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Abstract
Grover’s quantum searching algorithm uses a quantum computer to find the solution
to f(xz) = 1 for a given function f. The algorithm, which repeatedly applies a certain
operator (G, has led to a major family of quantum algorithms for generating and counting
solutions to f(z) = 1 for more general f. By studying the eigenvectors and eigenvalues of
G and its variations, we arrive at simple algorithms and analyses for quantum searching,
approximate counting, and amplitude amplification and estimation.

1 Introduction

Grover’s original quantum searching algorithm [7] showed that we could find the unique solution
to f(z) = 1 for a binary function f on a domain of size N with only O(v/'N) evaluations of
the function f. Tighter bounds on the number of evaluations necessary were soon found, the
restriction that f has a unique solution was subsequently removed [3], and other algorithms
followed that also approximately counted the number of solutions to f(z) = 1.

Let us define the searching and counting problems more explicitly. Consider a function f which
maps each element of a set X to either 0 or 1. For example, let X represent the set of the 3"
possible 3-colourings of an n-vertex graph G, and f(x) = 1 if and only if the colouring x is a
proper colouring of G (that is, no adjacent vertices are coloured with the same colour). Define
X; to be the subset of X for which f evaluates to 1 (that is, the set of proper 3-colourings
of G), and Xy to be the elements for which f evaluates to 0. Let us define j to be |Xi], the
number of elements in X;.

The generation or search problem associated with f is to find an element  such that f(z) = 1,
that is, an element of Xy. The wuniform generation problem is to generate such an element
uniformly at random from the set X;. A more general problem is to count either exactly or
approximately the number of solutions to f(a) = 1. To approzimately count X1 with accuracy
¢ means to output a number j such that

(—aj<j<+ai (1)



where j is the number of elements in X;. A randomised approzimation scheme (RAS) for j is
a randomised algorithm that for any real parameter ¢ > 0 outputs a number j such that with
probability ! 2/3 we have

(l—ej<j<(1+e)j (2)
Grover presented an algorithm for quantum searching [7] and it was subsequently generalised
[3, 4, 8]. These algorithms do not run in polynomial time (that is, in time polynomial in log NV,
where |X| = N), but they do run in time roughly the square root of the running time for
the best classical algorithm. By running time we are referring to the number of calls to the
oracle or black-box Uy for the function f. This black-box for evaluating f reversibly computes
f(x) given input | ), usually by mapping |z) |b) to |x)|b& f(x)), but in this paper we will
assume the value of f(z) is simply encoded in the phase 2 by mapping | ) to (—1)/@) | z). In [3]
the idea of using the main operator in Grover’s algorithm, let us call it &, the Grover iterate,
to approximately count is first presented. Further details and related approaches have been
discussed subsequently [9, 11]. The randomised approximation schemes suggested in [3, 11, 9],

and herein run in time O((1/e + loglog(N))\/N/a). By running time we are referring to the
number of calls to the operator U;. We just count the number of calls to Uy since the lower
bounds associated with these algorithms are in terms of these calls. It turns out in fact that
for all the algorithms discussed here the number of other operations is usually® proportional
to the number of calls to Uy, so this measure of running time is indeed representative of the
running time of these algorithms in terms of all the elementary operations necessary. Each ¢
makes one call to Uy, so the number of repetitions of G corresponds to the number of calls to
Us.

Analysing the eigenvectors and eigenvalues for this operator G provides a very simple analysis
of the searching (Section 5) and counting (Section 4) algorithms, and insights into how to
exploit the properties of (G further. Estimation of certain eigenvalues gives a good estimate
of the number of elements in X7, so in the next section we will review some basic results in
the estimation of phases, which will be very useful in analysing the counting algorithm to be
presented in Section 4.

In [3], [4], and [8] it is observed that the searching algorithm is really just a special case
of a more general algorithm referred to as amplitude amplification (Section 6). Further, the
counting algorithm is a special case of amplitude estimation, which we can translate into a
phase estimation.

2 Quantum Phase Estimation

Here we will review the relationship, as pointed out in [5], between the quantum Fourier trans-
form and the estimation of phases.
Given any real number w satistying 0 < w < 1 encoded in the phases of the superposition

M-1 )
Z e?ﬂ’zwx’ | $> , (3)
=0

!The number 2/3 can be replaced by any value, say 1—§, that exceeds 1/2 by a constant. Given a particular
RAS, we can apply a bootstrapping scheme (using the Chernoff bound) that applies the given RAS a number
of times polynomial in log(1/é) and produces an e-approximation with probability 1 — 8. See, for example,
Exercise 11.2 of [10].

“Note that this modified U; can be realised with an oracle which maps |z)|b) to |z)|b@® f(z)), by setting

[0)—11)
| b) to Ve . . . .
3The operator A we discuss later is typically a Hadamard transform or some other transform which can be

efficiently implemented.



Figure 1: We define the distance between the real numbers wy and wq, d(wq,ws), to be the
smallest real number d between 0 and 1/2 such that ¢?™(*=") equals one of ¢?@ or e=2™, In
other words, it is length of the shortest path (scaled) along the unit circle from e?™“1 to 7wz,
(we will usually ignore normalisation factors) applying the inverse quantum Fourier transform

Fy will map to a superposition
M-1

> aalx), (4)

=0
which we will denote by |©), where the amplitudes are concentrated near the values of & such
that /M are good estimates of w. More precisely, we have the following lemmas (see [5]). Let
d(a,b) denote the distance between a and b modulo 1 (see figure 1).

Lemma 1 The probability of observing | x) such that d(w,z/M) < 1/2M is at least 4/7*. This
fraction x/M corresponds to the best estimate of w as a fraction of M.

We can replace 4/7% with any 1 — 6, 0 < § < 1, by increasing M by a factor of 1/28 + 1/2.

Lemma 2 For any positive integer k < M, the probability of observing an |x) such that
d(w,x/M) < k/2M is at least 1 — 1/(2k —1).

Thus given an operator ¢ with eigenvector | U) and eigenvalue w, we can estimate w as follows.
Prepare the state

M-1
> 1)) (5)
z=0

and apply G to |U) = times when the first register is in state | ). This creates the state

Z 27 | ) | ). (6)

Applying Fy;' to the first register gives the state |@) | W), and has the property that when we
observe the first register we get an estimate w of w.



Suppose we are just given G and | U) such that G| ¥) = 2™ | ¥). We have the following two
lemmas.

Lemma 3 For any e > 0, we can obtain an estimate @ of w so that d(w,w) < € with probability
> 2/3, with O(1/¢€) applications of G.

Proof: The sufficiency of [1/€]| applications * follows from the above analysis of the quantum
Fourier transform. O

Lemma 4 For ¢ between 1/N and 1/v/N, to obtain an estimate & of w so that d(w,&) < ¢
with probability > 2/3, requires Q(1/¢€) applications of G.

Proof: From Theorem 3.3 of [1] it follows that to decide, with error probability at most 1/3, if
f has fewer than M solutions to f(z) =1, for 0 < M < N/2, requires Q(vV NM) calls to Uy.

Lemma 5 tells us that by estimating w;, where j is the number of solutions to f(x) = 1, within
1/2y/ M(N — M) with error at most 1/3 will solve this problem for us. The lower bound now

follows by letting M = [57=]. O

3 The Grover iterate and its properties

The quantum searching algorithm [7, 3] prepares the state
N-1
> )
z=0

and then iterates the operator

G = —AUA'T;

where A is any operator which maps |0) to M1 2), Uy maps |0) to —|0) and leaves the
remaining | z) alone, and U; maps | z) to (—1)/®) | z).
Recall that j = | X7|, the number of solution to f(z) =1, and |Xo| = N — j, and define

|X1>:%x§1|x>,if0<jgzv (1)
|X0>:\/]\}7_j$§o|x>,if0§j<N (8)
| U4) = | X1) + 1] Xo), and (9)
| V_) = | Xy) — 1] Xo). (10)

For j =0 or N, define |Wy) = |W_) = > .x|x). Note that | U,) and | W_) are eigenvectors
of G with respective eigenvalues
2j  20J(N —j) 2j  20J(N —j)

2miwy — 1 = and e—27mwj — 1 =

N N N N

€

Also note that
(Vi) + Vo) =[X0)

*With f%] applications, we could boost the probability 2/3 to 4/5.
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Figure 2: The eigenvalue of G on | W) when there are j solutions is w;. Distinguishing a
function f with j solutions requires a more precise estimate of w; as j gets closer to N/2.

which we seek since observing | X7) solves the uniform generation problem for f. We start with
the state A|0), which expressed in the eigenvector basis equals

e—27ri€J |\I}_|_> T 627Ti€] |q;_> ]

' ; N _
6271'29]:(&%_'_@'/ N])

Definition 1 Define w; so that the eigenvalue of the eigenvector |Wy) of G = —AUA™U; is

¥ = (N — 25) /N +2i1/5/N — (j/N)? (see figure 2.)

Consequently,

where

27w, = arccos(l — 25 /N) = 24/5/N + O((j /N)>/?). (11)

It follows that 6, = 1/4 — w;/2. To determine or estimate j = |X;|, we will estimate the
phase 27w;. How accurately should we estimate w; to determine j7 There are N 4 1 such w;
for j = 0,1,... N, all between 0 and 1/2, so by the Pigeon Hole Principle at least 2 of them
are at most distance 1/2N apart and our phase estimation will have to be quite accurate to
distinguish all of them: we would require on the order of N applications of G.

More precisely, we have the following lemmas which follow by looking at the derivative of the
function in equation (11).



Lemma 5 For any integer j satisfying 0 < j < N/2,

G+ DN =) = 1) < 27w — wj]

27 |wjpr — wi| < 1/\/3(N = j).

Lemma 6 For any integer j satisfying 0 < j < N/4,

27 |wej — wil <4/J/N.

Combining Lemma 5 and Lemma 3 tells us that Q(\/(] + 1)(N — j + 1) are sufficient to distin-
guish w; from all of the other possible phases with high probability. The problem is that we do
not know what j is ahead of time. However, if we first estimate j within a factor of 1 4+ o(1), we
will then be able to exactly determine j in time O(\/(j + 1)(N — 5+ 1)). We will show how to

get this lower bound later (see Corollary 3), as this permits us to exactly count the solutions
to f(x) =1 with high probability of correctness.

and for 1 < j < N/2,

4 Quantum Counting

We are now ready to combine the facts about the eigenvectors and eigenvalues of (G in Section
3 with the techniques in Section 2 to approximately count. The parameter M represents the
number of times we will iterate G and thus corresponds to the running time of the algorithm
in terms of evaluations of Uy. It is chosen depending on the quality of the estimate we seek.
Start with the state

M-1 ) M-1 ) M-1
Do la) AL0) = e Y fa) [Wo) 2T N ) |0y
=0 =0 =0

apply G to the second register  times when the first register is in state | z) to produce

M—1 M-1
e—27ri€J Z e—27riwjac | $> | q;_> T 627Ti€] Z 627Tiw]1’ | $> | \I/_|_> .
=0 =0

Lastly apply F;;' to the first register to output

—2mi;

—0p) [ W) + €0 G W)

€

Observing the first register will output (each with probability 1/2) either an estimate of w;, or
of 1 — wj, where there are j solutions to f(z) = 1 and 0 < w; < 1/2. When we observe an
integer y between 0 and M/2, we will estimate w; with the number i&; = y/M. If we observe
an integer y between M/2 and M we will estimate w; with the number 1 — y/M. It is easy to
see that this protocol will produce an estimate of w; that is no worse (that is, the probability
of getting an error less than e does not increase for any € > 0) than if we only ever observed
)0,

So let us assume that &; = y/M is our estimate of w;. Define € so that w; = y/M + e. We
know that

cos(y/N) = cos(w;) cos(—e¢) — sin(w;) sin(—e).



With M applications of GG we can obtain an estimate such that with probability at least 2/3
we have || < 1/M (see Section 2), and so |cos(e) — 1| < 1/2M?* and |sin(e)| < 1/M. Using
these bounds we get an estimate for j:

j = N(1— cos(y/M))/2, (12)

and with probability at least 2/3

7 =] S IN = 2j|/4M? +/j(N — j)/M. (13)

Some corollaries, (similar to ones pointed out in [3] and [11]), are the following.

Corollary 1 If M = [e\/N], then with probability at least 2/3 we will have

=il <14+ \[ije € O(Ji/e)

Corollary 2 If M = [ey/N/(j + 1)], then with probability at least 2/3 we will have

(I1—ej<y<(1+4¢)
where e = 1/(4c*\/7) + 1/c € O(1/c).
We now get the following Lemma (as in [11]).

Lemma 7 There is a quantum RAS for the number of solutions, j, to f(x) =1,0 <z < N,
with running time O(1/e + loglog(N))y/N/(7 +1)).

Proof(sketch): We first find a lower bound j; for j, with 45; > 7 > j;. One scheme for finding
such a lower bound j; for j is to first test if j > N/4 — 1. If not, then test if j > N/8 — 1, and
so on, testing if 7 > N/2%¥ — 1 until we get a positive answer (this test combines Corollary 2
and Lemma 6). By applying the bootstrapping methods [10] mentioned earlier, we repeat the
test (which uses O(v/2F) applications of G) O(loglog(N)) times and guarantee that each of
these tests gives a false “YES” with probability at most 1/6 log(/N). When we do get a positive
answer to “Is j > N/2% — 177, it will be a true lower bound with probability at least 5/6.

We can then estimate w; with M = O(%,/ﬁ%) = O(%,/j%) applications of G' so that with
probability at least 4/5 we have an e-approximation of j. O
Corollary 1 gives us the bound on j that we need to carry out exact counting (combining

Lemma 4 and Lemma 5).

Corollary 3 Given G = —AUA™'U;, where f has j solutions to f(x) =1, with
@(\/(j + 1)(N — 5+ 1)) applications of G we can distinguish w; and correctly determine j with
probability at least 2/3.

The fact that O(y/j V) applications sufficed was pointed out in [3].



5 Quantum Searching
The quantum searching algorithm can be succinctly analysed as follows. Start in the state
A|0) = exp(—2m1;) | VU y) + exp(2mi6;) | U_)
and apply GG to this state k& times to produce
exp(2mi(kw; — 0;)) [ W) 4 exp(—2mik(w; — 0;)) | V)

and observe. The number of repetitions k£ will correspond to the running time of the algorithm

since each (G uses Uy once. Since we want to observe | X1) = |U,) 4 | W_), we want to align
the phases so that the relative phase between the two eigenvectors is 0, that is, 47 (kw; — 6;)
is 0 or some other multiple of 2x. Conversely, | Xo) = | W) — | ¥_), so we want kw; — 6; to

be far from any fraction the form i + %Z. The probability of observing an element of X is

in fact equal to H’%@M) where 6 = 2(kw; — 0;). Given the relation between 6; and ¢;, this is
equivalent to finding a &k such that cos(27(k + 1/2)¢,) is close to 0.

When j is known, this is easy. For example, suppose j = 1, then cos(27w;) = 1 — 2/N and
so wy 1s roughly 1/7r\/ﬁ and €27 — \/%—I— /1 — ﬁ so 0, is roughly 1/4. Thus we should
choose k to be roughly %\/ﬁ

Consider, also, as done in [3], the case that j = %. Then cos(270;) = £ implying 0; = %, and
cos(2rw;) = + implying w; = ¢. So we want k = 1 which means we get | X;) with exactly one
iteration of G.

When j is not known, it is not as simple. One idea is to estimate w; using the techniques of
the previous section, and to use this to approximate 0; and then pick the number of repetitions
k so that kw; — 6; is likely to be close to 0 and far from +1/4.

We will describe an alternative approach, different from the one presented in [3] but with the

same expected running time of O(y/N/(j 4+ 1)) applications of Uy.
Note that when we approximately count and produce the state

eI G [ W) + €20 | 20} [ W)

we could also observe the second register and test the answer. Note that as |&;) and ‘ —A(;j>
become better and better estimates of w; and —w;, they become more and more orthogonal
(provided j # 0,N), and the amount of interference between |W,) and |W_) diminishes.
Observing either | W, ) or | W_) will reveal an element of X; with probability 1/2.

If we approximate w; using 4M iterations of G where 1/M < w; then the magnitude of the

amplitude of the best estimate y for w in |w;) will be at least 2/7 and in ‘ —A(;j> it will be at

most ® 1/4/15, and thus the size of the amplitude of | y)| X;) in
8| Wy) + | —w) W)

will be at least 2/x — 1/v/15 > 0.378. We thus have a probability of observing a solution
bounded below by
p=1[2/7 —1/V15°/2 > 0.0716.

Our strategy is thus to set M =1 and go through the following steps.

°If y/4M corresponds to the best estimate of w; as a fraction of 4M, then as an estimate of —w; it is off by
at least 8/M and by Lemma 2 it will be observed with probability at most 1/15.



Step 1: Using M applications of G compute
8| Wy) + | =) W)

and observe the second register. Test the observed |x) to see if f(x) = 1. If f(x) = 1, then
stop. Otherwise repeat up to 10 times.
Step 2: If after 10 repetitions no solution has been found, double M and return to Step 1.

Once M > 1/wj, the probability of observing a solution in Step 1 is at least
1—(1-p)'°>1/2

This implies that the expected running time of this algorithm is O(1/N/(j + 1)) applications
of G.

6 Amplitude Amplification and Exact Searching

In [4] and [8] we see that we can in fact replace A with any transformation which maps |0) to
Va| X1) +Vb| Xo), where | X1) is any superposition (of norm 1) of basis states | z) satisfying
f(z) =1 and | Xo) is any superposition (of norm 1) of basis states | x) satisfying f(z) = 0, and
a and b are positive reals satisfying a + b= 1.

We can easily show that the eigenvectors of GG = —AUyA™'U; have the same form

| Wy) = | X1) +¢| Xo)

(W) =|Xy) — ] Xo)

and eigenvalues

2w — 1 _ 9q 4 21V ab
e~ we — 1 2q — 2%V ab

(w; from the previous section would correspond to w;/n here) and
A | 0> — 6—2772'6’(1 | \Il_|_> T 62772'6’(1 | \Il_>

where

627Ti€a :\/E_I_Z\/Z
and 0, = 1/4 — w, /2.

Thus, knowing a we can apply the same searching technique described in Section 5 to find
solutions to f(x) = 1 with only an expected O(\/1/>a) applications of G. We can use the same
techniques of Section 4 to approximate a and the same strategy of Section 5 to search for a
solution when we do not know a. When we do know a we know exactly how many applications
of G we should use. We can also alter G so that the ideal number, M, of applications is an
integer, making the search exact (this is done for M =1 in [4] and [6]). Here we will describe
another way of doing it ©.

Step 1: Knowing a we know w, and 6,, so define k = [8,/w,].
Step 2: Solve for ¢’ < a such that k = 0,/ /w,.

6This fact was pointed out to me independently by H. Buhrman, W. van Dam, and P. Hgyer in November
1997.



Step 3: Add an additional qubit in state |0) to the original register containing only |0)s.

Replace A with A which maps the additional | 0) qubit to y/1 — a’/a |0) ++/a’/a|1) and applies

A to original register. Further, replace f with a function f which also takes the additional bit
as input, and outputs 0 if the additional qubit is in state | 0), and outputs f(z) if the additional
qubit is in state | 1) and the original register is in state | z). The operator Uz can be implemented
as a controlled-Uy.

The output of A is now of the form

Va'

X))+ Ve

)

where | X7 ) and | Xo ) correspond to the superposition of basis states containing solutions to
P perp g

f(z) =1 and f(z) = 0 respectively. It now follows that k = 0, /w, applications of
G = —AUA U5

will produce exactly ‘71> = |1) | Xi) thereby giving us a uniform generator with no error.
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A The remaining eigenvectors and starting from arbit-
rary states

In addition to the eigenvectors | W) and | W_) there are of course N — 2 other eigenvectors.
Exactly N —j — 1 of them, spanned only by elements of Xy, have eigenvalue —1 and j — 1 of
them, spanned only by elements of X7, have eigenvalue 1. It is easy to find a spanning set of
these eigenvectors.

One interesting use of this fact is to study the effect of applying the quantum searching al-
gorithms with arbitrary input states. The optimal number of applications G before observing
was studied in detail in [2] (by different methods). Applying G to any of the j — 1 eigenvectors
with eigenvalue 1 will only invert the sign. Applying GG has no effect on the eigenvectors with
eigenvalue 1, and flips the sign in front of the eigenvectors with eigenvalue —1. So unless the
amplitudes of | W, ) and |W_) in the initial state are significant, Grover’s algorithm will be of
little help in searching. Further, if we start off with the state

ce—2m’€ | \Il_|_> T de2m'€ | \Il_>

where ¢ and d are positive reals, then to maximise the amplitude of the states | x) with f(z) =1
we should again apply G to the starting state & times where 8 —kw; is close to an integer multiple

of 1/2.
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