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We introduce a finitely axiomatizable second-order theory VT'C® and show that it
characterizes precisely the class uniform TC°. Tt is simply the theory V° [12] together
with the axiom NUMONES, which states the existence of a “counting array” Y for any
string X: the ith row of Y contains only the number of 1 bits upto (excluding) bit i of X.
First, we introduce the notion of “strong AZP-definability” for relations in a theory, and
use the recursive properties of TC? relations (rather than functions) to show that TC"
relations are strongly AP-definable, and TC" functions are ¥8-definable in VT'C". Then,
we generalize the Witnessing Theorem for V° [12], and obtain the witnessing theorem for
VTC from this general result: 352, (XF) theorems of VIC’ can be witnessed by TC’
functions (here, ©5 (XF) formulas are those obtained from ©f formulas using A,V and
bounded number quantifications). Finally, we show that VTC? is RSUV isomorphic to
the first-order theory A%-CR, which has been claimed the “minimal” theory for TC® [21].
This isomorphism shows that VTC" admits the 25 (AP) comprehension rule. Hence,
in VT'C, strong AP-definability and the usual AP-definability coincide. It also follows
that A’ — CR = A} — CR;, for some i. This answers affirmatively an open question

from [21].
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Chapter 1

Introduction

Non-uniform TC? is the class of languages (or sometimes functions) computable by
families of polynomial-size, constant-depth circuits with majority gates. Uniform TC°
is defined similarly with the restriction that the families of circuits are uniform. The
commonly accepted notion of uniformity for TC® is AC’-uniform, or equivalently FO-
uniform [17, page 79]. We will simply use TC" for FO-uniform TC® (as a class of
languages, or relations, the class of functions will be called FTC?, precise definitions
will be given in the next chapter). Note that threshold gates (i.e., gates which count the
number of inputs which are 1) can be simulated using majority gates. Therefore, there
is an equivalent definition of TC" using threshold circuits, hence the name TC® (where

0 indicates log"-depth, i.e., constant-depth).

Even though it is defined in a restricted way, TC® has not been separated from “big”
classes, such as NP. In fact, an increasing number of important functions and decision
problems have been shown in TC?. For example, integer multiplication, iterated integer
multiplication, integer division as well as sorting are indeed complete for TC® under FO
reduction [9, 6, 15, 3]. (Note that since TC® C L, TC" ¢ DSPACE(f(n)), for any

function f that grows faster than logn.)

In studying complexity classes, the logical theories play an important role. For ex-
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ample, the hierarchy S of first-order theories S} C T C S2 C ..., introduced by Buss
[4], characterizes precisely PH, the polynomial hierarchy. It has been shown that PH
collapses if and only if S collapses, or equivalently S is finitely axiomatizable [18]. In the
case of TC?, a number of theories have been proposed. Perhaps the most remarkable
among them is the first-order theory A}-CR by Johannsen and Pollett [21], who have

shown (among other results) that:
If AY’ — CR =S}, then NP is contained in non-uniform TC".

In this thesis, we introduce the second-order theory VIT'C?, and show that it characterizes
TC°. We will also show that VT'C® is RSUV isomorphic to A’-CR. From this, the result
by Johannsen and Pollett can be translated directly into second-order setting. It also

helps to close an open question in [21], i.e., A} — CR = A} — CR;, for some i.

1.1 Uniformity

The common notion of uniformity for TC® is FO-uniform. By Theorem 5.22 in [17,
page 82], this is equivalent to AC-uniformity. Essentially, a family of circuits is FO-
uniform if they can be described by a set of formulas in the first-order vocabulary which
contains symbols specifying the connections between gates, and the types of the gates in
the circuits.

Although FO-uniformity is rather weak, basic properties of TC® can be shown by
manipulating the circuits. This may require showing various properties of class of uniform
families of circuits, e.g., it is closed under some operations, such as composition, negation,
etc. Since these often seems “trivial”, formal proofs are usually omitted.

We will give formal proofs for various properties of TC" and FTC?, based on a result
by Barrington, Immerman and Straubing [2] which shows that TC" is exactly the class of
languages definable in FO(COUNT) (i.e., first-order logic with the counting quantifier).

By an obvious coding scheme, we can define the class of TCP relations, which, without
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ambiguity, is also called TCP. Then, the TC? functions are those whose bitgraphs are in
TC" and whose value are properly bounded. Now, the properties of functions in FTC?
can be proved using properties of their bitgraphs, while the properties of TC? relations
can be carried out formally using Immerman’s characterization of TCP.

An application of Barrington, Immerman and Straubing’s result is that we can prove
various properties of VT C? by induction on the structure of the FO(COUNT) sentences
that define TC® languages. However, we find that it is not convenient to prove results
using induction on the structure of sentences. In fact, we will translate FO(COUNT)
sentences into formulas in second-order logic with counting quantifier, which represent the
same languages as those defined by the FO(COUNT) sentences. Then, we use induction
on the structure of formulas (in the new logic) to prove these properties. The translation
is straightforward, and similar to the case where the counting quantifier is not used, as

discussed in [12].

1.2 Theories for TC'

In general, theories are developed for complexity classes so that reasoning in the theories
reflect the computational power of the classes. In particular, functions and relations
in the complexity class are definable in the theories by some classes of formulas. For
example, the class of ¥¢-definable functions in S} is exactly FP, and the class of A-
definable predicates in S} is exactly P [4, 8]. Similar results connecting the theory T}
and the class PLS (polynomial local search) have been shown [22].

While first-order logic has proved successful in characterizing complexity classes,
second-order (or rather two-sorted) logic provides a more elegant presentation. In the
case of TC?, second-order logic has one more advantage over first-order logic. It is known
that the multiplication function is computable in TC® [3]. In fact, its graph is complete

for TC® under AC® reduction [6]. Thus, conceivably, any TC? function can be definable
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from multiplication. However, first-order theories naturally contain defining axioms for
multiplication, in addition to other axioms or rules. This might be the reason explaining
why the first-order theories for TC® (discussed below) often have “unnatural” syntactical

restrictions.

1.2.1 First-Order Theories for TC’

In [11], Clote and Takeuti introduce the notion of essentially sharply bounded (esb) for-
mulas in a theory 7. Then they propose the first-order theory TT'C’, and show that a
function belongs to TC" if and only if it is esb-definable in TTC". However, the defini-
tion of esb formulas in a theory is already complicated, and the structure of esb formulas
in a theory like TTC seems understandable only by examining the class of esb-definable
functions of TTCY, i.e., the class of TC? functions, which is itself the subject of investi-
gation. Furthermore, TTC" is defined using complicated axioms, such as epX%- BLIND,
which seems not practical. As a result, there have not been many application of the
theory TTCY.

In [19], Johannsen introduce the first-order theory EO, and show that it captures
exactly TC?: the class of TC" functions is exactly the class of functions X?-definable in
R’ In 20], Johannsen and Pollett introduce a hierarchy {C}};>1 of first-order theories,
which characterizes the counting hierarchy. They show that CY also captures TCP.
Although R’ and CY characterize precisely TC", they seem too “strong” for TC": they
might have proper sub-theories which also characterize TC® in the same way. In fact,
the first-order theory A%-CR. introduced by Johannsen and Pollett also captures TC®,
and can be seen as a minimal theory for TC" [21]. It is easy to see that A’-CR is a
sub-theory of both R’ and C3S. Moreover, Cook and Thapen [14] show that PV does
not prove the ¥ replacement axiom scheme, unless RSA can be cracked in polynomial
time. The same arguments can carried over for A’>-CR, and thus A’-CR is very likely a

proper sub-theory of both R’ and CY, since they both contain the 3} replacement axiom
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scheme.

The theory A%-CR is defined using a set of axioms (i.e., BASIC together with Open-
LIND), and the A% comprehension rule. Essentially, this rule gives an inductive definition
of the theory A’-CR: it can be seen as built in an infinite number of stages, starting
with BASIC and Open-LIND. At each stage, it is expanded by taking the closure under
entailment and by adding the conclusions of all instances of the A’ comprehension rule
whose top sequent is in the current theory. Note that the result by Cook and Thapen
[14] suggests that this inference rule may not be equivalent to the corresponding A?
comprehension aziom. In fact, there has not been a nice axiomatization of AS-CR.. In this
thesis, we will introduce the second-order theory VT'C?, which is finitely axiomatizable,
captures TC?, and is RSUV isomorphic to A2-CR. In the next part, we will discuss the

presence of second-order theories for TCY in the literature.

1.2.2 Second-Order Theories for TC?

In [20], the first-order theories Cj,, (k > 1) have been shown RSUV isomorphic to
the second-order theories DY. Thus, DY can be seen as a theory for TC®. As already
discussed above for the theory C3, even though it correctly characterizes TCC, D? might
be unnecessarily strong for TCP.

In [23], Krajicek searches for theories corresponding to polynomial-size Frege proofs.
He introduces the theory ([E}’b)w“"t and notes that it corresponds to the extension FC of
constant-depth Frege proof system. He also poses the question of whether FC p-simulates
Frege proof systems. It turns out that our theory VTC? is the same as (I5)")cunt,
Consequently, Krajicek’s question is related to the question of whether TC® = NC'.

As can be seen, there have not been many serious attempts to develop second-order
theories for TCP. One reason might be that first-order logic has been well studied, with
available tools such as compactness theorem, Herbrand Theorem, etc. Another reason

might be that the syntax of second-order bounded arithmetic had been quite heavy
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before its elegant presentation in [26, 12]. It seems that for “low” complexity classes such
as TC?, second-order logic is a more natural choice, since we are not forced to define

multiplication for second-order objects, which is already complete for TCP.

1.2.3 Witnessing in VTC’ and Defining TC® Functions and Re-

lations

In order to show that a function class is definable in a theory (using some class of
formulas), one often needs the recursive characteristic of the function class. For example,
the class of recursive functions is the closure of a set of initial functions under composition,
primitive recursion and minimization. The same techniques have been employed for the
class of TC® functions. A recursive characteristic (also called function algebra) of T'C"
functions is that they are obtained from 0, I, so, s1, | |, Bit, -, # under composition and
concatenation recursion on notation (here, I is the collection of all projection functions;
So, 1 are the binary successor functions; | | returns the length of the binary representation
of a number; Bit returns the bit at a specific position in the binary representation of a
number; and # is the smash function: x4ty = 21#/¥) [11, 10].

We will show that the TC" functions are exactly those ¥ 5-definable in VT'C", and
that the TC" relations are exactly those AP-definable in VT CP. First, we will prove a
recursive characteristic of TC® relations: they are precisely the closure of AC® relations
under Boolean and counting operations. This comes naturally from the definition of TC?
(i.e., using threshold circuits). Using this property, we show that the TC® relations are
strongly AP-definable in VTC®. Then we show a general result relating B definable
functions and strongly AP-definable relations: a function is X-definable in a bounded
theory 7 if and only if it is bounded, and its bitgraph is strongly AP-definable in 7.

The witnessing theorem for VT C®, which states that the B theorems of VTC? are
witnessed by TC® functions, follows from a more general phenomenon: it is straight-

forward to witness the ¥ theorems of a $F theory T if the vocabulary of T is “rich”
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enough. We will show that the vocabulary of VT'C® can be “enriched” by adding the
symbols for TC® functions, together with their ¥¥ defining axioms. At the same time,
we obtain a ¥ theory VTC' which is conservative over VTCY. Witnessing theorem for

VTC? will then follow by applying the general result for VTC .

1.3 RSUYV Isomorphism

The equivalence between first-order and second-order theory is made precise by the notion
of RSUV isomorphism [25] (see also [24]). A first-order theory 7; and a second-order
theory 7, are RSUV isomorphic if each can be interpreted in the other. Interpreting
7> in T; involves mapping 7T3’s strings (i.e., second-order objects) to 7;’s numbers, 7T5’s
numbers to 7;’s “small numbers”, and checking that the mapped axioms hold in the
first-order theory. Interpreting 7; in 7 is the reverse process. While the first direction
is often straightforward, the second direction is sometimes less obvious. One of our main
obstacles in proving RSUV isomorphism between VTC® and A%-CR is defining (string)
multiplication and proving its properties.

Defining string multiplication in V' (while proving that V! and S} are RSUV iso-
morphic [24, 25, 16]) is possible by using induction on ¥ formulas (i.e., formulas of the
form 3X < bg, where ¢ is a bounded formula with no string quantifier). This induction
scheme might not be available in VT'C?, hence defining multiplication and proving its
properties in weak theories such as VIT'C® does not appear straightforward to us. Here,
we have to formalize a number of “non-trivial” concepts in VTC’. We also adopt the
approach in [16], where multiplication is defined in a symmetric way, in order to simplify
the isomorphism proof. Note that in [20], the theories Cj,, and D} are shown RSUV
isomorphic. In particular, C3 and D? are RSUV isomorphic. Correspondence with the
authors of [20] shows that their proof of the RSUV isomorphism uses AP comprehension

aziom, which might not be provable in VT'C?, as we have discussed.
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1.4 Organization

In the next chapter, we will formally define TC® and FTC°. We will then translate
results in descriptive complexity into a second-order logic with the counting quantifier.
This enables us to prove properties of TC® and FTC®. In Chapter 3, we define the
theory VT'C?, and prove that it captures exactly TC®. Then, in Chapter 4 we will show
that VT'C® and A’-CR are RSUV isomorphic. Finally, Chapter 5 concludes the thesis

and discuss possible future research directions.



Chapter 2

The Class FO-Uniform TCV

In this chapter, we will formally define the classes FO-uniform TC® and FTC°. Non-
uniform TC" (respectively FTC") is the class of languages (respectively functions) that
are computable using families of polynomial-size, constant-depth threshold circuits. Uni-
form TC? and FTC" are defined similarly, with the restriction that the families of circuits
are uniform. From this definition, one is able to prove their various properties. These
proofs often involves manipulating uniform families of circuits (e.g., composing). While
this is possible, even with a very weak notion of uniformity like FO-uniformity, the for-
mal proofs may be tedious. Here, we will confine the issue of uniformity to only the
definition of TC®. The class FTC® will be defined in terms of TC?, and its properties
will be proved using the properties of TC’. By results from descriptive complexity [17],

we will be able to handle T'C® using its logical characteristics.

Since we will be dealing with both numbers and strings (e.g., inputs, outputs of a
functions computed by a family of circuits), it is convenient to work in second-order logics,
where the second-order objects can be interpreted as binary strings.! In this chapter only,
our second-order logic is augmented with the counting quantifier. This is a useful tool for

proving basic properties of the TCP relations. In fact, moving from descriptive complexity

'the second-order logic that we use here can also be regarded as a two-sorted logic
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to this augmented second-order logic is almost transparent, while manipulating relations
on numbers and strings in this logic is much easier than in descriptive complexity.

In the following sections, first, we recall concepts from descriptive complexity. Then,
we define FO-uniform TC" as a class of languages. The definition is naturally extended

to class of relations on binary strings. Finally, we will prove some important properties

of TC" and FTC.

2.1 Descriptive Complexity

In this part we will be dealing only with relational vocabularies of first-order logic, i.e.,
vocabularies which do not contain function symbols of arities > 0. For a first-order
language £, let STRUCT[L] denote the class of all £ structures. For a structure <7, let
||<7|| denote the universe of <. For each (non-empty) binary string X, let |X| denote

the length of X. First, consider the first-order vocabulary Lo, where
Lro=10,1, max;=,<,BIT,SUC, Z].
For each non-empty binary string X, denote by .#x the Lro-structure where
|- = {0,...,|X| =1}, maz” =|X|—1, BIT(i,z) iff the ith bit of x is 1,

7Z7% = {i < |X|: the i bit of X is 1},

and other symbols are interpreted naturally. Then, each Lrp-sentence ¢ defines a lan-
guage L(¢p) in the following way: L(¢p) is a set of binary strings whose associated struc-

tures satisfy . Formally,

L(p) ={X €{0,1}" : #x = o}.
The complexity class FO is the class of languages definable by some first-order sentences,

FO = {L: L = L(yp) for some Lrp-sentence ¢}.
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It has been shown [17] that this class is the same as a version of uniform AC°.

Also in [2, 17], an extension of first-order logic has been considered, in which a new
quantifier (namely, the counting quantifier 3¢ z) is added. Its meaning is that 3i yp(y)
is true if and only if there are exactly ¢ values of y which satisfy ¢. More precisely, by
Lro,count formulas we mean the formulas built from Lro together with the counting
quantifier in the usual way. The truth value of an Lrp coynr formula in a structure is
defined in the same manner as usually. Then, analogous to FO, let FO(COUNT) be the

class of languages definable by some Lzo counr sentences:
FO(COUNT) ={L : L = L(yp) for some Lrp counr-sentence p}.

This class has shown to be equal to FO-uniform TC", whose definition is given below.
An uniform version of TC? is a class of languages accepted by some uniform families
of polynomial-size constant-depth circuits with threshold gates (where all the gates have
unbounded fan-in). A family of circuits is FO-uniform if the members of the family can
be described using some first-order formulas. First, description of a circuit includes a
numbering of the gates, a specification of the type of each gate, and a specification of
the connections between gates. Hence, a threshold circuit can be seen as a structure in

the vocabulary

Lie = 10,1, maz,r;=,<,BIT,SUC, E* G},G\,G!, G2, I'],

ter

where r specifies the root (or output) of the circuit, E specifies the connections, G, Gy, G, Gy
specify the types of the gates (G.(g,v) means that v is the threshold value for gate g),
and [ specifies gates that contain constant 1.

Next, uniformly describing a family {C,,} of circuits by a set ® of formulas essentially
means that for each input length n, C, can be defined by ® in a Lrp-structure of size n.
Hence, ® can be seen as specifying a mapping from L ro-structures to L;.-structures. This
kind of mapping is generalized by the notion first-order query. Given two vocabularies

Ly and L. A first-order query is a mapping ¢ from STRUCT|[L,] to STRUCT|[L,] such
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that for an £; structure <7, the universe, constants and predicates of ¢(«7) are definable

by some £; formulas. A formal definition from [17] is as follows.

Definition 2.1 (First-Order Queries) Suppose L1, Ly are two vocabularies; Lo =
[c1,...,¢c;; Ry, ..., Ry], where R; has arity a;, for 1 <i <k. A query from STRUCT|L4]
to STRUCT|L,] is a mapping

¢ : STRUCT[L] — STRUCTI|L,),

such that for A € STRUCT|L:], # = q() can be specified by a number m € N and

(l+k+1) Ly formulas ¢, @1, ..., 01,01, .., Y as follows:
12 ={bell|™: o Eob)}, ¢ =be|Z|": o Egib), R ={be||": o | v;(0)},
where for each ;, there is an unique b € ||.Z||™ such that (D).

Now, for n > 1, let ., be the structure .y, where X is a string consisting of

n 0’s. Then a sequence of threshold circuits {C,} is FO-uniform if there is a query

q : STRUCT|[L o] — STRUCT|[L;.], such that for all n € N, ¢(.%,) = C,.

Definition 2.2 (The Class TCO) Let TCY denote the class of languages accepted by
FO-uniform families of constant-depth, polynomial-size unbounded fan-in threshold cir-

cuits.
Theorem 2.3 ([2, 17]) FO(COUNT) = TC".

Remark 2.4 (TC" As a Class of Relations) We have defined TC® as a class of
languages. If we assume some simple encoding scheme for tuples of binary strings and
numbers (as unary strings), then we can also view it as a class of relations on numbers
and strings. Details of the encoding are immaterial. For example, we can use new symbols
“%” to separates the string part from the number part, and “$” to separate arguments

in each part. First, we write down the unary strings for the numbers T (separated by $),
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then the symbol %, then the binary strings Y (separated by $). Thus, we obtain a string
of the form
$2:%...52. %1% ...5Y8$.

Then, a binary representation can be obtained by writing 00 for 0, 01 for 1, 10 for “$”,
and 11 for “%”. Let [z,Y] denote the binary string encoding the tuple (Z,Y). We say a
relation R(Z,Y) is in a complezity class if the associated language {[T,Y] : R(T,Y)} is

in that class. Thus, from now on, we will refer to TC® as a class of relations.

2.2 Second-Order Logic

In this part, we will give formal definition of the second-order logic that we are using.
The materials are mainly from [12], we also follow the convention set there. Consider an
extension of first-order logic, where there are two sorts of variables: the number variables
x,1, 2,...and set variables X,Y, Z, ..., whose intended values are finite set of numbers.

Formally, consider the vocabulary £% which extends the vocabulary of Peano Arithmetic:
‘C?él = [07 17 +7 ) | |; Ea Sa :17 :2]-

Here, | | is the symbol for a function from strings to numbers, the intended meaning of
| X| is 1 plus the largest element of X. The binary predicate € denotes set membership.
We will use the abbreviation X (¢) for ¢ € X. The equality symbols =' and =? are for
numbers and sets, respectively. We will write = for both =! and =?; the exact meaning
will be clear from the context. The other constant, function and predicate symbols have

their standard meanings.

2.2.1 Syntax and Semantics of Second-Order Logic

The syntax is similar to that of first-order logic. The differences come from the addition

of second-order terms. Consider a vocabulary £ extending £%. We will define £ terms
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and £ formulas. We will refer to them simply as terms or formulas, when the meaning

is clear from the context.

Definition 2.5 (Terms) The constants 0 and 1, and the number variables are number
terms. Set variables are set terms. If 5 are number terms, T are set terms, f is a
number function symbol, and G is a set function symbol, then f(35,T) is a number term
and G(5,T) is a set term (assuming that the arities of f and G match with the length of

5andT).

The £ formulas are also defined similarly to first-order logic, with the addition of
atomic formulas of the form T'(s) for any set term 7" and number term s, and set quan-

tifications.

Definition 2.6 (Formulas) Suppose that r,s are number terms, and T is a set term,
then r = s,r < s,T(s) are atomic formulas. Also, P(5,T) is an atomic formula, for
predicate symbol P, number terms 5 and set terms T (assuming the length of 5 and T
match with the arity of P). In addition, if ¢, are formulas, x a number variable, and T

a set variable, then (p A1), (e V1), (=), Bxe), (Vz), (3X¢) and (VX ¢) are formulas.

The bounded formulas dz < tp, Vo < tp are defined as usual, and 3X < tp, VX < tp
stand for IX(|X| < t A ), VX(|X]| <t D ¢), respectively. As in first-order logic, the
semantics of £% is given by structures and object assignments. Note that =! and =? are

true equality relations in any structure.

Definition 2.7 (Second-Order Structures) A structure M for L consists of

o Two non-empty sets Uy and Us: the universes for number and set objects, respec-

tively;

e FElements, functions and relations interpreting the function and predicate symbols

mn Uy and Us.
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Note that, in particular, there are (i) elements, functions and predicate in U; inter-
preting 0, 1, +, -, <; (ii) function | | : Uy — U, interpreting | |; and (iii) binary relation
eMC U, x U, interpreting €. The truth value of a formula in a structure under an object
assignment is as usual.

The standard structure N, has U; equals to N; U, the set of finite subsets of N; |5
is 0 if S = (), and 1 plus the largest member of S otherwise; and the other symbols get

their standard meaning.

2.2.2 Representing Relations on Numbers and Strings

First, we recall the string representations of finite subsets of N from [12]. Suppose S is a
non-empty finite subset of N, |S| =n,n > 1 (i.e., n — 1 is the largest element of S). Let
w(S) be the binary string

w(S) = S5(0)...5(n —2),

where S(i) = 1if i € S, and S(i) = 0 otherwise (w(S) is the empty string € if n = 1).
Then w(S) can be seen as a binary representation of S. The map w is a bijection between
the non-empty finite subsets of N and {0, 1}*. We will extend w so that w(()) = € (thus,
w will no longer be a bijection, but this will not create any problem). Since this mapping
is often obvious, we will use “set” and “string” interchangeably.

Next, suppose that ¢(%,Y) is a formula with all free variables indicated. Then ¢

represents the relation R of numbers and strings, where

R={(@w(S)) :N, E ¢@?S5)},

where w(S) means w(Sp), ..., w(S,), and n is the length of X.

Notation 2.8 Fiz a vocabulary £ which extends L. A formula ¢ is a 2P (L) formula if

it has only bounded number quantifiers. A LB(L) ME(L)) formula is a P (L) formula

preceded by a block of bounded existential (universal) string quantifiers, i.e., quantifiers
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of the form 3X <t (VX < t). If the block contains a single quantifier, the formula is
also called a single-$P (L) (single-11P(L)) formula. We will not mention L if it is clear
from the context. Also, ¥ formulas are those of the form 3Z¢(Z), where ¢ is $E. We
will also use gXP (gl1B) formulas to refer to those which are obtained from LF formulas
using the connectives A and V, bounded number quantifications and bounded existential

(universal) string quantification.?

The ©F Representation Theorem (Page 54 [12]) states that a relation is in AC? if
and only if it is represented by a ¥F formula. We will introduce the counting quantifier

for second-order logic, and prove a similar result for TC? relations.

2.2.3 Adding the Counting Quantifier to Second-Order Logic

Similar to the case of first-order logic, we can add the counting quantifier to second-order
logic. Let L3 copyp be L% together with a new quantifier 3s 2 < ¢. The intended
meaning of s x < tp(z) is that there are exactly s values of < t such that ¢(x) holds.
Formally, let ¢(z) be a formula which may have other free variables than x, and let ¢, s

be number terms not containing x. Then
ds & < to(x)

is a formula, which is true if and only if there are exactly s values of x < t such that
©(x) holds.

Without ambiguity, let N, be the standard model in 5124,00 unt- Let the definition of
a formula representing a relation as discussed in Section 2.2.2. Definition of X formula
extends by regarding the counting quantifier as a number quantifier. In particular, let

EOB COUNT formulas be those without string quantifiers, and all number quantifiers are

2The %8 formulas correspond to (in first-order logic) strict X? formulas, while g% formulas corre-
spond to X} formulas. Similar for 1? and gIT? formulas. Here, g stands for “general”.
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bounded. It should be straightforward that a relation is in TCY if it is represented by a

B,COUNT .
Xy formula. The converse is also true.

Theorem 2.9 (EE’COUNT Representation Theorem) A relation is in TC if and only

if it is represented by a EOB’COUNT formula.

Proof: The proof is similar to that of the X7 Representation Theorem in [12]. We have to
translate between Lro coynr sentences and EOB COUNT frmulas. Translating EOB COUNT
formulas into Lze, count sentence can be done as follows. For each tuple (z, 7), imagine
encoding it into a string Z = [Z, Y] as discussed in Remark 2.4. Now consider the relation
represented by a E(? COUNT formula ©(7,Y). Each string variable Y is encoded in a part
of Z, thus each atomic formula Yj(¢) in ¢ can be translated using appropriate atomic
formulas of the form Z(t'). Consequently, the relation can be defined by a Lro covnr
sentence.

Conversely, suppose that an Lrp coynr sentence 6 defines a relation R(Z,Y), then
we need to construct a EOB COUNT ormula ©(Z,Y) which represents R. Essentially, for
each bit Z(t), we need to check whether it belongs to the encoding of a string Y; or a
number z;. If ¢ belongs to the encoding of a number, then since numbers are coded as
unary strings, there is not much to be done. Otherwise, if ¢ belong to the encoding of a

string Yj, then Z(t) can be calculated from Y;(#'), for some appropriate ¢'. The formal

proof is as follows.

Sufficiency: Let R be the relation represented by a SN formula ¢(z,Y). With
a pairing function (such as (z,y) = (z +y)(z + y + 1) + =), we can assume that every
bounding term in ¢ is m = X|Y|+ Sz. Let Z = [7,Y]. Recall that according to the
encoding in Remark 2.4, the length of Z is 2(>" x; + > |Y|; + k + [ + 1), where k,[ are
the numbers of z;’s and Y}’s respectively. An Lrp, coynr sentence which defines R is of

the form

daq, ..., ax, my, ..., my[maz = 2(Za,~ —|—ij +k+1+1) A Locate(a,m) A ¢']
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where a; is the intended value of z; (1 < i < k), and m,; is the intended value of |Y}]
(1 < j <1). The formula Locate(a,m) specifies the exact position of the delimiters $, %
as in Remark 2.4. For example, % is encoded as two bits 11 at position 2s and 2s + 1,
where s = Y a; + k. The formula ¢’ is obtained from ¢ as follows. First, replace each
z; by a;, |Y;] by m; (1 < i <k, 1 <j <I). Let t be the term obtained from ¢ by
doing this. Then, each occurrence of Y;(t) is replaced by the formulas saying that at
the corresponding positions in Z, the bits properly encode Y;(t). In particular, since 1
is encoded as 01, Yj(t) is replaced by =Z(2(t' + s;)) A Z(2(t' + s;) + 1), where s; is the
offset of the encoding of Y; in Z. Last, each quantifier 3v < m (Vo < m, Is z < m

respectively) in ¢ is replaced by Jx (Vz, s z, respectively).

Necessity: Suppose the underlying language {[7,Y] : R(%,Y)} is defined by an Lo counr
sentence f. We translate 6 into an £ o yyp formula o(7, Y) so that ¢ represents R. Our
main concern is to translate the atomic formula of the form Z(¢). Recall that numbers
are coded as unary strings, and after we have concatenated the unary strings and binary
strings (together with the delimiters), 0 is replaced by 00, 1 is replaced by 01, etc. The

atomic formula Z(t) can be translated into a disjunction of the form

K-+ k I
\/ InDelimiter;(t) V \/ InNumber;(t) V \/ InString;(t).
i=0 i=1 j=1

First, InDelimiter(t) checks if ¢ belongs to the coding of any delimiter (there are k+1+1
of them), and outputs the appropriate value. In particular, InDelimiterq(t) checks if ¢ is
in the coding of % (i.e., 2(k+x1+...+x) <t < 2(k+z1+...+x)+2), and if so, outputs
TRUE (since % is coded by 11). For 1 <i < k, InDelimiter;(t) checks if ¢ is in the coding
of the delimiter $ for z; (i.e., 2(i—14+x +...+2;1) <t <2(i—14z1+...+3;1)+2),
and if so, outputs TRUE if ¢ is even (since $ is coded by 10). For k +1 < i < k + 1,

InDelimiter;(t) is defined similarly.

Next, InNumber;(t) checks if ¢ belongs to the part of the string Z that codes z;, and
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it is true only if ¢ is odd (since 1 is coded by 01). In particular,
InNumber;(t) = 2(i+x1+ ...+ xiy) <t <2(i+x1+...+2;)) ANI2(22+ 1 =1).

Similarly, InString;(t) checks if ¢ is in the part of Z that codes Y}, and if so, returns

Y;(t') if t is odd (recall that 1 is coded by 01), for appropriate ¢'. Formally,
InString;(t) = 2s <t < 2(s + |Y;]) AJz(t =22+ 1 AYj(z — 5)),

where 25 is the offset of the encoding of Y; in Z, i.e., s = k+j+ > z;+ V1| +...+]|Y;_1].
It remains to map the quantifiers in € to the quantifiers in ¢. This should be obvious.
The bounds for quantifiers in ¢ is 2(1+k+ 14+ > x; + > [Yj]). |
From Theorem 2.9, we are able to derive the closure of TC? relations under operations
which correspond to the Boolean connectives and the quantifiers (some of these may

subsume others). First, we define the operation corresponding to the counting quantifier.

Definition 2.10 (The Counting Operation) Let Q(i) be a relation which might con-
tain other parameters. The relation obtained from Q(i) by applying the counting operation
on i s

(#iQ) (K, J) iff k = [{i =i <j and Q(i)}].

Now, it is straightforward from Theorem 2.9 that TC is closed under Boolean,
bounded quantification and counting operations. (Bounded quantification operations can
be seen as a special case of the counting operation.) Note that the relations represented

by ¥ formulas are exactly AC® relations.

Theorem 2.11 (Structure of TC®) The class of TC® relations is the closure of AC°

relations under Boolean and counting operation. [

Corollary 2.12 The class of TC® relations is closed under bounded quantifications W
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We can have a simpler characterization of the TC relations. This will simplify our
proofs in later parts, especially when they are by induction on the structure of TC?

relations. Let atomic relations be the relations of the form
pE, [Y]) = q(@,|Y]), p(x, |Y]) < q(z,]Y]) and X (i),

for polynomials p,q with natural number coefficients. Then it is straightforward from
the 20" “9YN" Representation Theorem (Theorem 2.9) that the class of TC? relations is

the closure of these atomic relations under Boolean and counting operations.

Corollary 2.13 The class of TC® relations is the closure of atomic relations under

Boolean and counting operations. |

2.3 The Class FTC' of TC" Functions

Intuitively, FTC? is the class of number and string functions that can be computed
by an FO-uniform family of threshold circuits. Here, we define FTC? in terms of the
class TC®. The string functions in FTC? are polynomially bounded, with bitgraph in
TC?, and the number functions in FTC? are polynomially bounded, with graph in TC®.
Here, the arguments of the functions are encoded by the same method as discussed in

Remark 2.4. Formal definition is given below.

Definition 2.14 (The Class FTC') A string functions F(z,Y) is in FTC? if for some

polynomial p and TC® relation R,

F@Y)(i) & i <p |Y]) ARG,7,Y),
A number function f(Z,|Y]) is in FTC if for some polynomial p and TC® relation R,

f(@,Y]) =min z < p(z, |Y|)R(Z, Y, 2),

i.e., it is the least number z < p(T, |Y|) satisfying R(Z,Y,z), or 0 if there is no such z.
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We will now prove some basic properties of TC? functions. In particular, they can

be substituted for variables in TC" relations, and they are closed under composition.

Theorem 2.15 The class of TC relations is closed under substitution of TC® functions

for variables.

Proof: Let f(Z,[Y]) be a TC® number function, then its graph, z = f(,|Y]), is in
TCP. Consequently, substituting a TC® number function for a number variable in a
TC" relation clearly results in a TCP relation.

Next, consider the case of substitution of string functions for string variables. Corol-
lary 2.13 provides a recursive characteristics of TC" relations. We will prove by induction
on the formation of a TC? relation Q(Z, X, Z) that the relation R(Z,7, X,Y) is also in
TC, where

R, 7,X,Y) & QI X,F(7,y,X,Y)),

for string function F in FTC". For readability, we will ignore the variables 7, X.

The base case (@ is an atomic relation) is straightforward. Consider, for example,

QZ) & p(1Z)) =q(|Z]), and F@Y)(1) < 1 <r@[Y])AS(7Y),

for some polynomials p, ¢, 7 and TC" relation S. Then it is easy to obtain R(7,Y) (i.e.,
Q(F(y,Y))) from @, S and some atomic relations (we need to differentiate two cases: (i)
when |F(7,Y)| = 0, and (ii) when |F(7,Y)| > 0).

For the induction step, consider the non-trivial case of the counting operation. Sup-

pose Q(i, Z) is a TC" relation. Consider the relation obtained from Q by applying the

counting operation:

(#iQ)(k,j, Z) & k= [{i <j: Qi, 2)}].
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Suppose F(k,,7,Y) is in FTC". We need to show that R is in TC", where

R(k,5,3,Y) & (#iQ)k,4,5,Y,F(k 5,7,Y))
& k={i<j:QUF(kj7Y))}
& A<jh=INl={i<j:Q( F(k,j,5,Y))}
By the induction hypothesis, the relation | = |{i < j : Q(i, F(k,5,7,Y))}| is in TC".
Hence R(k,j,7,Y) is in TC". |
Corollary 2.16 A number function f(z,[Y]) is in FTC® if and only if it is equal to

|F(z,Y)| for some string function F in FTC".

Proof: First, let f(Z,Y) be a number function in FTC®, we construct a string function
F(z,Y) in FTC" so that f = |F|. Essentially, F(Z,Y) contains only one element, which
is f(Z,Y) — 1. Suppose that
f@,[Y]) =mnin z < p(7, |Y|)R(Z,Y, 2)
for some polynomial p and TC? relation R. Define
F@,Y)(i) < i+1<p@Y)ART,Y,i+1)AVz <i=R(Z,Y, 2).
By Theorem 2.11, Corollary 2.12 and Theorem 2.15, F(z,Y)(i) is a TC" relation. It is
clear that f(z,Y) = |F(z,Y)].
Conversely, let F(Z,Y) be a string function in FTC". Suppose that
F(z,Y)(i) e i<p@Y)ARG,7,Y),
where R is a TC" relation. Then
|[F(7,Y)| =min 2 < p(z,Y)Vi < p(7,Y)[R(i,Z,Y) Di < 2].
[ |
It is also immediate from Theorem 2.15 that the TC® functions are closed under

composition.

Corollary 2.17 The class FTC? is closed under composition. |



Chapter 3

The Theory VTCY

In this chapter, we will first present the second-order theory VT'C?, then show that it
characterizes precisely TC?, i.e., FTC" is exactly the class of ¥P-definable functions of
VTC?, and TC" relations are exactly AP-definable relations in VT'C". Lastly, we will
give an example of reasoning in VIT'C® by proving the Pigeon Hole Principle (PHP) in
VTC'. The theory VT C' is V? together with the NUMONES axiom, which ensures the
“counting ability”. The theory V°, though it has been considered in other works [26], is
first so named in [12]. Tt has been discussed in detail in [12]. In particular, it has been
shown that VO characterizes AC®. Thus NUMONES can be seen as a lift from AC" to
TC".

Showing that VT'C® characterizes FTC" involves showing that the XZ-definable func-
tions of VIT'C® are in FTC", and conversely, each X! theorem (recall the definition of
¥} formulas in Notation 2.8) of VT C® can be witnessed by a function in FTC. Similar
characterizations of complexity classes by logical theories often use the recursive char-
acterization of the function class (the so-called “function algebras”). In particular, the
first-order theories TTC" [11], R’ [19] and A8-CR [21] have been shown to characterize
TC using the fact that FTC® (as a class of functions on numbers) is the closure of

some initial functions (including multiplication) under composition and CRN (concate-

23
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nation recursion on notation). Here, we use the recursive characterization of the TC®
relations. One reason is that second-order theories often do not contain multiplication
for strings in the first place. Another reason is that, since FTC? is defined in terms of
TC°, proving properties of TC® functions eventually boils down to proving properties
of TC" relations. In short, to prove the first direction (i.e., that the TC" functions are
Y B_definable in VT'C®), we show that the TC" relations are strongly AP-definable in
VTC". Then we prove a general relationship between functions and their bitgraphs: a
function is ¥ P-definable in a bounded theory if and only if it is bounded, and its bitgraph

is strongly AP-definable in the theory.

The second direction (i.e., proving the witnessing theorem for VT'C®) requires, first
of all, the defining axioms for functions in FT'C®. These axioms are defined inductively
from AC° functions and numones (which witnesses the NUMONES axiom). We will
actually prove a more general result: if 7 is a 3¢ theory over a “rich” vocabulary L,

then its g>F theorems can be witnessed by functions in L.

Organization of the chapter is as follows. First, we recall the theory V° and intro-
duce VT'C". Then we show that the TC® functions are Y5-definable in VT'C® (Corol-
lary 3.17). Next, we will show that ©¥ theorems of VT C® are witnessed by FTC®
functions (Corollary 3.25). At the end of the chapter, we will show how to prove PHP

in VTCC.

3.1 The Theory VTC'

Recall the syntax and semantic of second-order logic presented in Section 2.2.1. The
theory V0 is defined as the universal closure of the following axioms: B1-B14, L1,
L2, SE (SE stands for string equality); and the X7 comprehension axiom scheme (LF
COMP). First, let ® be a set of formulas, then ® COMP is the set of all formulas of the
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form

X < yvz <y[X(2) & p(2)), (3.1)

where ¢ is a formula in ®, and X does not occur in ¢. When @ is the set of all £ (L)
formulas, we refer to ® COMP as ©F(L) COMP. Next, the axioms B1-B14 and L1,

L2, SE are as follows.

Blz+1#0 B8 (z<yAy<z)DdDz=y
B2z +1=y+1Dz=y B90+1=1
B3xz+0==x B100 <z
Baz+(y+1)=(x+y)+1 Bllz <yAy<zDzx <z
B52x-0=0 Bi12zx<yvy<uz
B6z-(y+1)=(x-y)+=x Bl3z<y+r<y+l1
B7Tr<z+y B14 x #0D> Jy(y+ 1 =1x)
L1 X(y) Dy < |X] L2y+1=|X|>X(y)

SEX =Y & [|[X|=|V|AVi <|X|(X(%)+ Y(i))]

Remark 3.1 From now on, when we mention a (second-order) theory in general, we

tacitly assume that it contains the axioms B1-B14, L1, L2 and SE.

Definition 3.2 (The Theory V° [12]) The theory V° is the universal closure of the

azioms B1-B14, L1, L2, SE, together with the ¥§ COMP axiom scheme.

The theory V® has been shown to characterize AC". It has also been shown [12]
that V° is conservative over IA\y. As a result, the functions which are definable in 1A,
can be used in V°. Furthermore, they can appear in the comprehension axiom scheme,
i.e., if we extend £% to the vocabulary £ which contains these symbols, and extend V?°
to contain their defining axioms, as well as replacing the 7 COMP axiom scheme by

the X5 (L) COMP induction scheme, then we obtain a conservative extension of V?.! In

!The issue of introducing new symbols will be dealt with later, in Section 3.3.1
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particular, we will assume that the pairing function (z,y) is in the language, where
2z,y) = (@ +y)(@+y+1)+ 20

The important property of this pairing function is that it is a injection from N x N into
N, and its inverse is easily computed. We will denote X ({z,y)) simply by X (z,y). This
provides a mechanism for coding multiple strings into an “array”. For example, suppose

that Y is the intended array, then its ith row can be retrieved by
YU() € Y(i.j).

In addition, let ® be a set of formula, then the number induction scheme for ® is the

set, of formula of the form

[0(0) AVx < z(p(7) D @(r +1))] D ¢(2),

for o € ®. In particular, the ©¥(£) (X2(£)) number induction scheme is the above
scheme when ® is the set of all X7 (L) (XP(L)) formulas. It has been shown [12] that
Y8 number induction is provable in V°.

The lift from AC" to TC" is powered by the axiom NUMONES. Essentially, this
axiom states that for each string X, there is a “counting array” Y whose ¢th row contains
an unique number, which is the number of bits in X up to (but not including) position

i. Formally, let o5 (X,Y) be the ©F formula expressing that Y is the counting array for
X:

e (X,Y) = Vi < X3 < [XY(, ) AY(0,0) AVi < [ X[V < |X]
(Y@ ) AX@) DY+ 1,7+ 1) A7) A=X(3E) DY (i +1,7))]

Then, NUMONES states that for each string X, there is a string Y such that oy (X,Y)
holds.

Definition 3.3 (The Axiom NUMONES) The aziom NUMONES is defined as¥X3Y <
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Definition 3.4 (The Theory VTC®) The theory VTC' is V° together with NUMONES.

It has been shown [13] that V is finitely axiomatizable. Therefore, VTC® is also

finitely axiomatizable.

Corollary 3.5 The theory VT C? is finitely aziomatizable. |

3.2 Definability of TC' Functions and Predicates

In this section, we will show that the TC® functions are Y5-definable in VTC. First,
we recall the definition of YP-definable functions. Then we introduce the notion of
“strong AP-definability” of relations in a theory, and show a relationship between Y-
definable functions and strongly AP-definable predicates of a bounded theory: the XP-
definable functions of a bounded theory are exactly those whose bitgraphs are bounded
and strongly AP-definable in the theory. Then we show that the TC® relations are
strongly AP-definable in VT CP. As a corollary, the TC® functions are LP-definable in

VTCY.

Definition 3.6 (X2-Definable Functions) A string function F(Z,Y) is ©2-definable
in a theory T if there is a X8 formula ©(Z,Y, Z) such that F(z,Y) = Z & o(x,Y,7),
and that T =VIVY 3 Zp(T,Y, Z).

A number function f(T,Y) is LB-definable in a theory T if there is a ©P formula

©(T,Y, 2) such that f(T,Y) = 2 & ¢(7,Y, 2), and that T = VzVY zp(T,Y, 2).

Definition 3.7 (X-Bit Definable Functions) A string function F(Z,Y) is LF-bit
definable in a theory T if there is a F formula of T ¢(Z,Y,Z) such that F(Z,Y)(i) &
[i <tAp(i,T,Y)],

A number function f(T,Y) is S-definable in a theory T if there is a string function
F which is X8 -bit definable in T such that T =VZVY f(T,Y) = |F(7,Y)|.
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Definition 3.8 (AP-Definable Relations) A relation R is AP-definable in a theory
T if there is a 8 formula ¢1 and a 1P formula ¢y such that they both represent R, and

that T F d)l < d)g.

We will now define the notion of strong AP-definability. Informally, a relation R is
strongly AP-definable in a theory T if R is AP-definable in 7, and furthermore 7 can
prove the existence of witnesses for membership in R. Notice that using the pairing

function (z,y), each 3P (T17%) formula is equivalent to a single-2? (IT7) formula.

Definition 3.9 (Strongly AB-Definable Relations) A relation R(Z,Y) is strongly
APB_definable in a theory T if there is a ©F formula 3Z < to(z,Y, Z) and a II? formula

VZ <t0(Z,Y,Z) (¢ and 0 are BB formulas), such that they both represent R, and that
TF3Z<tp®,Y,7) N7 <t0(7,Y, 7),
TEIW < (b, 0VT <b [[WH] <t A (oY, W) v -0z, Y, W)

Note that without loss of generality, we can assume that the 3 (TI{) formulas in the
definitions are single-XP (single-TTP). Tt is clear that if 7 admits the $F replacement rule
(Definition 4.10), then R is strongly AB-definable in 7 if and only if it is AP-definable
in 7. It follows from Lemma 4.11 that VT'C° admits Y8 replacement rule, and thus the

two notions coincide for VT'CY.

3.2.1 Bounded Theories and Parikh’s Theorem

Parikh’s Theorem has been generalized for second-order logic in [12]. Here, we need a
further generalization, where we consider a theory over vocabularies which may contain
string function symbols. It states that if a bounded theory T proves the existence of z in
J2¢(2,7,Y), for a bounded formula ¢, then T also proves that z can be bounded, i.e.,
T also proves 3z < tp(2,T,Y), for some number term ¢. The proof is identical to the

proof presented in [12], with the exception that the rules for introducing second-order



CHAPTER 3. THE THEORY VTC’ 20

quantifications (page 64 [12]) are extended to include string terms. First, we define the
concept of bounded theory. It is based on a property called monotone bounding property

[12], which is satisfied by all of the theories that we will consider.

Definition 3.10 (Monotone Bounding Property [12]) A theory T in a vocabulary
L has monotone bounding property if for all number terms r(a,7) and s(b,a,7), there is

a number term t(a,7) such that T F b < r(a,7) D s(b,a,7) < t(a,7).

Definition 3.11 (Bounded Theories) A formula is bounded if all of its quantifiers
(both number and string quantifiers) are bounded. A theory T is called a bounded theory

iof it has the monotone bounding property, and it can be axiomatized by bounded axioms.

Theorem 3.12 (Second-order Parikh Theorem [12]) Suppose that T is a bounded
theory, and ¢ is a bounded formula such that T + 3zp(T,Y,z). Then there is some

number term t such that T + 3z < t(Z,Y)p(T,Y, 2) |

The above theorem states a bound on the number variable z. We can also bound the

string variable as follows

Corollary 3.13 Suppose that T is a bounded theory, and ¢ is a bounded formula such
that T + 3Z¢(Z,Y,Z). Then there is some number term t such that T + 37 <
t@,Y)e(@,Y, Z)

Proof: Let 0(7,2,Y) = 37 < 2¢(7,Y,Z). Then 0 is a bounded formula, and T +
320(T, 2,Y). By Parikh’s Theorem, there is a number term ¢(Z,Y) such that 7 F 3z <
t0(7,2,Y). Thus T + 3Z < to(7,Y, Z). |

As a corollary to Corollary 3.13, if the string function F(%,Y) is ©8-definable in a
bounded theory 7T, then the number function |F(Z,Y)]| is also S-definable in 7. The
defining axiom for |F| is the prenex form of 37 < tp(Z,Y, Z) A 2 = | Z|, where ¢ is the

defining axiom for F', and ¢ is the bound on Z, as stated by Corollary 3.13.
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Corollary 3.14 Suppose that T is a bounded theory, and that F(T,Y) is a Y2 -definable

string function in T. Then the number function |F(Z,Y)| is also ©B-definable in T. W

3.2.2 YB-Definable Functions and Strongly AP-Definable Pred-

icates

We will now prove that a string function is -definable in a bounded theory 7 which
contains VU if its bitgraph is strongly AP-definable in 7.

Note that we can have a necessary and sufficient condition for a string function to be
Y B_definable in a bounded theory as follows. In Definition 3.9, membership in R(Z,Y) is
witnessed uniformly with respect to all number arguments (i.e., T) of R. We can restrict
this definition so that R(%,Y) is strongly AP-definable in T with respect to 7, where §
is a subset of 7, if membership in R is witnessed uniformly with respect to 7. Formally,

the second condition of Definition 3.9 is modified as
TEIW < B, OVF < b [[WE <t A (pz,Y, W) v -0z, YV, Wh)).

Then, if a predicate R is strongly AZ-definable in 7 then it is also strongly AZ-definable
in 7 with respect to each of its number arguments. Now, a stronger result than Lemma 3.15
(below) is that F'is X2-definable in a bounded theory 7 if and only if its bitgraph F()(4)
is strongly AP-definable in 7 with respect to i. However, we will not need this stronger

result in this thesis.

Lemma 3.15 Let T be a bounded theory which contains V°. Then a string function F

is Y8 -definable in T if it is bounded, and its bitgraph is strongly AB-definable in T.

Proof: Suppose that F is bounded, and the bitgraph of F' is strongly AP-definable in
T. W.lo.g., suppose that ¢ and @ are ¥F formulas, and r, s are some number terms (r

depends on Z, X, and s depends on i,7, X) such that

FE,X)(i) & i<rA3Z<sp(i,7,X,7Z) & i<rAVZ<s0(i,7,X,7)
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and

TE3Z <sp(i,7,X,72) < VZ < s0(i,7, X, Z), (3.2)

X,
TEIW < tb)Vi < bW < s A (0,7, X, W v =0(i,7, X, Wi)] (3.3)

Now Y = F(7,X) can be collected using ¥ COMP, checking for each i whether
o(i,7, X, W) or =0(i,Z, X, W) holds. The existence of these witnesses is guaranteed

by the existence of W in Equation 3.3. Formally,
Y| <rA Vi<r[Y(i) e o6,z X, Wi

As a result, 7 proves the existence of Y. The uniqueness of ¥ can be proved by ©F

induction. Let (7, X,Y) be

IW < t(r)Vi < r[[WH| < sA(o(i, 7, X, WH\WV=0(i, 7, X, WENAY (i) < (i, 7, X, W)].

Then F(zZ,X) = Y & (7,X,Y). Suppose Y',Y" are such that (z, X,Y’) and
Y(T, X, Y") hold. Then it is straightforward using X% induction that for i < r, Y'(i) <

Y"(i). Thus Y’ =Y. m

3.2.3 Definability of TC’ Functions and Predicates
Lemma 3.16 The relations in TC® are strongly AP-definable in VTC,

Proof: The proof is by induction on the formation of TC® relations. Recall from Theo-
rem 2.11 that TC® relations are obtained from AC” relations by applications of Boolean
and counting operations.

The base case is trivial, since AC? relations are represented by 2 formulas.

For the induction step, we consider the non-trivial case of the counting operation. Sup-
pose that the relation Q(i) (which may have other parameters) is strongly AP-definable
in VTC, i.c., there are ©F formulas ¢(i, Z) and 0(i, Z), and a term ¢ such that both
A7 < tp(i, Z) and VZ < (i, Z) represent (), and

VTC - 37 < tp(i, Z) <> VZ < t0(i, Z),
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VTC® - 3W < Vi < b [|[WH| <t A (@, W) v =0, W), (3.4)

where 7 = (b, t). We will present a $¥ formula v, (k, j) and a TI? formula (4, j) which
both represent (#Q)(k,j). Note that (#Q)(k,j) holds exactly when k is the number of
i’s which are < j and satisfy Q. Let ¢(j, W,U, V) be the formula stating that W is an
array of witnesses for either ¢ or —f, U contains the “flags” indicating whether ¢ or —f
is being witnessed, and V' counts the number of “flags” in U. Then (#Q)(k,j) holds if
there exist W, U, V" such that V' counts correctly (i.e., V'(j, k) holds), and (#Q)(k, j) also
holds if for all such W, U, V| V must count correctly. More precisely, let ¢)(j, W, U, V') be

Vi < WO <t A (p(i, W) v =0, W) A (UG) < o, WI)] A on(U,V).
Then it follows that (#Q)(k, j) is represented by both
Yk, j) & 3V < (4,5)30 < 33W < (4, ¢(5)) [, W, U, V) AV (4, k)],

and

va(k, j) & YV < (4, 5)VU < YW < (5,1(7)) [V (5, WU, V) D V (3, k)].

Next, we show that VT'C® proves that ¢y and v, are equivalent. The direction
U1(k, ) — bs(k,j) (uniqueness) can be shown in VTC as follows. Suppose that
W' U, V' and W", U", V" satisfy (5, W,U,V). Then by ©f number induction on ¢
we can show that U' = U”, hence V' = V". The other direction (existence) is as fol-
lows: The existence of W follows from Equation 3.4, U from ©f COMP, and V from
NUMONES.

It remains to show that the membership in (#Q) can be witnessed in VT'C?, i.e.,
VTC - INUIWYE, § < blign (k, 3, Wi, UF VI v =0y (k, 5, it o), v,
where

Spl(kaja W7 U7 V) <~ 7/)(]7W Ua V) A V(]a k)a Hl(kaja W7 U7 V) <~ 7/)(]7W Ua V) D) V(]a k)



CHAPTER 3. THE THEORY VTC’ 33

Again, existence of W follows from Equation 3.4 and ¥ COMP. Existence of U; is by
¥ COMP, and existence of V; follows from NUMONES axiom as well as ¥ COMP.
[ |

As a corollary, string functions in FTC? are ©¥-definable in VT C°. By Corollary 2.16

and Corollary 3.14, the number functions in FTC" are also ¥7-definable in VTC".

Corollary 3.17 The functions in FTC® are ©P-definable in VTCP. [

3.3 Witnessing in VTC'

First, we discuss the issue of introducing new function symbols to a bounded theory. We
will then prove a more general form of the witnessing theorem, from which we can derive

the witnessing theorem for VT CY.

3.3.1 Introducing New Function Symbols

Our goal is to show that adding $7-bit definable functions does not increase the express-

ing power of the language, in the following sense.

Theorem 3.18 (Translation Theorem) Let T be a bounded theory over L and con-
tain SF(L) COMP. Let T' result from T by adding a SF(L)-bit definable function F
(with its defining axiom), and SF (L") COMP instead of SF(L) COMP, where L' =

LU{F}. Then T is a conservative extension of T.

Proof: First, each ¥ (L') formula ¢’ is equivalent (in 77) to a F (L) formula ¢ (e.g.,
replace each occurrence of F'(Z, X)(i) by its defining axiom). Therefore, each model M
of T can be extended to a model M’ of 7' by interpreting F' according to its definition.

The fact that M’ satisfies ¢ (L') COMP follows from the previous observation. [
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3.3.2 Witnessing Theorems

Our goal is to prove a witnessing theorem for VT'C’: for every theorem 3Z¢(Z,Y, Z) of
VTC, where ¢ is a £ formula, there is a TC® function F such that ¢(z,Y, F(Z,Y))
holds in the conservative extension of VI'C®, which is obtained from VTC® by adding
the proper functions symbols and their defining axioms. We will prove a more general
theorem, which entails the desired result for VTCP.

In order to state a witnessing theorem for a theory 7, i.e., that some class of theorems
of T can be witnessed by functions in a class C, clearly 7 must be be able to define
functions in C. Here, we will start with the assumption that the vocabulary of 7 already
contains symbols for all functions in C, and that 7 already contains their defining axioms.
We make this precise in the concept of “a vocabulary is closed under bitgraph expansion

in a theory” below.

Definition 3.19 Suppose that L is a vocabulary extending L%, and T is a theory over
L. Then L is said to be closed under bitgraph expansion in T if (i) for any L number
term t(z,Y), and any SF(L) formula p(i,7,Y), there is a string function symbol Fy,
in L such that T = Vi F,,(Z,Y)(i) < [i < tZY) A ¢(i,7,Y)]; and (ii) for each string

function symbol F in L, there is a number function symbol f in L such that T & f = |F|.

A theory is ¥F if it is axiomatizable by ¥F axioms. First, we will prove that the
existence of Y in any theorem of the form 3Y ¢(Y) (where ¢ is ©F) of a ¥ theory T can
be witnessed by a function of 7. From this result, we can get the witnessing theorem for
VTC (Corollary 3.25). Then, we will show the same result, but in the case where ¢ is

a guP formula.

Theorem 3.20 (X} Witnessing Theorem) Suppose that T is a 3§ theory over the
vocabulary L which is closed under bitgraph expansion in T. Then for each ¥} theorem
VavY3Zo(Z,Y,Z) of T (where ¢ is SE(L)), there is a string function symbol F in L
such that T = VIVY p(z,Y, F(7,Y)).
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Proof: The proof is similar to the proof of the Witnessing Theorem for V° [12], and
is by induction on the length of the anchored LK?-7 proof (i.e., the LK?* proof where
axioms of T can be used) of the theorem of 7. For simplicity, we will concern only with
single-X1 theorem of 7. First, note that by the hypothesis, £ is closed under bitgraph

expansion in 7, thus each string £ term 7" actually denotes a string function in L.

Remark 3.21 For each string L term T, there is a string function symbol F' in L such
that THEF =T.

Suppose that 3Z¢(7,Y, Z) is a theorem of T, where ¢ is ©. Let 7 be an anchored
LK*-T proof of — 3Zp(%,Y, Z), then every formula in 7 is either ¥ or single-X}. Thus

sequents in 7 have the form

for m,n > 0; and ¢;, ¢; and the formulas in ', A are XF. We will prove by induction on
the depth of S in 7 that there are function symbols Fi,..., F,, in £ such that 7 proves

S', where

SI: d)l(ﬁl)a"'a(ﬁm(ﬁm)alx—>Fawl(Fl(avavB))v'"7¢R(Fn(avaag))a (36)

where a, @ are the free variables appearing in S. The case where S is an axiom of T is
trivial. Other cases are as follows.

Case I (String 3 right): Suppose that S is the bottom sequent of the inference

A —T,p(T)

)

A —T,3FYp(Y)
where ¢ is a 2 formula. By Remark 3.21, there is a string function F' in £ such that
T = F =T. Therefore, the witnessing function for ¥ can be taken as F'. Note that if
some free variables are eliminated due to the replacement of T, we can substitute the

constants 0 or () for their values in the functions Fy’s.
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Case II (String 3 left): No new function is needed.

Case IIT (Number 3 right and V left): No new function is needed. Again, if some
free variables are eliminated due to the replacement of 1, we can substitute the constants
0 or @ for their values in the functions Fj’s.

Case IV (Number 3 left and number V right): We consider number 3 left, since

number V right is similar. Suppose that S is the bottom sequent of the inference

S b<tAp®),A—T

S  dr<tp(r),A —T

where ¢ is a ¥ formula, and b does not appear in S. The witnessing functions for S
are obtained from that of S; by replacing the free variable b by the following function
g(@,a) = min b < te(b). Note that there is a string function G in £ such that 7
Vi G(a,@)(i) <> [i <t AVj <i-p(i)]. Then g = |G| is a symbol in £. By Remark 3.21
and the induction hypothesis, there are function symbols in £ that witness S.

Case Va (Cut 2P formulas): Suppose that S is the bottom sequent of the inference

81 82 A—>F,g0 A,g0—>F

b

S A—T

where ¢ is a ¥ formula. Let F;’s and F}’s be the witnessing functions for ' in S; and

S, respectively. Then the witnessing function F}; for § can be taken as

F;()(i) < (= AF; () V (o A FFO(0)]-

Note that F}’s are in £, and 7 contains their defining axioms.

Case Vb (Cut X} formulas): Suppose that S is the bottom sequent of the inference

S S A—D,AVeY) AIVeY)—T

S A—T

where ¢ is a ¥ formula. By the induction hypothesis, there is a witnessing function G

for ¢ in §;. Also, the witnessing functions in S, has one more argument than those in
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S1and S. Let Fj1 and Ff‘(ﬁ) be the witnessing functions for I' in §; and S, respectively.

The witnessing functions for & can be defined as

E;()() < [(=2(GO) AF;()(0) V ((G() A FF(GO)(@))]-

Other cases: Other cases, including A, V —, and structural rules, are trivial. [
We can generalize further to consider the case where ¢ is a ¢©P formula. This
theorem will be needed in the next chapter, when we prove that VT'C® can interpret the

A% comprehension rule.

Corollary 3.22 (¢Xf Witnessing Theorem) Suppose that T is a 3§ theory over the
vocabulary L which is closed under bitgraph expansion in T . Then for each theorem of
T of the form VZVY 3Zp(T,Y, Z), where @ is g8, there is a string function symbol F
in L such that T = VZVY o(7,Y, F(7,Y)).

Proof: It suffices to show that if 7+ Qx, < ©,37,...Qz,, < t,3Z,0(%,Z), where
0 is X8, then there are functions Fy,..., F, in T such that T F Qz; < t;...Qz, <
tm0(T, F1(x1), ..., Fr(z1, ..o Tm))-

The proof of the above claim is by induction on m. The base case and the induction

step both follow from Theorem 3.20. [ |

3.3.3 Witnessing Theorem for VTC"

First, we will define a conservative extension of VI C® by adding symbols for TC°
functions, and their defining axioms. Hence, the witnessing theorem for VT'C” can be
stated as a corollary of Theorem 3.20.

The vocabulary of VIT'C? will be extended to a vocabulary L., and VT C® will be
extended to a o theory WO, so that VITC. is a conservative extension of VTC?,

and L is closed under bitgraph expansion in VTC' (Definition 3.19). First, we define
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the number function numones(X, i) as follows.

numones(X,0) =0
X (i) D numones(X,i+ 1) = numones(X,i)+ 1

-X(1) D numones(X,i+ 1) = numones(X,i).

Let Lo = L%, £1 = L% U {numones}. For n > 1, L, is built from £, by adding a
string function symbol F} , and a number function symbol f; , for each pair (¢, ), where
t(z,Y) is a L, number term, and (i,7,Y) a XF(L,) formula (all free variables in ¢ and
¢ have been indicated).

Now, let Lo, = U,59Ln- Let T be the theory obtained from V° by replacing ¥
COMP by S (L) COMP, the defining axioms for numones above, and for each symbols

F,, and f;,, we have the defining axioms
ViF,,(Z,Y)(i) < [i <tAp(i,7,Y)] and f,,(Z,Y) =|F,(@Y)|

It follows from Theorem 3.18, and from the fact that NUMONES is provable using

YB(L,) COMP, that T, is a conservative extension of VTCP.
Lemma 3.23 The theory Ty, is conservative over VTCP.

Proof: Let 7, be the extension of VO, where ©F COMP is replaced by ©F(L,) COMP,
and the defining axioms for symbols in £, are added. For n > 1, by Theorem 3.18, 7,1
is a conservative extension of 7,. It remains to show that 7; is a conservative extension
of VTC®.

It is obvious that 77 is an extension of VT'CY. To show that it 77 is conservative over
VTC?, it suffices to show that VT C’ + numones (i.e., VIC® together with numones
and its defining axioms) proves XF(£,) COMP. In particular, we will show by structural
induction on X8(L;) formula ¢ that VIC® + numones - 37 < bVi < b[Z(i) < o(i)).

For the base case where ¢ is an atomic formula containing numones, Z can be defined

from the “counting array” Y in NUMONES (see Definition 3.3). For the induction step,
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consider the interesting case where ¢ = Vj < t0(i, j) (other free variables are omitted).
By the induction hypothesis, there exists W such that Vi, j < b[W (i, j) <> 0(4, j)]. Now,
Z is defined from W by Vi < b [Z(i) <> Vj < tW (i, 7)]. Other cases are straightforward,
or handled similarly. |

It can be seen that the vocabulary L, is so rich that X5 (L,) COMP is redundant in
Teo. In fact, let VIC' be T without the axiom scheme YB3 (Ls) COMP. Then VTC'
is equivalent to 7., and thus conservative over VT'C’.

Next, we show that the function symbols in L., stand for TC® functions.
Lemma 3.24 The functions in Lo, are in FTCC.

Proof: The proof is by induction on n that the symbols in £, stand for functions in
FTC’. The base case is trivial. The induction step follows from definition of FTC?
(Definition 2.14), Theorem 2.15, and Corollary 2.16. [ |

Now, as a corollary of Theorem 3.20, we have the witnessing theorem for VT'C". For
each function symbol F' in L, let AX (F) be the defining axiom of F in VTC'. Note
that this involves only a finite number of function symbols (which are used in defining

F), together with their defining axioms.

Corollary 3.25 (Witnessing Theorem for VT C®) Suppose VIC® - 3Zp(z,Y, Z),
where ¢ is a X formula. Then there is a string function F(%,Y) in Lo such that

VTC® + AX (F) - o(z,Y,F(T,Y)). u

3.4 An Example: Proving Pigeon Hole Principle in

vTC?

We give an example of reasoning in VT C?, by showing how to prove the Pigeon Hole
Principle (PHP). The PHP states that for any mapping from a set of @ numbers to a set

of (& — 1) numbers, there must be 2 numbers in the domain that have the same image.
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In the following definition, the mapping is represented as a set of pairs of pre-images and

images.
Theorem 3.26 Let PHP be the following sentence:

VavVX [Vi <adj <aX(i,j) DO Fj <adiy <adipg < iy (X (41,75) A X(ia,7))]-
Then VTC® + PHP.

Proving PHP involves formalizing a number of concepts, such as set union, total
number of bits in an array, etc. These functions will be easily seen to be X2-definable in
VTC". Hence, these symbols can appear in the £ COMP axiom scheme. In particular,
we can apply (number) induction on $F formulas in the extended vocabulary. Indeed, we
will prove PHP in a conservative extension of VIT'C?. Recall the definition of numones
on page 38. Other functions are as follows.

Bounded union of 2 sets: Union(b, X,Y)(i) <> i <bA (X (i) VY (7)).
Bounded union of a number of sets (as rows in an array):
UnionRows(a,b, Z)(i) + i < b A 3j < aZVl(4).
Total number of bits in an array: totNumones(0,b,7) =0
totNumones(a + 1,b, Z) = totNumones(a, b, Z) + numones(Z%, b).

Before proving Theorem 3.26, we prove the following lemmas. First, we prove that

the number of bits in the union of two sets is not greater than the sum of the numbers

of bits in each set.
Lemma 3.27 VTC® - numones(Union(b, X,Y),b) < numones(X,b) + numones(Y,b).

Proof: Trivial by induction on b. [
Next, we show that the above result also holds when we take the union of the rows

in an array.

Lemma 3.28 VTC? - numones(UnionRows(a, b, Z),b) < totNumones(a,b, Z).
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Proof: The statement is in ©¥. Therefore we can prove it using induction on a. The base
case is trivial. Consider the induction step. It is obvious that UnionRows(a + 1,b, Z) =

Union(b, UnionRows(a, b, Z), Z19). We have

numones(UnionRows(a + 1,b,Z), b) = numones(Union(b, UnionRows(a,b, Z), Z'™), b)
< numones(UnionRows(a,b, Z), b) + numones(Z1, b)
< totNumones(a,b, Z) + numones(Z'“, b)

= totNumones(a+ 1,b, Z)

Lemma 3.29 VTC’ \-Vj < a numones(ZV,b) <k O totNumones(a,b,”7) < ak.

Proof: The lemma is easily proved by induction on a. [
Proof: (of Theorem 3.26) Let Z be the transpose of X, i.e., Vj < aVi < a [ZV)(i) <
XU(5)]. (Z exists by B8 COMP.) The conclusion holds if some rows ZU! of Z contain at
least two values iy, iy (i.e., both ZVl(i;) and ZUl(i,) hold). We prove this by contradiction.
Suppose that Vj < a numones(ZU!, a+1) < 1. By Lemma 3.29, totNumones(a,a+1, Z) <
a. By Lemma 3.28, numones(UnionRows(a,a+1,7Z),a+ 1) < a. However, it is obvious
that Vi < a UnionRows(a,a + 1,Z)(i). By a simple induction argument, this implies

numones(UnionRows(a,a + 1,7Z),a+ 1) = a + 1, a contradiction. |



Chapter 4

RSUYV Isomorphism between VTC'
and A?-CR

In this chapter we will show the RSUV isomorphism between VT'C? and the first-order
theory AS-CR. [21]. From this isomorphism and the results in [21], we have the following

implication from the possible collapse of V! to VT'C°.
Corollary 4.1 [f VTC® = V! then NP is contained in non-uniform TCP. |

From this isomorphism, it also follows that AY — CR = A’ — CR,;, for some constant
i. The reason is that, A’-CR is finitely axiomatizable, since VT'C" is (Corollary 3.5).
Let i be large enough such that proving the finitely many axioms of A’-CR requires at
most i applications of the AP comprehension rule. Then A’ — CR = A® — CR,;. This is

a positive answer to an open question in [21].
Corollary 4.2 For some constant i, A} — CR = A% — CR,;. [

Proving this isomorphism consists of interpreting VTC" in A%-CR. and vice versa.
Interpreting VTC in A’-CR is straightforward, while the other direction is more com-
plicated, involving defining the multiplication function for strings, proving its basic prop-

erties; and interpreting BASIC axioms, the axiom scheme Open-LIND, and the AP com-

42
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prehension rule. In the following sections, we will first present the theory A%-CR, then

show a bi-interpretation between VTC° and A’-CR.

4.1 The Theory A}-CR

First, recall that the language of Bounded Arithmetic [4] is
‘CBA = [07 57 +, L%xJa |5U|7l"#y, S]

The intended meaning of the symbols are as follows: S is the successor function, |z
is the length of the binary representation of z, z#y = 2%l and other symbols have
standard meanings. The language ﬁAg o of AL-CR is L, together with — and MSP
as in [25]. Here, MSP(x,i) is the most significant part of x, ignoring the last 7 bits:
MSP(z,i) = |z/2']; and if z < y then x — y = 0, otherwise, x — y = x — y. In defining
Ab-CR, the binary predicate Bit is also used. Here Bit(i,z) = 1 if and only if the ith
bit in the binary representation of z is 1. !

The set BASIC' of basic axioms for function symbols in Lxp g consists of 32 axioms
for function symbols in Lp4 (also called BASIC in [4]), together with the defining axioms
for the new symbols — and MSP. The theory A’-CR is axiomatized by BASIC, the
axiom scheme Open-LIND, and the A’ bit-comprehension rule (the last two will be
defined below).

The axiom scheme Open-LIND can be seen as a scheme of induction on “small”

numbers (i.e., |z]) for quantifier-free formulas. Formally, Open-LIND is

[p(0) AVz(p(x) D @(Sx))] D Vae(|z]), (4.1)

where ¢ is an open formula. The A% bit-comprehension rule is defined as follows. First,

given a formula ¢, the comprehension axiom for it, denoted by COMP,,, is the formula

Jz < 2195 < |a|[Bit(i, z) < ©(i)].

Note that in [21], the order of the arguments of Bit is different. Here, we follow the convention in
[12].
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Then, the A% bit-comprehension rule is the following inference rule:

(i) <> (i)
COMP ,(t)

where ¢ is a X% formula, and 1 is a I1Y formula. Note that there is no side formula in

the rule, and thus it is apparently weaker than the A’ comprehension axiom scheme:
Vi(p(i) <> ¢(i)) D COMP (1)

(where ¢, 1 are £t formulas). Note also that here, 3¢ and TI formulas can be translated

to g©F and ¢II? formulas, respectively.

4.2 Interpreting VTC' in A’-CR

We will show that formulas of VT'C? can be translated into formulas of A%-CR, such
that theorems of VT C? are translated into theorems of A’-CR. This can be done using
the model-theoretic approach as follows [22, Section 5.5]. Given a model N of A’-CR,
let M = (Mj, My), where My = N and M; = {|z| : © € N'}. Moreover, in M, the
constants and function symbols 0,1,+, -, | | are interpreted as in N, where now +, - are
restricted to M;. The predicate € is interpreted as x € Y iff Bit(x,Y) = 1. Then, it
suffices to show that M is a model of VTCP.

First, it is straightforward to show that the axioms B1-B14, L1-L2, and SE (page 25)
hold in M. Second, the X% comprehension scheme holds in M because A% bit-comprehension
rule holds in /. Next, the axiom NUMONES holds in M as seen from a proof of how to
define numones from multiplication. In particular, suppose that z, ;... is the binary
representation of z. Let ' = x,, 10...0x, 20...0x, where every block of 0’s has length
(14 |n|). Let 2 =10...010...01 (n 1’s, and each block of 0’s has length 1 + |n|). It is

straightforward that the counting array for x can be extracted from the product z’.z.
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4.3 Interpreting A’-CR in VTC'

Let M = (M;, Ms) be a model of VT C®. We show that A’-CR is interpretable in M by
showing that the structure A/, whose universe is M, is a model of A’-CR. This involves
showing that the symbols of L ¢ can be interpreted in N (so the BASIC axioms are
satisfied), and that the axiom Open-LIND as well as the A® bit-comprehension rule hold
in V.

Recall the Open-LIND axiom scheme in Equation 4.1. It is straightforward to show

that it is equivalent to the following axiom

[0(0) AV < |z[(p(2) D @ (S2))] D @(l2]),

for open formula . A direct translation of the latter is the ©F number induction scheme

(page 26), which is provable in V°.

For defining symbols of £p ¢, observe that the theory A'! defined in [16] is equivalent
to V1. Bi-interpretation between A' and S has been carried out in detail in [16]. In
particular, interpretation of functions symbols of S in A' can be found there. Although
A (equivalently V') is apparently more powerful than VT'C®, much of this interpretation
can be done in VT'C®. On the other hand, there are techniques employed in [16] that do
not seem to apply for VI'C®. In particular, the proof of associativity of addition, and
the way iterated addition is defined, require some modification. Note that the remaining

symbols in Lxpcr (i.e., =, MSP, Bit) can be easily defined in VT'C" (in fact, in V?).

In the following parts, we will first highlight the necessary modifications of the inter-
pretation of Lp4 functions symbols from [16]; these include proving addition associativity
(we actually show that it holds in V?), defining multiplication for strings, and proving
the distributive laws. Then we will show that VTC" admits the A’ bit-comprehension

rule.
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4.3.1 Proving Addition Associativity in V°

String addition is defined using the conventional method. Suppose ¢, (i, X,Y’) represents
the carry at bit position ¢ when adding X and Y. Then the ith bit of the sum X + YV is
exactly

X(@) @Y (i) © (i, X,Y).
Definition 4.3 (String Addition) Let ¢ (i, X,Y) be the ©F formula
A <iX(GY)AY(G)AVI<i(j<IDX()eY()). (4.2)
Then string addition is defined as follows:
(X +Y)(0) < [ < [X[+ YDA X @Y (@) © (i, X, V)]

By this definition, string addition is ¥P-definable in V°. Moreover, we will show that

V? is powerful enough for proving the associativity of string addition.

Lemma 4.4 (Associativity of String Addition) V° proves the associativity of string
addition, i.e.,

VIEX+(Y+2)=(X+Y)+ 2.
Proof: We will show that the ith bits of LHS and RHS are the same, i.e.,
(X+Y +2)0) < (X+Y)+2)(0).
This is equivalent to (recall that ¢, (i, X,Y’) expresses the carry bit, cf. Equation 4.2)
XDV +2)0) Do (i, XY +2) & (X+Y)i)® Z() ® o (i, X +Y, 7). (4.3)

By expanding (Y + Z)(i) on the LHS, and (X + Y)(i) on the RHS, we can see that
the X(i),Y (i), Z(i) components on both sides are the same. Thus, we can simplify

Equation 4.3. Formally,

Y+ 2)(i) & Y(i) @ Z(i) @ v, (i,Y, Z),

(X+Y)(0) X))@ Y (i) D e,(i, X,Y).
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Therefore, Equation 4.3 is equivalent to
90+(7:7Y7 Z) 57 90+(i7X7Y + Z) < S0+(i7X7 Y) @ 90+(7’7X + KZ)

In order to prove the above statement, we will prove a stronger result. Let a;, b;, ¢;
and d; denote ¢, (3,Y, 7)), o+ (1, X, Y+ 72), o (i, X,Y) and (i, X +Y, Z) respectively.

We will show by induction on i that
(a; Nb; <> c; Ndy) A (a; Vb < ¢; V d;).
The base case is trivial, since
VO =ag A =bg A =eg A —dy.

The induction step follows from the recursive evaluation of a; b;, ¢; and d;:

aipr = [Y@O)AZ@]VIY (@)@ Z(2) Aai,
bivi = [XOAY@)@ZE)Da)]VIXE) DY () D Z(i) D a;) Aby,
G = [X@OAY@]VIXE) @Y (D) Aci,
disi = [ZOAXGOSYH) @) VI(XE®YE) D Z3E) D) Ady

4.3.2 Defining Multiplication in VTCY

We will now define multiplication for the strings of M, and prove its basic properties.
In [16], a definition of string multiplication is given in such a way that commutativity
follows immediately. In this definition, first, a matrix X x Y is defined symmetrically
with respect to the two arguments X,Y (i.e., X x Y =Y x X). Then, the product
X .Y is obtained by iteratively adding the rows of X x Y. It can be seen that the
second step is possible thanks to ¥ number induction (page 26), which might not be

in VI C°. Therefore another method is required. From the complexity point of view,
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adding n strings, each of length m, is possible in TC® [9, 2, 3]. We will show that there
is indeed an uniform way of doing this, i.e., it can be carried out in the theory VTC".
The method that we use is adapted from [3], and is based on the fact that counting the
number of bits in a string is available in VT'C°.

In the following parts, we will formalize various concepts in VT'C® by introducing
symbols for functions that are Y P-definable in VTC’. More precisely, suppose that
we extend VT'C? by adding these new symbols for these functions, together with their
defining axioms, then the new theory is conservative over VIT'C’. We will therefore
tacitly assume that the language of VT'CP contains these symbols, together with their

defining axioms.

Adding n Strings

First, we will show that simultaneously counting numbers of bits in every column of a
matrix is possible in VT'C’. Formally, suppose that X is a matrix of size n x m (n rows,
each of length < m), let X' be the transpose of X. Then VTC" proves the existence of

Z, where for every i < m, the unique j such that Zl(5) is the number of bits in X'
VTC - 37 < (m,n)Vi < m¥Yj < n[Z()) < j = numones(X" n)]. (4.4)

Thus, in VTC" we can define the string function SimulCountCols(n, m, X), where
the ith row of SimulCountCols(n, m,X) contains only the number of bits in column i of
X (i.e., numones(X' n)), for i < m. Now, the sum of n rows of an array X will be
defined as a function of SimulCountCols(n, m, X) (where m is the bound on the lengths
of the rows in X). We will need the number functions [z/y], |z| and 2¢ (for y < |al),
and the relation Bit(i,z) (page 43). These functions and relation are definable in IA,
and thus also in VY [12].

Suppose that we have n strings with length bounded by m, which are represented as

the rows of a matrix X. Let Z = SimulCountCols(n, m, X). Let first(X) be the smallest
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z such that X (z) holds. (We will often use first(X) to get the unique z such that X (z)
holds.) For convenience, let ¢; be the unique z such that Z(2), ie., ¢; = first(Z").

Then ¢; < n, for 0 < i < m. Intuitively,

n—1 m—1

ZX[i] = Z 2'c;,

i=0 i=0
where the RHS should be seen as a string S of length < m + |n|. We are going to show
the existence of such string S.

We will exhibit two strings L and H such that S = L+ H. First, divide the sequence
Cm—1,---,Co into 2k blocks, each of length [ (I, %k will be made precise later). Suppose
that the blocks are numbered with 0,. .., (2k —1), i.e., the block 7 is ¢(j11)i-1, - . ., ¢y. The
number [ will be small enough so that for each block ¢, the following sum is a number
< 2%,

-1
bi = Z 2jCil+j. (45)
j=0

Here, the LHS should be seen as a number function of Z,il, and [, i.e., b; = f(Z,il,1) for
some number function f. Then, informally, L is the sum of the blocks 0,2, ..., and H is

the sum of the other blocks, i.e.,
k—1 k—1
L = Z 22zlb2i, H = Z 2(2l+1)lb2i+1.
i=0 i=0

Since b; < 2%, L is simply the the concatenation of by, bs, ..., and similarly, H is the
concatenation of by, bs, ... (we may need to pad b;’s with the right number of 0’s). Thus,
L, H are YP-definable in VTC".

Formally, we define a number function f(Z,4,1) so that in Equation 4.5, b; = f(Z,il,1).

This function is defined only when [ < |al, for some a. We need
-1
FXi ) =) 2.
=0

The value of f(X,4,0) is the number of bits in a “long” string Y, which contains: 1

substring of ¢; 1’s; 2 substrings, each of ¢;;q 1’s, ..., 27! substrings, each of ¢; ;1 1s.
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Constructing the string Y is obvious. Note that the bound on ¢; can also taken to be

b=|X]|. Let Y be such that
Vi < IVp < 2¥g < b [Y((29 = 1)b+pb+q) < q < ¢j].
Then f(Z,i,1) is defined as
f(Z,i,7) = numones(Y, 2'b).
It is easy to prove the basic properties of f:
£(Z,i,0) = first(ZD),  f(Z,i,1+1) = f(Z,i,0) + 2 first (21, f(Z,i,1) < b2,

where b is such that first(ZUl) < b for all j.
Now, let [ = 1+ |n|, k = [m/2l], b; = f(Z,il,]). Then L and H can be defined using

Y8 comprehension as follows:
Vi < KYj < 2[L(201 + §) ¢ Bit(j,bs)], Vi < kY5 < 2[H((2i + 1)l + 5) 4> Bit(j, bair)]-

Let Accumulate(n, m, Z) denote the value of the string S that we have just proved to
exist. (Thus, intuitively,

m—1
Accumulate(n,m, Z) = Z 2,

i=0
where ¢; is the unique number present in ZM, and ¢; < n for 0 < i < m.) It follows that
Accumulate is ©P-definable in VTC®. Now, let Sum(n,m, X) denote the sum of the first
n rows of X (where the length of each row is bounded by m). Then Sum(n,m,X) =

Accumulate(n,m, Z), i.e.,
Sum(n,m, X) = Accumulate(n, m, SimulCountCols(n, m, X)).

Therefore, Sum(n, m, X) is ©P-definable in VTC".
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A Symmetric Definition of Multiplication

The conventional algorithm for multiplying X and Y is to write down a matrix X ® Y,
where each row corresponds to a bit in Y, and is either 0 or a copy of X padded with
the right number of 0’s. Then, the product X -Y is the sum of the rows of this matrix.
The disadvantage of this definition is that it seems difficult (in VT'C") to prove that
X Y=Y X.

We will modify this algorithm by using a different matrix X x Y, which is symmetric
with respect to X and YV (i.e., X xY =Y x X), and which gives the same results in the
standard structure N,. In the usual definition, when X (i) = Y (j) = 1, a bit is present at
position ¢ + j in row j of the matrix X ® Y (i.e., we record 2™/ on row j of X ® Y). For
X x Y, instead of recording 2°*7 on row j, we record it on row ij. The only problem is
the duplication in the case where i # j and both X (i) =Y (j) =1 and X(j) =Y (i) = 1.
In this case, we also record 2°*7 on the row | X ||Y|+ij. Tt is obvious that X xY =V x X
and that X x Y has 2|X||Y] rows, each of length |X|+ |Y|. The product X -Y is the

sum of the rows of X x Y.
Definition 4.5 (String Multiplication) Let X X Y be defined as
(X X Y)(k) < [k < QIX[IY] [X]+ YDA T < [X]F) < [Y]
(X AY(G) Ak =(igi+ )V (i #TAXG)AY (@) ANk =G5+ XY 04 5)]]-
Then the product of strings X,Y is
XY =Sum(2|X||Y],|X|+|Y],X xY).
It is easy to show that string multiplication defined in this way is commutative.

Lemma 4.6 VIC'F X xY =Y x X, VITC'HFX.Y=Y.X. |

4.3.3 Proving the Distributive Law

We need to prove the following lemma:
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Lemma 4.7 (Distributive Law) VIC' - X - (Y +2)=X-Y + X - Z.

First, let {a} denote the set of one element a. We will first prove a special case of
Lemma 4.7, from which the lemma will follow by a simple induction argument. (Note

that when |X| < a, X + {a} is just the union of X and {a}.)
Claim 4.8 VIC’F [X|<aD (X +{a}) Y =X Y + {a} V.
Essentially, proving this claim amounts to showing that
Sum(n,m, Z) + Z" = Sum(n + 1,m, Z).

This is similar to Lemma 7.9 in [3]. However, the proof in [3] does not consider the case
where [n+ 1| =1+ |n|, i.e., the sizes of the blocks used in defining Accumulate(n, m, Z)
and Accumulate(n + 1,m, Z) are different. We will show that in VTC?, different values
can be used for the block size (as long as they are > 1 + |n|). In other words, we will
show that

Accumulate(n, m, Z) = Accumulate(n',m, Z), (4.6)

for n’ > n. Then the approach used in [3] can be formalized in VT'C?, but we can also
use a simpler method.
Let ToString(k,z) be the string obtained by padding k& 0’s to the end of the binary

representation of x:
Vi < (k + |x|)[ToString(k, z)(i) <> (k <i A Bit(i — k, x))].

Recall (page 48) that first(X) is the smallest value of z such that X (z) holds. Assume

first(ZU1) < n, for all j < m. Then, intuitively,

3

Accumulate(n,m, Z) = ToString(j, first(Z1))).
J

i
=)

Formally, it is straightforward to derive the following recursion for Accumulate:

Accumulate(n,m + 1, Z) = Accumulate(n, m, Z) + ToString(m, first(Z™)).
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This recursion does not depend on n. Thus, Equation 4.6 follows.

Proof: (of Claim 4.8)

As we have shown above, we can use block size [ = |n'| in the definition of Accumulate,
for any n’ > n. Thus, we can use the same proof as that of Lemma 7.9 in [3]. For another

proof, let Z, Z; be as in the definition of (X + {a})-Y and X -Y, i.e.,

Z = SimulCountCols(2alY|,a + Y], (X + {a}) x Y),

Zy = SimulCountCols(2|X||Y], | X |+ |Y], X x Y).

Then, informally, the difference between Z and Z; is exactly {a}-Y. More precisely, for

j<a+|Y],
first(ZU) = ﬁrst(Z{j]) iff j <aor =Y (j—a),
first(Z9) :ﬁrst(Zlm) +1 iff j>aand Y(j —a).
Thus, by induction on i < a + |Y'|, we can show that
Accumulate(n, i, Z) = Accumulate(n, i, Z1) + Chop({a} - Y, 1),

where n = 2a|Y'|, and Chop(X, i) is the last i bits of X, i.e., Chop(X,1)(j) > j < iAX(j).
[

The proof of Lemma 4.7 now follows.
Proof: (of Lemma 4.7)

We can prove by induction on i that
X|<iD[X-Y+2)=X -Y+X -Z].

The base case is trivial. The induction step follows from Claim 4.8. [

4.3.4 Interpreting the A’ Comprehension Rule in VTC’

The gAB comprehension rule in second-order setting is a direct translation of the A%

comprehension rule in first-order logic. (Note that X and II? correspond to strict 3!
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and strict IS, while g©P and ¢TIP correspond to ¢ and TI%, respectively.) It can be

stated formally as follows.

Definition 4.9 (gAP Comprehension Rule) A theory T is said to admit the gAB

comprehension rule if whenever
T Vi< blp(i) < ¥(i)],
for some g¥8 formulas ¢ and gI1P formula ), then
TH3IX <bVi < b[X (i) <> @(i)].

This rule is apparently weaker than the gA” comprehension axiom. In particular, VT C°
may not prove the axiom, but, we will show that it admits the rule. It suffices to show

that VT C® admits the g-F replacement rule, which is defined as follows.

Definition 4.10 (¢XP Replacement Rule) A theory T is said to admit the g&P re-
placement rule if whenever

THFYi<b3dZ <byl(i,Z),
for some X8 formula o, which may contain other free variables, then
T +3IW < (b,b)Vi < bp(i, W),
Lemma 4.11 The theory VT C® admits the g©P replacement rule.

Proof: The proof is a straightforward application of the ¢¥# Witnessing Theorem
(Corollary 3.22), applied for VTC°. The idea is to use the witnessing function for
37 < bp(i, Z) (where ¢ is a g¥F formula) to construct the witnessing function for
AW < (b, b)Vi < bp(i, W), Formally, let ¢(i, Z) be a ¢g©P formula, which may contain

other free variables, and suppose that

VTC® Vi < b3Z < by(i, Z).
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Then by Corollary 3.22, there is a TC’-function F(i) such that |F(i)| < b for i < b, and
VTC’ + AX (F) Vi < bp(i, F(i)).
Let G be the function defined as

GO, j) i <bANj<bANF(3)()),
then G is in FTC’. We have

VTC® 4+ AX(G) Vi < bp(i, G()P),

hence

VTC® + AX(G) - 3IW < (b,b)Vi < bp(i, W),

Since VTC® + AX(G) is conservative over VT'C?, the conclusion follows. [
Corollary 4.12 VTC® admits the gAP comprehension rule.

Proof: It is easy to show that if a theory T" admits the ¢©% replacement rule, then it

also admits the gAP comprehension rule. |



Chapter 5

Conclusion

We introduce the second-order theory VT C?, which is finitely axiomatizable and charac-
terizes precisely the complexity class TC?. We show that it is RSUV isomorphic to the
first-order theory AS-CR, whose definition requires an inference rule. Thus, we are able
to translate into the second-order setting Johannsen and Pollett’s result [21] relating the
possible collapse of NP to non-uniform TC" and the possible collapse of the correspond-
ing theories. We are also able to answer positively an open question posed in [21], i.e.,

Ab — CR = A% — CR,;, for some constant i.

We also give an example of reasoning in VT'C? by proving the pigeonhole princi-
ple in VIT'C’: PHP can be formalized as a ¥¥ theorem of VT'C’. As noted in [23],
25" theorems of (IZ4)®“* can be translated into families of tautologies which have
polynomial-size FC proofs. It can be checked that the same arguments can be carried
over to that of VI'C’. In particular, ©Z theorems of VTC® can be translated into
families of tautologies which have polynomial-size FC (or equivalently, TC’-Frege [7]).
Consequently, the family of tautologies corresponding to PHP has polynomial-size TCP-
Frege proofs. It is plausible that the same is true for the Hex tautologies [5], i.e., the
Hex tautologies can be formalized as a ¥ theorem of VTCP. It follows that the family

of tautologies translated from this £ theorem has polynomial-size TC’-Frege proofs.

56
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While ©F theorems of VT'C? can be translated as discussed above, we know of no
such translation for ¥ theorems of VIT'C® (or equivalent theories). Notice that VT'C"’s
Y8 theorems seem to reflect more clearly the class TC® than its ©F theorems, e.g., the
TC functions are exactly those ¥ definable in VT'C". This suggests a possible topic
for future research.

It is possible, using a similar approach to the one that we have used here, to obtain
“minimal” theories for other complexity classes, such as ACC"[m], NC', P. The theories
for classes of higher complexity than TC? certainly contain VTCP. Proving RSUV iso-
morphism of these theories with their first-order counterparts (e.g., the first-order theory
AID for class NC' [1]) will therefore be relieved from defining string multiplication and
proving its properties. Proving witnessing theorems for these theories may also benefit

from our general witnessing theorem.
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