assuming the unary representation �k�

We will use the next auxiliary lemma in the proof of Lemmas ���� and ����� The lemma
states that if c is a function that is very close to a martingale d� then we can de�ne from
c a martingale d� that acts exactly as d�

Lemma ���� Let d be a martingale� Let c� f�	 �g� 	 ��	�	 be a function such that for
each w � f�	 �g� jc�w	 � d�w	j � 
�jwj� Let d� be recursively de�ned as follows

d���	 $ c��	 & 


d��wb	 $ d��w	 &
c�wb	 � c�w)b	



�

Then d� is a martingale and S��d� $ S��d���
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Proof � Let d� c and d� be as in the hypothesis� d� ful�lls trivially equality ����	� In
order to see that d� is a martingale� we have to show that it takes only nonnegative values�
For this we prove by induction on jwj that d��w	 
 d�w	 & 
�jwj for every w � f�	 �g��

For w $ �� d���	 $ c��	 & 
 
 d��	 � � & 
� For w � f�	 �g�� b � f�	 �g we have that� by
induction hypothesis�

d��wb	 $ d��w	 &
c�wb	 � c�w)b	




 d�w	 & 
�jwj &

c�wb	 � c�w)b	




thus by our hypothesis on c�

d��wb	 
 d�w	 & 
�jwj &
d�wb	 � d�w)b	



� 
�jwj�� $ d�wb	 & 
�jwj��	

the last equality following from d being a martingale�

Next we show by induction on jwj that for every w�

jd�w	 � d��w	j � � � 
�jwj	

once this is done� the result follows immediately� since then for each x � f�	 �g�

��lim sup
m��

d�x����m�	 � lim sup
m��

d��x����m�	
�� � �

which implies that S��d� $ S��d���

For w $ �� jd��	 � c��	 � 
j � 
�� & 
� For w � f�	 �g�� b � f�	 �g�

jd��wb	 � d�wb	j �

jd��w	 � d�w	j &
���d�w	 &

c�wb	 � c�w)b	



� d�wb	

��� $

jd��w	 � d�w	j &
���d�w)b	 � c�w)b	



&
c�wb	 � d�wb	




��� �
jd��w	 � d�w	j &

���d�w)b	 � c�w)b	




���&
���c�wb	 � d�wb	




��� �
jd��w	 � d�w	j & 
�jwj��

and by induction hypothesis this implies that

jd�wb	 � d��wb	j � � � 
�jwj & 
�jwj�� $ � � 
�jwj���
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Lemma ���
� For each martingale d� there exists a martingale d�� f�	 �g� 	 D such that
S��d� $ S��d���

Proof � Let d be a martingale� Using the fact that D is dense in R� we de�ne c� f�	 �g� 	
D a function with values in D that is very close to d� For each w � f�	 �g� we �x c�w	 � D

such that jc�w	 � d�w	j � 
�jwj�

We de�ne recursively d� as follows

d���	 $ c��	 & 


d��wb	 $ d��w	 &
c�wb	 � c�w)b	



�

Notice that d� takes only values in D� By Lemma ���� d� is a martingale and S��d� $ S��d���
which completes the proof�

We now de�ne the concept of measure resource�bounds� that are classes of recursive func�
tions� By requiring the martingales to be in a certain measure resource�bound we will
de�ne measures for di
erent classes�

We say that a set F of functions from IN to IN is a family of bounds if all functions in F
are non�decreasing and for each f	 g � F � f � g is also in F �

De�nition ����� A class � � all is a measure resource�bound if p � � and � is in one of
the following cases

a	 � $ all�

b	 � $ DTIMEFC�F	 for F a family of bounds and C a family of languages�

c	 � $ DSPACEFC�F	 for F a family of bounds and C a family of languages�

We are specially interested in the following measure resource�bounds� p� p�� pspace�
p�space and rec� as we will see below�

We use � to denote a measure resource�bound in this dissertation� with the exception of
Chapter 
 where � can be any class inside rec�

Now for each measure resource�bound �� we de�ne �	 as a restriction of Lebesgue measure
to martingales in �� We then use �	 to de�ne a nontrivial measure on a suitable recursive
class C�

De�nition ����� A class X � f�	 �g� has ��measure 
 �and we denote it �	�X	 $ �	 i

there exists a martingale d � � such that� X � S��d��

Thus a class X has ��measure � when there exists a strategy in � that is good for predicting
any language in the class X�

De�nition ����� A set X � f�	 �g� has ��measure � �and we denote it �	�X	 $ �	 i

Xc has ��measure ��

Originally Lutz �Lutz�
� de�ned ��measure using a type of ��approximable martingales�
We will see in section ��� that his de�nition is equivalent to the one we just introduced�

Notice that taking � $ all we again obtain Lebesgue measure�
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As in the case of Lebesgue measure� there exists a resource�bounded generalization of the
Kolmogorov ��� law �Lutz��b� by which classes that are closed under �nite variations can
only be in one of three cases� namely being ��measure �� being ��measure � and being
non���measurable� For this reason we only de�ne ��measure � and ��measure �� For
the sake of completeness� we give a proof of the resource�bounded Kolmogorov ��� law in
section ����

The following step is to �nd the appropriate � such that from �	 we can de�ne a non�
trivial measure in each of the classes E� E�� ESPACE� E�SPACE and REC� For C each
of these classes� it is enough to �nd � such that C does not have ��measure �� because
then the restriction of �	 to P�C	 will be non�trivial� Since we want to have the biggest
possible amount of measurable subclasses of C� we are looking for the largest measure
resource�bound � such that C does not have ��measure ��

Notice that the complexity of a martingale is given in terms of the length of initial parts of
characteristic sequences� while the complexity of a language is given in terms of the length
of strings� We next develop the constructor formalism that establishes a relationship
between both approaches� We associate with each measure resource�bound � a class of
languages R��	�

De�nition ����� f � � is a constructor i
 �w � f�	 �g�	 w v f�w	�

De�nition ����� If h is a constructor in �� then R�h	 is the unique element in f�	 �g�

such that �i hi��	 v R�h	�

De�nition ���	� R��	 is the class of languages fR�h	 j h a constructor in �g�

From the measure resource�bounds we mentioned� we obtain well�known classes as proven
in the next lemma from �Lutz����

Lemma ���
� �Lutz

�	
R�all	 $ f�	 �g�� R�p�	 $ E��
R�rec	 $ REC� R�pspace	 $ ESPACE�
R�p	 $ E� R�p�space	 $ E�SPACE�

Proof � We show that R�p	 $ E� the rest of the cases being analogous�

Let 
 be a constructor in p� Let c � � be such that 
 � DTIMEF�nc	� The next algorithm
recognizes R�
	� On input x $ si the algorithm computes 
k��	 for successive values of k�
until j
k��	j � i� In this moment the algorithm outputs 
k��	�i� that is exactly R�
	�x	�

BEGIN

INPUT x $ si
w �$ �
WHILE jwj � i DO

w �$ 
�w	
END WHILE
OUTPUT w�i�

END

This algorithm on input x computes 
k��	 for k such that j
k����	j � i � j
k��	j� Since
by the de�nition of constructor� w v 
�w	 for every w� we know that k � i & �� Thus the
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algorithm computes at most i & � values of the form 
�w	 with jwj � i� taking time less
than �i & �	 
 ic� Since i & � � 
jxj��� then R�
	 � DTIME�
�c����jxj���	� We have shown
that R�p	 � E�

To see the converse� let L � E� Let c � � be such that L � DTIME�
cn	� Consider the
constructor 
 computed by the following algorithm

BEGIN

INPUT w
n �$ jwj
b �$ L�sn	
OUTPUT wb

END

Clearly R�
	 $ L� The time used by the algorithm on input w is 
cjsnj� for n $ jwj� Since
jwj 
 
sn � then 
 � DTIMEF�nc	 and we have �nished the proof of R�p	 $ E�

We will use now ��measure to de�ne a non trivial measure on the class R��	� The justi��
cation of why it is a non trivial measure is given by next theorem� which states that R��	
does not have ��measure ��

Theorem ����� �Lutz
�� Measure Conservation Theorem	 For every martingale d � ��
there exists a language L � R��	 such that d is not successful for L�

Proof � Let d be a martingale in ��

We de�ne 
� a constructor in �� such that R�
	 �� S��d� as follows


�x	 $
n
x� if d�x�	 � d�x	
x� otherwise�

Then for each x� d�
�x		 � d�x	� and d�
k����		 � d�
k��		 for every k � IN� This implies
that

lim sup
m��

d��R�������m�	 � d��		

and R�
	 �� S��d��

After technical Lemma ���� in section ���� we will be able to show that � is� in a precise
sense� the largest measure resource�bound such that R��	 does not have ��measure ��

We �nally de�ne a meaningful measure in R��	 that is based on the restriction of ��measure
to R��	�

Although we were looking for a measure in R��	� in order to simplify notation what we
really do is to de�ne a measure on f�	 �g� � For each X � f�	 �g� we look at the subclass
X � R��	�

De�nition ����� A set X � f�	 �g� has measure 
 in R��	 i
 X �R��	 has ��measure ��
This is denoted as ��X j R��		 $ ��

De�nition ���
� A set X � f�	 �g� has measure � in R��	 i
 Xc has measure � in R��	�
This is denoted as ��X j R��		 $ ��
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Since taking � $ p	 p�	 pspace	 p�space and rec we obtain R��	 $ E� E�� ESPACE�
E�SPACE and REC� respectively� we have de�ned a nontrivial measure on those classes�

The following lemmas contain the �rst elementary properties of resource�bounded measure�
Their proofs are straightforward from the above de�nitions�

Lemma ����� Let X	 Y � f�	 �g��

a	 If Y � X and X has ��measure � then Y has ��measure ��

b	 If Y � X and X has measure � in R��	 then Y has measure � in R��	�

c	 If X has ��measure � then X has measure � in R��	�

We show next that a �nite union of ��measure � sets has ��measure �� We will generalize
this result to more general unions in section ����

Lemma ����� Let n � IN� If X�	 � � � 	 Xn have ��measure � then
nS
i��

Xi has ��measure ��

If X�	 � � � 	 Xn have measure � in R��	 then
nS
i��

Xi has measure � in R��	�

Proof � Given d�	 � � � 	 dn martingales in � witnessing that X�	 � � � 	 Xn have ��measure ��
let d be the martingale in � de�ned as d�w	 $

Pn
i�� di�w	� for each w � f�	 �g�� Clearly

nS
i��

Xi � S��d��

Lemma ����� Let X � f�	 �g�� Let �	�� be two measure resource�bounds such that
� � ��� If X has ��measure � then X has ���measure �� and if X has ��measure � then X
has ���measure ��

In general� the implication

��X j R��		 $ �



$� ��X j R���		 $ ��

is false� A counterexample is provided by Corollary ���� in section ���� stating that if ��

contains a universal function for � then ��R��	 j R���		 $ �� In this case if X $ R��	c�
then ��X j R��		 $ � and ��X j R���		 $ �� The implication

��X j R��		 $ �



$� ��X j R���		 $ �

is also false� �For a counterexample� take X $ R��	 if �� contains a universal function for
��	

In particular� for the classes we are more interested in we have the following corollary

Corollary ����� Let X � f�	 �g�� The following implications hold

�p�X	 $ � $� ��X j E	 $ �	

�p��X	 $ � $� ��X j E�	 $ �	

�pspace�X	 $ � $� ��X j ESPACE	 $ �	

�pspace��X	 $ � $� ��X j E�SPACE	 $ �	
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�p�X	 $ � $� ��X j E	 $ ��

�p��X	 $ � $� ��X j E�	 $ ��

�pspace�X	 $ � $� ��X j ESPACE	 $ ��

�pspace��X	 $ � $� ��X j E�SPACE	 $ ��

The implications summarized by the next two diagrams hold

�p�X	 $ � $� �p��X	 $ �ww
 ww

�pspace�X	 $ � $� �pspace��X	 $ � $� Pr�X	 $ ��

�p�X	 $ � $� �p��X	 $ �ww
 ww

�pspace�X	 $ � $� �pspace��X	 $ � $� Pr�X	 $ ��

By the observation after Lemma ��
�� implications such as

��X j E	 $ �



$� ��X j E�	 $ �

or
��X j E	 $ �



$� ��X j E�	 $ �

are both false in general�

As a curiosity� we include a very recent result by Juedes and Lutz �JuedLu��b� showing
an interesting relationship between measure in E and measure in E��

Theorem ����� �Lemma �	� in �JuedLu
�b�	� Let X be a class of languages� The following
holds

��Pm�X	 j E�	 $ � $� ��X j E	 $ �

and
��Pm�X	 j E�	 $ � $� ��X j E	 $ ��

Notice that E� is the closure of E under polynomial�time many�one reductions�

Corollary ���	� If X is closed downwards under polynomial�time many�one reductions�
that is� X $ Pm�X	� then

��X j E�	 $ � $� ��X j E	 $ �

and
��X j E�	 $ � $� ��X j E	 $ ��
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We now give easy examples of classes that are measure � and measure � in E� More
interesting and elaborated proofs of measure � and measure � in di
erent classes require
the additivity lemmas we will prove in section ����

Example � The class

X $ fA
�� there exist n such that jA�nj is not a multiple of �g

has measure � in E�

Proof � By De�nition ��
�� we have to show that the class Y $ Xc has measure � in E�

Let A be a language in Y � For every n � IN� jA�nj is a multiple of �� If we know the value
of jA�n�f�ngj we can guess A��n	 because if jA�n�f�ngj is a multiple of � then �n must
be out of A� if jA�n � f�ngj is a multiple of � plus two� then �n must be in A� The case
when jA�n � f�ngj is a multiple of � plus two is impossible for A a language in Y �

Thus a successful strategy for Y will be to bet only on the bits corresponding to strings of
the form �n� if jA�n�f�ngj is a multiple of � we bet all our money to �n �� A� else we bet
all our money to �n � A�

Notice that si is of the form �n if and only if i is of the form 
m � 
�

We de�ne a martingale d that corresponds to the described strategy� Let d��	 $ �� For
each w � f�	 �g�� assume that d�w	 has been already de�ned� then let d�w�	 and d�w�	 be
as follows

If jwj $ 
m � 
 for some m then

d�w�	 $

��
 
 
 d�w	 if
jwj��P
i��

w�i� is a multiple of �

� otherwise

d�w�	 $

��
 � if
jwj��P
i��

w�i� is a multiple of �


 
 d�w	 otherwise

Else� if jwj is not of the form 
m � 
 then d�w�	 $ d�w�	 $ d�w	�

Let us see that d is successful on all languages in Y � Let A � X� n � IN� Then jA�nj $P�n����
i�� A�i� is a multiple of �� If jA�n � f�ngj $

P�n����
i�� A�i� is a multiple of three�

then �n �� A� and A�
n�� � 
� $ �� By the de�nition of d then d�A����
n�� � 
�	 $


d�A����
n������ If jA�n�f�ngj is not a multiple of three then �n � A and d�A����
n���

�	 $ 
 
 d�A����
n�� � ��	�

Since we only bet on bits of the form 
m � 
� then for each n 
 �� d�A����
n�� � ��	 $
d�A����
n� 
�	� Thus d�A����
n��� 
�	 $ 
 
 d�A����
n� 
�	� lim supm d�A����m�	 $ � and
X � S��d��

Also� d is a martingale in p� because for each input w we can compute d�w	 from d�w����jwj�


�	 just by checking whether jwj is of the form 
m � 
� and computing
Pjwj��

i�� w�i�� all of
which which can be done in time linear in jwj� computing d�w	 requires computing d�u	
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for each u pre�x of w� and can thus be done in time quadratic in jwj� This proves that Y
has p�measure � and by Lemma ��
� c	 we have that X $ Y c has measure � in E�

Example �

The class

X $
n
A
�� for every n � IN	 jA�nj 





�

n
o

has measure � in E�

Notice that for every A� jA�nj � 
n for every n�

Proof � Let us show that X has p�measure �� This time the betting strategy cannot
concentrate on certain bits for which we can guess the answer� since all we know about the
languages in X is that they have many strings� The trick is that for each i � IN� we bet
more money on si � A than on si �� A� thus making more money if si � A happens more
often�

We de�ne a martingale d as follows� d��	 $ � For each w � f�	 �g��

d�w�	 $
�



d�w	 d�w�	 $

�



d�w	�

Let us see that d is successful on every language in X� If A � X then for each n � IN we
have that

d�A����
n�� � 
�	 $

�
�




�jA�nj�
�




�j�Ac��nj


 d�A����
n � 
�	 





�
�




� �
��

n �
�




� �
��

n


 d�A����
n � 
�	 $

�
�

�

� �
��

n


 d�A����
n � 
�	�

This implies that lim supm d�A����m�	 $ ��

Clearly d is computable in linear time� thus X has p�measure �� Therefore X has measure
� in E�

As a last measure concept� we introduce the pseudo�random languages� which represent
the notion of �typical language in this setting� Lutz uses this concept in �Lutz��a� to
characterize the class BPP�

De�nition ���
� A language L is ��random i
 it belongs to every class that has ��
measure �� We denote as ��rand the class of all ��random languages�

There exist several de�nitions of �random language�� for individual languages� Each of
them intuitively tries to capture those languages whose characteristic sequences have been
obtained by some random process� for instance independent tosses of a fair coin� The
strongest notion of randomness that is widely accepted is Martin�L�of randomness� discussed
in Chapter �� But every Martin�L�of random language is nonrecursive� and the interest of
��random languages is that they can be recursive and still be useful as a source of random
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bits� in fact if we have computing power � to check whether a certain language is random�
then a ��random language looks truly random to us�

We remark next that languages in R��	 cannot be ��random� We will show in section
��� that most languages in E� are p�random and that most languages in E�SPACE are
pspace�random�

Proposition ����� If A � R��	� then fAg has ��measure � and thus A is not ��random�

Proof � Use martingale d� where d��	 $ � and for w � f�	 �g�� b � f�	 �g

d�wb	 $
n


 
 d�w	 if A�sjwj	 $ b
� otherwise�

Notice that every singleton set has Lebesgue�measure �� so we cannot de�ne in this way a
Lebesgue concept of randomness for individual languages�

��� Some technical lemmas

In this section we develop some technical tools that will help us in the proofs that a given
class has measure � or measure � in R��	�

The formulation and proof of these lemmas will be simpli�ed by the use of ���approximable 
martingales� in the place of martingales in �� For instance� the use of ���approximable 
functions helps us to deal with an in�nite sum of martingales in �� This sum may not be
in �� but is ��approximable if the martingales have a uniform enumeration in ��

We start by proving that� for our purposes� using martingales that are ���approximable 
is equivalent to using martingales in �� that is� if a class has measure � using a ���
approximable martingale then it has ��measure �� Let us formalize our de�nition of
��approximable�

Notation	 Given two sets X	 Y � we consider each function f � IN�X 	 Y as an enumeration
of the functions fk� k � IN where for each k � IN� fk�X 	 Y is de�ned as fk�x	 $ f�k	 x	
for every x � X� In the same way we consider each function f � INn � X 	 Y as an
enumeration of the functions f�k for �k � INn�

De�nition ����� Let X be the cartesian product of a �nite number of factors of the form
IN and f�	 �g� � A function bf � �� bf � IN � X 	 D is a ��computation of a function
f �X 	 ��	�	 i


j bfk�w	 � f�w	j � 
�k

for all w � X and k � IN�

De�nition ���
� A function f �X 	 ��	�	 is ��computable i
 there exists a ��computation
of f �

Notice that if f takes only values in D and f � � then f is trivially ��computable� This
simple case will often happen in our applications�
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��computable martingales do not give additional measuring�power� as shown in the next
lemma� The proof uses the techniques for p�computations developed by Lutz in �Lutz��a��
A similar result has been independently proven by Juedes and Lutz in �JuedLu��b�� where
they adopt the name Exact Computation Lemma�

Lemma ����� Exact Computation Lemma	 For each ��computable martingale d there
exists a martingale d� in � such that S��d� $ S��d���

Proof � Let bd be a ��computation of d� We de�ne c� f�	 �g� 	 D a function that is very

close to d as c�w	 $ bdjwj�w	 for each w � f�	 �g�� Since bd is a ��computation of d we have

that c � � and jd�w	 � c�w	j � 
�jwj for each w � f�	 �g��

We de�ne recursively d� as follows

d���	 $ c��	 & 


d��wb	 $ d��w	 &
c�wb	 � c�w)b	



�

Since c is in �� then d� is also in ��

By Lemma ���� d� is a martingale and S��d� $ S��d��� which �nishes our proof�

Using the lemma we just proved� to see that a class X has ��measure � it will be enough
to �nd a ��computable martingale d such that X � S��d�� This will be useful mainly in
the proofs of more sophisticated tools in this section�

Corollary ����� Let X be a class of languages� X has ��measure � if and only if there
exists a ��computable martingale d such that X � S��d��

In Lebesgue measure� a countable union of measure � sets has measure �� This additivity
property is a useful tool when proving that a certain set has Lebesgue measure �� Notice
that a countable union of ��measure classes is not necessarily ��measure �� because for
each A � R��	� fAg has ��measure � and still R��	 does not have ��measure �� Therefore�
we want to �nd a weaker additivity property for ��measure that helps us to prove that
some classes have measure � in R��	�

We �nd next a weak version of countable additivity that corresponds to the idea of uni�
formity and is useful in ��measure� This additivity notion implies uniform families of
martingales that are called martingale systems�

De�nition ����� An n�dimensional martingale system �n�MS	 is a function

d� INn � f�	 �g� 	 ��	�	

such that d�k is a martingale for every �k � INn�

We now de�ne a restricted notion of countable union� that is called ��union� This concept
is only de�ned for ��measure � sets�

De�nition ����� A set X is a ��union of the ��measure � sets X�	 X�	 X�	 � � � i


X $
��
j��

Xj
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and there exists a ��computable ��MS d such that for every j� Xj � S��dj ��

Notice that by Corollary ���
� each Xi in the de�nition has ��measure �� because each dj
is ��computable�

Lemma ����� �Lutz
�� ��additivity Lemma	 If X is a ��union of ��measure � sets� then
X has ��measure ��

Proof � Let d be given by the de�nition of ��union� Let bd be a ��computation of d�

We �rst construct a ��computable ��MS D such that

i	 For all j � IN� S��Dj � $ S��dj ��

ii	 For all j � IN� Dj��	 � 
�j �

For j � IN� w � f�	 �g� we de�ne

Dj�w	 $ 
minf��� log�bdj���������jg 
 dj�w	

that clearly ful�lls i	 and ii	�

To see that D is ��computable we de�ne bD � � as follows� For j	 k � IN� w � f�	 �g�

bDj�k�w	 $ 
minf��� log�bdj���������jgdj�k�w	�

For j	 k � IN� w � f�	 �g� we have that

jDj�w	 � bDj�k�w	j $ 
minf��� log�bdj���������jgjdj�w	 � bdj�k�w	j � jdj�w	 � bdj�k�w	j � 
�k	

which shows that bD is a ��computation of D�

It is straightforward to show that condition i	 above holds� since for each j � IN� the
function Dj is just dj multiplied by a constant c � �� thus for each x � f�	 �g��
lim supmDj�x����m�	 $ c 
 lim supm dj�x����m�	� and S��Dj � $ S��dj ��

Since dj��	 � bdj����	 & 
�� we have that

Dj��	 $ 
minf��� log�bdj���������jgdj��	 � 
�j 	

and thus condition ii	 above holds�

To prove that X has ��measure � we de�ne the martingale d�� f�	 �g� 	 ��	�	 by

d��w	 $
�X
j��

Dj�w	�

d� is well de�ned because Dj��	 � 
�j which implies that d���	 � �� and for other values
w � f�	 �g� d��w	 �

P�
j�� 
jwjDj��	 � d���	
jwj� d� is trivially a martingale such that

X � S��d��� since Xj � S��Dj ��
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All that remains to be shown is that d� is ��computable� By Corollary ���
 this will show
that X has ��measure �� De�ne a function bd�� IN � f�	 �g� 	 D such that bd� � � by

bd�k�w	 $

k�jwj��X
j��

bDj�j�k���w	�

Let us see that bd� is a ��computation of d�� For each k � IN� w � f�	 �g�

jbd�k�w	 � d��w	j �

k�jwj��X
j��

j bDj�j�k���w	 �Dj�w	j &
�X

j�k�jwj��

Dj�w	 �

�

k�jwj��X
j��


�j�k�� &
�X

j�k�jwj��


jwj 
Dj��	 �

�
�X
j��


�j�k�� & 
jwj 
 
�k�jwj�� $ 
�k�� & 
�k�� $ 
�k�

This completes the proof that X has ��measure ��

As a corollary we have a similar result for measure in R��	�

De�nition ���	� A set X is a ��union of the measure � in R��	 sets X�	 X�	 X�	 � � � i

X � R��	 is a ��union of the ��measure � sets X� � R��		 X� � R��		 X� � R��		 � � �

Corollary ���
� If X is a ��union of measure � in R��	 sets� then X has measure � in
R��	�

With these ��additivity lemmas we can show now more elaborated results� We start with
an easy example of application and then prove a number of interesting consequences�

Example �

The class

X $
n
A
�� for almost every n � IN	 jA�nj 





�

n
o

has measure � in E�

Proof � We start by writing X as a countable union of classes� For each i � IN let

Xi $
n
A
�� for every n 
 i	 jA�nj 





�

n
o
�

It is clear that X $
S
iXi�

We want to show that X has p�measure � by proving that X is a p�union of the measure
� sets Xi and then using Lemma ����� Therefore we have to de�ne a p�computable ��MS
d such that for each i� Xi � S��di��
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Our de�nition of d is based in the martingale in Example 
� For each i � IN� di��	 $ ��
and for each w � f�	 �g��

If jwj 
 
i � � then

di�w�	 $
�



di�w	 di�w�	 $

�



di�w		

else� if jwj � 
i � � then di�w�	 $ di�w�	 $ di�w	�

�We remind the reader that di�w	 denotes d�i	 w	�	

For each i � IN� di is a martingale that works as the one in Example 
 on inputs of length
bigger than 
i � �� that is� on bits corresponding to strings of length at least i� By the
same reasoning of that example we can show that for each i� Xi � S��di��

To check whether jwj � 
i � � we just need to write jwj in binary and count the number
of bits used� comparing it with i� Thus d can be computed in time linear in jwj & i� is
trivially p�computable and X has p�measure ��

The next Theorem has a number of interesting corollaries�

Theorem ����� Let � and �� be two measure resource�bounds such that �� contains a
universal function for �� that is� there exist f � �� with � $ ffi

�� i � INg� Then the class
X $

S
�	�Y ���

Y has ���measure ��

Proof � Let � and �� be as in the hypothesis� Let f � �� be a universal function for ��

We de�ne g� IN � f�	 �g� 	 D as follows� For each i � IN� gi��	 $ fi��	� for w � f�	 �g��
and b � f�	 �g�

gi�wb	 $

�
fi�wb	 if gi�w	 $ fi�w	 and fi�w���fi�w��

� $ fi�w	
gi�w	 otherwise�

Notice that if fi is a martingale then fi � gi� and that for every i� gi is a martingale� It is
also clear that g � ��� Then g is a ��MS in ��� thus trivially ���computable�

By Lemma �����
S
i S��gi� has ���measure �� We �nish the proof by seeing that X �S

i S��gi��

Let Y be such that �	�Y 	 $ �� there exists a martingale d in � such that Y � S��d��
Since f is universal for �� d � fi for some i� Thus fi is a martingale and fi � gi� which
implies Y �

S
i S��gi��

We can show now that � is in a sense the largest measure resource�bound such that R��	
does not have ��measure ��

Corollary ����� Let � and �� be two measure resource�bounds such that �� contains a
universal function for �� Then R��	 has ���measure ��

Proof � From Proposition ��
� we know that for each L � R��	� fLg has ��measure ��
Thus this is a direct consequence of the last theorem�
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Corollary ���
� The class

X $
�

�p�Y ���

Y

has p��measure �� The class

X $
�

�pspace�Y ���

Y

has p�space�measure ��

Corollary ����� E has measure � in E�� ESPACE has measure � in E�SPACE� The class
of p�random languages has measure � in E�� The class of pspace�random languages has
measure � in E�SPACE�

Proposition ����� For every c � ��

��DTIME�
cn	 j E	 $ �

and

��DSPACE�
cn	 j ESPACE	 $ ��

Proof � We show the �rst part� the second part being analogous�

Let c � �� Let fMi

�� i � INg be a recursive enumeration of the Turing Machines that
work in time 
cn� We can assume that the enumeration is e!cient� and for each i � IN�
x � f�	 �g� we can compute Mi�x	 in time 
cjxj 
 i�

For each i � IN we de�ne Xi $ fL�Mi	g� the class containing only the language L�Mi	�
Then DTIME�
cn	 $

S
iXi� Let us see that DTIME�
cn	 is a p�union of the p�measure �

classes Xi�

Let d be the following� For each i � IN� di��	 $ �� For w � f�	 �g�� b � f�	 �g

di�wb	 $
n


 
 di�w	 if Mi�sjwj	 $ b
� otherwise�

We leave to the reader to see that d is the ��MS in p that witnesses the result�

The classical �rst Borel�Cantelli Lemma deals with countable families of sets fXng such
that Pr�Xn	 decreases very quickly and goes to � in the limit� For those families the lemma
states that the set of all x that belong to Xn for in�nite many n s has Lebesgue measure
�� The exact formulation follows�

Lemma ����� Classical �rst Borel�Cantelli Lemma	 Let fXj � f�	 �g�
�� j � INg be a

sequence of Lebesgue�measurable sets such that

�X
j��

Pr�Xj	
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is convergent� then

Pr

�� ��
t��

��
j�t

Xj

�A $ ��

Notice that the class
��
t��

��
j�t

Xj

consists exactly of those x that belong to Xn for an in�nite number of n�

We are interested in classes of languages that can be represented with this kind of expres�
sions� To study their measure we want an appropriate resource�bounded formulation of the
Borel�Cantelli Lemma� Since countable unions of ��measure � sets are not always measure
�� it will be useful to have a more elaborated property that for each family fXi�j

�� i	 j � INg
ful�lling certain restrictions derives a consequence for

��
i��

��
t��

��
j�t

Xi�j �

For a translation of the classical Borel�Cantelli Lemma to ��measure we need a resource�
bounded version of the idea of a family of classes with Lebesgue measure decreasing quickly
to �� To do this we introduce a way of saying �X has ��measure smaller than � � for a
class X and � � ��

For each martingale d and r � �� we de�ne the set Sr�d� with those languages for which d
succeeds in multiplying by at least r the starting capital d��	� We interpret X � Sr�d� as
�X has ��measure smaller than ��r �

De�nition ����� Let d be a martingale� and r � �� We de�ne the class

Sr�d� $ fA
�� lim
m��

d�A����m�	 
 d��	 
 rg�

Notice that if X is a class that is closed under �nite variations�

X $
��
t��

��
j�t

Xj 	

the corresponding Xj are not necessarily closed under �nite variations� thus the ��� law
stating that ��measurable classes that are closed under �nite variations can only have
��measure � and ��measure � does not apply to them� For instance let X be the class of
A such that for in�nitely many n� A�n has less that 
n�� strings� if for each n we de�ne
Xn $ fA

�� jA�nj � 
n��g then

X $
��
t��

��
n�t

Xn	
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and each Xn is not closed under �nite variations�

For our resource�bounded version of the Borel�Cantelli Lemma we also need to substitute
in the classical formulation the usual convergence of series by a more restrictive notion�

De�nition ����� Let fan
�� n � INg be a sequence of nonnegative real numbers� A modulus

for the series
�P
n��

an is a function m� IN 	 IN such that

�X
n�m�j�

an � 
�j

for all j � IN� A series is ��convergent if it has a modulus that is in ��

De�nition ���	� Let faj�k
�� j	 k � INg be a sequence of nonnegative real numbers� A

sequence
�X
k��

aj�k �j $ �	 �	 
	 � � �	

of series is uniformly ��convergent if there exists a function m� IN� 	 IN such that m � �

and for each j � IN� mj is a modulus for the series
�P
k��

aj�k�

Finally� we state the following uniform� resource�bounded generalization of the classical
�rst Borel�Cantelli Lemma that will greatly simplify the proof of several measure results
in the following chapters�

Lemma ���
� �Lutz
��	 Let fXi�j � f�	 �g�
�� i	 j � INg be a sequence of classes� If there

exists d a ��computable 
�MS such that

�i	 �i	 j � IN� Xi�j � S
�

di�j
���

�di�j �� and

�ii	 the series
�X
j��

di�j��	 �i $ �	 �	 
	 � � �	

are uniformly ��convergent�

then

�	

�� ��
i��

��
t��

��
j�t

Xi�j

�A $ ��

Proof of Lemma ���
� Assume the hypothesis� Fix a function m� IN� 	 IN witnessing
that the series

�X
j��

di�j��	 �i $ �	 �	 
	 � � �	
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are uniformly ��convergent� Without loss of generality� assume that mi is nondecreasing
and mi�n	 
 
 for all i	 n � IN� De�ne

Yi $
��
t��

��
j�t

Xi�j 	

Y $
��
i��

Yi�

Our task is to prove that �	�Y 	 $ �� For this we will use the ��additivity Lemma
�Lemma ����	 de�ning d�� IN � f�	 �g� 	 ��	�	 by

d��i	 w	 $
�X

j�mi�i�

di�j�w	

for all i � IN	 w � f�	 �g�� We show that d� testi�es that Y is a ��union of the ��measure
� sets Y�	 Y�	 Y�	 � � �� whence �	�Y 	 $ � by the ��additivity Lemma�

Each d�i is trivially a martingale� so d� is a ��MS� We want to see that Yi � S��d�i�� Fix

i � IN	 x � Yi� Since Xi�j � S
�

di�j
���

�di�j � for every j � IN and there are in�nitely many j
for which x � Xi�j � then for each k � IN there exist n � IN� j�	 � � � 	 jk�� bigger than mi�i	�
with djr �x����n�	 � � � �

k�� for r $ �	 � � � 	 k & �� and

d�i�x����n�	 $
�X

j�mi�i�

di�j�x����n�	 � k�

We conclude that lim supn d
�
i�x����n�	 $ � and x � S��d�i��

Next we have to show that d� is ��computable� For this we use the ��convergence of the
cited series� Let *d� IN��f�	 �g� 	 D be a ��computation of d� We de�ne bd� IN��f�	 �g� 	
D by

bd�i	 n	 w	 $

mi�n�jwj�����X
j��

*di�j�n���j�w	

for all i	 n � IN	 w � f�	 �g�� Let s see that bd is a ��computation of d��

jbd�i	 n	 w	 � d��i	 w	j �

�

mi�n�jwj�����X
j��

jd�i	 j	 w	 � *d�i	 j	 n& 
 & j	 w	j &
�X

j�mi�n�jwj���

jbd�i	 j	 w	j �

� 
�n�� & 
�n�� $ 
�n�
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In order to take full advantage of this lemma we will use the following su!cient condition
for uniform ��convergence� �This well�known lemma is easily veri�ed by routine calculus�
remarking that polynomials can be computed in �� for � any measure resource�bound�	

Lemma ����� Let aj�k � ��	�	 for all j	 k � IN� If there exist a real � � � and a polynomial
g� IN 	 IN such that aj�k � e�k

�

for all j	 k � IN with k 
 g�j	� then the series

�X
k��

aj�k �j $ �	 �	 
	 � � �	

are uniformly ��convergent�

We �nish this chapter with an application of the resource�bounded Borel�Cantelli Lemma
�Lemma ����	�

Example � The class

X $

�
A
�� jA�nj 
 
n

�
�



&

�

n

�
for in�nitely many n

�
has measure � in E�

Proof � For each n � IN� let

X�n $

�
A
�� jA�nj 
 
n

�
�



&

�

n

��
	

and let Xj $ � if j is not a power of 
� Then by de�nition of X�

X $
��
t��

��
j�t

Xj �

We want to apply Lemma ���� to this expression of X� Notice that we do not have the

outermost union� It is enough to de�ne a ��MS d such that for each j� Xj � S
�

dj ��� �dj ��
For each j � IN such that j is a power of 
� w � f�	 �g� let

d�j	 w	 $ Pr
x

�x � Xj

�� x � Cw�	

for the rest of j let dj � 
�j �

By de�nition of conditional probability� d is a ��MS� We have to show that d is p�
computable and that conditions �i	 and �ii	 in Lemma ���� hold�

To see that condition �i	 holds� �x j � IN a power of 
 and x � Xj � Since the condition
x � Xj is only based on the pre�x x����
j � 
�� any y � f�	 �g� such that y � Cx��		�j��


is also in Xj � and d�j	 x����
j � 
�	 $ �� thus x � S
�

dj ��� �dj ��
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To see that condition �ii	 holds� we have to look at the series

�X
j��

dj��	 $
�X
j��

Pr
x

�x � Xj ��

For each n � IN�

Pr
x

�x � X�n � $
�nX

i�d�n��
���
n�e

�

n

i

�
$

�n��
���
n�X
i��

�

n

i

�

The Cherno
 bound �Lemma ���	 tells us that� if j $ 
n

Pr
x

�x � Xj � � e�
j

�n� 	

thus there exists c � o such that if j � c then

Pr
x

�x � Xj � � e�j

��

�

This� together with Lemma ����� tells us that
�P
j��

dj��	 is p�convergent and condition �ii	

holds�

We need to check that d is p�computable� We can use binomial coe!cients to exactly
compute Prx�x � Xj

�� x � Cw� in time polynomial in jwj & j� thus d � p and we have the
result�

��� ��measurability and the Kolmogorov 	�� law

In this section we develop the concept of ��measurability and consider classes that have
��measure �� for � any value between � and �� Then we prove that these new concepts
are not useful for classes that are closed under �nite variations� for instance most of the
classes de�ned in Structural Complexity� This is stated as the resource�bounded version
of the Kolmogorov ��� law� which is a consequence of the classical Kolmogorov ��� law�

The material in this section has been included for the sake of completeness� The whole
section can be skipped without losing continuity with the rest of the chapters�

In order to de�ne ��measurability� we start by de�ning a function ��	 that associates to
each class of languages X the set of upper bounds of its possible ��measure� A class X
will be ��measurable when one of these bounds is tight�

De�nition ����� Let ��	� f�	 �g� 	 P���	 ��	 be the function that for each X � f�	 �g� is
de�ned as follows

��	�X	 $
�

 
 �

�� there exists a ��MS d � � such that for each k � IN	 X � S
�

����k �dk�
	
�
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Remember from section ��� that for each martingale d and r � �� the class Sr�d� contains
those languages for which d succeeds in multiplying by at least r the starting capital d��	�

The next lemma states some basic properties of ��	� Since this section is not critical� we
prefer to state strictly the properties needed in the proof of Theorem �����

Lemma ���
�

�i	 If X � Y then ��	�Y 	 � ��	�X	�

�ii	 Let fY�	 � � � 	 Yng be a �nite sequence of pair�wise disjoint classes� If 
i � ��	�Yi	 for
each i then

nX
i��


i � ��	

� n�
i��

Yi

�
�

�iii	 For very X� ��	�X	 & ��	�Xc	 
 ��

�iv	 Let fYi
�� i � INg be a sequence of pair�wise disjoint classes� If 
i � ��

all
�Yi	 for each i

then X
i�IN


i � ��
all

� �
i�IN

Yi
�
�

�v	 If fan
�� n � INg is a decreasing sequence such that fan

�� n � INg � ��
all

�X	 and
l $ limn�� an then l � ��

all
�X	�

Proof � Part �i	 is straight�forward from the de�nition� For �ii	� let fY�	 � � � 	 Yng be as
in the hypothesis� For each i � IN� let 
i � ��	�Yi	� All we need to do is to de�ne a ��MS

d such that for each k � IN�
S
i Yi � S

�

�i�i��
�k �dk��

For each i � IN� let di be a ��MS in � such that for each k Yi � S
�

�i��
�k �dik�� For each

w � f�	 �g�� k � IN�

dk�w	 $
X
i


i & 
�k�log n

dik�logn��	
dik�log n�w	�

By de�nition dk��	 $
P

i 
i & 
�k� and for each i� Yi � S
�

dk��� �dk��

For �iii	� assume that there exist 
 � ��	�X	� 
� � ��	�Xc	 such that 
 & 
� � �� Then
by �ii	 
 & 
� � ��	�f�	 �g�	� and for each k � IN there exists a martingale dk such that

f�	 �g� � S
�

�������k � thus there exists a martingale d� and r � � such that f�	 �g� � Sr�d���
But this contradicts property ����	 in the de�nition of martingale�

For �iv	� let fYi
�� i � INg be as in the hypothesis� For each i � IN� let 
i � ��

all
�Yi	� We

de�ne a ��MS d such that for each k � IN�
S
i Yi � S

�

�i�i��
�k �dk��

For each i � IN� let di be a ��MS such that for every k� Yi � S
�

�i��
�k �dik�� For each

w � f�	 �g�� k � IN

dk�w	 $
X
i


i & 
�i�k

dik�i��	
dik�i�w	�

By de�nition dk��	 $ 
�k &
P

i 
i� and for each i� Yi � S
�

dk��� �dk��
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Part �v	� For each n let dn be a ��MS such that for each k� X � S
�

an��
�k �dnk �� We

construct d� such that X � S
�

l���k �d�k� as follows� For each k � IN� let nk be such that for
each n 
 nk� an � l � 
��k� Let d�k � dnk�k � Then for each x � X�

lim
m��

d�k�x����m�	 $ lim
m��

dnk�k �x����m�	 

�


��k & ank

 d�k��	 


�


�k & l

 d�k��		

and l � ��
all

�X	�

From ��	 we de�ne ��measurability�

De�nition ����� Let X be a class of languages� We say that X is ��measurable if there
exists 
 � ��	�X	� 
� � ��	�Xc	 such that 
 & 
� $ ��

Notice that if X is ��measurable� then by part �iii	 of Lemma ���� there exist a unique

 � ��	�X	 and a unique 
� � ��	�Xc	 such that 
 & 
� $ �� We denote �	�X	 $ 
�

For � $ all this de�nition corresponds to classical Lebesgue�measurability�

Remark that if X is ��measurable then Xc is also ��measurable�

We have the following elemental property

Lemma ����� Let � and �� be two measure resource�bounds such that � � ��� If X is
��measurable then X is ���measurable and �	�X	 $ �	��X	�

Proof � By De�nition ����� ��	�X	 � ��	��X	� and ��	�Xc	 � ��	��X
c	� Thus if 
 & 
� $ �

for some 
 � ��	�X	� 
� � ��	�Xc	� X is ���measurable�

Let us see that this de�nition is consistent with our de�nitions of ��measure � and ��
measure � sets in section ���� Remember that in those de�nitions we used upper�limits
instead of limits�

Lemma ����� X has ��measure � if and only if X is ��measurable and �	�X	 $ ��

Proof � Let X be a class that has ��measure �� let d � � such that X � S��d��

By the de�nition of ��measurable� it is enough to see that there exists a ��MS d� � � such

that for every k � IN� S��d� � S�
k

�d�k��

Fix k � IN� d�k is de�ned as follows

d�k�w	 $

�
d�w	 if for every i � jwj� d�w����i�	 � 
k 
 d��	�
d�w����i�	 otherwise� for i � jwj� the �rst such that d�w����i�	 
 
k 
 d��	�

Let x � S��d�� Since lim supn d
��x����n�	 $ �� for each k � IN there exists n � IN

such that d�w����n�	 
 
k 
 d��	� Let n� be the �rst such n� Then by de�nition of d�k�

d�k�x����n�	 
 
k 
d�k��	 for every n 
 n�� and limn d
�
k�x����n�	 
 
k 
d�k��	� Thus x � S�

k

�d�k��
which �nishes the �rst part�

Let X be a class that is ��measurable with �	�X	 $ �� There exists a ��MS d such that

for each k� X � S�
k

�dk��
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Let d� be the following martingale d��w	 $
P

k
��k

dk���
dk�w	� Then X � S��d�� and d� is

��approximable by bd�i	 w	 $
Pi�jwj

k��
��k

dk���
dk�w	� thus X has ��measure � by Lemma �����

Finally we state the resource�bounded version of the Kolmogorov ��� law� We argue that it
immediately follows from the Kolmogorov ��� law for Lebesgue measure� and� for the sake
of completeness� we give a proof of it in terms of martingales� A classical classical proof�
using the de�nition by covers of Lebesgue measure can be found for instance in �Oxto��

Theorem ����� Let X be a class of languages that is closed under �nite variations� If X
is ��measurable then either X has ��measure � or X has ��measure ��

Proof �

A key observation is that� by Lemma ���
� if X is ��measurable� then X is all�measurable
and �	�X	 $ �all�X	� Therefore we just need to prove this property for � $ all� that is�
for Lebesgue measure�

For each set of strings U � f�	 �g�� we denote as CU the class of languages
S
y�U

Cy�

This proof is based on the following claim�

Claim� Let X be a class of languages that is closed under �nite variations� For each class
Y � if 
 � ��

all
�X	 and 
� � ��

all
�Xc	 then


 
 
� � ��all�X � Y 	�

Assuming that the claim is true� take Y $ X� We have that �all�X	� � ��
all

�X	� which
implies that �all�X	 can only be � or �� Thus if X is measurable then �all�X	 must be
either � or ��

We �nish this proof with the cited claim�

Proof of Claim	 Let X be as in the hypothesis� Let 
 � ��
all

�X	�

Consider the case Y $ Cy� for y � f�	 �g�� It is an easy exercise to see that �all�Cw	 $


�jwj� Let d be a ��MS such that X � S
�

����k �dk� for each k� De�ne a ��MS d� as follows

d�k�y	 $

������

� if w �v y and y �v wP
jzj�jyj

dk�z	 if w $ ytP
jzj�jwj

dk�zt	 if y $ wt�

Then for each x � Cw� d�k�x����n�	 $
P

jzj�jwj

dk�zx�jwj��n�	�

Let x � X � Cw� For each z with jzj $ jwj� since X is closed under �nite variations we

know that zy � X� where y�i� $ x�i & jwj� for every i 
 �� Since X � S
�

����k �dk�� then

limn dk�zy����n�	 
 dk���
����k � Thus limn d

�
k�x����n�	 
 
jwj dk�������k $ dk���

��jwj�����k�
� This shows

that

 
 �all�Cw	 � ��

all
�X � Y 	�



�� �� INTRODUCTION

Now we consider the case Y $ CU � where U is a pre�x code �that is� U is a set of
strings such that there are no x	 y � U with x v y	� We leave to the reader to see that
�all�CU 	 $

P
w�U


�jwj�

For each pair of strings x	 y � U with x �$ y� Cx � Cy $ �� By Lemma ����� if 
w �
��
all

�XCw	 then
P
w�U


w � ��
all

�X � CU 	� Using the case Y $ Cw we have that if 
 �

��
all

�X	 then 
 
 �all�CU 	 � ��
all

�X �CU 	�

For the general case� let 
� � ��
all

�Y 	� Let d be a ��MS such that Y � S
�

�����k �dk�� Let

Uk $
n
w
��� dk�w	 


dk��	


� & 
�k��
and for every y with y v w	 dk�w	 �

dk��	


� & 
�k��

o
�

Then Uk is a pre�x code� 
� & 
�k�� � ��
all

�CUk	 and Y � CUk � Therefore�

�all�X	 
 �
� & 
�k��	 � ��
all

�X �CUk 	 � ��
all

�X � Y 	�

Since this holds for every k� by Lemma ���� �v	� �all�X	 
 
� � ��
all

�X � Y 	 and we have
�nished the general case�



Chapter �� Measuring in PSPACE

��� Introduction

In Chapter � we have de�ned Lutz s resource�bounded measure for classes such as E� E��
ESPACE and E�SPACE by bounding resources in a constructive de�nition of Lebesgue
measure� in this way the more restrictive is the resource�bound� the smaller is the class
in which we have de�ned a nontrivial measure� The use of characteristic sequences in
the de�nition of measure causes that� for instance if we impose a time bound F �n	 on
Lebesgue measure� we obtain a meaningful measure in the class de�ned by the time bound
F �
n	� If we impose a linear time bound on Lebesgue measure we already reach the class
of exponential time languages� Since dealing with sublinear bounds requires a more careful
consideration� all of the classes for which we had the general de�nition of Lutz s measure
contain E as a subclass�

However� there are interesting problems that can be formulated in terms of estimating the
size of subclasses of P or PSPACE� For instance� we want to know whether most languages
in P are e!ciently parallelizable� or whether self�reducibility is a typical property for the
languages in PSPACE� In this chapter we are interested in extending Lutz s measure to
the class PSPACE of languages recognizable in polynomial space�

To do this� we explore the property that has endowed the mentioned exponential classes
with a non�trivial measure structure� that is� the Measure Conservation Theorem in Chap�
ter �� We want to de�ne a non�trivial measure inside PSPACE by looking for the same
property� First we see that the natural candidate is not valid unless PSPACE $ E�� and
then we get a valid formulation of a measure inside PSPACE�

There is another property of measure in exponential classes� namely ��additivity� that it is
interesting to have for any measure� We prove this property for our measure in PSPACE
and then use it to show that a class of self�reducible languages has measure � in PSPACE�

It remains open how to measure in P� which will probably require a di
erent approach not
dealing with characteristic sequences� This is because as in polynomial space we could not
store a characteristic sequence� in polynomial time we cannot even compute it+�

The results in section 
�
 appear in �Mayo�
b�� The results of section 
�� are as yet
unpublished�

��� Measure in PSPACE

+ While revising the draft of this text� we have been informed that Allender and Strauss
have obtained a reasonable de�nition of measure for P �AlleSt��

��
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Our de�nition of resource bounded measure in Chapter � was restricted to classes of the
form R��	� for � a measure resource�bound� In particular� since each measure resource�
bound contains p� E � R��	� The de�nition of measure in R��	 was based in ��measure�
de�ned as a ���restriction of Lebesgue�measure� The reason why R��	 inherits a non�
trivial measure from this ��measure is that� as shown in Lutz s Measure Conservation
Theorem �Theorem ����	� R��	 does not have ��measure ��

Following the same idea� in order to de�ne a measure inside PSPACE we have to �nd
solutions to the equation R��	 $ PSPACE and check that the corresponding ��measure
ful�lls the Measure Conservation Theorem� that is� PSPACE does not have ��measure ��
This time we cannot require � to be a measure resource�bound� and through this chapter
we will use � to denote any class of functions inside rec�

Let us have a look at the solutions of the equations R��	 $ DTIME�F	 and R��	 $
DSPACE�F	 for di
erent families F that we used in Chapter �� For example for E $S
c DTIME�
cn	 the solution was � $ p and for ESPACE $

S
c DSPACE�
cn	� � $ pspace�

In all cases� for R��	 $ DTIME�F	 we use the solution � $ DTIMEF�F � log	� and for
R��	 $ DSPACE�F	� � $ DSPACEF�F � log	�

By analogy� the class of polylogarithmic space computable functions is the natural candi�
date to de�ne a measure in PSPACE� and we would like to prove that R�polylogspace	 $
PSPACE� We bound polylogarithmically only the working space� and do not pose any
restriction on the output space in this case�

The following lemma proves the �rst part of this equality�

Lemma ���� PSPACE � R�polylogspace	�

Proof � Given L a language in PSPACE� we have to de�ne a constructor h such that
R�h	 $ L� We use the simple idea of just adding a bit of the characteristic string of L as
follows

h�w	 $ w�L�sjwj	�

It is straightforward to check that R�h	 $ L and that h is in polylogspace�

The other inclusion is more complicated� Given h � p� in order to check whether an
input x $ si is in R�h	 we can simulate the computations �� h��	� h�h��		� h�h���		� � � ��
h�hm��		 for successive m until jh�hm��		j � i� But since the output of some of these
computations will be too big to be kept in space polynomial in jxj� we cannot expect
polynomial space algorithm for R�h	 by using this simple approach� Another idea would
be to simulate the computations of h�hm��		 for successive m� but without writing the full
output� that is� recalculating the bits in hm��	 needed in the computation of h�hm��		� In
this case the stack of the recursion can be too big for PSPACE �e�g� in the cases where
jh�w	j $ jwj & � for every input	� and the idea does not work in general�

We see in the next theorem what is really R�polylogspace	� It corresponds to a class of
self�reducible languages that is expected to be di
erent from PSPACE�

De�nition ���� A language A is PSPACE�wdq�self�reducible �where wdq stands for word�
decreasing�queries	 if A $ L�M	A	� where M is a PSPACE Oracle Turing Machine that
makes only queries strictly smaller than the input �in lexicographical order	�




�
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Balc�azar de�nes in �Balc� two types of self�reducibility� namely wdq�self�reducibility and
ldq�self�reducibility� ldq standing for length decreasing queries� The most restrictive one is
ldq�self�reducibility� where all the queries must be strictly shorter than the input� Notice
that wdq�self�reducibility allows exponentially long decreasing chains to exist� while only
linearly long chains can appear for the ldq type� De�nition 
�
 is obtained by substituting
PSPACE computations for P computations in the de�nition of �Balc��

Theorem ���� R�polylogspace	 is exactly the class of PSPACE�wdq�self�reducible lan�
guages�

Proof � We start by proving that every language in R�polylogspace	 is PSPACE�wdq�
self�reducible� Let h be a constructor in polylogspace�

We de�ne a PSPACE�oracle machine M that on oracle A and input si computes
h��A�� � � �m � ��	 for a certain m � i & � such that jh��A�� � � �m � ��	j � i� and gives as
output the i & ��th bit of h��A�� � � �m � ��	� In the case of A $ R�h	� we choose m such
that �A�� � � �m� �� $ hl��	 for some l� and this ensures that h��A�� � � �m� ��	 v A� thus
M�si	 A	 $ A�si	�

For each oracle A� we de�ne the following sequence of natural numbers

a� $jh��	j

an�� $jh��A�� � � � an � ��	j	 for n 
 ��

The machine M on oracle A works as follows

INPUT si
Find an such that an � i � an��
b �$the i & ��th bit of the output of h��A�� � � � an � ��	

OUTPUT b

The computations of the form h��A�� � � �m� ��	 are done by machine M by substituting
each access to the input by a query to A� In this way all queries to A are strictly smaller
than si� since an � i� The computation of M can be done in space polynomial in the
length of the input� because the working space of the computations of h is polylogarithmic
in i� which is polynomial in si� and for the outputs we only need to write their length and
their �i & �	�th bit if it exists�

When A $ R�h	 we have seen that M�si	 A	 $ A�si	� thus M performs a PSPACE�wdq�
self�reduction in this case� This completes the �rst part of the theorem�

To see that every PSPACE�wdq�self�reducible language is in R�polylogspace	� �x L
PSPACE�wdq�self�reducible via a Turing Machine M � We can de�ne h as in Lemma 
��

h�w	 $ wL�sjwj		

where L�y	 is � if y � L� � otherwise�

It is clear that R�h	 $ L� In the computation of h� to decide whether sjwj is in L we can
use that L is PSPACE�wdq�self�reducible and simulate the computation of M on input
sjwj� answering to a query si� �i � jwj	 by checking the ith bit of w� This simulation can
be done in space polynomial in the length of sjwj� that is� polylogarithmic in the length of
w� so h is in polylogspace�



�
 
� MEASURING IN PSPACE

In �Balc� it is proven that E� has �p
m�complete languages that are P�wdq�self�reducible�

Since every P�wdq�self�reducible language is clearly PSPACE�wdq�self�reducible� E� has
�p
m�complete languages that are PSPACE�wdq�self�reducible� and we have the following

result�

Theorem ���� If PSPACE $ R�polylogspace	 then E� $ PSPACE�

Proof � By the comment above� E� has a PSPACE�wdq�self�reducible complete language
A� In the hypothesis that PSPACE $ R�polylogspace	 and using Theorem 
�� it is clear
that A is in PSPACE�

Since PSPACE is closed under �p
m�reduction� if PSPACE contains A� it contains the whole

class E��

There are other restrictions we can impose on polylogspace functions and still be able
to construct the full PSPACE� For instance we can consider only functions that can be
computed with on�line polylogspace machines� that is to say� machines that read the input
only once and from right to left�

Our model of on�line machine is based on that of Hartmanis� Immerman and Mahaney in
�HartImM��

De�nition ���� An on�line Turing Machine is a machine that on input of length n

�a	 starts with logn blank spaces marked on one of the working tapes�

�b	 reads the input tape once from left to right� and

�c	 writes the output from left to right on a write�only tape�

De�nition ��	� Let plogon be the class of functions that are computable by on�line ma�
chines with working and output space polylogarithmic in the size of the input� In this case
and for constructor functions only� we do not bound the output space�

Theorem ��
� PSPACE $ R�plogon	�

Proof � �	 For this inclusion we use the constructor in Lemma 
��� which can be clearly
computed with an on�line machine�

�	 Given h a constructor in plogon we construct an algorithm for R�h	 that simulates the
successive computations h��	� h�h��		� h�h���				 � � � 	 h�hm��			 by couples� Since we are
using an on�line machine� the computation of h�hm����		 is identical to that of h�hm��		
�except for the initially marked blank tapes	� until h�hm����		 �nds the end of its input�
We take advantage of this to simulate two of these computations in parallel� Notice that
on�line constructors read the whole input before adding new bits to the output �new here
means not a part of the copy of the input	� We simulate the part of the computation of
h�hm����		 when the input has been read and new bits of the output are being produced�
These output bits are being fed as input bits in the computation of h�hm��		� In this
way we do not need to keep long pieces of R�h	� only one bit at a time that as soon as is
produced as output is consumed as input�

The next algorithm recognizes R�h	� On input si it works as follows
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BEGIN

j �$ ��
FOR k �$ � to log i DO

Ck
� �$initial con�guration in the computation of h��	 with k spaces marked on the output tape�

Ck
� �$ Ck

� �
END FOR
s �$ �
WHILE j � i DO

fFirst we simulate the part of the computation of h�hm����		 after the whole
input has been read� getting one bit of output at a time	g
FOR k �$ � to log i DO in parallel
simulate the computation of h starting in Ck

�

assuming that the rest of the input is blank�
until getting the jth bit of the output� bk

Ck
� �$last con�guration reached in the simulation

IF bk is not blank
fNow we simulate the part of the computation of h�hm��		
after the pre�x of the input hm����	 has been read�
reading one bit of input at a time	g
THEN simulate the computation of h starting in Ck

� � assuming that
the jth bit of the input is bk� stopping when accessing this jth bit
Ck
� �$last con�guration reached in the simulation

j �$ j & �
ELSE Ck

� �$ Ck
�

IF s $ k THEN s� $ log j
END FOR

END WHILE
OUTPUT bs fFor this bs	 R�h	�i� $ bsg

END

In this way we only need space to keep 
 log i con�gurations of size polylogarithmic in i�
which is polynomial space in the length of the input si� Thus R�h	 � PSPACE and we
�nish the proof�

We have proved that plogon is a solution to the equation R��	 $ PSPACE� In order to
de�ne a nontrivial measure in PSPACE� we have to check that the class plogon ful�lls the
Measure Conservation Theorem� that is� that PSPACE does not have plogon�measure ��
This is straight�forward from the proof of this theorem in Chapter �� The proof consisted
of� for each martingale d � �� de�ning a constructor 
 � � such that R�
	 �� S��d� as
follows


�w	 $
n
w� if d�w�	 � d�w�	
w� otherwise�

Notice that if d � plogon then the above de�ned 
 is also in plogon� Thus there is no
martingale in plogon that succeeds on every language in PSPACE� and we can de�ne a
measure in PSPACE from plogon�measure�
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In the next section we show that ��additivity holds for plogon�measure� and use it for an
application concerning self�reducible languages�

��� ��additivity in PSPACE

In Chapter � we introduced Lutz s property of ��additivity as a useful tool in the proof
that a certain class has ��measure �� All the measures we de�ned in that chapter had this
property� We show here that the same holds for plogon�measure� We then use it to show
that the class of LINSPACE�self�reducible�languages for a particular self�reducibility has
measure � in PSPACE�

Let us remind the de�nition of ��union of ��measure � sets�

De�nition ���� A set X is a ��union of the ��measure � sets Xj 	 j � IN i
 X $
�S
j��

Xj

and there exists a ��computable ��MS d such that� for every j� Xj � S��dj ��

Lemma ���� If X is a plogon�union of plogon�measure � sets� then X has plogon�measure
��

Proof � Let d be given by the de�nition of ��union� Let bd be a plogon�computation of d�

To prove that X has plogon�measure � we de�ne the martingale d�� f�	 �g� 	 ��	�	 by

d��w	 $
�X
j��


minf��� log�bdj����������jgdj�w	�

d� is well de�ned because since dj��	 � bdj����	 & 
�� we have that


minf��� log�bdj����������jgdj��	 � 
��
j

and thus d���	 � �� For other values w � f�	 �g�� notice that d��w	 � 
jwjd���	� d� is
trivially a martingale such that X � S��d���

By the same arguments as in the case of � a measure resource�bound �Corollary ���
	�
de�ning plogon�measure using only martingales in plogon is equivalent to de�ning it with
plogon�computable martingales� In order to see that X has plogon�measure �� we then need
only to show that d� is plogon�computable� For this� de�ne a function bd�� IN�f�	 �g� 	 D

by

bd�k�w	 $

log�k�jwj���X
j��


minf��� log�bdj����������jg bdj�j�k���w	�

Let us see that bd� is a plogon�computation of d�� For each k � IN� w � f�	 �g�

jbd�k�w	�d��w	j �

log�k�jwj���X
j��

jbdj�j�k���w	�dj�w	j &
�X

j�log�k�jwj���


� log�bdj����������jdj�w	

�

log�k�jwj���X
j��


�j�k�� &
�X

j�log�k�jwj���


jwj
� log�bdj����������jdj��	 � 
�k��&
�k�� $ 
�k�
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It is clear that bd� � plogon� because it is de�ned as a sum of O�logn	 functions� each of
them computed in space O�logl n	� for a �xed l�

We have studied PSPACE�wdq�self�reducibility in section 
�
� showing that there are lan�
guages out of PSPACE that are PSPACE�wdq�self�reducible� unless PSPACE $ E�� We
now look at a more restrictive form of wdq�self�reducibility� where the machine used has a
linear bound on the space and a restriction on the order the queries are made�

De�nition ���
� A language A is LINSPACE�oq�self�reducible �where oq stands for ordered
queries	 if A $ L�M	A	� where M is a LINSPACE�oracle�machine that for each input
makes the queries in lexicographical ascending order� and all of them are strictly smaller
than the input �in lexicographical order	�

Remark than if A is LINSPACE�wdq�self�reducible via a O�n	�truth�table LINSPACE�
machine� then A is LINSPACE�oq�self�reducible� because we can order the queries before
making them� In particular� most of the known self�reductions for natural problems in
PSPACE are O�n	�tt �even O��	�tt	 and computable in LINSPACE�

Theorem ����� The class of LINSPACE�oq�self�reducible languages has measure � in
PSPACE�

Proof � Let Y be the class of LINSPACE�oq�self�reducible languages� We will prove that
Y has plogon�measure ��

Let fMi

�� i � INg be a recursive enumeration of all Oracle Turing Machines working in
space jzj� on input z�

Let Xi $ fB
�� B $ L�Mi	 B	g if the queries of Mi on any input and any oracle are ordered

and strictly smaller than the input� let Xi be empty otherwise� Let X $
S
iXi� It is clear

that Y � X� In fact� the techniques in �Balc� show that each self�reduction corresponds to
a single language� that is� for each i � IN either jXij $ � or jXij $ ��

We are going to see that X is a plogon�union of the plogon�measure � sets Xi	 i � IN� Let
us de�ne d a plogon�computable ��MS as required by De�nition 
���

Let i � IN such that Xi �$ �� Let w � f�	 �g�	 b � f�	 �g�

di��	 $ �

If sjwj � f�g� then let sk� 	 sk� 	 � � � 	 skl be the queries of Mi on input sjwj� Let a � f�	 �g be
the output of Mi on input sjwj when the queries are answered according to w�k��	 � � � 	 w�kl��

di�wb	 $

�

 � di�w		 if b $ a�
�	 otherwise�

Otherwise di�wb	 $ di�w	�

d is in plogon� because for any i we can compute di�w	 by simulating in parallel the
computations of Mi��		Mi��

�		 � � � 	Mi��
log�jwj�	� answering to the di
erent queries in lex�

icographical order while reading the input on�line�

More precisely� on input w� the following algorithm computes di�w	
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BEGIN

Q �$ �
d �$ �
FOR m �$ � to log�jwj	 DO

Cm �$con�guration of machine Mi on input �m when making its �rst query� qm
Q �$ Q � f�m	 qm	g

END FOR
FOR j �$ � to jwj � � DO

FOR m �$ � to log�jwj	 DO
IF �m	 sj	 is in Q

THEN Cm �$con�guration of machine Mi on input �m after answering query sj
according to w�j� and making its next query� qm� if it exists

IF Cm is a �nal con�guration �� for accepting� � for rejecting	
THEN IF w�
m � �� $ Cm
THEN d $ 
d
ELSE d $ �

END IF
Q �$ Q � f�m	 qm	g � f�m	 sj	g

END IF
END FOR

END FOR
END �

The algorithm works in space plogon because in each step we only need to keep a loga�
rithmic number of polylogarithmic size con�gurations�

If B � Xi then di�B�� � � �
m � ��	 $ 
di�B�� � � �
m � 
�	 for each m � IN� so Xi � S�di��

Using Lemma 
�� we have the result�

We could also state a plogon version of the Borel�Cantelli Lemma in Chapter �� But in
this case we need a very restrictive notion of uniform convergence of series� which makes
a plogon�formulation unattractive and di!cult to apply�

We will use plogon�measure to study other classes inside PSPACE in the following chapters�



Chapter �

Measure versus category� the P�Bi�immune sets

��� Introduction

In this chapter� we study the class of P�bi�immune languages that are in E� Informally� a
set A is bi�immune for a complexity class C if no nontrivial part of A or of its complement
can be �attacked by any algorithm of �type C � More precisely� a set A is C�bi�immune if
no nontrivial subset of A or its complement is in C�

The notion of immunity was �rst introduced by Post �Post��� in recursive function theory�
Flajolet and Steyaert transformed it into the complexity theoretic setting in �FlajSt��a� and
�FlajSt��b�� Hartmanis and Berman show that E contains a P�bi�immune set ��BermHa��
observed in �KoMo�	� and an application of �GeskHuS� yields that for all c � � there exists
a DTIME�
cn	�bi�immune set in E� P�bi�immunity is also studied in detail by Balc�azar
and Sch�oning in �BalcSc�� where several characterizations are presented� for instance� a
recursive set A � f�	 �g� is P�bi�immune if and only if f�	 �g� is a complexity core for A�

Our goal here is to study the size of the class X of all P�bi�immune languages inside E�
that is� to compare X �E and E by size criteria� We would like to generalize �There exists
a P�bi�immune set in E to �Almost every set in E is P�bi�immune �

For this purpose we will use two ways of size�classi�cation of classes within exponential
time� namely measure in E and category in E� We have fully introduced the �rst one
in Chapter �� The second one is de�ned by Lutz in �Lutz��� by bounding resources in
topological Baire category �see section ��� for a revision of resource�bounded category	�

We will prove that the class of P�bi�immune languages has measure � in E� This implies that
almost every language in E is P�bi�immune� and so it extends the previously mentioned
result from �BermHa� �in fact� it extends �GeskHuS� since we will see that for any c � �
almost every language in E is DTIME�
cn	�bi�immune	� As a corollary� we show that the
class of �p

m�complete sets for E has measure � in E�

We obtain generalizations of the above result� such as� E�bi�immunity de�nes a measure �
class within E�� So almost every language in E� is E�bi�immune�

Classical Baire Category di
ers drastically from Lebesgue measure in the sense that �large 
classes for Baire can be �small for Lebesgue� and vice versa �Oxto�� We prove here that the
class of P�bi�immune languages is a natural example that witnesses the di
erences between
category and measure for the resource�bounded formulation� The class of P�bi�immune sets
is not �measurable in E in the category setting �formally� it does not have the property of
Baire	� whereas it has measure � in E�

The two di
erent approaches of category and measure give us two di
erent concepts of
typical language� namely generic language and random language� We contrast these in the

��
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resource�bounded setting� observing that a pseudo�random language is necessarily P�bi�
immune� while a pseudo�generic language can have an in�nite subset in P�

The main results for the class of P�bi�immune languages inside E in this chapter can be
restated for the class of DLOG�bi�immune languages inside PSPACE� as we remark at the
end of each section�

The results in this chapter appear in �Mayo�
a��

��� P�bi�immunity and resource�bounded measure

In this section we prove that the class of P�bi�immune sets has measure � in E� As
a consequence� almost every set in E is P�bi�immune� that is to say� almost every set
recognizable in linear exponential time has no algorithm that recognizes it and works in
polynomial time on an in�nite number of instances� Next we explain some consequences
of this result for �p

m�complete languages�

First� we review the notion of immunity�

De�nition ���� Let C be a class of languages� and L be a language� We say that L is
C�immune i
 L does not have an in�nite subset that belongs to C�

De�nition ���� Let C be a class of languages� and L be a language� We say that L is
C�bi�immune i
 both L and the complement of L are C�immune�

Next we prove our main result� by using the ��additivity property �Lemma ����	�

Theorem ���� The class of P�bi�immune languages has p�measure �� and thus measure �
in E�

Proof � Let Y be the class of non�P�bi�immune languages� By De�nition ����� if we
prove that Y is a p�measure � class we have the theorem�

Let A � E be a universal language for the class P� that is� if we de�ne for each i � IN�
Ai $ fx

�� hx	 ii � Ag� then P $ fAi

�� i � INg�

For i � � we de�ne the classes Y�i�� and Y�i as follows� If jAij $ � then

Y�i�� $ fL j Ai � Lg	 and

Y�i $ fL j Ai � Lcg�

If jAij � � then Y�i�� $ Y�i $ �� It is easy to see that Y is contained in the union of all
the classes Ym�

Now we will use Lemma ���� to prove that Y has p�measure �� For this we have to build
a p�computable ��MS d that witnesses that Y is a p�union of the p�measure � classes Ym�

Let m � IN	 w � f�	 �g�� dm is de�ned as follows�

dm��	 $ �

If m $ 
i� � then
When sjwj � Ai we de�ne
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d�i���w�	 $ �
d�i���w�	 $ 
 � d�i���w	

and when sjwj �� Ai for each b � f�	 �g

d�i���wb	 $ d�i���w	

If m $ 
i then
When sjwj � Ai we set

d�i�w�	 $ 
 � d�i�w	
d�i�w�	 $ �

and when sjwj �� Ai for each b � f�	 �g

d�i�wb	 $ d�i���w	

It is straightforward to check that d is a ��MS� Since A � E� then there exists c � � such
that d can be computed in time 
c�log�jwj��logm� on input hm	wi� and thus d � p�

Let us see that for each m � IN� Ym � S��dm�� Let i � � such that jAij $ �� Let
B � Y�i��� For each n such that sn � Ai we know that� since B � Y�i��� sn � B� and thus
d�i����B����n�	 $ 
 
 d�i����B����n � ��	� and for n such that sn �� Ai� d�i����B ����n�	 $
d�i����B����n� ��	� But the case sn � Ai happens in�nitely often� thus

limn d�i����B ����n�	 $ �� and B � S��di���� The proof of Y�i � S��d�i� is analogous�

Applying Lemma ���� we have that Y has p�measure �� then Y c has p�measure � and we
have completed the proof of the theorem�

Recently� Juedes and Lutz �JuedLu��a� have improved Theorem ��� by looking at strong
P�bi�immunity� a notion de�ned in �BalcSc� that is more restrictive than P�bi�immunity�
They show that the class of strongly P�bi�immune languages has measure � in E� Since
every strongly�P�bi�immune language is P�bi�immune� their result implies Theorem ����

Next we look at the complexity cores of languages in E� A complexity core for a language
L is a set of �infeasible inputs for every algorithm that recognizes L� Complexity cores
were introduced by Lynch in �Lync��

De�nition ���� An in�nite set U � f�	 �g� is a complexity core for a language A if for
every machine M that accepts A and every polynomial p there are at most �nitely many
z � U such that the time of machine M on input z is smaller than p�jzj	�

A characterization of P�bi�immune sets in �BalcSc� says that a language is P�bi�immune if
and only if it has f�	 �g� as a complexity core� Thus we have the next corollary�

Corollary ���� Almost every set in E has f�	 �g� as a complexity core�

In the next Theorem we extend Theorem ��� to the class of C�bi�immune languages� for C
any class such that E has a universal language for C� The same kind of results hold for
measure in ESPACE�

Theorem ��	�

a	 Let C be a complexity class such that there exists A � E with C � fAi

�� i � INg� Then
the class of C�bi�immune languages has p�measure �� and thus measure � in E�



�� �� MEASURE VERSUS CATEGORY

b	 Let C be a complexity class such that there exists A � E� with C � fAi

�� i � INg�
Then the class of C�bi�immune languages has p��measure �� and thus measure � in E��

c	 Let C be a complexity class such that there exists A � ESPACE with C � fAi

�� i � INg�
Then the class of C�bi�immune languages has pspace�measure �� and thus measure �
in ESPACE�

The proof is similar to that of Theorem ���� and therefore is omitted�

Next we look at the class of complete sets in E� Complete sets are considered the most
di!cult in a class� and for instance in �StocCh�� it is shown that a problem de�ned using a
certain two�person combinatorial game is intractable because it is �p

m�complete for E� We
want to know whether completeness is a typical property in E� We study �p

m�completeness�
that coincides with �p

��tt�completeness as proven in �HomeKuR��

Corollary ��
� The class of �p
m�complete languages for E has measure � in E� The class

of �p
m�complete languages for NE has measure � in E��

Proof � As proven in �Berm�� no �p
m�complete set for E is P�bi�immune� so the class

of �p
m�complete sets is included in a measure � in E class by Theorem ���� and from

Lemma ��
� b	 it has measure � in E� The second part is analogous� using Theorem ���
and the fact that no �p

m�complete set for NE is E�bi�immune �from �Berm�	�

Notice that it is not known whether NE � E�� Also� from �BuhrSpT� every �p
��tt�complete

set for NE is �p
m�complete� Very recently� Ambos�Spies� Terwijn and Zheng �AmboTeZ�

have shown that the class of �p
btt�complete languages has measure � in E�

Next we see that the typical languages for resource�bounded measure are E�bi�immune�
From Chapter � we know that most languages in E� are p�random and that most languages
in E�SPACE are pspace�random�

Corollary ���� Every p�random language is E�bi�immune� Every pspace�random language
is ESPACE�bi�immune

Proof � For each c � �� the class DTIME�
cn	 has a universal language in E� Thus
Theorem ��� proves that the class of DTIME�
cn	�bi�immune sets has p�measure �� Since
by de�nition p�random languages belong to every p�measure � class� it follows that they
are DTIME�
cn	�bi�immune for every c� and thus E�bi�immune� The same argument works
in the proof of pspace�random languages being ESPACE�bi�immune�

We �nish this section by looking at the class of DLOG�bi�immune languages inside of
PSPACE� We have a similar result to that of Theorem ����

Theorem ����

a	 The class of DLOG�bi�immune languages has measure � in PSPACE�

b	 Let C be a complexity class such that there exists A � PSPACE with C � fAi

�� i � INg�
Then the class of C�bi�immune languages has plogon�measure �� and thus measure �
in PSPACE�

The proof is similar to that of Theorem ����

We also have the following corollary for �log
m �complete languages for PSPACE� that coincide
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with �log
��tt�complete ones by �HomeKuR��

Corollary ���
� The class of �log
m �complete languages for PSPACE has measure � in

PSPACE�

Proof � The results in �BuhrHoT� imply that no �log
m �complete set for PSPACE is

DLOG�bi�immune� so the class of �log
m �complete sets has measure � in PSPACE�

��� P�bi�immunity and resource�bounded category

In this section we introduce resource�bounded category� a topological based way of size dis�
tinction for subclasses of E� ESPACE� REC and other recursive classes� We show that the
class of P�bi�immune languages is neither large nor small in E following resource�bounded
category� We �nish by proving that for a class that is closed under �nite variations� such
as the class of P�bi�immune languages� the fact of being neither large nor small in E in
the category sense implies that it is nonmeasurable in E in the category setting �formally�
it lacks the property of Baire in E	� Since we have seen in the last section that the same
class has measure � in E� this shows that resource�bounded measure and resource bounded
category are incomparable�

Classical Baire category was introduced by R� Baire in ���� �and reviewed for instance
in �Oxto�	� Lutz de�nes a resource�bounded category in �Lutz���� later studied by Fenner
�Fenn�� based on classical category in f�	 �g� with the usual topology of cylinders� Both
classical and resource�bounded category can be characterized in terms of Banach�Mazur
games� which are a type of two person games� We present here resource�bounded category
only through Banach�Mazur games� which are simpler to understand and to use for our
purposes�

Informally� a Banach�Mazur game is an in�nite game in which two players construct a
language L by taking turns extending an initial characteristic sequence of L� There is
a distinguished class of languages X such that player I wins if L � X� player II wins
otherwise�

De�nition ����� Let X be a class of languages� let �� and �� be two measure resource�
bounds� A Banach�Mazur game G�X� ��	��� is a game with two players I and II such that
player I has chosen a constructor g � �� and player II has chosen a constructor h � ���
Starting from w �$ �� they play inde�nitely as follows

w �$ �
REPEAT forever

player I plays setting w �$ g�w	
player II plays setting w �$ h�w	�

END REPEAT

As they play eternally they build an element of f�	 �g� � We denote as R�g	 h	 the
language built in this Banach�Mazur game� Notice that following De�nitions ���� and
����� the composition of g and h� h � g� is a constructor and R�g	 h	 $ R�h � g	�
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De�nition ����� A winning strategy for player II in the game G�X� ��	��� is a constructor
h � �� such that for every constructor g � ��� R�g	 h	 �� X�

Intuitively� player II has a winning strategy when he has the ability to� starting with any
�nite pre�x w � f�	 �g�� construct a language L with w v L that is not in X�

Now we can de�ne ��meager classes� which are the �smallest ones in category� �In classical
Baire Category� a meager class is sometimes referred to as a class of �rst category�	

De�nition ����� Let X be a class of languages� X is ��meager i
 player II has a winning
strategy for G�X� all	���

We de�ne co�meager classes as �large classes�

De�nition ����� Let X be a class of languages� X is ��co�meager i
 Xc is ��meager�

We can now compare the de�nitions of measure and category �for instance De�nition ���

and De�nition ����	� to �nd a hint of why category and measure are incomparable� A
class X is ��meager when there exists a function in � that can� starting with any �nite
pre�x w � f�	 �g�� construct a language L with w v L that is not in X� This intuitively
means that X is ��meager when � has enough computing power to �nd �holes� in X in
every cylinder� In the case of measure� X has ��measure � when there is a function in �
that� for each w � f�	 �g�� predicts reasonably well all languages in X �Cw� Roughly X
is meager when it is easy to get out of it� and it is measure � when it is easy to predict�

Next we need to translate the last de�nitions into a concept of �category within a class��

De�nition ����� Let X be a class of languages� X is meager in R��	 i
 X � R��	 is
��meager�

De�nition ���	� Let X be a class of languages� X is co�meager in R��	 i
 Xc is meager
in R��	�

These de�nitions are nontrivial because Theorem ���
 in �Lutz��� implies that R��	 is not
��meager� That theorem is a resource�bounded version of the classical Baire Category
Theorem� in fact when � $ all in De�nitions ���� and ���� we get classical Baire category�
In that context� typical languages are called generic� We de�ne here ��generic or pseudo�
generic languages�

De�nition ���
� Let L be a language� L is ��generic i
 L belongs to every ��co�meager
class�

�There exist di
erent notions of genericity� for instance the one studied by Ambos�Spies�
Fleischhack and Huwik in �AmboFlH�� that has been recently connected with resource�
bounded measure in �AmboNeT��	

The following lemma states some basic properties of meager sets� and is proved by Lutz
in �Lutz����

Lemma ����� A subset of a ��meager set is ��meager� A �nite union of ��meager sets is
��meager� Every ��meager set is meager in R��	�

Let us show that the class of P�bi�immune languages is neither meager nor co�meager in
E� Even a larger class� the P�immune languages� is not co�meager in E�
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Theorem ����� The class of P�bi�immune languages is not meager in E�

Proof � We denote with X the class of P�bi�immune languages� By De�nition ���� we
have to see that there is no winning strategy for player II in the game G�X � E� all	 p��
that is to say� for every constructor h � p� there exists a constructor g � all� such that
R�g	 h	 � X � E�

Let us start by introducing some notation for P�bi�immunity� that we use next in the
de�nition of g�

Let A � E be a universal language for the class P� as in Theorem ���� that is� for each
i � IN� Ai $ fx

�� hx	 ii � Ag� then P $ fAi

�� i � INg�

Given two languages B and L� there exist u	 v � B such that L�u	 �$ L�v	 if and only if
B �� L and B �� Lc� Thus a language L is P�bi�immune if and only if for each i � IN
with jAij $ �� there exist u	 v � Ai such that u � L and v �� L� We can express this last
condition in terms of �nite pre�xes of L as follows� A language L is P�bi�immune if and
only if for each i � IN with jAij $ �� there exist 
 � f�	 �g�� 
 v L such that

�sn	 sm � Ai with � � n	m � j
j and 
�n� �$ 
�m�� ����	

We say that index i has been diagonalized in 
� and denote it Diagonalized�i	 
	� when
condition ����	 holds for this i and 
� that is�

Diagonalized�i	 
	 � �� �sn	 sm � Ai such that � � n	m � j
j and 
�n� �$ 
�m� ���

L is P�bi�immune if and only if for each i � IN with jAij $ �� there exist 
 � f�	 �g��

 v L� such that Diagonalized�i	 
	 $True�

For 
 � f�	 �g� and q 
 j
j� the set Diagonalizable�
	 q	 contains those indexes that have
not been diagonalized in 
 and can be diagonalized using a string sm in fsj�j	 � � � 	 sqg� that
is

Diagonalizable�
	 q	 $ fi
�� Diagonalized�i	 
	 $ False and

�sn	 sm � Ai such that n � m	 j
j � m � qg�

Fix h � p� Next we de�ne g such that R�g	 h	 is a P�bi�immune language in E� On input ��
g tries to get Diagonalized

�
i	 g��	

�
$True for i in f�	 � � � 	 j�jg� In order to do this� for each

sk with k 
 j�j� g checks whether some index in f�	 � � � 	 j�jg can be diagonalized using sk�
and if so the diagonalization is performed� This process goes on until no diagonalization
of an index in f�	 � � � 	 j�jg can be performed using a string in fsk	 � � � 	 s�kg� Then g gives
an output of length k� Since Player II next turn uses only polynomial time� it can only
set values of R�g	 h	 for strings in fsk	 � � � 	 s�kg and no opportunity of diagonalization for
indexes in f�	 � � � 	 j�jg is jeopardized by Player II�

Formally� g is the function computed by the algorithm in Figure ��

Let us show that R�g	 h	 is P�bi�immune� that is� for each i � IN if jAij $ � then there
exists 
 � f�	 �g� such that 
 v R�g	 h	 and Diagonalized�i	 
	$True�
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BEGIN

INPUT �

 �$ �
IF Diagonalizable��	 
j�j	 � f�	 � � � 	 j�jg $ � THEN 
 �$ �� fThis is to ensure � v g��	g
k �$ j
j
WHILE Diagonalizable�
	 
k	 � f�	 � � � 	 j�jg �$ � DO

IF Diagonalizable�
	 k	 � f�	 � � � 	 j�jg �$ �
THEN

i �$ minfj j j � Diagonalizable�
	 k	g
n �$ minfr j sr � Aig
IF 
�n� $ � THEN 
 �$ 
�
IF 
�n� $ � THEN 
 �$ 
�
fAt this point we know that Diagonalized�
	 i	 $True� since sn	 sk � Ai and

�n� �$ 
�k�g

ELSE 
 �$ 
�
k �$ j
j

END WHILE
OUTPUT 


END �

Figure �� Algorithm that computes g�

Remark that by the termination condition of the while loop� for each � � f�	 �g�

Diagonalizable�g��		 
jg���j	 � f�	 � � � 	 j�jg $ �� ���
	

For each l � IN� let �l $ �h � g	l��	� That is� ��	 ��	 � � � 	 are the successive inputs to g in
the game against h� and for every l� �l v R�g	 h	� Since h � p� there is an l� � � such that
jh�x	j � 
jxj for each x such that jxj 
 j�l
 j�

Next we show by induction on i that if jAij $ � then there exists 
 � f�	 �g� such that

 v R�g	 h	 and Diagonalized�i	 
	$True�

For i $ �� if jA�j � � then we are done� If jA�j $ �� let sn be the �rst string in A��
let sm be the smallest string in A� such that n � m and j�l
 j � m� Let l � IN be such
that j�lj � m � j�l��j� We show that Diagonalized

�
�	 g��l	

�
$True� From equation ���
	

Diagonalizable�g��l		 

jg��l�j	 � f�	 � � � 	 j�ljg $ �� thus � �� Diagonalizable�g��l		 


jg��l�j	�
But by the choice of l� 
jg��l�j 
 jf

�
g��l	

�
j $ j�l��j � m� Thus sm is an opportunity of

diagonalizing i $ � in the computation of g��l	� this means that either Diagonalized
�
�	 �l

�
was already True or g uses sm to get Diagonalized

�
�	 g��l	

�
$True� This �nishes the case

i $ ��

For the induction step� if jAij � � then we are done� If jAij $ � then by induc�
tion hypothesis for each j � i with jAj j $ � there exists 
j v R�g	 h	 such that
Diagonalized�j	 
j	$True� Take 
 the longest of these 
j � Let F be the union of all
�nite languages in A�	 � � � 	 Ai��� let st be the last string in F � Let r be the maximum
of t� j
j� i and j�l
 j� Let sn be the �rst string in Ai� Let sm be the smallest string in
Ai such that n	 r � m� Let l � IN be such that j�lj � m � j�l��j� By equation ���
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i �� Diagonalizable�g��l		 

jg��l�j	� But by the choice of m and l�


jg��l�j 
 jf
�
g��l	

�
j $ j�l��j � m	

and for each 
 v R�g	 h	 with j
j 
 j�lj�

minfj j j � Diagonalizable�g��l		 

jg��l�j	g 
 i�

Thus sm is an opportunity of diagonalizing i in the computation of g��l	� this means that ei�
ther Diagonalized

�
i	 �l

�
was already True or g uses sm to get Diagonalized

�
i	 g��l	

�
$True�

In both cases Diagonalized
�
i	 g��l	

�
$True� and the induction proof is �nished� We have

shown that R�g	 h	 � X�

The language built in this game� R�g	 h	� is in E because to see if z � R�g	 h	 it is enough
to play the game up to obtaining a string of length 
jzj�� � �� In the worst case we have
to recognize languages A�	 � � � 	 A�jzj���� on inputs s�	 � � � 	 s�jzj����� which have length at

most jzj� and to compute h for 
jzj�� � 
 inputs of length � 
jzj�� � 
� So the total time
is bounded by 
O�jzj�� This is why� even though g �� p� R�g	 h	 � E�

Note that using Lemma ���� we have that the class of P�bi�immune languages is not
p�meager�

Theorem ���
� The class of P�immune languages is not co�meager in E�

Proof � We will denote with Y the class of non�P�immune languages�

By De�nition ���� we have to see that there is no winning strategy for player II in the
game G�Y �E� all	 p�	 that is to say� for every constructor h � p� there exists a constructor
g � all� such that R�g	 h	 � Y � E�

So given h� we have to build g that puts a set in P inside R�g	 h	�

For h � p� there exists c with jh�w	j � 
jwj for all w � f�	 �g� such that jwj 
 
c�

We de�ne the sequence fang�
a� $ c

an $ 
an�� 	 n 
 ��

The set in P that we are going to include in R�g	 h	 is L $ f�an j n 
 �g� Note that
�an $ san�����

Algorithm for g�

BEGIN

INPUT �

IF � $ � THEN 
 $ �a����

ELSE compute n such that an�� � j�j � an


 �$ ��an�j�j���

OUTPUT 


END �
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To see that L � R�g	 h	 just notice that if j�j $ an then jh��	j � 
an $ an��� so the bits
corresponding to the strings in L are never a
ected by h�

As the exponential function is time constructible� g is in p and since R�g	 h	 $ R�h � g	�
R�g	 h	 � E�

Thus the smaller class of P�bi�immune sets is not co�meager in E either� therefore the
P�bi�immune languages form a class that is neither meager not co�meager in E�

Using essentially the same techniques we have the following results�

Theorem ����� The class of E�bi�immune languages is neither meager not co�meager in E��
The class of PSPACE�bi�immune languages is neither meager not co�meager in ESPACE�

For the class REC we obtain�

Theorem ����� For any recursively presentable class C with P � C� the class of C�bi�
immune languages is neither meager nor co�meager in REC�

Lutz �personal communication	 has pointed out that these results imply that the class of
P�bi�immune languages lacks the property of Baire in E �and classes up to REC	� For the
sake of completeness� we now introduce the resource�bounded property of Baire and the
zero�one law for Baire category that supports this inference�

Classically� an open set in f�	 �g� is a union of cylinders and a closed set is the complement
of an open set� Also in the classical sense� a set X has the property of Baire if and only if
there is an open set G such that X'G is meager� �This is the Baire category analogue of
the fact that a set X is Lebesgue measurable if and only if there is an F
 set ,equivalently�
a G� set, H such that X'H has measure ��	 The extension of this notion to complexity
classes is natural� We restrict the open sets to those that are ��unions of cylinders� and
de�ne the property of Baire in R��	 as follows

De�nition ����� A class X is open in R��	 i
 �h � � such that X �R��	 $ �
S
kCh��k�	�

R��	� A class X is closed in R��	 i
 it is the complement of an open class in R��	�

De�nition ����� A class X has the property of Baire in R��	 i
 X $ G'Q� where G is
open in R��	 and Q is meager in R��	�

De�nition ����� A class X of languages is closed under �nite variations if for all languages
L and L�� if L � X and L'L� is �nite� then L� � X�

The following lemma is a straightforward generalization of Theorem 
��� in �Oxto�� which
is the Baire category analogue of the Kolmogorov zero�one law for measure� To prove the
lemma we use the next auxiliary proposition�

Proposition ���	� If X is a class of languages that is closed under �nite variations then
X is meager in R��	 if and only if there exists w � f�	 �g� such that X �Cw is meager in
R��	�

Proof � From left to right� just take w $ ��

From right to left� let w � f�	 �g� be such that X �Cw is meager in R��	� then there is a
winning strategy h for player II in the game G��X �Cw	 � R��	� all	���
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Take y � f�	 �g� such that jwj $ jyj� Let us show that X �Cy is meager in R��	�

De�ne bh� f�	 �g� 	 f�	 �g� as follows� If y v x� then let z $ w 
 x�jwj��jxj � ��� that is� z is

the result of substituting y by w as pre�x of x and let bh�x	 $ x 
 h�z	�jxj��jh�z	j � ��� that

is� bh�x	 is the result of substituting w by y as a pre�x of h�z	� If y �v x� then bh�x	 is the
�rst string z � f�	 �g� such that x v z and Cy �Cz $ ��

We claim that bh is a winning strategy for player II in the game

G�X �Cy � R��	� all	���

It is clear that bh � �� To see that bh wins� let g be an arbitrary strategy for player I� We
have two cases�

�i	 Case y v g��	� We de�ne g� a constructor in all such that R�g�	 h	 is a �nite variation

of R�g	bh	� g���	 $ w 
 g��	�jwj��jg��	j � ��� If w v x� then let z $ y 
 x�jyj��jxj � ��� and let
g��x	 $ x 
 g�z	�jxj��jg�z	j � ��� If w �v x then g��x	 $ g�x	� Since h is a winning strategy
for player II in the game G��X �Cw	 � R��	� all	��� R�g�	 h	 �� X �Cw� but w v R�g�	 h	
and then R�g�	 h	 �� X� Since y v g��	 we always use the �rst part in the de�nition ofbh to compute R�g	bh	� and thus R�g	bh	 is the result of substituting w by y as a pre�x of

R�g�	 h	� But X is closed under �nite variations and since R�g	bh	 is a �nite variation of

R�g�	 h	� then R�g	bh	 �� X�

�ii	 If y �v g��	� then R�g	bh	 �� Cy by the de�nition of bh�

Each of �i	 and �ii	 implies that R�g	bh	 �� X �Cy �R��	� so bh is indeed a winning strategy
for player II� Thus X �Cy is meager in R��	 for each y with jyj $ jwj� But since

X $
�

y�f���gjwj

�X �Cy		

X is a �nite union of sets that are meager in R��	� which by Lemma ���� implies that X
is meager in R��	� This completes the proof�

Lemma ���
� If X is a class of languages that is closed under �nite variations and has
the property of Baire in R��	� then X is either meager in R��	 or co�meager in R��	�

Proof � Assume that X is closed under �nite variations� has the property of Baire in
R��	� and is not meager in R��	� It su!ces to prove that X is co�meager in R��	�

Since X has the property of Baire in R��	� there is a class G that is open in R��	 such
that X'G is meager in R��	� Since X is not meager in R��	� G �$ �� Thus there exists
w � f�	 �g� such that Cw � R��	 � G � R��	�

Xc �Cw is meager in R��	 because Xc �Cw � Xc �G � X'G� By the last proposition
this is equivalent to saying that Xc is meager in R��	� This completes the proof�

The following theorem thus summarizes the results of this section�

Theorem ����� The class of P�bi�immune languages does not have the property of Baire
in E� E�� ESPACE� or REC�
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Proof � This follows from Theorems ���� and ��
� �extended to the classes E� E� and
ESPACE	� Theorem ��

 and Lemma ��
��

In contrast with Theorem ��
�� it is easy to see that the class of RE�bi�immune languages
is all�co�meager� so P�bi�immunity is co�meager in the classical Baire category sense�

From Theorem ��
� and the remark following Lemma ��� in �Fenn� we note that we cannot
assume anything about the immunity of a pseudo�generic language�

- There exists a p�generic language in E� that is E�bi�immune�

- There exists a p�generic language in E� that is not P�immune�

We can de�ne a category in PSPACE from the notion of plogon�category� simply by using
De�nitions ���� to ����� For this category we can study the class of DLOG�bi�immune sets
in PSPACE� and prove the following results that are analogous to Theorems ����� ��
� and
��
��

Theorem ����� The class of DLOG�bi�immune languages is neither meager nor co�meager
in PSPACE� Thus it does not have the property of Baire in PSPACE�

The proof is a translation of those of Theorems ����� ��
� and ��
� to plogon bounds� This�
together with Theorem ���� witnesses the di
erences of measure and category in PSPACE�



Chapter �� Measure of nonuniform complexity classes

��� Introduction

The models of computation can be classi�ed into uniform and nonuniform� In a uniform
model� programs are valid for arbitrarily long inputs� while in a nonuniform one each
program is valid only for inputs of a �xed length� Examples of uniform models are the
Turing Machine and the RAM� and the main example of nonuniform model is the Boolean
Circuit�

Nonuniform complexity classes are de�ned in connection with nonuniform complexity mod�
els and the associated complexity measures� In this context appears the concept of advice
class� introduced by Karp and Lipton in �KarpLi�� An advice class is de�ned by adding
nonuniform advice to a uniform complexity class� In section ��
 we review the concept of
advice class and study P�log� the class of languages recognized in polynomial time with
the help of a logarithmic advice� The characterization of P�log that we use in this section
is a part of the material in �HermMa� and �BalcHeM��

P�poly is the most thoroughly studied nonuniform class� de�ned as those languages that
can be recognized in P with the help of a polynomially long advice� P�poly can also be
characterized as the class of languages decidable by boolean circuits whose size is polyno�
mial on the length of the input �see �BalcD��G� and the references there for a full study of
this class	�

Regarding the comparison of uniform and nonuniform complexity classes� we know that P
is a subclass of P�poly �Sava�� and that ESPACE is not included in P�poly �Kann�� What
is more� Lutz has shown in �Lutz�
� that P�poly has measure � in ESPACE� that is to say�
most languages in ESPACE are out of P�poly�

The main open problem in this context is the relationship of P�poly with E� There exists
an oracle A for which EA is not included in PA�poly �for instance� any oracle for which
E equals ESPACE	� and there exists an oracle B for which EB is included in PB�poly
�Wils�� This means that if we want to settle whether E is a subclass of P�poly we must
use nonrelativizing techniques� Thus our work deals with a subclass of P�poly and with a
superclass of E�

There is a characterization of P�poly as the class of languages that are Turing reducible in
polynomial time to a sparse set� where A is sparse� and we write A � SPARSE� if there is a
polynomial p such that jA�nj � p�n	 for all n � IN� It is also known that the weaker truth�
table reducibility can be substituted for the Turing reducibility in this characterization�
Such result suggests the reformulation of the question of whether E is included in P�poly
to �how dense must a language A � f�	 �g� be in order to be hard for E� �see �HemaOgW�
for a thorough survey	� As a consequence of the cited result for P�poly� we cannot expect

��
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to solve this question with relativizable techniques for polynomial�time Turing reducibility�
The �rst result on the density of hard languages was the following�

Let us say a language A is dense� and we write A � DENSE� if there is a real number � � �
such that jA�nj 
 
n

�

for all su!ciently large n � IN� It is clear that SPARSE � DENSEc�

Theorem ���� �Meye�	 Every �p
m�hard language for E�or any larger class	 is dense� That

is� E �� Pm�DENSEc	�

Theorem ��� was subsequently improved to truth�table reducibility with O�logn	 queries

Theorem ���� �Wata��a�� �Wata��c�	 Every �p
O�log n��tt�hard language for E is dense�

That is� E �� PO�log n��tt�DENSEc	�

The Main Theorem in section ���� Theorem ����� extends Theorems ��� and ��
 above
by showing that� for every real � � � �e�g�� � $ ����	� only a measure � subset of the
languages in E are �p

n��tt�reducible to non�dense languages� that is

��Pn��tt�DENSEc	 j E	 $ �� ����	

This means that Pn��tt�DENSEc	 � E is a negligibly small subset of E�

In particular� this implies that

E �� Pn��tt�DENSEc		 ���
	

i�e�� that every �p
n��tt�hard language for E is dense� This strengthens Theorem ��
 above

by extending the truth table reducibility from O�logn	 queries to n� queries �� � �	� Very
recently� and independently� Fu �Fu� has used resource bounded Kolmogorov complexity
to prove that for every � � �

� � E �� Pn��T�DENSEc	� which generalizes ���
	 to Turing
reducibilities instead of truth�table reducibilities� although with a slightly worse query
bound�

It is worth noting that the combinatorial technique used to prove ����	 and ���
	,the
sequentially most frequent query selection,is simpler than Watanabe s direct proof of
Theorem ��
� This is not surprising� once one considers that our proof of ���
	 via ����	
is a resource�bounded instance of the probabilistic method reviewed in Chapter �� which
exploits the fact that it is often easier to prove the abundance of objects of a given type
than to construct a speci�c object of that type�

The proof of Theorem ����� is based on a very general result� the Weak Stochasticity
Theorem proven in section ���� In very brief terms� this result says that almost every
language in E is �weakly stochastic�� in the sense that it is statistically unpredictable by
feasible deterministic algorithms� even with linear nonuniform advice� �See section ��� for
precise de�nitions�	 This result enables us to prove Theorem ����� that

��Pn��tt�DENSEc	 j E	 $ �

for all � � �� by a simple combinatorial technique� without reference to measure�theoretic
notions� Speci�cally� in section ��� below� this combinatorial technique-the sequentially
most frequent query selection-is introduced and used to prove that no language in
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Pn��tt�DENSEc	 is weakly stochastic� Theorem ���� follows immediately from this and
the Weak Stochasticity Theorem�

This use of weak stochasticity in E is analogous to earlier uses of space�bounded Kol�
mogorov complexity in ESPACE� It is known ��Lutz�
�� �JuedLu�
�	 that almost every
language in ESPACE has very high space�bounded Kolmogorov complexity� Using this
fact� a variety of sets X have been shown to have measure � in ESPACE� simply by prov�
ing that every element of X has low space�bounded Kolmogorov complexity ��Lutz��b��
�Lutz�
�� �LutzSc�� �JuedLu�
�	� Informally� we say that high space�bounded Kolmogorov
complexity is a �general�purpose randomness property of languages in ESPACE�� This
expression� which is heuristic� means the following two things�

�a	 Almost every language in ESPACE has the property �high space�bounded Kolmogorov
complexity	�

�b	 It is often the case that� when one wants to prove a result of the form ��XjESPACE	 $
�� it is convenient to prove that no language in X has the property� and then appeal
to �a	�

It is natural to hope that high time�bounded Kolmogorov complexity would be� in the
analogous sense� a general�purpose property of languages in E� Unfortunately� however�
the strongest known lower bound on time�bounded Kolmogorov complexity in this class
�Lutz �
� is far too weak to provide a useful time�bounded analogue of condition �a	 above�
Moreover� improving these bounds appears to require a major breakthrough in complexity
theory�

Our results suggest that� even without such a breakthrough� weak stochasticity may be a
�general�purpose randomness property of languages in E�� This would entail the following
two heuristic conditions�

�a 	 Almost every language in E is weakly stochastic�

�b 	 It is often the case that� when one wants to prove a result of the form ��XjE	 $ �� it
is convenient to prove that no language in X is weakly stochastic� and then appeal to
�a 	�

The Weak Stochasticity Theorem gives us condition �a 	 immediately� The proof of The�
orem ���� gives us the instance X $ Pn��tt�DENSEc	 of condition �b 	� It appears likely
that more such instances will arise� i�e�� that weak stochasticity is a general�purpose ran�
domness property of languages in E that will be useful in future investigations� Sections
��� and ��� are contained in �LutzMa��a��

In section ���� we study the size of P�poly inside the exponential time hierarchy� Kannan
showed in �Kann� that there exists a language in the second level of the exponential hier�
archy that is not in P�poly� We de�ne a measure in each level of the exponential hierarchy
and show that P�poly has measure � in the third level� This last result is unpublished�

��� Advice complexity classes

In this section we review the de�nition of advice complexity classes and show that P�log has
measure � in E� that is� almost every language in E is not in P�log� To prove this measure
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result we use a circuit�based characterization of P�log given by Hermo and Mayordomo in
�HermMa��

The notion of advice function was introduced in �KarpLi� to provide connections between
uniform and nonuniform computation models�

De�nition ���� Given a class of sets C and a class of bounding functions F � the class C�F
is formed by the sets A such that

�n �w �jwj � h�n		 �x �jxj $ n	 x � A �� hx	wi � B

where B � C and h � F �

The words w mentioned in the de�nition are frequently called �advice words�� The corre�
sponding Skolem function mapping each n into an appropriate advice wn for length n is
called �advice function�� Thus we de�ne

De�nition ���� Given a language A � f�	 �g� and a function f � IN 	 f�	 �g�� we de�ne
the language A�f ��A with advice f�	 by

A�f $ fx � f�	 �g�
�� hx	 f�jxj	i � Ag�

In De�nition ���� C is usually a uniform complexity class� most frequently P� whereas the
class poly $ fnO���g of polynomials and the class log $ O�logn	 of logarithms are the
most frequent bounding functions� In particular� �KarpLi� focused on the study of the
classes P�poly and P�log� and proved that for certain problems� the hypothesis of being
in nonuniform classes has implications on the structure of uniform classes�

The class P�poly can be characterized in various manners� one of them as the class of
languages decidable by boolean circuits whose size grows polynomially on the length of
the input� This important class has been studied in depth �see for instance �BalcD��G� and
the references there	� On the contrary� the class P�log� corresponding to polynomial time
with the help of a logarithmically long advice string� has received up to now much less
attention� We address here the question of �nding a characterization of the class P�log in
terms of circuits�

We �rst settle our notions of Boolean circuit and size of a boolean circuit� We �x the
following family of boolean functions� the ��ary functions �true� and �false�� the unary
function of negation� denoted �� and the binary functions � and �� With these functions
as basis� we can compute any n�ary boolean function�

De�nition ���� Given a set 
 $ fx�	 x�	 � � � 	 xng of n boolean variables� a computation
chain over 
 is a sequence g�	 g�	 � � � 	 gk� in which each gj is

� either a source element� an element of 
 or a boolean constant�

� or a gate� a pair ��	 gl	 for � � l � j � �� or a triple �b	 gl	 gm	 for � � l	m � j � �
and b � f�	�g� The inputs to a gate gj are the �one or two	 smaller elements of the
computation chain which appear in gj �

With each element gj of a computation chain over 
 $ fx�	 x�	 � � � 	 xng� we can associate
an n�ary function result�gj	 which represents the boolean value computed at element gj �
It is de�ned as follows�
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De�nition ��	�

result�gj	 $

����

gj if gj is a source
�result�gl	 if gj $ ��	 gl	
result�gl	 � result�gm	 if gj $ ��	 gl	 gm	
result�gl	 � result�gm	 if gj $ ��	 gl	 gm	�

Representing computation chains by acyclic graphs� circuits are obtained

De�nition ��
� A boolean circuit is an acyclic graph representation of a computation
chain� which is constructed by associating to each step gj of the chain a node labeled with
the variable� constant� or function present in gj � and joining node gj to node gi by a
directed edge if gj is an input to gi�

De�nition ���� Given a boolean function f � (n 	 (m� which can be expressed as an m�
tuple f $ �f�	 � � � 	 fm	 of boolean functions from (n to (� we say that a circuit C computes
f if for every r	 � � r � m� there exists an s� such that fr $ result�gs	�

The cost or size of a circuit is the number of gates it has� Given a boolean function f � its
boolean cost is the size of the smallest circuit computing it� A set A has polynomial size
circuits if and only if there is a polynomial p such that for each length n the boolean cost
of the characteristic function of A�n is bounded by p�n	�

In our characterization of P�log we use the next theorem from Savage that relates size
complexity and the time of a Turing machine computation�

Theorem ���� �Sava�	 If a function f is computed by a Deterministic Turing Machine
�DTM	 in time T �n	� then the restriction of f to f�	 �gn can be computed by a circuit of
size O�T �n	�	�

We will also use the following result stating that the evaluation of a circuit on a given
input can be done in time bounded by a polynomial in the size of the circuit�

De�nition ���
� The circuit value problem� CVP for short� is the set of all pairs hx	 yi
where x � (� and y encodes a circuit with jxj source elements which outputs � on input
x�

It is known that CVP� P and� as a consequence of Theorem ���� it was shown that CVP is
complete for P under very weak reductions �Ladn�� In �HermMa� we obtain the following
characterization of P�log in terms of resource�bounded Kolmogorov complexity�

Theorem ����� The following are equivalent�

�i	 A � P� log�

�ii	 A is accepted by a family fCng of polynomial size circuits such that fCng � K�log	 poly��

Proof �

i% � ii%�

Let A � P� log� This is to say� we have B �P such that �c �n �wn such that �x�jxj $
n		 x � A i
 hx	wni � B� with jwnj � c logn�
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Using Theorem ��� it is possible to construct the polynomial size circuit Cn that recognizes
A�n as follows� For each x	 y the pairing function hx	 yi is polynomial time computable�
We take the circuit that computes it according to Theorem ���� The inputs corresponding
to y are then �xed to the bits of wjxj�

Next� since B �P� another circuit generated in the same way simulates the DTM that
recognizes B for inputs of size jhx	wjxjij�

Composing both circuits we obtain Cn�

An interesting characteristic of the circuits constructed in the proof of Theorem ��� is that
they are generated having a very regular interconnection pattern� in fact from the number
of a gate we know its exact position in the circuit ,a full construction is given in Balc�azar�
D��az� and Gabarr�o �BalcD��G�,�

The gates of Cn are of two types� namely the constant gates corresponding to the advice
and the gates produced by Savage s simulation of a DTM� with a regular interconnection
pattern� These gates can be codi�ed placing the constant gates �rst� so that the two types
can be distinguished easily� This is why Cn can be generated by a DTM in O�p�n	�	 time
for a polynomial p� from seeds n and wn� Thus fCng � K�log	 poly��

ii% � i%�

Let fCng be the polynomial size family that accepts A� Since fCng � K�log	 poly�� then
for all n �wn� jwnj � c logn	 such that U�wn	 $ Cn in time bounded by nk� We de�ne
B $ fhx	 yi�hx	 zi � CVP� where z $ U�y	 in time � jzjkg�

As CVP is in P it is clear that B is in P� Finally� x � A i
 hx	wjxji � B�

Karp and Lipton made an attempt of characterizing P�log in terms of Boolean circuits
in �KarpLi�� With this purpose they introduce the concept of �small circuits with easy
descriptions� where an easy description of a circuit C is again a circuit of size logarithmic
in the size of C that describes the interconnection pattern of C� As proven in �HermMa�� the
family of languages that have �small circuits with easy descriptions� corresponds exactly
to the class P�O�logn � log�logn		� which can be proven to be di
erent from P�log� Thus
Theorem ���� is the �rst known characterization of P�log in terms of circuits�

This characterization is useful to give an elegant proof of the fact that P�log has measure
� in E�

Theorem ����� P�log has measure � in E�

Proof � The idea is that we can only produce 
log
� n circuits from seeds of length log� n�

and thus a p�martingale with input of length 
n has enough time to compute all the
di
erent n�input nlogn�size circuits in K�log� n	 nlogn�� which includes all polynomial size
circuits in K�O�logn		 poly�� for n large enough�

Let k � IN be a power of 
� k $ 
i� We de�ne

Xk $ fA
�� for each n � i	 there exists a nlog n�size boolean circuit

Cn � K�log� n	 nlogn� that recognizes A�ng�
�



��� Weak stochasticity ��

By Theorem ����� we know that P� log �
�S
k��

Xk� We use the ��additivity Lemma

�Lemma ����	 to show that �p�
S
kXk	 $ ��

The function f � IN � f�	 �g� 	 IN counts the number of nlog n circuits in K�log� n	 nlogn�
and is de�ned as follows� for m $ 
n and w � f�	 �g��

fm�w	 $ .fC
��C is an n�input boolean circuit of size nlog n in K�log� n	 nlogn�

such that for each sj � f�	 �gn	 j � jwj	 C�sj	 $ w�j�g�

Clearly f can be computed in polynomial time�

Let us de�ne d� IN � f�	 �g� 	 ��	�	 as follows� Let w � f�	 �g�	 b � f�	 �g

dk�wb	 $

��
 
�k	 if jwj � 
k � ��

dk�w	

 
 fm�wb	

fm�w	
	 otherwise� for m $ 
n such that m� � � jwj � 
m� ��

Since we can compute f in polynomial time and fm�w�	 & fm�w�	 $ fm�w	 for each m
and w� d is clearly a ��MS in p�

By Lemma ����� if we see that Xk � S��dk�� we have the theorem� Let k $ 
i� A � Xk�
From the de�nition of Xk we know that for any m � k� m $ 
n� fm��A����
n�� � 
�	 
 ��

The fact that .K�log� n	 nlogn� � 
log
� n implies that for any w � f�	 �g�� fm�w	 � 
log

� n�
We have then the following inequalities

dk��A����
n�� � 
�	 
 dk��A����
n � 
�	 
 
��
n� �


log
� n


 dk��A����
n � 
�	
��
n���	

thus by induction

dk��A����
n�� � 
�	 
 dk��	 
 
�
n�k $ 
�

n��k	

which implies that lim sups dk��A����s�	 $ �� and A � S�dk��

In fact� if f � o�n	 then from �HermMa� we have a circuit based characterization of
P�O�f	� and it can be proven that P�O�f	 has measure � in E with the same technique
as in Theorem ���
�

��� Weak stochasticity

In this section we prove the Weak Stochasticity Theorem� This theorem will be useful
in the proof of our main result in section ���� We also expect it to be useful in future
investigations of the measure structure of E and E��

Let us formulate our notion of weak stochasticity�
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De�nition ����� Let t	 q	 �� IN 	 IN and let A � f�	 �g�� Then A is weakly �t	 q	 �	�
stochastic if� for all B � DTIME�t	�fqg and all C � DTIME�t	 such that jC�nj 
 ��n	 for
all su!ciently large n�

lim
n��

j�A�B	 � C�nj

jC�nj
$

�



�

Intuitively� B and C together form a �prediction scheme� in which B tries to guess the
behavior of A on the set C� A is weakly �t	 q	 �	�stochastic if no such scheme is better in
the limit than guessing by random tosses of a fair coin�

Our use of the term �stochastic� follows Kolmogorov s terminology ��KolmUs�� �UspeSeS�	
for properties de�ned in terms of limiting frequencies of failure of prediction schemes� The
adverb �weakly� distinguishes our notion from a stronger stochasticity property considered
in �Lutz��c�� but weak stochasticity is a powerful and convenient tool�

The following lemma captures the main technical content of the Weak Stochasticity The�
orem�

Lemma ����� Fix c � IN and � � 
 � R and let

WSc�� $ fA � f�	 �g�jA is weakly �
cn	 cn	 
�n	 � stochasticg�

Then �p�WSc��	 $ ��

Proof � Assume the hypothesis� Let U � DTIME�
�c���n	 be a language that is universal
for DTIME�
cn	 � DTIME�
cn	 in the following sense� For each i � N� let

Ci $fx � f�	 �g�jh�i	 �xi � Ug	

Di $fx � f�	 �g�jh�i	 �xi � Ug�

Then DTIME�
cn	 � DTIME�
cn	 $ f�Ci	 Di	ji � Ng�

Our objective is to use Lemma ���� to prove that WScc��� the complement of WSc�� � has
p�measure �� In order to do this� for all i	 j	 k � IN� de�ne the set Yi�j�k of languages as
follows� If k is not a power of 
� then Yi�j�k $ �� Otherwise� if k $ 
n� where n � IN� then

Yi�j�k $
�

z�f���g�cn

Yi�j�k�z	

where each

Yi�j�k�z $

�
A � f�	 �g�

��� j�Ci	�nj 
 
�n and

���� j�A� �Di�z		 � �Ci	�nj

j�Ci	�nj
�

�




���� 
 �

j & �

�
�

�The notation Di�z here denotes Di�h� where h� IN 	 f�	 �g� is the constant function
h�n	 $ z�	 The point of this de�nition is that� if a language A � f�	 �g� is not an element
of WSc�� � then the de�nition of weak stochasticity says that there exists i	 j � IN such that
A � Yi�j�k for in�nitely many k� That is�

WScc�� �
��
i��

��
j��

��
m��

��
k�m

Yi�j�k�



��� Weak stochasticity ��

It follows by Lemma ���� that it su!ces to exhibit a p�computable 
�MS d with the
following two properties�

�I	 The series
�P
k��

dm�k��	� for m � IN� are uniformly p�convergent�

�II	 For all i	 j	 k � IN� Yi�j�k�w	 � S
�

dhi�ji�k
���

�dhi�ji�k��

De�ne the function d� IN� � f�	 �g� 	 ��	�	 as follows� If k is not a power of 
� then
dm�k�w	 $ �� Otherwise� if k $ 
n� where n � IN� and m $ hi	 ji then

dm�k�w	 $
X

z�f���g�cn

Pr
C

�C � Yi�j�k�zjC � Cw��

It follows immediately from the de�nition of conditional probability that d is a 
�MS� Since
U � DTIME�
�c���n	 and c is �xed� we can use binomial coe!cients to �exactly	 compute
dm�k�w	 in time polynomial in m & k & jwj� Thus d is p�computable�

To see that d has property �I	� note �rst that the Cherno
 bound� Lemma ���� tells us
that� for all i	 j	 k � IN and z � f�	 �g�cn �writing k $ 
n and N $ k� $ 
�n	�

Pr
C

�C � Yi�j�k�z� � 
e
� N

��j���� 	

whence
dhi�ji�k��	 $

X
z�f���g�cn

Pr
C

�C � Yi�j�k�z�

� 
cn�� 
 
e
� N

��j����

� e
cn��� N

��j���� �

Let a $
l
�
�

m
� let 
 $ �

� � and �x k� � IN such that

k�� 
 k� & c log k & 


for all k 
 k�� De�ne g� IN 	 IN by

g�j	 $ �a�j & �	�a & k��

Then g is a polynomial and� for all i	 j	 n � IN �writing k $ 
n and N $ k� $ k��	�

k 
 g�j	 $�

������

N $ k��k��


 ��a�j & �	�a�
��

�k� & c log k & 
	


 
�j & �	��k� & cn & 
	

$� dhi�ji�k��	 � e�k
	

�

Thus dhi�ji�k��	 � e�k
	

for all i	 j	 k � IN such that k 
 g�j	� Since 
 � �� it follows by
Lemma ���� that �I	 holds�
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Finally� to see that �II	 holds� �x i	 j	 k � IN� If k is not a power of 
� then �II	 is trivially
a!rmed� so assume that k $ 
n� where n � IN� Let A � Yi�j�k� Fix z � f�	 �g�cn such that
A � Yi�j�k�z and let w be the �
n�� � �	�bit characteristic string of A�n� Then

dhi�ji�k�w	 
 Pr
C

�C � Yi�j�k�zjC � Cw� $ �	

so A � Cw � S
�

dhi�ji�k
���

�dhi�ji�k�� This completes the proof of Lemma �����

We now have the main theorem of this section�

Theorem ����� Weak Stochasticity Theorem	

��	 For each c � IN and 
 � �� WSc�� has measure � in E� that is� for each c � IN and

 � �� almost every language A � E is weakly �
cn	 cn	 
�n	�stochastic�

�
	
T
c��WSc�� has measure � in E�� that is� almost every language A � E� is� for every

c � IN and 
 � �� weakly �
cn	 cn	 
�n	�stochastic�

Proof � Part ��	 follows immediately from Lemma ���� via Lemma ��
�� Part �
	 follows
from Lemma ���� via Lemmas ���� and ��
��

��� Measure of Pn��tt�DENSEc	

In this section we show that for every real � � �� the set Pn��tt�DENSEc	 has measure �
in E and in E��

Our proof is based on the Weak Stochasticity Theorem from the last section� stating that
almost every language in E and almost every language in E� is weakly stochastic� We give a
simple combinatorial proof that no language in Pn��tt�DENSEc	 is weakly �
�n	 �n	 


�
�n	�

stochastic� thereby proving that ��Pn��tt�DENSEc	 j E	 $ ��

The sequentially most frequent query selection is the main construction in the combinato�
rial proof of Lemma ����� Let f be an n��query function and let n � IN� Our objective is
to obtain a set S � f�	 �gn of a reasonable size such that there exist as many as possible
queries that are made by f on every input in S� For this we construct S�	 � � � 	 Sn� � f�	 �gn

and y�	 � � � 	 yn��� � f�	 �g� such that for every k � n�� y�	 � � � 	 yk�� are queries of f on
every string in Sk�

Let us formalize� Given an n��query function f and n � IN� the sequentially most frequent
query selection �smfq selection� for f on inputs of length n is the sequence

�S�	 Q�	 y�		 �S�	 Q�	 y�		 � � � 	 �Sn� 	 Qn� 	 yn�	

de�ned as follows� Each Sk � f�	 �gn� Each Qk is an jSkj�n� matrix of strings� with each
string in Qk colored either green or red� The rows of Qk are indexed lexicographically by
the elements of Sk� For x � Sk� row x of Qk is the sequence f��x		 � � � 	 fn��x	 of queries of
f on input x� If Qk contains at least one green string� then yk is the green string occurring
in the greatest number of rows of Qk� �Ties are broken lexicographically�	 If Qk is entirely



��� Measure of Pn��tt�DENSEc	 ��

red� then yk $ � ��bottom�� i�e�� unde�ned	� The sets Sk and the coloring are speci�ed
recursively� We set S� $ f�	 �gn and color all strings in Q� green� Assume that Sk	 Qk	 and
yk have been de�ned� where � � k � n�� If yk $ �� then �Sk��	 Qk��	 yk��	 $ �Sk	 Qk	 yk	�
If yk �$ �� then Sk�� is the set of all x � Sk such that yk appears in row x of Qk� The
strings in Qk�� are then colored exactly as they were in Qk� except that all yk s are now
colored red� This completes the de�nition of the smfq selection�

For � � k � n�� it is clear that every row of Qk contains at least k red strings� In
particular� the matrix Qn� is entirely red�

Our main results follow from the following lemma�

Lemma ���	� For every real � � �� Pn��tt�DENSEc	 �WS�� �� $ ��

Proof � Let � � � and assume that A�p
n��ttL via �f	 g	� where L �� DENSE� It su!ces

to show that A �� WS�� �� � Intuitively� in order to do this we consider a language C such
that for each n � IN there exist several queries that are made by f for all inputs in C�n� We
will construct C using the smfq selection� We then want to predict A�C� for which we use
a language B � DTIME�
�n	�f�ng� that is obtained from �f	 g	 by answering according
to the advice to those queries that appear more often and answering no to the rest of
the queries� This prediction scheme of A will work well because of the low density of the
oracle� as proven below�

Fix a polynomial p such that jfi�x	j � p�jxj	 for all x � f�	 �g� and � � i � jxj�� Let
� $ ���

� and �x n� � IN such that the following conditions hold for all n 
 n��

�i	 n 
 
 
 n�����

�ii	 n�� � n� 
 
�

Let
K $ fn � IN

���n 
 n� and jL�p�n�j � 
n
�

g�

Note that K is in�nite because L is not dense�

De�ne languages B� C� D and an advice function h� IN 	 f�	 �g� as follows� C $
S
n Cn�

D $
S
nDn� For all n � n�� Cn $ Dn $ f�	 �gn and h�n	 $ �� For all n 
 n�� Cn� Dn�

and h�n	 are de�ned from the smfq selection for f on inputs of length n as follows� Let

k $ k�n	 be the greatest integer such that � � k � n� and jSkj 
 
n�kn
��

� �Note that k
exists because jS�j $ 
n�	 We then de�ne

Cn $ Sk	

h�n	 $ ��y� � L�� � � � ��yk�� � L��	

and we let Dn be the set of all coded pairs hx	 zi such that x � Sk� z � f�	 �gk� and
g�x	�b� � � � bn�	 $ �� where each

bi $

�
z�j� if fi�x	 $ yj � � � j � k�
� if fi�x	 �� fy�	 � � � 	 yk��g�
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Finally� we let B $ D�h� For each n 
 n� and each x � Cn $ Sk� the bit ��x � B�� is a
�guessed value� of the bit ��x � A��� The actual value� given by the reduction �f	 g	 to L� is

��x � A�� $ g�x	���wi � L�� � � � ��wn� � L��		

where w�	 � � � 	 wn� are the entries in row x of the matrix Qk� The guessed value ��x � B�� $
g�x	�b� � � � bn�	 uses the advice function h to get the correct bit bi $ ��wi � L�� when the
string wi is red in Qk� and guesses that wi �� L when the string wi is green in Qk�

To construct C we just have to perform the smfq selection� by listing all strings of length
n and their corresponding queries� and keeping a list of the repetitions according to the
de�nition of �Sj 	 Qj 	 yj	 in the smfq selection� This can be done in time 
�np�n	� which
implies that C � DTIME�
�n	� An algorithm for D on input hx	 zi checks whether x � C
in time 
�np�n	 and then computes y�	 � � � 	 yk�� in time 
�np�n	� The algorithm �nishes
with the simulation of g�x	� with total time less than 
�n� Thus C � DTIME�
�n	 and
B � DTIME�
�n	�fn�g � DTIME�
�n	�f�ng�

Also� by condition �i	 in our choice of n��

jCnj 
 
n�n
�n�� 
 


n
�

for all n 
 n�� whence jCnj 
 

n
� for all n � IN�

We now show that B does a good job of predicting A on Cn� for all n � K� Let n � K�
We have two cases�

�I	 If k $ k�n	 $ n�� then all strings in Qk are red� so all the guesses made by B are
correct� so

j�A�B	 � Cnj $ ��

�II	 If k $ k�n	 � n�� let r be the number of rows in Qk� i�e�� r $ jSkj $ jCnj� By our
choice of k� we have

jSk��j � 
n��k���n
��

� 
�n
��

r�

That is� no green string appears in more than 
�n
��

r of the rows of Qk� Moreover�
since jL�p�n�j � 
n

�

� there are at most 
n
�

di
erent strings w in Qk such that w � L�

Thus there are at most 
n
�


 
�n
��

r $ 
n
��n��r rows of Qk in which B makes an

incorrect guess that a green string is not in L� the guesses made by B are correct in
all other rows/ By condition �ii	 in our choice of n�� then� B is incorrect in at most
�
�r rows of Qk� That is�

j�A�B	 � Cnj �
�

�
r�

In either case� �I	 or �II	� we have

j�A�B	 � Cnj �
�

�
jCnj�

Since this holds for all n � K� and since K is in�nite�

j�A�B	 � Cnj

jCnj
�	

�



�

Thus B and C testify that A is not weakly �
�n	 �n	 

n
� 	�stochastic� i�e�� that A �� WS�� �� �
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Our main results of this chapter are now easily derived� We start with the fact that most
languages decidable in exponential time are not �p

n��tt�reducible to non�dense languages�

Theorem ���
� For every real number � � ��

�p�Pn��tt�DENSEc		 $ ��Pn��tt�DENSEc	 j E	 $ ��Pn��tt�DENSEc	 j E�	 $ ��

Proof � This follows immediately from Theorem ���� and Lemma �����

The Main Theorem yields the following separation result�

Theorem ����� For every real � � ��

E �� Pn��tt�DENSEc	�

That is� every �p
n��tt�hard language for E is dense�

Proof � By the Measure Conservation Theorem �Theorem ����	� ��E j E	 �$ �� so this
follows immediately from Theorem �����

Note that Theorem ���� strengthens Theorem ��
 by extending the number of queries from
O�logn	 to n�� where � � � �e�g�� � $ ����	�

We can generalize the concept of dense language and obtain the following generalizations
of Lemma ����� Theorem ���� and Theorem ����� where the number of queries we allow
in the truth�table reduction is related to the density of the oracles�

De�nition ����� Let f � IN 	 IN with f � o�n	� The class DENSEf contains those lan�
guages A such that there exists � � � such that for almost every n� jA�nj 
 
f�n�

�

�

Notice that for each c � �� DENSEnc $ DENSE�

Theorem ���
� For every f � o�n	� Pn
f�n��tt�DENSEc
f 	 �WS�� �� $ �� Thus

��Pn
f�n��tt�DENSEc
f 	 j E	 $ ��Pn
f�n��tt�DENSEc

f 	 j E�	 $ �	

and
E �� Pn
f�n��tt�DENSEc

f 	�

That is� every n�f�n	�tt�hard language for E is in DENSEf �

The proof uses the smfq selection technique in the same way as Lemma �����

In particular� for the class of sparse sets we have

Corollary ����� For every g � o�n� logn	 the following holds

��Pg�n��tt�SPARSE	 j E	 $ ��Pg�n��tt�SPARSE	 j E�	 $ �	

and
E �� Pg�n��tt�SPARSE	�
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Therefore� no sparse set is g�n	�tt�hard for E�

It is worthwhile to examine the roles played by various methods� Theorem ����� a measure�
theoretic result concerning the quantitative structure of E and E�� yields the qualitative
separation result Theorem ����� From a technical standpoint� this proof of Theorem ����
has the following three components�

�i	 The sequentially most frequent query selection �Lemma ����	� This is used to prove
that every language in Pn��tt�DENSEc	 is predictable� i�e�� fails to be weakly stochas�
tic �with suitable parameters	�

�ii	 The Weak Stochasticity Theorem �Theorem ����	� This shows that only a measure �
subset of the languages in E are predictable�

�iii	 The Measure Conservation Theorem �Theorem ����	� This shows that E is not a
measure � subset of itself�

Of these three components� �ii	 and �iii	 are general theorems concerning measure in E�
Only component �i	 is speci�c to the issue of the densities of �p

n��tt�hard languages�
That is� given the general principles �ii	 and �iii	� the proof of Theorem ���� is just the
sequentially most frequent query selection� i�e�� the proof of Lemma ����� The latter proof
is combinatorially much simpler than Watanabe s direct proof of Theorem ��
� This is
not surprising� once it is noted that our proof of Theorem ���� is an application of �a
resource�bounded generalization of	 the probabilistic method� ��Erd�o�� �Shan���� �Shan����
�Erd�oSp�� �Spen�� �AlonSp�	 which exploits the fact that it is often easier to establish the
abundance of objects of a given type than to construct a speci�c object of that type� Much
of our proof of Theorem ���� is �hidden� in the power of this method �i�e�� in the proofs
of the Measure Conservation and Weak Stochasticity Theorems	� freeing us to apply the
sequentially most frequent query selection to the problem at hand�

An important feature of this general method is that it is uniformly constructive in the fol�
lowing sense� Taken together� the proofs of the Measure Conservation and Weak Stochas�
ticity Theorems give a straightforward� �automatic� construction of a language A �
E � WS�� �� � By Lemma ����� it follows immediately that A � EnPn��tt�DENSEc	� Thus
one can apply this complexity�theoretic version of the probabilistic method with complete
assurance that the resulting existence proof will automatically translate into a construc�
tion�

Remember though that the primary objective of resource�bounded measure theory is to
give a detailed account of the quantitative structure of E� E� and other complexity classes�
The derivation of qualitative separation results� such as Theorems ���� and ��
� is only a by�
product of this quantitative objective� �By analogy� the value of classical Lebesgue measure
and probability far surpasses their role as tools for existence proofs�	 In the case of E� for
example� the quantitative content of Theorem ���� is that the set Pn��tt�DENSEc	� E is
a negligibly small subset of E�

The density criterion in Theorem ���� cannot be improved� since using padding it can
be shown that for every � � � there is a language A � E that is �p

m�hard for E� and
satis�es jA�nj � 
n

�

for all n� It is an open question whether the query bound n� can be
signi�cantly relaxed� A construction of Wilson �Wils� shows that there is an oracle B such



��� P�poly inside the E� H� ��

that EB � PB
O�n��tt�SPARSE	� so progress in this direction will require nonrelativizable

techniques� �The proof of Theorem ���� relativizes in a straightforward manner�	

��� P�poly inside the Exponential Hierarchy

We �nish the study of nonuniform complexity classes from the measure point of view by
looking at the measure of P�poly inside the exponential hierarchy� Kannan proved in
�Kann� that there is a set in the second level of the exponential hierarchy �(E

� � #E
� 	 that

is not in P�poly� In this section we prove that P�poly has measure � in the third level
�'E

� 	� that is� almost every language in 'E
� is out of P�poly�

We start by reviewing the de�nition of the exponential hierarchy �weak exponential hier�
archy in �Hema�� de�ned in �HartImS�	 and de�ning a resource bounded measure in each
level of the hierarchy�

De�nition ����� Let the exponential hierarchy be the class EH de�ned as follows

EH $ NE � NE�NP	 � NE�NP�NP		 � � � �NE�(P
k 	 � � � �

By a standard argument� it can be shown that for each k � IN� NE�(P
k 	 � E�(P

k��	 which
implies that

EH $ E � E�NP	 � E�NP�NP		 � � � �E�(P
k 	 � � � �

De�nition ����� For each k � IN� we de�ne

'E
k $ E�(P

k��		

(E
k $ NE�(P

k��		 and

#E
k $ coNE�(P

k��	�

For each k the following holds

'E
k � (E

k � #E
k � 'E

k���

For each k � IN� let 'P
k be the class of functions that can be computed in polynomial time

when having access to an oracle in (P
k��� Notice that 'P

k is a measure resource�bound as

de�ned in Chapter �� thus we can de�ne a measure in 'E
k using 'P

k �measure because of
next Lemma�

Lemma ����� R�'P
k 	 $ 'E

k �

Proof � Remark that the proof of R�p	$E �Lemma ����	 relativizes�
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We now show that P�poly has measure � in 'E
� � by using an approximation of the number

of polynomial size circuits that agree with a pre�x of a language� This approximation is
in '�� and is given for any counting function by Stockmeyer in �Stoc����

We give the formal de�nition of the class of counting functions� .P�

De�nition ����� We say that a function f � f�	 �g� 	 IN is in .P when there exists a
nondeterministic polynomial time Turing machine M such that� for any x � f�	 �g�� f�x	
is the number of accepting paths of M on input x�

It is an open problem whether .P is contained in p�PH	� that is� if we can count with
the help of an oracle in PH� Indeed� Toda s results in �Toda� show that PH � BPP�.P	�
which means that counting is at least as hard as the polynomial hierarchy� But even if we
do not know how to count in PH� Stockmeyer shows that we can approximate counting in
'P
� � The next theorem is a particular case of Theorem ��� in �Stoc����

Theorem ���	� Let f � .P and let � � �� There is a function g � 'P
� such that� for any

x � f�	 �g�� ���� g�x	

f�x	
� �

���� � ��

We �nish this chapter showing that P�poly has measure � in 'E
� �

Theorem ���
� P�poly has measure � in 'E
� �

Proof � Let k � IN be a power of 
� We de�ne

Xk $ fA
�� for each n � log k	 there exists a

nlogn�size boolean circuit Cn that recognizes A�ng�

We know that P�poly �
�S
k��

Xk� We use the ��additivity Lemma �Lemma ����	 to show

that �p��Xk	 $ ��

Let f � IN � f�	 �g� 	 IN be the following function� For m $ 
n� w � f�	 �g�

fm�w	 $ .fC
��C is an n�input circuit of size bounded by nlogn such that

for each sj � f�	 �gn	 j � jwj	 C�sj	 $ w�j�g�

Clearly f is in .P� because each n�input circuit of size bounded by nlogn can be viewed as
a path for a nondeterministic polynomial time Turing machine that on input h
n	 wi checks
whether there is a circuit with the mentioned size�bound that agrees with w �remember
that natural numbers are codi�ed in unary	� By the de�nition of f � for any m $ 
n�
w � f�	 �g�� fm�w�	 & fm�w�	 $ fm�w	�

By Theorem ��
� and �xing � $ �
� � we know that there exists g � 'P

� such that for any
m $ 
n� w � f�	 �g�� ���� g�m	w	

f�m	w	
� �

���� � ��
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Now we de�ne a ��MS in a similar way to the proof of Theorem ���
� In that theorem�
we used a function de�ned as f here� but looking only at circuits with a certain property�
That function was in p� thus we could use it in the de�nition of a martingale in p� Here f
is not in 'P

� � and in order to de�ne a martingale in 'P
� we use the approximation g�

Since gm�w�	 & gm�w�	 can be bigger than gm�w	� we use

� � �

� & �


gm�wb	

gm�w	

instead of gm�wb�
gm�w� in the de�nition of the next ��MS� Notice that

� � �

� & �


gm�wb	

gm�w	
�

fm�wb	

fm�w	

and then
� � �

� & �


gm�w�	

gm�w	
&

� � �

� & �


gm�w�	

gm�w	
� ��

We de�ne d� IN � f�	 �g� 	 ��	�	 as follows� Let w � f�	 �g�	 b � f�	 �g� We have two
cases�

If jwj � k � � then dk�wb	 $ 
�k�

If jwj 
 k � �� let m be a power of 
 such that m� � � jwj � 
m� �� then

dk�wb	 $ dk�w	 

�



� � �

� & �


gm�wb	

gm�w	
& � �

� � �

� & �


gm�w�	 & g�w�	

gm�w	

�
�

The second term in the second case of the de�nition�

� �
� � �

� & �


gm�w�	 & g�w�	

gm�w	

is nonnegative by the above notice and makes dk ful�ll dk�w�	 & dk�w�	 $ 
 dk�w	� thus d
is a ��MS� Since we can compute g in 'P

� � d is a ��MS in 'P
� �

Now we check that for each k $ 
i� Xk � S��dk�� For this we use that g approximates f
and thus


 

� � �

� & �


gm�wb	

gm�w	

 
 


� � �

� & �



�� � �	fm�wb	

�� & �	fm�w	
$ 
 



�

��

fm�wb	

fm�w	
	

since we had �xed � $ �
� �

Let k $ 
i� A � Xk� From the de�nition of Xk we know that for any n � i� m $ 
n�
fm��A����
n�� � 
�	 � �� and from the de�nition of f � for any w � f�	 �g�� fm�w	 �


��
log� n�� We have then the following inequalities

dk��A����
n��� 
�	 
 dk��A����
n� 
�	 
 
��
n�

�

�

��

��n
�


��log
� n�


 dk��A����
n� 
�	
c�
n��

	

for some constant c � �� independent of k and n� By induction�

dk��A����
n�� � 
�	 
 dk��	 
 
c��
n�k� $ 
c��

n�k��k

for any n � i� This implies that lim sups dk��A����s�	 $ �� and A � S�dk��
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Remark that Kannan showed that there exists a language out of P�poly in the class (E
��#E

� �
while our techniques can only get the measure result for 'E

� � A measure in (E
� �#E

� can be
de�ned �using the class of single�valued functions that are computable in (P

� 	 but in order
to get that P�poly has measure � in (E

� �#E
� with our techniques� we need to approximate

.P using single�valued functions in (P
� � which has not been obtained so far�



Chapter �

If NP is not small

��� Introduction

Many of the main open problems in Structural Complexity� such as whether the class NP
coincides with one of the classes P or E�� are instances of a more general problem� the
relationship between deterministic and nondeterministic time� There is a strong belief in
the area that NP is di
erent from both P and E�� and that nondeterministic time de�nes
classes whose structure is essentially di
erent from that of deterministic time classes� for
instance it is widely believed that NP is not closed under complement�

In this chapter we study NP inside the classes E and E� from the measure point of view�
A reason to choose E and E� as measure environments for NP is that P has measure � in
both E and E�� and we want to give some light on whether the same holds for NP�

We study the hypothesis �NP does not have p�measure ��� denoted �p�NP	 �$ �� and
meaning that either NP is not p�measurable or NP has p�measure �� We are unable to prove
or disprove it at this time� because �p�NP	 �$ � implies P �$ NP� and �p�NP	 $ � implies
NP �$ E�� Until such a mathematical resolution is available� the condition �p�NP	 �$ �
is best investigated as a scienti�c hypothesis� to be evaluated in terms of the extent and
credibility of its consequences�

In section ��
 below it is argued that �NP does not have p�measure �� is a reasonable
hypothesis for two reasons� First� its negation would imply the existence of a surprisingly
e!cient algorithm for betting on all NP languages �the corresponding martingale witness�
ing that NP has p�measure �	� Second� the hypothesis has a rapidly growing body of
credible consequences� We �rst summarize those that are consequence of the results in
previous chapters� dealing with the existence of P�bi�immune languages in NP and with
the density of hard languages for NP� We then mention another consequence by Juedes
and Lutz �JuedLu��a� that deals with the density of complexity cores of NP�complete lan�
guages� Finally we prove two new consequences� namely the class separation E �$ NE and
�building on recent work of Bellare and Goldwasser �BellGo�	 the existence of NP search
problems that are not reducible to the corresponding decision problems�

In section ��� we use the hypothesis �NP does not have p�measure �� to separate dif�
ferent types of NP�completeness� The NP�completeness of decision problems has two
principal� well�known formulations� These are the polynomial�time Turing completeness
��p

T�completeness	 introduced by Cook in �Cook� and the polynomial�time many�one com�
pleteness ��p

m�completeness	 introduced by Karp in �Karp� and by Levin in �Levi�� These
two completeness notions� sometimes called �Cook completeness� and �Karp�Levin com�
pleteness�� have been widely conjectured� but not proven �even under the hypothesis that
P �$ NP	 to be distinct�

��
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It is clear that A �p
m B implies A�p

TB� and hence that every �p
m�complete language for

NP is �p
T�complete for NP� Conversely� all known� natural �p

T�complete languages for NP
are also �p

m�complete� Nevertheless� it is widely conjectured �e�g�� �LadnLyS�� �LongYo��
�Home�� �Youn�	 that Cook completeness is more general than Karp�Levin completeness�

CvKL Conjecture ��Cook versus Karp�Levin�	� There exists a language that is �p
T�

complete� but not �p
m�complete� for NP�

The CvKL conjecture immediately implies that P �$ NP� so it may be very di!cult to
prove� We mention �ve items of evidence that the conjecture is reasonable�

�� Selman �Selm��� proved that the widely�believed hypothesis E �$ NE implies that the
reducibilities �p

T and �p
mare distinct in NP � co�NP� That is� if E �$ NE� then there

exist A	 B � NP � co�NP such that A�p
TB but A ��p

m B� Under the stronger hypothesis
E �$ NE � co�NE� Selman proved that the reducibilities �p

T and �p
mare distinct in NP�


� Watanabe and Tang �WataTa� exhibited reasonable complexity�theoretic hypotheses
implying the existence of languages that are �p

T�complete� but not �p
m�complete� for

PSPACE�

�� Ko and Moore �KoMo� constructed a language that is �p
T�complete� but not �p

m�
complete� for E� Watanabe re�ned this in �Wata��a�� �Wata��b� by separating a spectrum
of completeness notions in E�

�� Buhrman� Homer� and Torenvliet �BuhrHoT� constructed languages that are �p
T�

complete� but not �p
m�complete� for NE�

�� Longpr�e and Young �LongYo� showed that� for every polynomial time bound t� there
exist languages A and B� both �p

T�complete for NP� such that A is �p
T�reducible to B in

linear time� but A is not �p
m�reducible to B in t�n	 time�

Item � above indicates that the reducibilities �p
T and �p

mare expected to di
er in NP� Item

 indicates that the CvKL conjecture is expected to hold with NP replaced by PSPACE�
Items � and � indicate that the CvKL Conjecture de�nitely holds with NP replaced by E
or by NE� Item � would imply the CvKL Conjecture� were it not for the dependence of
A and B upon the polynomial t� Taken together� these �ve items suggest that the CvKL
Conjecture is reasonable� �See �BuhrTo� for an updated survey of the work on completeness
notions�	

The CvKL Conjecture is very ambitious� since it implies that P �$ NP� The question has
thus been raised ��LadnLyS�� �Selm���� �Home�� �BuhrHoT�	 whether the CvKL Conjecture
can be derived from some reasonable complexity�theoretic hypothesis� such as P �$ NP or
the separation of the polynomial�time hierarchy into in�nitely many levels� To date� even
this more modest objective has not been achieved�

The Main Theorem of this chapter� Theorem ���� below� says that the CvKL Conjecture
follows from the hypothesis that �NP does not have p�measure ��� We even achieve a
stronger result� namely that �p

��tt and �p
��T�completeness are di
erent for NP� that is�

there is a set that is Turing complete using two adaptive queries but� using only two
nonadaptive ones� it is not�

In section ���� we prove that� if NP is not small� then most truth�table reducibilities
are distinct in NP� and in section ��� we mention the hypothesis of NP not being small
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in PSPACE and give some consequences that are corollaries of the results in previous
chapters� Section ��� also has some open problems� Most of the results in this chapter are
contained in �LutzMa��b��

Observe that� for each of the treated questions� the hypothesis �NP does not have p�
measure �� gives the answer that seems most likely� relative to our current knowledge�
Taken together� our results suggest that it is a reasonable scienti�c hypothesis� which may
have the explanatory power to resolve many questions that have not been resolved by
traditional complexity�theoretic hypotheses�

��� If NP does not have p�measure 	

We study here the consequences and reasonableness of the hypothesis that NP does not
have p�measure ��

Let us summarize the known implications among various conditions asserting the smallness
of NP�

P $ NP $� ��c	NP � DTIME�
cn	 $� �p�NP	 $ �	

�p�NP	 $ � $� �p��NP	 $ � �� ��NP j E�	 $ � $� ��NP j E	 $ ��

The last implication is a consequence of Corollary ��
�� The second one was proven in
Proposition ���
� the third and fourth follow from Corollary ��
��

Lutz has conjectured that NP does not have measure � in E �denoted ��NP j E	 �$ �	 and
that NP does not have measure � in E� �denoted ��NP j E�	 �$ �	� From the previous
implications we have

��NP j E	 �$ � $� ��NP j E�	 �$ � �� �p��NP	 �$ � $� �p�NP	 �$ ��

This means that �p�NP	 �$ � is the weakest measure�theoretic hypothesis asserting that
NP is not small in exponential time�

By the de�nition of p�measure� we know that NP has p�measure � if and only if there is
a single martingale d � p that succeeds on every language A � NP� Since d � p� when
betting on the condition �x � A� d requires only 
cjxj time for some �xed constant c� On
the other hand� for all k � IN� there exist languages A � NP with the property that the

apparent search space �space of witnesses	 for each input x has 
jxj
k

elements� Since c

is �xed� we have 
cn � 
n
k

for large values of k� Such a martingale d would thus be a
very remarkable algorithm/ It would bet successfully on all NP languages� using far less
than enough time to examine the search spaces of most such languages� It is reasonable
to conjecture that no such martingale exists� i�e�� that NP does not have p�measure ��

Kautz and Miltersen have recently proven in �KautMi� that for a randomly chosen A� with
probability � NP�A	 does not have p�A	�measure ��

Next we describe some consequences of the hypothesis that NP does not have p�measure ��
The �rst one concerns P�bi�immunity and is a corollary of the results in Chapter �� Note
that the existence of P�bi�immune sets inside NP has been proven in certain relativizations�
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see for instance the oracle constructed by Gasarch and Homer in �GasaHo�� Recall also
that E� is the smallest deterministic time complexity class known to contain NP�

Theorem ���� If NP does not have p�measure � then NP contains a P�bi�immune set� If
NP does not have measure � in E� then NP contains an E�bi�immune set�

Proof � From Theorem ��� we know that the class of P�bi�immune sets has p�measure
�� so if NP does not have p�measure � then NP is not included in the class of non�P�bi�
immune languages� and we have the �rst part� For the second part the argument is the
same this time using Theorem ����

The next known consequence of �p�NP	 �$ � is proven by Juedes and Lutz in �JuedLu��a��
and involves exponential complexity cores of NP�complete languages� de�ned as follows�

De�nition ���� An in�nite set K � f�	 �g� is an exponential complexity core for a language
A if there is a real number � � � such that for every machine M that accepts A there are
at most �nitely many x � K such that the time of machine M on input x is smaller than

jxj

�

�

�Intuitively� an exponential complexity core for a language L is a set of �very infeasible 
inputs for every algorithm that correctly recognizes L�	

Theorem ���� �JuedLu
�a�	 If NP does not have p�measure �� then every �p
m�complete

language A for NP has a dense exponential complexity core�

Thus� for example� if NP is not small� then there is a dense set K of Boolean formulas in
conjunctive normal form such that every machine that is consistent with SAT performs
exponentially badly �either by running for more than 
jxj

�

steps or by giving no output	 on
all but �nitely many inputs x � K� �The weaker hypothesis P �$ NP was already known
�OrpoSc� to imply the weaker conclusion that every �p

m�complete language for NP has a
nonsparse polynomial complexity core�	

The third consequence of �p�NP	 �$ � to be mentioned here concerns the density of hard
languages for NP� Let us consider the usual polynomial�time reducibilities ranging from
�p
m to �p

T� If �p
r is any of these reducibilities� all known �p

r �hard languages for NP are
dense� E
orts to explain this observation �and similar observations for other classes and
reducibilities	 have yielded many results� �See �HemaOgW� for a thorough survey�	 Berman
and Hartmanis �BermHa� conjectured that no sparse language is �p

m�hard for NP� unless
P $ NP� This conjecture was subsequently proven correct�

Theorem ���� �Maha�	 If P �$ NP� then no sparse language is �p
m�hard for NP� That is�

P �$ NP $� NP �� Pm�SPARSE	�

Theorem ��� was extended much later to truth�table reducibility with a bounded number
of queries�

Theorem ���� �Ogihara and Watanabe �OgihWa��	 If P �$ NP� then no sparse language
is �p

btt�hard for NP� That is�

P �$ NP $� NP �� Pbtt�SPARSE	�
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One is thus led to ask whether there is a reasonable hypothesis � such that we can prove
results of the form

� $� NP �� Pr�DENSEc		 ����	

for various choices of the reducibility �p
r � �Such a result is much stronger than the corre�

sponding result
� $� NP �� Pr�SPARSE		

because there is an enormous gap between polynomial and 
n
�

growth rates�	

Ogihara and Watanabe s proof of Theorem ��� does not appear to allow signi�cant re�
laxation of either the query bound or the sparseness criterion� In fact� it appears to be
beyond current understanding to prove results of the form ����	 if � is �P �$ NP�� Karp
and Lipton �KarpLi� have proven that

(P
� �$ #P

� $� NP �� P�SPARSE	�

That is� the stronger hypothesis (P
� �$ #P

� gives a stronger conclusion than those of Theo�
rems ��� and ���� However� Karp and Lipton s proof does not appear to allow relaxation
of the sparseness criterion� and results of the form ����	 do not appear to be achievable at
this time if � is taken to be �(P

� �$ #P
� ��

As a corollary of the main result in Chapter � the following holds

Theorem ��	� If NP does not have p�measure � then� for every real number � � �� every
�p
n��tt�hard language for NP is dense�

Proof � The result follows trivially from Theorem ����� stating that Pn��tt�DENSEc	
has p�measure ��

This last conclusion of the hypothesis NP does not have p�measure �� which is credible
and consistent with all observations to date� is not known to follow from P �$ NP or other
traditional complexity�theoretic hypotheses�

Note that the hypothesis and conclusion of Theorem ��� are both stronger than their
counterparts in Ogihara and Watanabe s result that

P �$ NP $� NP �� Pbtt�SPARSE	�

Note also that our proof of Theorem ��� �based on Theorem ����	 actually shows that

NP � WS�� �� �$ � $� NP �� Pn��tt�DENSEc	�

We conclude this section by noting some new consequences of the hypothesis that �p�NP	 �$
�� The following lemma does not depend on this hypothesis� it involves the exponential
complexity classes E and NE� and also the doubly exponential complexity classes� EE $
�S
c��

DTIME�
�
n�c

	 and NEE $
�S
c��

NTIME�
�
n�c

	�

Lemma ��
�
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�� If NP contains a P�bi�immune language� then E �$ NE and EE �$ NEE�


� If NP � co�NP contains a P�bi�immune language� then E �$ NE � co�NE and EE �$
NEE � co�NEE�

Proof � Let T $ f��
n

jn � INg� For each A � f�	 �g�� let

��A	 $ fsnj�
�n � Ag	

It is routine to show that� for all A � f�	 �g��

��A	 � EE i
 A � T � P	

��A	 � NEE i
 A � T � NP	 and

��A	 � co�NEE i
 A � T � co�NP�

�� Let A � NP be P�bi�immune� Then A�T � NP� so ��A	 � NEE� Since Ac is P�immune�
A�T is in�nite� Since A is P�immune� it follows that A�T �� P� whence ��A	 �� EE� Thus
��A	 � NEE � EE� so EE �$ NEE� Note also that A � T is a tally language in NP � P�
The existence of such a language is known �Book��� to be equivalent to E �$ NE�

The proof of 
 is similar�

Theorem ����

�� If NP does not have p�measure �� then E �$ NE and EE �$ NEE�


� If NP � co�NP does not have p�measure �� then E �$ NE � co�NE and EE �$ NEE �
co�NEE�

Proof � This follows immediately from Theorem ��� and Lemma ����

Corollary ���� If NP does not have p�measure �� then there is an NP search problem that
does not reduce to the corresponding decision problem�

Proof � Bellare and Goldwasser �BellGo� have shown that� if EE �$ NEE� then there is
an NP search problem that does not reduce to the corresponding decision problem� The
present corollary follows immediately from this and Theorem ����

��� Separating completeness notions in NP

In this section we prove our main consequence of �p�NP	 �$ �� that is�

Theorem ���
� If NP does not have p�measure �� then there is a language C that is
�p
��T�complete� but not �p

��tt�complete� for NP�

This theorem implies that if �p�NP	 �$ � then the CvKL conjecture holds� that is

Corollary ����� If �p�NP	 �$ � then there is a language that is �p
T�complete� but not

�p
m�complete� for NP�
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Our proof of Theorem ���� uses the following de�nitions and lemma�

De�nition ����� The tagged union of languages A�	 
 
 
 	 Ak�� � f�	 �g� is the language

A� � 
 
 
 � Ak�� $
�
x��i j� � i � k and x � Ai

	
�

De�nition ����� For each language A � f�	 �g� let A��� and A��� be the following languages

A��� $
�
x
�� x � A and x $ y�

	
�

A��� $
�
x
�� x � A and x $ y�

	
�

Lemma ����� For any language S � E� the set

X $
�
A � f�	 �g�

��A����
p
��ttA��� � �A��� � S	 � �A��� � S	

	
has p�measure ��

Before proving Lemma ����� we use it to prove the Main Theorem�

Proof of Theorem ���
� Assume that NP does not have p�measure �� Let

X $
�
A
��A����

p
��ttA��� � �A��� � SAT	 � �A��� � SAT	

	
�

By Lemma ����� X has p�measure �� so there exists a language A � NP �X� Fix such a
language A and let

C $ A��� � �A��� � SAT	 � �A��� � SAT	�

Since A � NP� we have A���	 A��� � NP� Since A���	 SAT � NP and NP is closed under ��
�� and �� we have C � NP� Also� the algorithm
BEGIN

INPUT x�
IF x� � C

THEN IF x�� � C
THEN accept
ELSE reject

ELSE IF x��� � C
THEN accept
ELSE reject

END

clearly decides SAT using just two �adaptive	 queries to C� so SAT�p
��TC� Thus C is

�p
��T�complete for NP� On the other hand� A �� X� so A��� ��

p
��ttC� Since A��� � NP� it

follows that C is not �p
��tt�complete for NP�
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Next we prove Lemma �����

Proof of Lemma �����

Let S and X be as in the hypothesis� Our objective is to prove that �p�X	 $ �� Let c � �
be such that S � DTIME�
cn	�

For each language A� we denote as AS the language

AS $ A��� � �A��� � S	 � �A��� � S	�

Using this notation�
X $

�
A � f�	 �g�

�� A����
p
��ttAS

	
�

Let fMi

�� i � INg be a feasible enumeration of all oracle Turing machines performing

�
DTIME���c���n�
��tt �reductions� �The reason to allow time 
�c���n to the reductions is to be

able to simulate the computation of S�y	 for strings y shorter than the input� as we will
see below�	 For each i � IN� let �f i	 gi	 be the 
�tt reduction performed by Mi �we use the
notation for truth�table reducibilities introduced in Chapter �	�

For each i � IN� for each x � f�	 �g�� l � f�	 
g� if f il �x	 $ w��a with a � f�	 �	 
g� we write
qil �x	 for w� and ail�x	 for a� Notice that if Mi performs a reduction to AS� then qil �x	 is
the actual query to either A���� A��� � S or A��� � S and ail�x	 tells us which part of AS is
being queried�

Let A � X� and M be a polynomial time machine witnessing that A����
p
��ttAS � Then

there exists an i � IN such that A��� $ L�Mi	 AS	 and the following conditions hold

�i	 for every x � f�	 �g� and l � f�	 
g� f il �x	 has the form w��a� for a � f�	 �	 
g�

�ii	 for every x � f�	 �g�� qi��x	 � qi��x	 in lexicographical order� and if qi��x	 $ qi��x	 then
ai��x	 � ai��x	�

�iii	 for every x � f�	 �g� and l � f�	 
g� qil �x	 �$ x� jqil �x	j � 
jxj�

�iv	 for every x � f�	 �g� and l � f�	 
g� either jqil �x	j � jxj or ail�x	 $ ��

Conditions �i	 to �iii	 can be induced because we are dealing with a polynomial�time
reduction from A��� to AS � Condition �iv	 holds because we can simulate M�x	 computing

S�q	 for all queries q with jqj � jxj in time 
cjxj� and transform these queries into queries
to A����

For each i � IN we de�ne the set Xi as follows�

If i ful�lls conditions �i	 to �iv	 then

Xi $ fA � f�	 �g�
�� A��� $ L�Mi	 AS	g�

Otherwise� Xi $ ��

By the above observation� X �
�S
i��

Xi�

In order to prove that X has p�measure �� by Lemma ����� it is enough to de�ne a p�
computable ��MS d� such that Xi � S��di�� for all i � IN�
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The clue in the de�nition of d is the next claim�

Claim �� Let i � IN� let A � Xi� For every x � f�	 �g� one of the following holds

�a	 There exists a language B such that A�x $ B�x and for every R� L�Mi	 BR	�x	 $
L�Mi	 BS	�x	�

�b	 qi��x	 � x and A����x	 $ L�Mi	 �	�x	 � A�qi��x		 $ S�qi��x		�

Assuming Claim �� we can de�ne d� IN � f�	 �g� 	 ��	�	 as follows� We use the sequence

of strings fxn
�� n � INg� where x� $ �� xn $ ��

jxn��j

for n � ��

Let i � IN� w � f�	 �g�� Let n be such that xn � sjwj � xn���

��	 If there exists a language B such that B�xn v w and for every R� L�Mi	 BR	�xn	 $
L�Mi	 BS	�xn	� then �x the �rst such B and let Zn be the class

Zn $
n
C
�� If

�
C�qi��xn		 $ B�qi��xn		 and C�qi��xn		 $ B�qi��xn		

�
then C�xn	 $ L�Mi	 B�	�xn	

o
�

If PrC �C � ZnjC � Cw� �$ � then

di�wb	 $ di�w	 

PrC �C � ZnjC � Cwb�

PrC �C � ZnjC � Cw�
	

If PrC �C � ZnjC � Cw� $ � then di�wb	 $ di�w	�

�
	 Otherwise� if sjwj $ qi��xn	 then

di�wb	 $

�

 
 di�w	 if L�Mi	 �	�xn	 $ w�
jxnj � �� � S�qi��x		 $ b�
� if L�Mi	 �	�xn	 $ w�
jxnj � �� � S�qi��x		 �$ b�

If sjwj �$ qi��xn	 then di�wb	 $ di�w	�

For each i � IN� di is a martingale by the de�nition of conditional probability in case ��	
and by de�nition in case �
	� In order to compute d�i	 w	 we need to compute ff i��x		 f i��x	g
for several x � sjwj for part ��	� and S�sjwj	 for part �
	� all of which can be done in time
polynomial in jwj & i� Thus d is a p�computable ��MS�

We now show that Xi � S��di� for all i � IN� Fix i � IN and A � Xi� Let w� $ �� r� $ ��
For each n � �� let wn $ �A����
jxnj � 
� and rn $ di�wn	� �That is� wn is the initial
segment of the characteristic sequence �A of A up to but not including the bit that decides
whether xn � A�	 Since the choice of ��	 or �
	 in the de�nition of di depends only on n�
either for every w v A with xn � sjwj � xn�� we are in case ��	 or for every w v A with
xn � sjwj � xn�� we are in case �
	�

If we are in case ��	 then� if A�qi��xn		 $ B�qi��xn		 and A�qi��xn		 $ B�qi��xn		 we
know that L�Mi	 AS	�xn	 $ L�Mi	 BS	�xn	 $ L�Mi	 B�	�xn	� Since A � Xi we have
A����xn	 $ L�Mi	 AS	�xn	� thus A � Zn and for each w v A� PrC �C � ZnjC � Cwn � �$ ��
Therefore�

rn�� $ rn 

PrC �C � ZnjC � Cwn�� �

PrC �C � ZnjC � Cwn �
�
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Moreover� xn� qi��xn	 and qi��xn	 are decided by wn��� so PrC �C � ZnjC � Cwn��� $ ��
that is�

rn�� $
rn

PrC �C � ZnjC � Cwn �
�

Finally�
Pr
C

�C � ZnjC � Cwn � � �

because a set C such that C�xn	 �$ B�xn	� C�qi��xn		 $ B�qi��xn		 and C�qi��xn		 $
B�qi��xn		 is in Cwn n Zn� Since there are at most � bits that in"uence whether C � Zn�
then PrC �C � ZnjC � Cwn � � � implies that PrC �C � ZnjC � Cwn � � � � 
��� We thus
have

rn�� 

�

�

 rn�

If we are in case �
	 then by Claim �� qi��xn	 � xn and A�xn	 $ L�Mi	 �	�xn	 if and only
if A�qi��xn		 $ S�qi��xn		� Thus rn�� $ 
 
 rn�

This implies that limn�� di��A����jwnj � ��	 $ �� thus lim supm di��A����m�	 $ � and
A � S��di�� This completes the proof that Xi � S��di� for all i � IN� By Lemma ����� we
have �nished the proof of Lemma ���� via the proof of Claim ��

Proof of Claim �	 Let i � IN be such that Xi �$ �� Let x � f�	 �g�� One of the following
seven cases must happen� Cases I	 to VI	 correspond to �a	� case VII	 corresponds to �b	�

I	 qi��x	 $ qi��x	 and jqi��x	j � jxj�

For every B and every R� L�Mi	 BR	�x	 $ L�Mi	 BS	�x	� because all queries of ma�
chine Mi on input x involving R are longer than jxj �condition �iv		�

II	 qi��x	 �$ qi��x	�

For l � f�	 
g� if qil �x	 � x let

B�qil�x		 $

�
� if ail�x	 $ �
� otherwise�

Then for every R� BR�f il �x		 $ BS�f il �x		� and L�Mi	 BR	�x	 $ L�Mi	 BS	�x	 �re�
member that by condition �iv	 all queries of machine Mi on input x involving R are
longer than jxj	�

III	 qi��x	 $ qi��x	� jqi��x	j � jxj and ai��x	 $ � or ai��x	 �$ 
�

Let

B�qi��x		 $

�
� if ai��x	 $ �
� otherwise�

Then for every R� for each l � f�	 
g� BR�f il �x		 $ BS�f il �x		� and L�Mi	 BR	�x	 $
L�Mi	 BS	�x	�

The rest of the cases happen when qi��x	 $ qi��x	� ai��x	 $ �� and ai��x	 $ 
� Notice
that the answers ��	 �	 are not possible�

IV	 qi��x	 $ qi��x	� ai��x	 $ �� ai��x	 $ 
 and gi�x	��	 �	 $ gi�x	��	 �	 $ gi�x	��	 �	�
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In this case� for every B and for every R� L�Mi	 BR	�x	 $ L�Mi	 BS	�x	�

V	 qi��x	 $ qi��x	� jqi��x	j � jxj� ai��x	 $ �� ai��x	 $ 
 and gi�x	��	 �	 �$ gi�x	��	 �	 $
gi�x	��	 �	�

Let B�qi��x		 $ �� Then for every R� BR�qi��x		 $ �� and L�Mi	 BR	�x	 $ L�Mi	 BS	�x	�

VI	 qi��x	 $ qi��x	� jqi��x	j � jxj� ai��x	 $ �� ai��x	 $ 
 and gi�x	��	 �	 �$ gi�x	��	 �	 $
gi�x	��	 �	�

Let B�qi��x		 $ �� Then for every R� BR�qi��x		 $ �� and L�Mi	 BR	�x	 $ L�Mi	 BS	�x	�

VII	 qi��x	 $ qi��x	� jqi��x	j � jxj� ai��x	 $ �� ai��x	 $ 
 and gi�x	��	 �	 $ gi�x	��	 �	 �$
gi�x	��	 �	�

Here we are in case �b	� If A����x	 $ gi�x	��	 �	 then S�qi��x		 $ A�qi��x		� because it is
the only way of having answers ��	 �	 or ��	 �	� In the same way if A����x	 $ gi�x	��	 �	
then S�qi��x		 �$ A�qi��x		�

��� Separating reducibilities in NP

In this section� assuming that NP is not small� we establish the distinctness of many
polynomial�time reducibilities in NP�

Our �rst such result involves known consequences of E �$ NE�

Theorem ����� Assume that NP does not have p�measure ��

There exist A	B � NP � co�NP such that A�p
TB� but A ��p

pos�TB�

There exist A	B � NP � co�NP such that A�p
ttB� but A ��p

pos�ttB�

Proof � Selman �Selm�
� has shown that these conclusions follow from E �$ NE� so the
present theorem follows immediately from Theorem ����

Similarly� we have the following�

Theorem ���	� Assume that NP � co�NP does not have p�measure ��

There exist A	B � NP such that A�p
TB but A ��p

pos�TB�

There exist A	B � NP such that A�p
ttB but A ��p

pos�ttB�

Proof � Selman �Selm�
� has shown that these conclusions follow from E �$ NE� co�NE�
so the present theorem follows immediately from Theorem ����

The rest of our results concern the separation of various polynomial�time truth�table re�
ducibilities in NP� according to the number of queries� Theorem ���� separates �p

�k����tt

reducibility from �p
k�tt� for any constant k� while Theorem ���� separates �p

q�n��tt re�

ducibility from �p
r�n��tt� for q�n	 � o�

p
r�n		 and r�n	 � O�n	�

Theorem ���
� If NP does not have p�measure �� then for all k � IN there exist A	B � NP
such that A�p

�k����ttB but A ��p
k�ttB�
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The proof of Theorem ���� uses the following notation and lemma For x � f�	 �g� and
k � IN� let

Qk�x	 $ fx��ij� � i � kg�

For all B � f�	 �g� and k � IN� then� de�ne the k�fold disjunction of B to be the language

��k�B $ fx � f�	 �g�jQk�x	 �B �$ �g�

Lemma ����� For all k � IN� the set

Xk $ fB � f�	 �g�j ��k��� B�p
k�ttBg

has p�measure ��

Proof of Theorem ���
� Assume that NP does not have p�measure � and let k � IN�
Then Lemma ���� tells us that there exists B � NP such that ��k���B � �p

k�ttB� Fix

such a language B and let A $ ��k���B� Then A � NP �because A�p
pos�TB and NP is

closed under �p
pos�T�reducibility �Selm�
�	� A�p

�k����ttB �trivially	� and A ��p
k�ttB �by

our choice of B	�

Proof of Lemma ����� Fix k � IN and let Xk be as in the statement of the lemma�
Let fMi

�� i � INg be a feasible enumeration of all Turing Machines performing �p
k�tt�

reductions� We can assume that for every i � IN and every x � f�	 �g�� all queries of
machine Mi on input x are shorter than 
jxj� For each i � IN� let �f i	 gi	 be the k�tt
reduction performed by Mi

For i � IN� we de�ne the set

Yi $ fB � f�	 �g�
�� ��k���B $ L�Mi	 B	g�

Let

Y $
��
i��

Yi�

It is clear that Xk � Y � so it su!ces to prove that �p�Y 	 $ ��

In order to prove that Y has p�measure �� by Lemma ����� it is enough to de�ne a p�
computable ��MS d� such that Yi � S��di�� for all i � IN�

The function d� IN � f�	 �g� 	 ��	�	 is de�ned as follows�

We use again fxn
�� n � INg a sequence of very separated strings de�ned as x� $ ��

xn $ ��
jxn��j

for n � ��

Let i � IN� di��	 $ �� Let w � f�	 �g�� and b � f�	 �g� Let n be such that xn � sjwj � xn���

�i	 If PrC
�
L�Mi	 C	�xn	 $ ��k���C�xn	jC � Cw

�
�$ � then

di�wb	 $ di�w	 

PrC

�
L�Mi	 C	�xn	 $ ��k���C�xn	jC � Cwb

�
PrC

�
L�Mi	 C	�xn	 $ ��k���C�xn	jC � Cw

� �
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�ii	 Otherwise� di�wb	 $ di�w	�

For each i � IN� di is a martingale� as in previous proofs this is by the de�nition of
conditional probability� In order to compute d�i	 w	 we need to compute Qk���x	 �
ff i��x		 � � � 	 f ik�x	g for several x � sjwj� which can be done in time polynomial in jwj & i�
Thus d is a p�computable ��MS�

We now show that Yi � S��di� for all i � IN� Fix i � IN and A � Yi� Let w� $ �� r� $ ��
For each n � �� let wn $ �A����
jxnj � 
� and rn $ di�wn	� �That is� wn is a pre�x of
the characteristic sequence �A of A up to but not including the bit corresponding to xn�	
Since A � Yi� for every w v A� PrC

�
L�Mi	 C	�xn	 $ ��k���C�xn	

�� C � Cw

�
�$ �� and for

each w v A� we use case �i	 in the de�nition of di�w	� Thus for n � �

rn�� $ rn 

PrC

�
L�Mi	 C	�xn	 $ ��k���C�xn	jC � Cwn��

�
PrC

�
L�Mi	 C	�xn	 $ ��k���C�xn	jC � Cwn

� �

For all n � � all the queries of Mi on input xn and all the strings in Qk���xn	 are decided
by wn��� so

Pr
C

�
L�Mi	 C	�xn	 $ ��k���C�xn	jC � Cwn��

�
$ �	

that is�

rn�� $
rn

PrC
�
L�Mi	 C	�xn	 $ ��k���C�xn	jC � Cwn

� �
Finally� for all n � �� the fact that

Pr
C

�
L�Mi	 C	�xn	 $ ��k���C�xn	jC � Cwn

�
� �

follows from the next claim

Claim �� Let A � Xi� For every x � f�	 �g� there exists a language B such that A�x $ B�x

and L�Mi	 B	�x	 �$ ��k���B�x	�

The claim holds because no string in Qk���x	 is �xed by A�x and Mi can make at most
k queries on input x�

Since there are at most 
k & � bits that in"uence whether L�Mi	 C	�xn	 $ ��k���C�xn	
for each C� then

Pr
C

�
L�Mi	 C	�xn	 $ ��k���C�xn	jC � Cwn

�
� �

implies that

���
	 Pr
C

�
L�Mi	 C	�xn	 $ ��k���C�xn	jC � Cwn

�
� � � 
��k���

We thus have
rn�� 


rn
� � 
��k��

for all n � �� This implies that limn�� di��A����jwnj � ��	 $ �� thus

lim sup
m

di��A����m�	 $ �

and A � S��di�� This completes the proof that Yi � S��di� for all i � IN� and by
Lemma ����� the proof of Lemma �����
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For non constant query�bounds� we have the following result�

Theorem ����� If NP does not have p�measure � and q	 r� IN 	 IN are polynomial�time
computable query�counting functions satisfying the conditions q�n	 � o�

p
r�n		 and r�n	 �

O�n	� then there exist A	B � NP such that A�p
r�n��ttB but A ��p

q�n��ttB�

To prove this theorem� we use a very similar technique to that of Theorem ����� this time
substituting the disjunctive operator by a majority operator� The following notation and
lemma are used

For all B � f�	 �g� and r� IN 	 IN� we de�ne the r�fold majority of B to be the language

maj�r�B $
n
x � f�	 �g�

��� ��Qr�jxj��x	 � B
�� 
 �r�jxj	




�o
�

Lemma ���
� If q	 r� IN 	 IN are polynomial�time computable functions satisfying the
conditions q�n	 � o�

p
r�n		 and r�n	 � O�n	� then the set

X $ fB � f�	 �g�jmaj�r�B�p
q�n��ttBg

has p�measure ��

Proof of Theorem ����� This is similar to the proof of Theorem ����� using Lemma ��
�
and maj�r�B in place of Lemma ���� and ��k���B�

Proof of Lemma ���
� The proof of this lemma is similar to that of Lemma ����� but
we now have unbounded query�counting functions where we previously had constants�

Let fMi

�� i � INg be a feasible enumeration of all Turing Machines performing �p
q�n��tt�

reductions�

Following the steps and notation in the proof Lemma ����� we need a constant upper bound
for

Pr
C

�
L�Mi	 C	�xn	 $ maj�r�C�xn	jC � Cwn

�
	

as in ���
	� In this case the existence of such a bound is a consequence of the fact that

Pr
C

�
L�Mi	 C	�xn	 $ maj�r�C�xn	jC � Cwn

�
has a limit � �

� as n goes to in�nity� So there exists a n� such that

Pr
C

�
L�Mi	 C	�xn	 $ maj�r�C�xn	jC � Cwn

�
�

�

�

for every n 
 n��

The rest of the proof follows the same arguments as in Lemma �����
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The query bounds of Theorems ���� and ���� can be relaxed if we make the stronger
assumption that ��NP j E�	 �$ �� Theorem ���� can be extended to logarithmically
bounded query�counting functions� while in Theorem ���� we can remove the requirement
that r�n	 � O�n	�

Theorem ����� If ��NP j E�	 �$ � and q is a polynomial�time computable query�counting
function such that q�n	 � O�logn	� then there exist A	B � NP such that A�p

q�n����ttB

but A ��p
q�n��ttB�

Theorem ����� If ��NP j E�	 �$ � and q	 r� IN 	 IN are polynomial�time computable
query�counting functions satisfying q�n	 � o�

p
r�n		� then there exist A	B � NP such

that A�p
r�n��ttB but A ��p

q�n��ttB�

The proofs of Theorems ��
� and ��

 are similar to those of Theorems ���� and �����
respectively� Details are omitted�

��� Further results and open problems

We look here at the consequences of the hypothesis �NP does not have measure � in
PSPACE we know so far� Notice that if ��NP j E�	 �$ � then ��NP j PSPACE	 �$ �

Theorem ����� If NP does not have measure � in PSPACE then

�i	 NP contains a DLOG�bi�immune language�

�ii	 NP contains a language that is not LINSPACE�oq�self reducible�

Proof � The proof follows from Theorems ��� and 
����

We have seen that for each of the treated questions� the hypothesis �NP does not have
p�measure �� gives the answer that seems most likely� relative to our current knowledge�
Further investigation of this hypothesis and its power to resolve other questions is clearly
indicated� Additionally� it allows us to combine all relativizable proofs of measure � in E
results for speci�c properties with the result of Kautz and Miltersen �KautMi� that the
set of all A such that ��NP�A	 j E�A		 �$ � has Lebesgue measure �� For instance� it
follows that with probability �� a random oracle has a P�A	�bi�immune set in NP�A	�
which generalizes the construction of an oracle for which NP contains a P�bi�immune set
in �GasaHo� �in fact� for that oracle NP $ E�	�

Regarding the density of hard languages for NP� there are several open questions involving
special reducibilities� We mention just one example� Very recently� Arvind� K�obler� and
Mundhenk �ArviK�oM� have proven that

P �$ NP $� NP �� Pbtt�Pctt�SPARSE			

where Pctt refers to polynomial�time conjunctive reducibility� �This strengthens Theo�
rem ����	 Does the class Pbtt�Pctt�DENSEc		 have measure � in E�



�
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As noted in section ��
� all known �p
T�hard languages for NP are dense� i�e�� our experience

suggests that NP �� P�DENSEc	� This suggests two open questions� Karp and Lipton
�KarpLi� have shown that

(P
� �$ #P

� $� NP �� P�SPARSE	�

Theorem ��� shows that

��NP j E�	 �$ � $� NP �� Pn��tt�DENSEc	

for � � �� The �rst question� posed by Selman� is whether the strong hypothesis ��(P
� n#P

� j
E�	 �$ � can be used to combine these ideas to get a conclusion that NP �� P�DENSEc	�
The second� more fundamental� question is suggested by the �rst� A well�known downward
separation principle �Stoc��� says that� if the polynomial time hierarchy separates at some
level� then it separates at all lower levels� Thus� for example� (P

� �$ #P
� implies that

P �$ NP� Is there a �downward measure separation principle�� stating that ��(P
k��n#P

k�� j

E�	 �$ � $� ��(P
k n#P

k j E�	 �$ �� In particular� does ��(P
� n#P

� j E�	 �$ � imply that
��NP j E�	 �$ ��

The next immediate open problem involves the further separation of completeness notions
in NP� We have shown that the hypothesis �p�NP	 �$ � separates �p

��T�completeness
from �p

��tt�completeness in NP� However� there is a large spectrum of completeness no�
tions between �p

T and �p
m� Watanabe ��Wata��a�� �Wata��b�	 and Buhrman� Homer� and

Torenvliet �BuhrHoT� have shown that nearly all these completeness notions are distinct
in E and in NE� respectively� In light of the results of sections ��� and ��� above� it is
reasonable to conjecture that the hypothesis �NP does not have p�measure �� yields a sim�
ilarly detailed separation of completeness notions in NP� Investigation of this conjecture
may shed new light on NP�completeness phenomena�

We �nish by looking at the Berman�Hartmanis isomorphism conjecture formulated in �����
namely that all NP �p

m�complete sets are polynomial time isomorphic �BermHa�� A lot of
work has been done around this conjecture �for a survey� see �KurtMaR�	� Most researchers
now believe that the isomorphism conjecture as stated by Berman and Hartmanis is false�
It would be very interesting to obtain results of the form �If NP does not have p�measure �
then the isomorphism conjecture is false for �p

r �complete sets�� for di
erent reducibilities
�p
r �
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Cones

��� Introduction

Given a reducibility R� we can picture the lattice de�ned by the preorder relation R on the
class of all languages� Fix a language A and look at the two classes formed respectively by
languages that are R�reducible to A and languages to which A is R�reducible to� These
two classes can be intuitively viewed as the two parts of the cone starting in vertex A� The
R�upper cone of A� denoted R���A	� is the class of all languages to which A is R�reducible�
and the R�lower cone of A� denoted R�A	� is the class of languages that are R�reducible
to A� In this chapter we want to study the size of the upper and lower cones of a language
A as a way of having information on the usefulness of A as oracle and on the amount
of oracles A reduces to� In this line� Juedes and Lutz have studied in �JuedLu��a� the
measure of �p

m�cones in E�

The size of the lower cone of a language A gives us information on the usefulness of A as
oracle� Using this concept� a language A is R�hard for a class C i
 the R�lower cone of
A contains C� Lutz proposed in �Lutz��� to weaken this condition and consider languages
A such that R�A	 contains a non negligible part of C� languages which were later called
weakly�hard by Juedes and Lutz in �JuedLu��a�� Thus a language A is R�weakly�hard for
a class C when R�A	 does not have measure � in C� Intuitively� A is weakly�hard when
a non�negligible subclass of C is reducible to A� Clearly every hard set A is weakly�hard�
since its lower cone contains the whole C� Lutz posed in �Lutz��� the question of whether
the opposite holds� that is� whether there exist R�weakly�hard languages that are not R�
hard for a class C� The interest of this question comes from the use of hardness as a
proof of intractability� for instance Stockmeyer and Chandra show in �StocCh� that certain
two�person combinatorial games are intractable by proving that they are polynomial time
many�one hard for E� The existence of languages that are R�weakly�hard and not R�hard
for a certain reducibility R would imply the existence of another level in the classi�cation
of languages by criteria of R�intractability� below the level of R�hardness�

In �Lutz��a� Lutz solves a!rmatively this question for the class E and the reducibility �p
m�

showing that there exists a language in E that is �p
m�weakly�hard and not �p

m�hard for E�
The proof of this result is based on Lutz s new diagonalization technique called martingale
diagonalization� that allows us to diagonalize against all martingales in �� for a particular ��
while at the same time we pursue another agenda� using for this second objective classical
diagonalization techniques� In section ��
 below we see how martingale diagonalization can
be used to show that there exists a language H such that H is weakly�useful �as de�ned
in �JuedLaL�	� which means that for some time bound t� H is �t

T�weakly�hard for the
class REC� but such that H is not strongly useful� that is� for every time bound f H is

��
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not �f
T�hard for REC� As a consequence of an auxiliary result� we show that the class of

�p
tt�complete languages for ESPACE has measure � in ESPACE�

Regarding the size of the upper cone of a language A� it gives us an idea of the amount
of oracles A reduces to� Thus if the upper cone is large� A reduces to almost every
oracle� this means intuitively that access to the oracle is merely used as a source of
random bits� In this way� for each reducibility R the class ALMOST�R is de�ned as
the class of languages A such that the R�upper cone of A has Lebesgue probability �
�studied for instance in �Book��� and �BookLuW�	� The �ALMOST�R� formalism pro�
vides characterizations of certain complexity classes that are well�studied in structural
complexity theory� For example� P$ALMOST��p

m�Ambo�� P$ALMOST��p
btt �TangBo��

BPP$ALMOST��p
T ��Ambo�� �BennGi�	� BPP$ALMOST��p

tt �TangBo�� AM$ALMOST�
�NP
T ��Cai�� �NisaWi�	� PH$ALMOST��PH

T ��Cai�� �NisaWi�	 and IP$ALMOST�IP �Breu��
Book� Lutz� and Wagner studied these classes in �BookLuW� and �Book���� characterizing
them in terms of algorithmically random languages in the sense of Martin�L�of �Mart�� The
notion of Martin�L�of algorithmically random language is the strongest de�nition of ran�
dom language that is considered to represent randomness of in�nite sequences� Book� Lutz
and Wagner ��Book���� �BookLuW�	 have characterized each class of the form ALMOST�R
as the class of recursive languages that can be R�reduced to Martin�L�of algorithmically
random languages� This characterizations lead to observations about the relationships
between complexity classes such as� P $ NP if and only if some algorithmically random
language is �p

btt�hard for NP� and PH $ PSPACE if and only if some algorithmically
random language is �PH

T �hard for PSPACE�

In section ��� we give new characterizations of the classes ALMOST�R� For each natural
n� we consider a subclass of Martin�L�of random languages� denoted n�random languages�
and show that a language A in '�

n �the nth level of the Kleene arithmetical hierarchy	 is
in ALMOST�R if and only if A is R�reducible to an n�random language� This gives us an
idea of� for instance� how di!cult can �p

T�oracles for BPP be� We also see that n�random
oracles are useless for the class '�

n �REC� Considering the Kleene arithmetical hierarchy
as a whole� we show that a language A in it is in ALMOST�R if and only if A is R�reducible
to an ��random language� The concept of ���randomness� is� in a sense� the �limit� of
the n�random sets� and has been introduced and studied in �Kaut��

In section ��� we discuss the interest of de�ning a bidimensional resource�bounded measure
to study problems that are better formulated in terms of pair of languages� We see that
for any well�behaved bidimensional measure� the class of pairs of languages that are �p

m�
incomparable� that is� �A	B	 such that A ��p

m B and B ��p
m A is non measurable in E�E�

The results in section ��
 are joint work with S� Fenner and J�H� Lutz� included in
�FennLuM�� The results in section ��� appear in �BookMa�� The study of bidimensional
measure is still incomplete and therefore unpublished� This chapter contains ongoing re�
search in the area of measure of cones� we include at the end of each section some open
problems as guidelines of possible future investigation�

��� Weakly�useful languages
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We start by giving the de�nition of lower cone�

De�nition 	��� Given a reducibility R and a language A� we de�ne the R�lower cone of
A� denoted R�A	� as the following class

R�A	 $ fB
�� B �R Ag�

Notice that for each class C� a language A is R�hard for C i
 C is contained in the R�lower
cone of A�

Based on the widely believed assumptions that P is di
erent from NP� researchers have
viewed the fact that a problem is �p

m�hard for NP as a proof that the problem is intractable�
An absolute proof of intractability is obtained when we show that a language is �p

m�hard
for E� This intractability comes from some properties of �p

m�hard problems for E� for
instance they are not in P and they have a dense complexity core� In general proving
that a language A is R�hard for E� for a polynomial�time reduction R� gives us an idea of
intractability of the language� because if A is R�hard for E then it cannot be in P�

Lutz proposes in �Lutz��� to weaken hardness as the notion of intractability and consider
intractable those languages A such that R�A	 does not have measure �� Formally�

De�nition 	��� Given a reducibility R and a class C �with a non trivial measure	� we say
that a language A is R�weakly�hard for C if and only if R�A	 does not have measure � in
C� We say that a language A is R�weakly�complete for C if and only if A is R�weakly�hard
for C and A � C�

Notice that every hard language is weakly�hard because C does not have measure � in
C� Remark that� since P has measure � in E� for each polynomial�time reducibility R�
R�weakly�hard problems for E are not in P� thus are intractable in a sense�

The next step would be to show that indeed this concept is more general than that of
hardness� by showing that for each class and reducibility� there is a weakly�hard language
that is not hard� In �Lutz��a�� Lutz gets this for the class E with reducibility �p

m� showing
that there exists a language that is �p

m�weakly�complete but not �p
m�complete for E� Let

us brie"y review his proof�

Lutz constructs a language H � E� with two properties

�	 H is not �p
m�hard for E�


	 Pm�H	 does not have measure � in E�

By a padding argument� this shows that there is a �p
m�weakly�complete language for E

that is not �p
m�complete�

For property �	� the concept of incompressibility is used� A language A is �p
m�incompressible

when for every �p
m�reduction f from A to f�A	� the following holds��f�x	 y	

�� x	 y � f�	 �g�	 x �$ y	 and f�x	 $ f�y	g
�� � �	

that is� f is almost everywhere one�one� �This concept was introduced with the name of
strong P�bi�immunity in �BalcSc��	
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Juedes and Lutz show in �JuedLu��a� that every �p
m�hard language for E is not �p

m�
incompressible �From �Berm� and �BalcSc� this was already known for �p

m�complete lan�
guages�	 In order to obtain a language H that is not �p

m�hard� the language H is con�
structed with the property of being �p

m�incompressible� This can be done by classical
diagonalization�

For property 
	� we de�ne for each i � IN and each language A let the ith strand of A be
the following language

Ai $ fx
�� hi	 xi � Ag�

Notice that for every A� fAi

�� i � INg � Pm�A	�

Lutz constructs H such that for every i � IN� Hi � E and such that fHi

�� i � INg does not
have measure � in E� thus obtaining property 
	�

Here we look at the class REC of all recursive languages and study hardness and weakly�
hardness for this class� In REC we only restrict Turing reductions to those that always
stop� that is� �t

T�reductions for any recursive function t� In this context� the concepts of
strongly�useful and weakly�useful appear in the place of hardness and weakly hardness� A
language is strongly useful if it is �t

T�hard for some t� and it is weakly useful if it is �t
T�

weakly�hard for some t� Let us start by de�ning these concepts� introduced in �JuedLaL��

De�nition 	��� A language A is strongly�useful when there exists a recursive function t
such that A is �t

T�hard for REC�

De�nition 	��� A language A is weakly�useful when there exists a recursive function t
such that A is �t

T�weakly�hard for REC�

Notice that every strongly�useful language is weakly�useful� and that no weakly�useful
language is recursive�

With a technique similar to the martingale diagonalization we just described� we construct
next a weakly�useful language that is not strongly�useful�

The results in this section relate to time�bounded Turing reductions� but we will lose no
generality if we restrict our attention to tt�reductions� This is because if t is a recursive
function and M is an oracle Turing machine running in time t�n	 for all oracles� then there
is a well de�ned truth�table oracle Turing machine M � running in time exponential in t�n	
such that L�M	C	 $ L�M �	 C	 for any oracle C� Moreover� M � can be found e
ectively
from M � �This is a Theorem by Nerode that is included in �Roge�� page ����	

The main result in this section is the following

Theorem 	��� There exists a language H which is weakly�useful but not strongly�useful�

To prove this theorem� we will de�ne H one strand at a time to satisfy the following
conditions�

�� For every recursive time bound t� there is a recursive set A such that A �� DTIMEH�t	�


� Each strand Hk is recursive�

�� If d is any martingale in rec� then there is some k such that d fails on Hk�

These three conditions su!ce for our purposes� Condition � ensures that H is not strongly�
useful� By Condition 
� the set J $ fH�	 H�	 H�	 � � �g � REC� and by Condition �� no
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recursive martingale can succeed on all its elements� Thus ��J j REC	 �$ �� which makes
H weakly�useful� since J � DTIMEH�linear	�

Highly incompressible languages

In order to have Condition �� we start by constructing� for each recursive time bound
t� a recursive set A that is �highly incompressible for �t

tt�reductions� that is� for almost
every B� A �� DTIMEB�t	� Then it will be very easy to construct a language H such that
A �� DTIMEH�t	�

Proposition 	�	� If ffi
�� i � INg is a uniform family of recursive tt�reductions� then there

is a recursive set A such that

�rec�fB
�� �i with A $ fi�B	g	 $ ��

We obtain the following theorem as an immediate corollary�

Theorem 	�
� For any recursive time bound t� there is a recursive set A such that �rec�fB
��

A � DTIMEB�t	g	 $ ��

Proof of Proposition 	�	�

We �rst consider a single tt�reduction f and de�ne a recursive set Af with �rec�fB j Af $
f�B	g	 $ � as follows�

Af ��	 $

�
� if PrC �f�C	 �	 $ �� � �

� �
� otherwise�

and for each n � IN	 n � ��

Af �sn	 $

�
� if PrC

�
f�C	 sn	 $ � j f�C	����n� �� $ Af ����n� ��

�
� �

� �
� otherwise�

Fact 	��� For all n � IN� PrC
�
f�C	����n� �� $ Af ����n� ��

�
� 
�n�

We now describe a rec�computable martingale df that succeeds on any set B such that
Af $ f�B	� We split df up into in�nitely many martingales

df $
�X
���

d�	

where each martingale d� bets a �nite number of times� Fixing �� let

d��w	 $ 
jwj�� 
 Pr
C

�
w v C j f�C	������ �� $ Af ������ ��

�
for all w � f�	 �g�� if PrC

�
f�C	������ �� $ Af ������ ��

�
� �� Otherwise� let d��w	 $ 
��

for all w � f�	 �g�� It can be easily checked that d� is a martingale�� Consider any w� v B
that is long enough to be de�ned on all queries made by f for all inputs less than s�� and
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let E� be the event that f�C	������ �� $ Af ������ ��� We have PrC
�
E� j w� v C

�
$ �� and

thus
d��w�	 $ 
jw
j�� 
 Pr

C
�w� v C j E��

$ 
jw
j�� 

PrC �E� j w� v C� 
 PrC �w� v C�

PrC �E��

$

��

PrC �E��


 �	

by Fact ���� Applying the above inequality to the martingale df � we get that for any ��
there is a w v B such that d�w	 
 �� Thus df succeeds on B�

Returning to the ffi
�� i � INg in the hypothesis of Proposition ���� we let

A $ fhi	 xi j x � A �fi
g	

where *fi�C	 x	 simulates fi�C	 hi	 xi	 for all i� x and C� �Therefore� A �fi
is the ith strand

of A�	 We call A the highly incompressible set with respect to ffi
�� i � INg� A is clearly

recursive� To prove the proposition� we de�ne a recursive martingale d that succeeds on
all B such that A $ fi�B	 for some i� Let

d $
�X
i��

d
�fi 
 
�i�

The martingale d is recursive� since each d
�fi can be computed uniformly� For some B�

if A $ fi�B	 for some i� then A �fi
$ *fi�B	� and so d

�fi succeeds on B by the previous
discussion� Hence d succeeds on B�

Remark that in Proposition ��� if we take ffi
�� i � INg to be the family of all �t

tt�reductions�
for t a recursive time bound� then in the proof of the proposition� A is in DSPACE�
n 
t�n		
and d is DSPACEF

�
m 
 t�logm	

�
�approximable� Thus we have the following corollary�

Corollary 	��� There exists a language A � ESPACE such that

��fB
�� A�p

ttBg j ESPACE	 $ ��

This implies the next result for the class of �p
tt�complete languages for ESPACE�

Corollary 	��
� The class of �p
tt�complete languages for ESPACE has measure � in ES�

PACE�

Proof of Theorem 
�	

We start by giving some notation on partial characteristic functions�

A partial characteristic function is a function with domain a subset of f�	 �g� and with
range f�	 �g� We will identify a binary string w with the characteristic function whose
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domain is fs�	 � � � 	 sjwj��g� If � and � are partial characteristic functions� we let dom��	
denote the domain of �� and say that � and � are compatible if they agree on all elements
in dom��	 � dom��	� We say that � is extended by � �� v �	 if � and � are compatible
and dom��	 � dom��	 �if in addition � �$ � � we write � v �	� If � and � are compatible�
we let � � � be their smallest common extension�

If � is a partial characteristic function� i � IN and x � f�	 �g�� then ��i	 � x� denotes the
unique partial characteristic function � such that for all y�

��y	 $
n
��hi	 yi	 if y � x and ��hi	 yi	 is de�ned�
unde�ned otherwise�

That is� ��i	 � sn� results from �excising� the �rst n bits of � from the ith column�
Inversely� if w is a binary string� then fig � w denotes the unique partial characteristic
function � such that ��hi	 sni	 $ w�n� for all n � jwj� and is unde�ned on all other
arguments� That is� fig � w is w �transported� over to the ith column� Of particular
importance will be the �nite characteristic function de�ned for an arbitrary language C�
k � IN and y � f�	 �g� as

�C�k	 y	 $
�
k��k

fk�g � C�k�	 � y��

Fix an arbitrary enumeration ftk
�� k � INg of all recursive time bounds� and an enumera�

tion f *dk
�� k � INg of all recursive martingales� These enumerations need not be uniform

in any sense� since at present we are not trying to control the complexity of H� We will
de�ne �in order	 a number of di
erent objects for each k�

 a uniform family ffkj
�� j � INg of tt�reductions corresponding to tk�

 a recursive Ak such that Ak �� DTIMEH�tk	 �Ak will be the highly incompressible set
with respect to ffkj

�� j � INg	�

 a partial characteristic function �k of �nite domain� compatible with all the previous
strands of H �ultimately� �k v H for all k	�

 martingales di�jk�q �uniformly recursive on j and q	 for all i	 j	 q � IN with i � k� which�

taken together� witness that each Ai is highly incompressible� and

 the strand Hk itself� which is designed to make the martingale

d�k $ *dk &
kX
i��

�X
j��

�X
q��

di�jk�q 
 
�q�j

fail on Hk� thus *dk fails on Hk and Condition � above is satis�ed� Hk will also
participate in a �xed �nite number of diagonalizations against tt�reductions from the
Ai to H for i � k�

Fix k � IN� and assume that all the above objects have been de�ned for all k� � k �de�ne
��� $ �	� Also assume that for each k� � k we have at our disposal programs to compute
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�uniformly over j and q	 fk
�

j � Ak� � Hk� � and di�jk��q for all i � k�� Let fMj�k

�� j � INg be a
recursive enumeration of all oracle Turing machines running in time tk� and for all j let
M �

j�k be the same as Mj�k except that when Mj�k makes a query of the form hm	 yi for

m � k� M �
j�k instead simulates the answer by computing Hm�y	 directly� We let fkj be the

tt�reduction corresponding to M �
j�k� Note that on any input� fkj only makes queries of the

form hm	 yi for m 
 k�

We de�ne Ak to be the highly incompressible set constructed in the proof of Proposition ���
using ffkj

�� j � INg as the family of tt�reductions� The analogue of Fact ��� above says
that

Fact 	���� For all j	 k	 n � IN� PrC
�
fkj �C	�j	 � sn� $ Ak�j	 � sn�

�
� 
�n�

Let H�k denote the partial characteristic function that agrees with H on all hm	 yi with
m � k� and is unde�ned otherwise� Given �k��� which is compatible with H�k� we de�ne
�k as follows� let hi	 ji $ k� If there is a set C with H�k��k�� v C such that Ai �$ f ij�C	�

then we diagonalize against f ij by letting �k be the least �nite characteristic function
extending �k�� that preserves such a miscomputation� i�e�� for some C and x such that
Ai�x	 �$ f ij �C	 x	� �k will agree with C on all queries made by f ij on input x� If no such C
exists� let �k $ �k���

Now �x any i and j with i � k� We would like to de�ne a martingale to perform the task
that d did back in the proof of Proposition ��� for the set Ai� We cannot do this directly�
because any given tt�reduction f ij from Ai to H might make queries on many di
erent
columns at once� and our martingales can only act on one column at a time� Instead� for
any q � IN large enough� the martingales di�jk��q for all k� 
 i will act together to �succeed

as a group� on all sets to which Ai reduces via f ij �

The martingale di�jk�q will be split up into in�nitely many martingales

di�jk�q $
�X
���

di�jk�q��	

similar to the proof of Proposition ���� Fix i and j� For any m � f�	 �g�� let ym be least
such that v � ym for all queries hu	 vi made by f ij on inputs hj	 xi for all x � sm� For any

language C� let EC�m	 be the event that f ij�C	�j	 � m� $ Ai�j	 � m�� i�e�� that f ij �C	 and

Ai agree on fhi	 yi
�� y � smg� For all w � f�	 �g�� we de�ne

di�jk�q���w	 $ 
jwj�� 
 Pr
C

�
�H�k	 yq�	 � �fkg � w	 v C j �H�k	 yq�	 v C 0EC�q�	

�
if PrC ��H�k	 yq�	 v C 0 EC�q�	� � �� Otherwise� for all w de�ne di�jk�q���w	 $ 
���

Remark 	���� The de�nition of di�jk�q���w	 above remains unchanged if we replace yq� with

any y 
 yq�� This is because EC�q�	 depends on C only for those queries made by f ij on
inputs hj	 �i	 � � � 	 hj	 sq���i� None of these are of the form hu	 yi for y 
 yq��
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We now de�ne Hk� For any n � IN� we assume that Hk����n� �� has already been de�ned�
and we set w $ Hk����n� ��� Let

Hk�n� $

��

�k�hk	 sni	 if �k�hk	 sni	 is de�ned�
� if �k�hk	 sni	 is unde�ned and d�k�w�	 � d�k�w�	�
� if �k�hk	 sni	 is unde�ned and d�k�w�	 � d�k�w�	�

Remark 	���� Actually� we cannot do this exactly as stated� A rec�computable martingale
such as d�k cannot in general be computed exactly� but is only approximated� What we are
really comparing are not d�k�w�	 and d�k�w�	� but rather their nth approximations� which
are computable� Since these approximations are guaranteed to be within 
�n of the actual
values� and our sole aim is to make d�k fail on Hk� it su!ces for our purposes to consider
only the approximations when doing the comparisons above� The same trick is used in
�Lutz��a��

Hk is evidently recursive �given the last remark	� and for co�nitely many n� Hk�n� is
chosen so that d�k�Hk����n�	 � d�k�Hk����n � ��	 & 
�n� the 
�n owing to the error in the
approximation of d�k� Thus d�k fails on Hk� from which we obtain

Fact 	���� The martingales *dk and di�jk�q for all and i � k� j� and q all fail on Hk�

Thus Conditions 
 and � are satis�ed� Each Hk also preserves the diagonalization com�
mitments made by the �k� for all k� � k� so the following is easily checked�

Fact 	���� �� v �� v �� v 
 
 
 v H�

To verify Condition �� we show that Ai �$ f ij �H	 for all i and j� Suppose Ai $ f ij�H	 for
some i and j� Let k� $ hi	 ji� and let � $ H����k� � �� � �k
��� By the de�nition of �k
 �
it must be the case that Ai $ f ij �C	 for all C with � v C� otherwise f ij would have been

diagonalized against by �k
 and would thus fail to reduce Ai to H� Let q� be smallest
such that q� � i and ��hq�	 yi	 is unde�ned for all y and q� 
 q�� We will show that di�jn�q

succeeds on Hn for some n � q�� contradicting Fact ���� above�

For notational convenience� let A $ Ai� f $ f ij � and for all k 
 i and � let dk $ di�jk�q
 and

dk�� $ di�jk�q
��� For any language C and m � IN� we let ym and EC�m	 be as before� For
any � and su 
 yq
� we have

Pr
C

�EC�q��	 j �
H�q�	 su	 v C� $ �

by the de�nition of q� and yq
�� and thus


q
� 


q
��Y
k�i

dk���Hk����u� ��	




q
��Y
k�i

�

� 
 dk���Hk����u� ��	

�
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$

q
��Y
k�i


u 
 Pr
C

�
�H�k	 yq
�	 � �fkg �Hk����u� ��	 v C j �H�k	 yq
�	 v C 0EC�q��	

�

$

q
��Y
k�i


u 
 Pr
C

�
�H�k	 su	 � �fkg �Hk����u� ��	 v C j �H�k	 su	 v C 0EC�q��	

�
�by Remark ���
	

$

q
��Y
k�i


u 
 Pr
C

�
�H�k & �	 su	 v C j �H�k	 su	 v C 0EC�q��	

�

$

q
��Y
k�i


u 

PrC ��H�k & �	 su	 v C 0EC�q��	�

PrC ��H�k	 su	 v C 0EC�q��	�

$ 
�q
�i�u 

PrC ��H�q�	 su	 v C 0EC�q��	�

PrC ��H�i	 su	 v C 0EC�q��	�

$ 
�q
�i�u 

PrC �EC�q��	 j �

H�q�	 su	 v C� 
 PrC ��H�q�	 su	 v C�

PrC �EC�q��	 j �H�i	 su	 v C� 
 PrC ��H�i	 su	 v C�

$
PrC �EC�q��	 j �

H�q�	 su	 v C�

PrC �EC�q��	 j �H�i	 su	 v C�

$
�

PrC �EC�q��	 j �H�i	 su	 v C�

$
�

PrC
�
EC�q��	�


 
q
�	

the last inequality following from Fact ����� Therefore�

q
��Y
k�i

dk���Hk����u� ��	 
 �

for all su 
 yq
�� which implies that dk���Hk����u� ��	 
 � for at least one k between i and
q� � �� Since q� is �xed and � was chosen arbitrarily� by the Pigeon�Hole Principle there
must be some n� with i � n� � q� such that for in�nitely many �� dn
���Hn
 ����u� ��	 
 �
for all su 
 yq
�� This in turn implies that the martingale

dn
 $
�X
���

dn
��

succeeds on H� contradicting Fact �����

Thus Ai �$ f ij �H	 for all i and j� and Condition � is satis�ed�
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It would be interesting to see how far can the martingale diagonalization technique be
pushed� that is� for which classes and reducibilities we can construct languages that are
hard but not weakly hard�

Very recently� Ambos�Spies� Terwijn and Zheng have shown that almost every language
in E is �p

m�weakly�complete and not �p
btt�complete �AmboTeZ�� This� together with the

results in �JuedLu��a� and �AmboNeT�� implies the next result that summarizes the actual
knowledge of measure of cones in E

Theorem 	��	� ��JuedLu��a�� �AmboTeZ�� �AmboNeT�	 For almost every A � E� Pbtt�A	
does not have measure � in E� For each k � IN� for almost every A � E� P��

k�tt�A	 has
measure � in E�

The next open question is whether this is the case for other reducibilities and classes� As
a curiosity� let us mention that in �BuhrMa� we construct a set A such that both Ptt�A	
and P��

k�tt�A	 �for every k � IN	 have measure � in E�

Another very recent result by Juedes and Lutz on weakly�complete languages is the fol�
lowing�

Theorem 	��
� Every �p
m�weakly�complete for E is �p

m�weakly�complete for E�� There
exists a �p

m�weakly�complete for E� that is not �p
m�weakly�complete for E�

Another interesting open problem is the existence of languages A such that ��R���A	 j
C	 $ � for each class C and reducibility R� that is� what we denoted above as R�incompressible
languages� Notice that the existence of an R�incompressible language for C is equivalent
to the fact that the class of R�complete problems has measure � in C� �Here we have seen
that there exists a �p

tt�incompressible for ESPACE� Recently this has been shown for the
class E with reducibility �p

btt in �AmboTeZ��	

��� On the robustness of ALMOST�R

If R is a reducibility� then ALMOST�R is de�ned to be the class

fA j Pr�R���A		 $ �g�

Book� Lutz� and Wagner �BookLuW� showed that for every bounded �that is� recursively
presentable	 reducibility� ALMOST�R $ R�rand	 � REC� where rand denotes the class
of algorithmically random languages in the sense of Martin�L�of �Mart�� and REC denotes
the class of recursive languages� Book �Book��� extended this characterization for certain
bounded reducibilities called �appropriate� �all of the standard reducibilities used in struc�
tural complexity theory are appropriate	 by showing the Random Oracle Characterization�
namely that for every B � rand� ALMOST�R $ R�B	 � REC� and the Independent Pair
Characterization� namely that for every B and C such that B�C � rand� ALMOST�R $
R�B	 �R�C	�

While di
erent classes are obtained in the characterization of ALMOST�R as R�rand	 �
REC by considering di
erent reducibilities R� here we are concerned with the possibility of
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obtaining di
erent classes by considering as parameter values the classes rand and REC�
In particular� we investigate the result of substituting speci�c subclasses of rand for rand
itself� We �nd that if we substitute a class based on Kurtz s notion of �n�randomness�
�de�ned in �Kurt�	 and simultaneously substitute the class '�

n �from the arithmetical
hierarchy of languages	 for the class REC� then once again the result is ALMOST�R� That
is� R�n�rand	 � '�

n $ ALMOST�R �Theorem ��
�	�

Our new characterizations of classes having the form ALMOST�R imply a robustness
property of these classes� The parameters C and D in ALMOST�R $ R�C	 � D may vary�
while the result is always ALMOST�R�

Next we develop our results about �n�randomness�� First we review the concept of the
arithmetical hierarchy of classes of languages due to Kleene �see Rogers �Roge� for back�
ground	�

If L is a language and C � f�	 �g� is a class� then L 
 C denotes the class fw�
�� w � L	 � �

Cg�

A class of languages X is an open class when there is an A � f�	 �g� such that

X $ A 
 f�	 �g��

We say that X is a closed class when Xc is an open class�

A class of languages is recursively open if it is of the form A 
 f�	 �g� for some recursively
enumerable set A � f�	 �g�� A class of languages is recursively closed if it is the complement
of some recursively open set�

Notice that if C is a countable union or intersection of �recursively	 open or closed sets� then
C is Lebesgue�measurable and so Pr�C	 is de�ned� Since there are only countably many
recursively open sets� every intersection of recursively open sets is a countable intersection
of such sets� and hence is Lebesgue�measurable� similarly every union of recursively closed
sets is Lebesgue�measurable�

Kleene s arithmetical hierarchy of classes is de�ned as follows�

�i	 Let (�
� be de�ned as fA j A is recursively openg� We �x an enumeration of (�

� as
follows� let fMi

�� i � INg be a recursive enumeration of all Turing machines �so that

fL�Mi	
�� i � INg is the class of recursively enumerable sets	� If Ai $ L�Mi	 
 f�	 �g��

then (�
� $ fAi j i � INg�

�ii	 We say that fCj j j � INg is a uniform sequence in (�
� if there exists a total recursive

function g such that for every j � IN� Cj $ Ag�j��

�iii	 For every n 
 �	 #�
n $ fA j Ac � (�

ng�

�iv	 We say that fDj j j � INg is a uniform sequence in #�
n if there exists a uniform

sequence in (�
n	 fCj j j � INg� such that for every j � IN	 Dj $ �Cj	

c�

�v	 For every n 
 �	 B � (�
n�� if there exists a uniform sequence in #�

n	 fDj j j � INg�
such that B $

S
kDk�

�vi	 We say that fCj j j � INg is a uniform sequence in (�
n�� if there exists a uniform

sequence in #�
n	 fDhj�ki j j	 k � INg� such that for every j � IN	 Cj $

S
kDhj�ki�
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Note that classically the same notation is used for both the arithmetical hierarchy of
languages de�ned in Chapter � �where (�

n denotes a set of languages	 and the arithmetical
hierarchy of classes of languages we just de�ned �where (�

n denotes a set of classes	� The
meaning in each case will be clear from the context�

Now we de�ne the concepts of �n�constructive null cover� and �n�random language� in a
similar way to the introduction of null covers and random languages in �BookLuW��

For n � �� a class X of languages has an n�constructive null cover if there exists a uniform
sequence in (�

n	 fCk j k � INg� such that

�i	 for every k � IN	 X � Ck� and

�ii	 for every k � IN	 Pr�Ck	 � 
�k�

Notice that condition �ii	 implies that every class with an n�constructive null cover has
probability ��

Let NULLn denote the union of all classes that have an n�constructive null cover�

Notice that NULLn � NULLn��� In the case of n $ �� we refer to the class as NULL� that
is� NULL� $ NULL�

The class rand of algorithmically random languages was de�ned by Martin�L�of �Mart� as
rand $ f�	 �g� � NULL�

Here we de�ne� for each n � �� the class n�rand by n�rand $ f�	 �g� � NULLn� and the
class ��rand as ��rand $

T
n n�rand�

Since NULLn � NULLn��	 n & ��rand � n�rand� Since NULL� $ NULL	 ��rand $ rand�

A reducibility R will be called appropriate if �i	 it is bounded� �ii	 for any language A	 R�A	
is closed under �nite variations� and �iii	 for any language L	 R���L	 is closed under �nite
variations and under �nite translations� as de�ned in Chapter ��

The reader should note that the reducibilities commonly used in structural complexity
theory meet the conditions for being appropriate�

If R is a bounded reducibility and n � �� then de�ne ALMOSTn�R as the class

ALMOSTn�R $ fA j n�rand � R���A	g	

and the class ALMOST��R by

ALMOST��R $ fA j ��rand � R���A	g�

In �BookLuW� Book� Lutz� and Wagner studied the classes of the form ALMOST�R and
related them to the class rand by showing that

ALMOST�R $ R�rand	 � REC�

The main result of this section is that each class ALMOSTn�R is related to the class
n�rand in a very similar way� and that ALMOSTn�R $ ALMOST�R� We also obtain
similar results for ALMOST��R and ��rand�
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We begin with a technical lemma stating that for any language B in '�
n� R���B	 is a class

in (�
n��� This will be useful in the proof of our main theorem�

Lemma 	���� If R is a bounded reducibility and B is a language in '�
n� then R���B	 is

a class in (�
n���

Proof � We consider only the case where n is odd� the other case being analogous�

Let g be a recursive presentation of R� For every j � IN� let R��
j �B	 $ fA j L�Mg�j�	 A	 $

Bg� Then R���B	 $
S
j R

��
j �B	� and it su!ces to show that if B � '�

n� then fR��
j �B	 j

j � INg is a uniform sequence in #�
n� or equivalently� f

�
R��
j �B	

�c
j j � INg is a uniform

sequence in (�
n�

Since B � '�
n� there exist recursive languages C and D such that for every x � f�	 �g��

�i	 x � B if and only if �m��m� � � ��mn�hx	m�	 � � � 	mni � C	�

�ii	 x �� B if and only if �m��m� � � ��mn�hx	m�	 � � � 	mni � D		�

Fix j � IN� For each x	m�	m�	 � � � 	mn�� � f�	 �g�� we de�ne the following two classes

Y j
x�m��m�			�mn��

$ fA j �mnhx	m�	 � � � 	mni � C and L�Mg�j�	 A	�x	 $ �g	

and

Zj
x�m��m�			�mn��

$ fA j �mnhx	m�	 � � � 	mni � D and L�Mg�j�	 A	�x	 $ �g�

Using these classes� we can express R��
j �B	

c
as follows

R��
j �B	

c
$
�
x

��
m�

�
m�

� � �
�

mn��

�Y j
x�m��m�			�mn��

� Zj
x�m��m�			�mn��

	
�

����	

Next we show that for �xed x	m�	m� � � � 	mn�� � f�	 �g�� the class Y j
x�m��m�			�mn��

is recursively open� To do this we de�ne a partial recursive function hjx�m��m�			�mn��

as follows� For mn	 z � f�	 �g�� if hx	m�	 � � � 	mni � C	 L�Mg�j�	 z��	�x	 $ � and
L�Mg�j�	 z��	�x	 needs only the initial part z of z�� � then hjx�m��m�			�mn��

�z	mn	 $ z�

Otherwise� hjx�m��m�			�mn��
�z	mn	 is unde�ned�

From the de�nition of Y j
x�m��m�			�mn��

we know that A � Y j
x�m��m�			�mn��

if and only if
there exists a pre�x z of A such that hx	m�	 � � � 	mni � C	 L�Mg�j�	 z��	�x	 $ � and
L�Mg�j�	 z��	�x	 needs only the initial part z of z��� But this is exactly the de�nition of
z being in the range of hjx�m��m�			�mn��

� Thus Y j
x�m��m�			�mn��

$ range�hjx�m��m�			�mn��
	 


f�	 �g�� and Y j
x�m��m�			�mn��

is recursively open� By a similar argument Zj
x�m��m�			�mn��

is

recursively open� using functions f jx�m��m�			�mn��
de�ned as follows� For mn	 z � f�	 �g�� if

hx	m�	 � � � 	mni � D	 L�Mg�j�	 z��	�x	 $ � and L�Mg�j�	 z��	�x	 needs only the initial part
z of z��� then f jx�m��m�			�mn��

�z	mn	 $ z� Otherwise� f jx�m��m�			�mn��
�z	mn	 is unde�ned�

We de�ne a recursive function F that is the uniform version of all h s and f  s as follows�
For every j � IN	 x	m�	m� � � � 	mn��	mn	 z � f�	 �g��

F �j	 x	m�	m� � � � 	mn��	mn	 z�	 $ hjx�m��m�			�mn��
�mn	 z		
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F �j	 x	m�	m� � � � 	mn��	mn	 z�	 $ f jx�m��m�			�mn��
�mn	 z	�

F witnesses the fact that the sequence of classes

f range�hjx�m��m�			�mn��
	 
 f�	 �g� � range�f jx�m��m�			�mn��

	 
 f�	 �g�

j j � IN	 x	m�	m�	 � � � 	mn�� � f�	 �g� g

is a uniform sequence in (�
��

To complete the proof note that fR��
j �B	

c
j j � INg can be seen to be a uniform sequence

in (�
n by using the expression of R��

j �B	
c

in Equation ����	� and the facts that

Y j
x�m��m�			�mn��

$ range�hjx�m��m�			�mn��
	 
 f�	 �g�	

and
Zj
x�m��m�			�mn��

$ range�f jx�m��m�			�mn��
	 
 f�	 �g��

In the proof of our main theorem we also use the following lemma� Theorem IV�
�
 in
�Kaut��

Lemma 	���� �Kaut� Let X be a class in (�
n�� that is closed under �nite variations and

�nite translations� Then either X � n�rand $ � or n�rand � X�

Now we have our main result�

Theorem 	��
� For any appropriate reducibility R and any n � ��

a	 for every B � n�rand	 ALMOSTn�R $ R�B	 � '�
n�

b	 ALMOSTn�R $ R�n�rand	 � '�
n�

c	 ALMOSTn�R $ ALMOST�R�

Proof � a	 Fix B � n�rand� First� we show that ALMOSTn�R � R�B	 � '�
n� Let A �

ALMOSTn�R� By de�nition of ALMOSTn�R� n�rand � R���A	 thus A � R�B	� Since
NULLn is a countable union of classes having probability �� Pr�n�rand	 $ � which implies
that for every A � ALMOSTn�R� Pr�R���A		 $ �� and ALMOSTn�R � ALMOST�R �
REC� Thus ALMOSTn�R � R�B	 � REC � R�B	 � '�

n�

Second� we show that R�B	 � '�
n � ALMOSTn�R� Let A � R�B	 � '�

n� By Lemma
���� since A � '�

n� R���A	 � (�
n��� R is an appropriate reducibility as de�ned in the

preliminaries� therefore R���A	 is closed under �nite variations and is closed under under
�nite translations� By Lemma ����� either n�rand � R���A	 or n�rand�R���A	 $ �� But
B � n�rand � R���A	� therefore n�rand � R���A	 and A � ALMOSTn�R�

b	 Is a direct consequence of a	�

c	 We have argued in a	 that ALMOSTn�R � ALMOST�R�

To see that ALMOST�R � ALMOSTn�R� take A � ALMOST�R� Since

Pr�R���A		 $ � and Pr�n�rand	 $ � then R���A	 � n�rand �$ �� Thus A � R�n�rand	 �
REC and A � ALMOSTn�R by b	�
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Thus� Theorem ��
� extends the Random Oracle Characterization to classes having the
form ALMOSTn�R by showing that for every n � � and every B � n�rand	 ALMOST�R $
R�B	�'�

n $ R�n�rand	�'�
n $ ALMOSTn�R� Notice that since ALMOST�R is a recursive

class� these results show that there are no languages from '�
n � REC in R�n�rand	� that

is� oracles in n�rand are useless for '�
n � REC�

We also show that R���rand	 � AH $ ALMOST�R� where AH denotes the arithmeti�
cal hierarchy of languages� and ��rand corresponds to the concept of ���randomness� as
de�ned in �Kaut��

Theorem 	���� For any appropriate reducibility R�

a	 for every B � ��rand	 ALMOST��R $ R�B	 �AH�

b	 ALMOST��R $ R���rand	 �AH�

c	 ALMOST��R $ ALMOST�R�

Proof � The proof uses similar arguments to those in the proof of Theorem ��
�� Re�
mark that since ��rand is a countable intersection of classes having probability �� it has
probability ��

To end this section� we brie"y comment on the possibility of characterizing ALMOST�R in
terms of ��randomness as we have done with Martin�L�of and n�randomness� This would
produce resource�bounded measure characterizations of interesting classes�

This is a di!cult problem that relates directly to the measurability of upper cones� If we
de�ne

ALMOST	�R $ fA j ��rand � R���A	g	

then since Pr���rand	 $ �� clearly ALMOST	�R � ALMOST�R� But to see the converse�
that is� ALMOST�R � ALMOST	�R� we need that for each A � ALMOST�R� ��rand �
R���A	� We would have an answer if we knew the ��measure of R���A	 for each language
A� that is� if we could show that for every A� R���A	 is ��measurable� But this is not
even known for the simplest reducibilities� such as �p

m�

Let us only remark a �rst step in this direction� For all natural reducibilities� it triv�
ially holds that for every A� R��	 � R�A	� If� besides� R is a reducibility such that
ALMOST�R � R��	� such as �p

btt� then ALMOST�R $ ALMOST	�R and for every
B � ��rand�

ALMOST�R � R�B	 � REC�

Lutz and Martin �personal communication	 have considered the following situation� take a
reducibility R and restrict it so that only a bounded number of queries can be made �making
it like a �bounded truth�table� or �bounded Turing� reducibility	 while maintaining the
bounds on computational complexity� If Rb denotes the result� then Rb�rand	 � (�

� $
ALMOST�Rb�

Kautz and Lutz �personal communication	 went in the other direction� If R is a reducibility
that is not bounded truth�table or bounded Turing� then R�rand	�(�

� �$ ALMOST�R �but
clearly ALMOST�R � R�rand	 � (�

�	�
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It would be interesting to answer these last two questions in a more general form� that is�
does R�n�rand	 � (�

n�� equal ALMOST�R�

��� Bidimensional measure

Up to this point� this dissertation has been focusing mainly on measure of classes of
languages� Nevertheless� there are some important properties that are better expressed
in terms of couples of languages� and in order to study whether one of these properties
represents the typical behavior or the exception we need to de�ne a measure of classes of
pairs of languages�

For instance consider the class of minimal pairs for �p
m� that is� pairs �A	B	 such that

every language C with C �p
m A and C �p

m B must be in P� Sch�oning constructs in �Sch�o���
�arbitrary complex minimal pairs� which supports the intuition that almost every pair is
minimal� It is an open problem to de�ne a bidimensional resource�bounded measure for
which this result holds within� for instance� the class E � E�

So far� we have not found a satisfactory de�nition of bidimensional resource�bounded
measure� In this section we �rst discuss the properties that are desirable for such a measure
and then list the characteristics and inconveniences of the most natural approaches�

A bidimensional measure should be a way of comparing the size of classes X � f�	 �g� �
f�	 �g� with the size of some pattern classes� for instance E � E or ESPACE � ESPACE�
It is clearly desirable� too� to have a Kolmogorov ��� law avalaible� In addition to this
there should be some connection between the bidimensional measure of a class X and the
measure of its �projections � as we explain now�

We de�ne for each class X � f�	 �g� � f�	 �g� and for each language A the projections
XA and XA as follows

XA $ fB
�� �A	B	 � Xg

XA $ fB
�� �B	A	 � Xg�

Classically� the relation between the measure of a set and the measure of its projections
is formalized by the Fubini Lemma� This lemma says that if X � f�	 �g� � f�	 �g� has
Lebesgue measure �� then for almost every A the Ath projections of X� XA and XA� must
have Lebesgue measure �� that is

Lemma 	���� Let X � f�	 �g� � f�	 �g�� If Pr�X	 $ � then the following holds

a	 Pr�fA
�� Pr�XA	 $ �g	 $ ��

b	 Pr�fA
�� Pr�XA	 $ �g	 $ ��

Intuitively� the projections of a class X can be viewed as the ��dimensional slices X is
made from� thus it is reasonable that if X is very small� many of this slices have to be
small too� Note that� as a consequence of this lemma� if X has Lebesgue measure � then
for almost every A the Ath projections of X� XA and XA� must have Lebesgue measure ��

We are looking for a bidimensional resource�bounded measure where the Fubini Lemma
holds� Let us see the use of such a tool� For instance� consider X to be the class of pairs
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of languages �A	B	 such that A is �p
m�reducible to B� The results of Juedes and Lutz in

�JuedLu��a� say that almost every language A � E has the property that Pm
���A	 has

measure � in E� Thus for almost every A� XA has measure � in E� therefore X cannot
have measure � in E � E� By the desired Kolmogorov ��� law� there would be only two
possibilities for X� either X is not measurable in E�E or X has measure � in E�E� But
very recently� Ambos�Spies� Terwijn and Zheng have shown in �AmboTeZ� that for almost
every A � E� Pm�A	 does not have measure � in E� This implies that for almost every A�
XA does not have measure � in E� and X cannot have measure � in E�E� The conclusion
is that X cannot be measurable in E�E� for any de�nition of measure that has the Fubini
property�

Let us mention some possible de�nitions� We can de�ne bidimensional martingales� corre�
sponding to strategies in the game where a player bets on a hidden pair of languages �A	B	�
In step n� the player bets on �A�sn		 B�sn		 with the information �A����n� ��	 B����n���	�
In this case given such a function d� for each u	 v � f�	 �g� with juj $ jvj�

d�u	 v	 $
d�u�	 v�	 & d�u�	 v�	 & d�u�	 v�	 & d�u�	 v�	

�
�

The class of pairs covered by d would be de�ned as

S��d� $ f�A	B	
�� lim sup

n��
d�A����n�	 B����n�	 $ �g	

and a class X has measure � if X is included in S��d� for some d�

With this de�nition we can show that the class X $ f�A	B	
�� A �p

m Bg we mentioned
above has measure � in E�E� A martingale for X is a sum of martingales di each of them
dealing with a particular �p

m�reduction Mi� For each x � f�	 �g�� if the query of Mi�x	 is
bigger than x then di bets on the query according to x� if the query of Mi�x	 is smaller
than x then di bets on x depending on the query� But from the discussion above� since X
has measure � in E � E with this formulation� Fubini Lemma does not hold� therefore we
discard this de�nition�

Another possibility is to de�ne a bidimensional martingale d�u	 v	 as a product of two
regular martingales d��u	 and d��v	� each of them dealing with a component� and the set
covered by d as

S��d� $ f�A	B	
�� lim sup

n��
d��A����n�	 
 d��B����n�	 $ �g�

We could also generalize this to functions of the form

d�u	 v	 $
X
i

d�i �u	 
 d�i �v		

for d� and d� two uniform enumerations of martingales �that is� ��MS	� It can be proven
that the resulting measure ful�lls the Fubini property� but it does not seem easy to �nd
interesting examples where this measure can be used�
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