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Abstract

Grover�s quantum searching algorithm uses a quantum computer to �nd the solution
to f�x� � � for a given function f � The algorithm	 which repeatedly applies a certain
operator G	 has led to a major family of quantum algorithms for generating and counting
solutions to f�x� � � for more general f � By studying the eigenvectors and eigenvalues of
G and its variations	 we arrive at simple algorithms and analyses for quantum searching	
approximate counting	 and amplitude ampli�cation and estimation�

� Introduction

Grover�s original quantum searching algorithm ��� showed that we could �nd the unique solution
to f�x� 	 
 for a binary function f on a domain of size N with only O�

p
N� evaluations of

the function f � Tighter bounds on the number of evaluations necessary were soon found� the
restriction that f has a unique solution was subsequently removed �
�� and other algorithms
followed that also approximately counted the number of solutions to f�x� 	 
�
Let us de�ne the searching and counting problems more explicitly� Consider a function f which
maps each element of a set X to either � or 
� For example� let X represent the set of the 
n

possible 
�colourings of an n�vertex graph G� and f�x� 	 
 if and only if the colouring x is a
proper colouring of G �that is� no adjacent vertices are coloured with the same colour�� De�ne
X� to be the subset of X for which f evaluates to 
 �that is� the set of proper 
�colourings
of G�� and X� to be the elements for which f evaluates to �� Let us de�ne j to be jX�j� the
number of elements in X��
The generation or search problem associated with f is to �nd an element x such that f�x� 	 
�
that is� an element of X�� The uniform generation problem is to generate such an element
uniformly at random from the set X�� A more general problem is to count either exactly or
approximately the number of solutions to f�x� 	 
� To approximately count X� with accuracy
� means to output a number �j such that

�
� ��j � �j � �
 � ��j �
�





where j is the number of elements in X�� A randomised approximation scheme �RAS� for j is
a randomised algorithm that for any real parameter � � � outputs a number �j such that with
probability � ��
 we have

�
� ��j � �j � �
 � ��j� ���

Grover presented an algorithm for quantum searching ��� and it was subsequently generalised
�
� �� ��� These algorithms do not run in polynomial time �that is� in time polynomial in logN �
where jXj 	 N�� but they do run in time roughly the square root of the running time for
the best classical algorithm� By running time we are referring to the number of calls to the
oracle or black�box Uf for the function f � This black�box for evaluating f reversibly computes
f�x� given input jxi� usually by mapping jxi j bi to jxi j b� f�x�i� but in this paper we will
assume the value of f�x� is simply encoded in the phase � by mapping jxi to ��
�f�x� jxi� In �
�
the idea of using the main operator in Grover�s algorithm� let us call it G� the Grover iterate�
to approximately count is �rst presented� Further details and related approaches have been
discussed subsequently ��� 

�� The randomised approximation schemes suggested in �
� 

� ���

and herein run in time O��
�� � log log�N��
q
N�a�� By running time we are referring to the

number of calls to the operator Uf � We just count the number of calls to Uf since the lower
bounds associated with these algorithms are in terms of these calls� It turns out in fact that
for all the algorithms discussed here the number of other operations is usually� proportional
to the number of calls to Uf � so this measure of running time is indeed representative of the
running time of these algorithms in terms of all the elementary operations necessary� Each G
makes one call to Uf � so the number of repetitions of G corresponds to the number of calls to
Uf �
Analysing the eigenvectors and eigenvalues for this operator G provides a very simple analysis
of the searching �Section �� and counting �Section �� algorithms� and insights into how to
exploit the properties of G further� Estimation of certain eigenvalues gives a good estimate
of the number of elements in X�� so in the next section we will review some basic results in
the estimation of phases� which will be very useful in analysing the counting algorithm to be
presented in Section ��
In �
�� ���� and ��� it is observed that the searching algorithm is really just a special case
of a more general algorithm referred to as amplitude ampli�cation �Section ��� Further� the
counting algorithm is a special case of amplitude estimation� which we can translate into a
phase estimation�

� Quantum Phase Estimation

Here we will review the relationship� as pointed out in ���� between the quantum Fourier trans�
form and the estimation of phases�
Given any real number � satisfying � � � � 
 encoded in the phases of the superposition

M��X
x��

e��i�x jxi � �
�

�The number ��� can be replaced by any value� say ���� that exceeds ��� by a constant� Given a particular
RAS� we can apply a bootstrapping scheme �using the Cherno	 bound
 that applies the given RAS a number
of times polynomial in log����
 and produces an ��approximation with probability � � �� See� for example�
Exercise ���� of ��
��

�Note that this modi�ed Uf can be realised with an oracle which maps jxi j bi to jxi j b� f�x
i� by setting

j bi to j �i�j�ip
�

�
�The operator A we discuss later is typically a Hadamard transform or some other transform which can be

e�ciently implemented�



e��i��

e��i��

�	d���� ���

Figure 
� We de�ne the distance between the real numbers �� and ��� d���� ���� to be the
smallest real number d between � and 
�� such that e��i�a�b� equals one of e��id or e���id� In
other words� it is length of the shortest path �scaled� along the unit circle from e��i�� to e��i���

�we will usually ignore normalisation factors� applying the inverse quantum Fourier transform
F��
M will map to a superposition

M��X
x��


x jxi � ���

which we will denote by j e�i� where the amplitudes are concentrated near the values of x such
that x�M are good estimates of �� More precisely� we have the following lemmas �see ����� Let
d�a� b� denote the distance between a and b modulo 
 �see �gure 
��

Lemma � The probability of observing jxi such that d��� x�M� � 
��M is at least ��	�� This
fraction x�M corresponds to the best estimate of � as a fraction of M �

We can replace ��	� with any 
 � �� � � � � 
� by increasing M by a factor of 
��� � 
���

Lemma � For any positive integer k � M � the probability of observing an jxi such that
d��� x�M� � k��M is at least 
� 
���k � 
��
Thus given an operator G with eigenvector j�i and eigenvalue �� we can estimate � as follows�
Prepare the state

M��X
x��

jxi j�i ���

and apply G to j�i x times when the �rst register is in state jxi� This creates the state
M��X
x��

e��i�x jxi j�i � ���

Applying F��
M to the �rst register gives the state j e�i j�i� and has the property that when we

observe the �rst register we get an estimate �� of ��



Suppose we are just given G and j�i such that G j�i 	 e��i� j�i� We have the following two
lemmas�

Lemma � For any � � �� we can obtain an estimate �� of � so that d��� ��� � � with probability
� ��
� with O�
��� applications of G�

Proof� The su�ciency of d
��e applications � follows from the above analysis of the quantum
Fourier transform� �

Lemma � For � between 
�N and 
�
p
N � to obtain an estimate �� of � so that d��� ��� � �

with probability � ��
� requires ��
��� applications of G�
Proof� From Theorem 
�
 of �
� it follows that to decide� with error probability at most 
�
� if
f has fewer than M solutions to f�x� 	 
� for � � M � N��� requires ��

p
NM � calls to Uf �

Lemma � tells us that by estimating �j� where j is the number of solutions to f�x� 	 
� within


��
q
M�N �M� with error at most 
�
 will solve this problem for us� The lower bound now

follows by letting M 	 d �
�N��

e� �

� The Grover iterate and its properties

The quantum searching algorithm ��� 
� prepares the state

N��X
x��

j xi

and then iterates the operator
G 	 �AU�A

��Uf

where A is any operator which maps j �i to PM��
x�� jxi� U� maps j �i to � j �i and leaves the

remaining jxi alone� and Uf maps jxi to ��
�f�x� jxi�
Recall that j 	 jX�j� the number of solution to f�x� 	 
� and jX�j 	 N � j� and de�ne

jX�i 	 
p
j

X
x�X�

jxi � if � � j � N ���

jX�i 	 
p
N � j

X
x�X�

jxi � if � � j � N ���

j�	i 	 jX�i � i jX�i � and ���

j��i 	 jX�i � i jX�i � �
��

For j 	 � or N � de�ne j�	i 	 j��i 	 Px�X j xi� Note that j�	i and j��i are eigenvectors
of G with respective eigenvalues

e��i�j 	 
� �j
N
�
�i
q
j�N � j�

N
and e���i�j 	 
 � �j

N
� �i

q
j�N � j�

N
�

Also note that
j�	i� j��i 	 jX�i

�With d �

��
e applications� we could boost the probability ��� to ����
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Figure �� The eigenvalue of G on j�	i when there are j solutions is �j � Distinguishing a
function f with j solutions requires a more precise estimate of �j as j gets closer to N���

which we seek since observing jX�i solves the uniform generation problem for f � We start with
the state A j �i� which expressed in the eigenvector basis equals

e���i�j j�	i� e��i�j j��i �
where

e��i�j 	

��s j

N
� i

s
N � j

N

�A �
De�nition � De�ne �j so that the eigenvalue of the eigenvector j�	i of G 	 �AU�A

��Uf is

e��i�j 	 �N � �j��N � �i
q
j�N � �j�N�� �see �gure 	��

Consequently�

�	�j 	 arccos�
 � �j�N� 	 �
q
j�N �O��j�N������ �

�

It follows that �k 	 
�� � �j��� To determine or estimate j 	 jX�j� we will estimate the
phase �	�j� How accurately should we estimate �j to determine j� There are N � 
 such �j
for j 	 �� 
� � � � N � all between � and 
��� so by the Pigeon Hole Principle at least � of them
are at most distance 
��N apart and our phase estimation will have to be quite accurate to
distinguish all of them� we would require on the order of N applications of G�
More precisely� we have the following lemmas which follow by looking at the derivative of the
function in equation �

��



Lemma � For any integer j satisfying � � j � N���


�
q
�j � 
��N � j � 
� � �	j�j	� � �j j

and for 
 � j � N���

�	j�j	� � �jj � 
�
q
j�N � j��

Lemma � For any integer j satisfying � � j � N���

�	j��j � �jj �
q
j�N�

Combining Lemma � and Lemma 
 tells us that ��
q
�j � 
��N � j � 
� are su�cient to distin�

guish �j from all of the other possible phases with high probability� The problem is that we do
not know what j is ahead of time� However� if we �rst estimate j within a factor of 
� o�
�� we

will then be able to exactly determine j in time O�
q
�j � 
��N � j � 
��� We will show how to

get this lower bound later �see Corollary 
�� as this permits us to exactly count the solutions
to f�x� 	 
 with high probability of correctness�

� Quantum Counting

We are now ready to combine the facts about the eigenvectors and eigenvalues of G in Section

 with the techniques in Section � to approximately count� The parameter M represents the
number of times we will iterate G and thus corresponds to the running time of the algorithm
in terms of evaluations of Uf � It is chosen depending on the quality of the estimate we seek�
Start with the state

M��X
x��

jxiA j �i 	 e���i�j
M��X
x��

jxi j��i � e��i�j
M��X
x��

jxi j�	i

apply G to the second register x times when the �rst register is in state jxi to produce

e���i�j
M��X
x��

e���i�jx jxi j��i� e��i�j
M��X
x��

e��i�jx jxi j�	i �

Lastly apply F��
M to the �rst register to output

e���i�j
��� g��jE j��i � e��i�j jf�ji j�	i �

Observing the �rst register will output �each with probability 
��� either an estimate of �j� or
of 
 � �j� where there are j solutions to f�x� 	 
 and � � �j � 
��� When we observe an
integer y between � and M��� we will estimate �j with the number f�j 	 y�M � If we observe
an integer y between M�� and M we will estimate �j with the number 
 � y�M � It is easy to
see that this protocol will produce an estimate of �j that is no worse �that is� the probability
of getting an error less than � does not increase for any � � �� than if we only ever observed
jf�ji j�	i�
So let us assume that f�j 	 y�M is our estimate of �j � De�ne � so that �j 	 y�M � �� We
know that

cos�y�N� 	 cos��j� cos����� sin��j� sin�����



With M applications of G we can obtain an estimate such that with probability at least ��

we have j�j � 
�M �see Section ��� and so j cos��� � 
j � 
��M� and j sin���j � 
�M � Using
these bounds we get an estimate for j�

�j 	 N�
� cos�y�M����� �
��

and with probability at least ��


j�j � jj � jN � �jj��M� �
q
j�N � j��M� �

�

Some corollaries� �similar to ones pointed out in �
� and �

��� are the following�

Corollary � If M 	 dcpNe� then with probability at least ��
 we will have

j�j � jj � 
��c� �
q
j�c � O�

q
j�c�

�

Corollary � If M 	 dc
q
N��j � 
�e� then with probability at least ��
 we will have

�
 � ��j � �j � �
 � ��j

where � 	 
���c�
p
j� � 
�c � O�
�c��

We now get the following Lemma �as in �

���

Lemma 	 There is a quantum RAS for the number of solutions� j� to f�x� 	 
� � � x � N �

with running time O�
�� � log log�N��
q
N��j � 
���

Proof�sketch�� We �rst �nd a lower bound j� for j� with �j� � j � j�� One scheme for �nding
such a lower bound j� for j is to �rst test if j � N��� 
� If not� then test if j � N�� � 
� and
so on� testing if j � N��k � 
 until we get a positive answer �this test combines Corollary �
and Lemma ��� By applying the bootstrapping methods �
�� mentioned earlier� we repeat the
test �which uses O�

p
�k� applications of G� O�log log�N�� times and guarantee that each of

these tests gives a false �YES� with probability at most 
�� log�N�� When we do get a positive
answer to �Is j � N��k � 
��� it will be a true lower bound with probability at least ����
We can then estimate �j with M 	 O��

�

q
N

j�	�
� 	 O��

�

q
N
j	� � applications of G so that with

probability at least ��� we have an ��approximation of j� �
Corollary 
 gives us the bound on j that we need to carry out exact counting �combining
Lemma � and Lemma ���

Corollary � Given G 	 �AU�A
��Uf � where f has j solutions to f�x� 	 
� with

 �
q
�j � 
��N � j � 
�� applications of G we can distinguish �j and correctly determine j with

probability at least ��
�

The fact that O�
p
jN � applications su�ced was pointed out in �
��



� Quantum Searching

The quantum searching algorithm can be succinctly analysed as follows� Start in the state

A j �i 	 exp���	i�j� j�	i� exp��	i�j� j��i

and apply G to this state k times to produce

exp��	i�k�j � �j�� j�	i� exp���	ik��j � �j�� j��i

and observe� The number of repetitions k will correspond to the running time of the algorithm
since each G uses Uf once� Since we want to observe jX�i 	 j�	i � j��i� we want to align
the phases so that the relative phase between the two eigenvectors is �� that is� �	�k�j � �j�
is � or some other multiple of �	� Conversely� jX�i 	 j�	i � j��i� so we want k�j � �j to
be far from any fraction the form �

�
� �

�
Z� The probability of observing an element of X� is

in fact equal to �	cos�����
�

where � 	 ��k�j � �j�� Given the relation between �j and 
j� this is
equivalent to �nding a k such that cos��	�k � 
���
j� is close to ��
When j is known� this is easy� For example� suppose j 	 
� then cos��	��� 	 
 � ��N and

so �� is roughly 
�	
p
N and e��i�j 	

q
�
�N � i

q

 � �

�N so �j is roughly 
��� Thus we should

choose k to be roughly �
�

p
N �

Consider� also� as done in �
�� the case that j 	 N
�
� Then cos��	�j� 	

�
�
implying �j 	

�


� and

cos��	�j� 	
�
�
implying �j 	

�


� So we want k 	 
 which means we get jX�i with exactly one

iteration of G�
When j is not known� it is not as simple� One idea is to estimate �j using the techniques of
the previous section� and to use this to approximate �j and then pick the number of repetitions
k so that k�j � �j is likely to be close to � and far from �
���
We will describe an alternative approach� di!erent from the one presented in �
� but with the

same expected running time of O�
q
N��j � 
�� applications of Uf �

Note that when we approximately count and produce the state

e���i�j jf�ji j�	i� e��i�j
��� g��jE j��i

we could also observe the second register and test the answer� Note that as jf�ji and ��� g��jE
become better and better estimates of �j and ��j � they become more and more orthogonal
�provided j �	 �� N�� and the amount of interference between j�	i and j��i diminishes�
Observing either j�	i or j��i will reveal an element of X� with probability 
���
If we approximate �j using �M iterations of G where 
�M � �j then the magnitude of the

amplitude of the best estimate y for � in jf�ji will be at least ��	 and in ��� g��jE it will be at
most � 
�

p

�� and thus the size of the amplitude of j yi jX�i in

j e�i j�	i�
��� g��E j��i

will be at least ��	 � 
�p
� � ��
��� We thus have a probability of observing a solution
bounded below by

p 	 j��	 � 
�
p

�j��� � ����
��

Our strategy is thus to set M 	 
 and go through the following steps�

�If y��M corresponds to the best estimate of �j as a fraction of �M � then as an estimate of ��j it is o	 by
at least ��M and by Lemma � it will be observed with probability at most �����



Step �
 Using M applications of G compute

j e�i j�	i�
��� g��E j��i

and observe the second register� Test the observed jxi to see if f�x� 	 
� If f�x� 	 
� then
stop� Otherwise repeat up to 
� times�
Step �
 If after 
� repetitions no solution has been found� double M and return to Step 
�

Once M � 
��j � the probability of observing a solution in Step 
 is at least


 � �
� p��� � 
���

This implies that the expected running time of this algorithm is O�
q
N��j � 
�� applications

of G�

� Amplitude Ampli�cation and Exact Searching

In ��� and ��� we see that we can in fact replace A with any transformation which maps j �i top
a jX�i�

p
b jX�i� where jX�i is any superposition �of norm 
� of basis states j xi satisfying

f�x� 	 
 and jX�i is any superposition �of norm 
� of basis states jxi satisfying f�x� 	 �� and
a and b are positive reals satisfying a� b 	 
�
We can easily show that the eigenvectors of G 	 �AU�A

��Uf have the same form

j�	i 	 jX�i� i jX�i

j��i 	 jX�i � i jX�i
and eigenvalues

e��i�a 	 
� �a� �i
p
ab

e���i�a 	 
� �a� �i
p
ab

��j from the previous section would correspond to �j�N here� and

A j �i 	 e���i�a j�	i � e��i�a j��i

where
e��i�a 	

p
a� i

p
b

and �a 	 
�� � �a���
Thus� knowing a we can apply the same searching technique described in Section � to �nd

solutions to f�x� 	 
 with only an expected O�
q

�a� applications of G� We can use the same

techniques of Section � to approximate a and the same strategy of Section � to search for a
solution when we do not know a� When we do know a we know exactly how many applications
of G we should use� We can also alter G so that the ideal number� M � of applications is an
integer� making the search exact �this is done for M 	 
 in ��� and ����� Here we will describe
another way of doing it 
�

Step �
 Knowing a we know �a and �a� so de�ne k 	 d�a��ae�
Step �
 Solve for a� � a such that k 	 �a���a� �

�This fact was pointed out to me independently by H� Buhrman� W� van Dam� and P� H�yer in November
�����



Step �
 Add an additional qubit in state j �i to the original register containing only j �is�
Replace A with A which maps the additional j �i qubit to

q

 � a��a j �i�

q
a��a j 
i and applies

A to original register� Further� replace f with a function f which also takes the additional bit
as input� and outputs � if the additional qubit is in state j �i� and outputs f�x� if the additional
qubit is in state j 
i and the original register is in state jxi� The operator Uf can be implemented
as a controlled�Uf �

The output of A is now of the form

p
a�
���X�

E
�
p
b�
���X�

E
where

���X�

E
and

���X�

E
correspond to the superposition of basis states containing solutions to

f �x� 	 
 and f �x� 	 � respectively� It now follows that k 	 �a���a� applications of

G 	 �AU�A
��
Uf

will produce exactly
���X�

E
	 j 
i jX�i thereby giving us a uniform generator with no error�
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A The remaining eigenvectors and starting from arbit	

rary states

In addition to the eigenvectors j�	i and j��i there are of course N � � other eigenvectors�
Exactly N � j � 
 of them� spanned only by elements of X�� have eigenvalue �
 and j � 
 of
them� spanned only by elements of X�� have eigenvalue 
� It is easy to �nd a spanning set of
these eigenvectors�
One interesting use of this fact is to study the e!ect of applying the quantum searching al�
gorithms with arbitrary input states� The optimal number of applications G before observing
was studied in detail in ��� �by di!erent methods�� Applying G to any of the j� 
 eigenvectors
with eigenvalue 
 will only invert the sign� Applying G has no e!ect on the eigenvectors with
eigenvalue 
� and #ips the sign in front of the eigenvectors with eigenvalue �
� So unless the
amplitudes of j�	i and j��i in the initial state are signi�cant� Grover�s algorithm will be of
little help in searching� Further� if we start o! with the state

ce���i� j�	i� de��i� j��i

where c and d are positive reals� then to maximise the amplitude of the states jxi with f�x� 	 

we should again applyG to the starting state k times where ��k�j is close to an integer multiple
of 
���
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