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Preface

Complexity Theory is a central �eld of Theoretical Computer Science� with a remarkable list of
celebrated achievements as well as a very vibrant present research activity� The �eld is concerned
with the study of the intrinsic complexity of computational tasks� and this study tend to aim at
generality� It focuses on natural computational resources� and the e�ect of limiting those on the
class of problems that can be solved� Put in other words� Complexity Theory aims at understanding
the nature of e�cient computation�

Topics� In my opinion� a introductory course in complexity theory should aim at exposing the
students to the basic results and research directions in the �eld� The focus should be on concepts
and ideas� and complex technical proofs should be avoided� Speci�c topics may include

� Revisiting NP and NPC �with emphasis on search vs decision�	

� Complexity classes de�ned by one resource
bound � hierarchies� gaps� etc	

� Non
deterministic Space complexity �with emphasis on NL�	

� Randomized Computations �e�g�� ZPP� RP and BPP�	

� Non
uniform complexity �e�g�� P�poly� and lower bounds on restricted circuit classes�	

� The Polynomial
time Hierarchy	

� The counting class 
P� approximate

P and uniqueSAT	

� Probabilistic proof systems �i�e�� IP� PCP and ZK�	

� Pseudorandomness �generators and derandomization�	

� Time versus Space �in Turing Machines�	

� Circuit
depth versus TM
space �e�g�� AC� NC� SC�	

� Communication complexity	

� Average
case complexity	

Of course� it would be hard �if not impossible� to cover all the above topics �even brie�y� in a
single
semester course �of two hours a week�� Thus� a choice of topics has to be made� and the
rest may be merely mentioned in a relevant lecture or in the concluding lecture� The choice may
depend on other courses given in the institute	 in fact� my own choice was strongly e�ected by this
aspect�
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Prerequisites� It is assumed that students have taken a course in computability� and hence are
familiar with Turing Machines�

Model of Computation� Most of the presented material is quite independent of the speci�c
�reasonable� model of computation� but some material does depend heavily on the locality of
computation of Turing machines�

The partition of material to lectures� The partition of the material to lectures re�ects only
the logical organization of the material� and does not re�ect the amount of time to be spent on
each topic� Indeed� some lectures are much longer than other�

State of these notes� These notes provide an outline of an introductory course on complexity
theory� including discussions and sketches of the various notions� de�nitions and proofs� The latter
are presented in varying level of detail� where the level of detail does not re�ect anything �except the
amount of time spent in writing�� Furthermore� the notes are neither complete nor fully proofread�

Related text� The current single
semester introductory course on complexity theory is a proper
subset of a two
semester course that I gave in ������� at the Weizmann Institute of Science�
Lectures notes for that course are availalbe from the webpage

http���www�wisdom�weizmann�ac�il��oded�cc�html

III



Contents

Preface II

I Things that should have been taught in previous courses �

� P versus NP �

��� The search version � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
��� The decision version � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
��� Conclusions � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� Reductions and Self�reducibility �

��� The general notion of a reduction � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
��� Self
reducibility of search problems � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� NP�completeness �

��� De�nitions � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
��� The existence of NP
complete problems � � � � � � � � � � � � � � � � � � � � � � � � � �
��� CSAT and SAT � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
��� NP sets that are neither in P nor NP
complete � � � � � � � � � � � � � � � � � � � � � �
��� NP� coNP and NP
completeness � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
��� Optimal search algorithms for NP
relations � � � � � � � � � � � � � � � � � � � � � � � ��

Historical Notes for the 	rst series ��

II The most traditional material ��


 Complexity classes de	ned by a sharp threshold �


��� De�nitions � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
��� Hierarchies and Gaps � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

� Space Complexity ��

��� Deterministic space complexity � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
��� Non
deterministic space complexity � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

����� Two models of non
determinism � � � � � � � � � � � � � � � � � � � � � � � � � ��
����� Some basic facts about NSPACE � � � � � � � � � � � � � � � � � � � � � � � � � ��
����� Composition Lemmas � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
����� NSPACE is closed under complementation � � � � � � � � � � � � � � � � � � � � ��

IV



� The Polynomial�Time Hierarchy ��

��� De�ning PH via quanti�ers � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
��� De�ning PH via oracles � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
��� Equivalence of the two de�nitions of PH � � � � � � � � � � � � � � � � � � � � � � � � � ��
��� Collapses � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
��� Comment� a PSPACE
complete problem � � � � � � � � � � � � � � � � � � � � � � � � � ��

� Randomized Complexity Classes ��

��� Two
sided error� BPP � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
��� One
sided error� RP and coRP � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
��� No error� ZPP � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
��� Randomized space complexity � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��


 Non�Uniform Complexity �


��� Circuits and advice � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
��� The power of non
uniformity � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
��� Uniformity � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
��� Evidence that P�poly does not contain NP � � � � � � � � � � � � � � � � � � � � � � � ��
��� Reductions to sparse sets � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

� Counting Classes ��
��� The de�nition of 
P � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
��� 
P
complete problems � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
��� A randomized reduction of Approximate

P to NP � � � � � � � � � � � � � � � � � � � ��
��� A randomized reduction of SAT to Unique
SAT � � � � � � � � � � � � � � � � � � � � � ��

Promise problems � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

�� Space is more valuable than time 
�

�� Circuit Depth and Space Complexity 



Historical Notes for the second series 
�

III The less traditional material ��

�� Probabilistic Proof Systems 
�

���� Introduction � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
���� Interactive Proof Systems � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

������ The De�nition � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
������ An Example� interactive proof of Graph Non
Isomorphism � � � � � � � � � � ��
������ Interactive proof of Non
Satis�ability � � � � � � � � � � � � � � � � � � � � � � ��
������ The Power of Interactive Proofs � � � � � � � � � � � � � � � � � � � � � � � � � � ��
������ Advanced Topics � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

���� Zero
Knowledge Proofs � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
������ Perfect Zero
Knowledge � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
������ General �or Computational� Zero
Knowledge � � � � � � � � � � � � � � � � � � ��
������ Concluding Remarks � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

���� Probabilistically Checkable Proof �PCP� Systems � � � � � � � � � � � � � � � � � � � � ��

V



������ The De�nition � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
������ The power of probabilistically checkable proofs � � � � � � � � � � � � � � � � � ��
������ PCP and Approximation � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

���� The actual notes that were used � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
������ Interactive Proofs �IP� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
������ Probabilistically Checkable Proofs �PCP� � � � � � � � � � � � � � � � � � � � � ��

�� Pseudorandomness �


���� Introduction � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
���� The General Paradigm � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
���� The Archetypical Case � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

������ The actual de�nition � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
������ How to Construct Pseudorandom Generators � � � � � � � � � � � � � � � � � � ��
������ Pseudorandom Functions � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
������ The Applicability of Pseudorandom Generators � � � � � � � � � � � � � � � � � ��
������ The Intellectual Contents of Pseudorandom Generators � � � � � � � � � � � � ��

���� Derandomization of BPP � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
���� On weaker notions of computational indistinguishability � � � � � � � � � � � � � � � � ��
���� The actual notes that were used � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

�
 Average�Case Complexity ��
���� Introduction � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
���� De�nitions and Notations � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

������ Distributional
NP � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
������ Average Polynomial
Time � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
������ Reducibility between Distributional Problems � � � � � � � � � � � � � � � � � � ��
������ A Generic DistNP Complete Problem � � � � � � � � � � � � � � � � � � � � � � ��

���� DistNP
completeness of �BH � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
���� Conclusions � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
Appendix� Failure of a naive formulation � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

�� Circuit Lower Bounds 
�
���� Constant
depth circuits � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
���� Monotone circuits � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

�� Communication Complexity ��

���� Deterministic Communication Complexity � � � � � � � � � � � � � � � � � � � � � � � � ��
���� Randomized Communication Complexity � � � � � � � � � � � � � � � � � � � � � � � � ��

Historical Notes for the second series ��

Bibliography ��

VI



Lecture Series I

Things that should have been taught

in previous courses

�



The �rst three lectures focus on material that should have been taught in the basic course on
computability� Unfortunately� in many cases this material is covered but from a wrong perspective
or without any �proper� perspective� Thus� although in a technical sense most of the material �e�g��
the class NP and the notion of NP
completeness� may be known to the students� its conceptual
meaning may not have been appreciated �and our aim is to try to correct this damage��

In addition� we cover some topics that may be new to most students� These topics include self

reducibility �of search problems�� the existence of NP
sets that are neither in P nor NP
complete�
the e�ect of having coNP
sets that are NP
complete� and the existence of optimal search algorithms
for NP
relations�

�



Lecture �

P versus NP

We assume that all students have heard of P and NP� but we suspect that many have not obtained
a good explanation of what the P vs NP question actually represents� This unfortunate situation is
due to using the standard technical de�nition of NP �which refers to non
deterministic polynomial

time� rather than more cumbersome de�nitions that clearly capture the fundamental nature of NP�
Below� we take the alternative approach� In fact� we present two fundamental formulations of the
P vs NP question� one in terms of search problems and the other in terms of decision problems�

E�cient computation� Discuss the association of e�ciency with polynomial
time� �Polynomi

als are merely a �closed� set of moderately growing functions� where �closure� means closure under
addition� multiplication and composition��

��� The search version

We focus on polynomially
bounded relations� The relation R � f�� �g� � f�� �g� is polynomially�

bounded if there exists a polynomial p such that for every �x� y� � R it holds that jyj � p�jxj��
For such a relation it makes sense to ask whether� given an �instance� x� one can e�ciently �nd a
�solution� y such that �x� y� � R� The polynomially
bounded condition guarantees that intrinsic
intractability may not be due to the length �or mere typing� of the required solution�

P as a natural class of search problems� With each polynomially
bounded relation R� we
associate the following search problem� given x �nd y such that �x� y� � R or state that no such y
exists� The class P corresponds to the class of search problems that are solvable in polynomial
time
�i�e�� there exists a polynomial
time algorithm that given x �nd y such that �x� y� � R or state that
no such y exists��

NP as another natural class of search problems� A polynomially
bounded relation R is
called an NP�relation if given an alleged instance
solution pair one can e�ciently verify whether
the pair is valid	 that is� there exists a polynomial
time algorithm that given x and y determines
whether or not �x� y� � R� It is reasonable to focus on search problems for NP
relations� because
the ability to recognize a valid solution seems to be a natural prerequisite for a discussion regarding
�nding such solutions� �Indeed� formally speaking� one can introduce non
NP
relations for which
the search problem is solvable in polynomial
time	 but still the restriction to NP
relations is very
natural��

�



The P versus NP question in terms of search problems� Is it the case that the search
problem of every NP�relation can be solved in polynomial�time� In other words� if it is easy to test
whether a solution for an instance is correct then is it also easy to �nd solutions to given instances�
If P � NP then this would mean that if solutions to given instances can be e�ciently veri�ed
for correctness then they can also be e�ciently found �when given only the instance�� This would
mean that all reasonable search problems �i�e�� all NP
relations� are easy to solve� On the other
hand� if P �� NP then there exist reasonable search problems �i�e�� some NP
relations� that are
hard to solve� In such a case� the world is more interesting� some reasonable problems are easy to
solve whereas others are hard to solve�

��� The decision version

For an NP
relation R� we denote the set of instances having solution by LR	 that is� LR � fx �
�y �x� y� � Rg� Such a set is called an NP�set� Intuitively� an NP
set is a set of valid statements
�i�e�� statements of membership of a given x in LR� that can be e�ciently veri�ed given adequate
proofs �i�e�� a corresponding NP�witness y such that �x� y� � R��

NP�proof systems� Proof systems are de�ned in terms of their veri�cation procedures� Here
we focus on the natural class of e�cient veri�cation procedures� where e�ciency is represented by
polynomial
time computations� �We should either require that the time is polynomial in terms of
the statement or con�ne ourselves to �short proofs� � that is� proofs of length that is bounded
by a polynomial in the length of the statement�� An NP
relation R yields a natural veri�cation
procedure� which amounts to checking whether the alleged statement
proof pair is in R� This proof
system satis�es the natural completeness and soundness conditions� every true statement �i�e��
x � LR� has a valid proof �i�e�� an NP
witness y such that �x� y� � R�� whereas false statements
�i�e�� x �� LR� have no valid proofs �i�e�� �x� y� �� R for all y�s��

The P versus NP question in terms of decision problems� Is it the case that NP�proofs
are useless� That is� is it the case that for every e�ciently veri�able proof system one can easily
determine the validity of assertions without given suitable proofs� If that were the case� then
proofs would be meaningless� because they would have no fundamental advantage over directly
determining the validity of the assertion� Recall that P is the class of sets that can be decided
e�ciently �i�e�� by a polynomial
time algorithm�� Then the conjecture P �� NP asserts that proofs
are useful� there exists NP
sets that cannot be decided by a polynomial
time algorithm� and so
for these sets obtaining a proof of membership �for some instances� is useful �because we cannot
determine membership by ourselves��

��� Conclusions

Verify that P �� NP in terms of search problems if and only if P �� NP in terms of decision
problems� Thus� it su�ces to focus on the latter �simpler� formulation�

Note that NP is typically de�ned as the class of sets that can be decided by a �ctitious device
called a non
deterministic polynomial
time machine� The reason that this class of �ctitious devices
is important is because it captures �indirectly� the de�nition of NP
proofs� Verify that indeed the
�standard� de�nition of NP �in terms of non
deterministic polynomial
time machine� equals our
de�nition of NP �in terms of the class of sets having NP
proofs��

�



Lecture �

Reductions and Self�reducibility

We assume that all students have heard of reductions� but again we fear that most have obtained
a conceptually
poor view of their nature� We present �rst the general notion of �polynomial
time�
reduction among computational problems� and view the notion of a Karp
reduction as an important
special case that su�ces �and is more convenient� in some cases�

��� The general notion of a reduction

Reductions are procedures that use functionally
speci�ed subroutines� That is� the functionality of
the subroutine is speci�ed� but its operation remains unspeci�ed and its running
time is counted
at unit cost� Analogously to algorithms� which are modeled by Turing machines� reductions can be
modeled as oracle �Turing� machines� A reduction solves one computational problem �which may be
either a search or decision problem� by using oracle �or subroutine� calls to another computational
problem �which again may be either a search or decision problem�� We focus on e�cient �i�e��
polynomial
time� reductions� which are often called Cook reductions�

The standard case is of reducing decision problems to decision problems� but we will also consider
reducing search problems to search problems or reducing search problems to decision problems�

A Karp
reduction is a special case of a reduction �from a decision problem to a decision problem��
Speci�cally� for decision problems L and L�� we say that L is Karp�reducible to L� if there is a
reduction of L to L� that operates as follows� On input x �an instance for L�� the reduction
computes x�� makes query x� to the oracle L� �i�e�� invokes the subroutine for L� on input x��� and
answers whatever the latter returns�

Indeed� a Karp
reduction is a syntactically restricted notion of a reduction� This restricted case
su�ces for many cases �e�g�� most importantly for the theory of NP
completeness�� but not in case
we want to reduce a search problem to a decision problem� Furthermore� whereas each decision
problem is reducible to its complement� some decision problems are not Karp
reducible to their
complement �e�g�� the trivial decision problem�� Likewise� each decision problem in P is �trivially�
reducible to any computational problem �i�e�� by a reduction that does not use the subroutine at
all�� whereas such a trivial reduction is disallowed by the syntax of Karp
reductions�

We comment that Karp
reductions may and should be augmented also in order to handle
reductions of search problems to search problems� Such an augmented Karp
reduction of the
search problem of R to the search problem of R� operates as follows� On input x �an instance for
R�� the reduction computes x�� makes query x� to the oracle R� �i�e�� invokes the subroutine for R�

on input x�� obtaining y� such that �x�� y�� � R�� and uses y� to compute a solution y to x �i�e��
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�x� y� � R�� �Indeed� unlike in case of decision problems� the reduction cannot just return y� as an
answer to x��

��� Self�reducibility of search problems

The search problem for R is called self�reducible if it can be reduced to the decision problem of
LR � fx � �y �x� y� � Rg� Note that the decision problem of LR is always reducible to the search
problem for R �e�g�� invoke the search subroutine and answer YES if and only if it returns some
string �rather than the �no solution� symbol���

We will see that all NP
relations that correspond to NP
complete sets are self
reducible� mostly
via �natural reductions�� We start with SAT� the set of satis�able Boolean formulae� Let RSAT

be the set of pairs ��� �� such that � is a satisfying assignment to the formulae �� Note that RSAT

is an NP
relation �i�e�� it is polynomially
bounded and easy to decide �by evaluating a Boolean
expression���

Proposition ��� �RSAT is self
reducible�� The search problem RSAT is reducible to SAT �

Proof� Given a formula �� we use a subroutine for SAT in order to �nd a satisfying assignment
to � �in case such exists�� First� we query SAT on � itself� and return �no solution� if the answer
we get is  false�� Otherwise� we let � � initiated to the empty string� denote a pre�x of a satisfying
assignment of �� We proceed in iterations� where in each iteration we extend � by one bit� This
is done as follows� First we derive a formula� denoted ��� by setting the �rst j� j! � variables of �
according to the values ��� Next we query SAT on �� �which means that we ask whether or not ��
is a pre�x of a satisfying assignment of ��� If the answer is positive then we set � 	 �� else we set
� 	 �� �because if � is a pre�x of a satisfying assignment of � and �� is not a pre�x of a satisfying
assignment of � then �� must be a pre�x of a satisfying assignment of ���

A key point is that the formulae �� can be simpli�ed to contain no constants such that they
�t the canonical de�nition of SAT� That is� after replacing some variables by constants� we should
simplify clauses according to the straightforward boolean rules �e�g�� a false literal can be omitted
from a clause and a true literal appearing in a clause yields omitting the entire clause��

A similar reduction can be presented also for other NP
complete problems� Consider� for ex

ample� �
Colorability� Note that� in this case� the process of getting rid of constants �representing
partial solutions� is more involved� Details are left as an exercise� In general� if you don�t see
a �natural� self
reducibility process for some NP
complete relation� you should still know that a
self
reduction process �alas maybe not a natural one� does exist�

Theorem ��� Every NP�relation of an NP�complete set is self�reducible�

Proof� Let R be an NP
relation of the NP
complete set LR� Then� we combine the following
sequence of reductions�

�� The search problem of R is reducible to the search problem of RSAT �by the NP
completeness
of the latter��

�� The search problem of RSAT is reducible to SAT �by Proposition �����

�� The decision problem SAT is reducible to the decision problem LR �by the NP
completeness
of the latter��

The theorem follows�
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Lecture �

NP�completeness

This is the third �and last� lecture devoted to material that the students have heard� Again� most
students did see an exposition of the technical material in some undergraduate class� but they
might have missed important conceptual points� Speci�cally� we stress that the mere existence of
NP
complete sets �regardless if this is SAT or some other set� is amazing�

��� De�nitions

The standard de�nition is that a set is NP
complete if it is in NP and every set in NP is reducible
to it via a Karp
reduction� Indeed� there is no reason to insist on Karp
reductions �rather than use
arbitrary reductions�� except that the restricted notion su�ces for all positive results and is easier
to work with�

We say that a polynomially�bounded relation is NP�complete if it is an NP
relation and every
NP
relation is reducible to it�

The mere fact that we have de�ned something �i�e�� NP
completeness� does not mean that this
thing exists� It is indeed remarkable that NP
complete problems do exist"

��� The existence of NP�complete problems

Theorem ��� There exist NP�complete relations and sets�

Proof� The proof �as well as all NP
completeness� is based on the observation that some NP

relations are �rich enough� to encode all NP
relations� This is most obvious for the �universal�
NP
relation� denoted RU �and de�ned below�� which is used to derive the simplest proof of the
current theorem�

The relation RU consists of pairs �hM�x� �ti� y� such that M is a description of a �deterministic�
Turing machine that accepts the pair �x� y� within t steps� where jyj � t� �Instead of requiring
that jyj � t� we may require that M is canonical in the sense that it reads its entire input before

halting�� It is easy to see that RU is an NP
relation� and indeed LU
def
� fz � �y �z� y� � RUg is an

NP
set�
We now turn to showing that any NP
relation is reducible to RU � As a warm
up� let us �rst show

that any NP
set is Karp
reducible to LU � Let R be an NP
relation� and LR � fx � �y �z� y� � Rg
be the corresponding NP
set� Let pR be a polynomial bounding the length of solutions in R �i�e��
jyj � pR�jxj� for every �x� y� ��� let MR be a polynomial
time machine deciding membership �of
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alleged �x� y� pairs� in R� and let tR a polynomial bounding its running
time� Then the Karp

reduction maps an instance x �for L� to the instance hMR� x� �

tR�jxj�pR�jyj��i�
Note that this mapping can be computed in polynomial
time� and that x � L if and only if

hMR� x� �
tR�jxj�pR�jyj��i � LU �

To reduce the search problem of R to the search problem of RU � we use essentially the same re

duction� On input an instance x �for R�� we make the query hMR� x� �

tR�jxj�pR�jyj��i to the search RU

and return whatever the latter returns� �Note that if x �� LR then the answer will be �no solution��
whereas for every x and y it holds that �x� y� � R if and only if �hMR� x� �

tR�jxj�pR�jyj��i� y� � RU �

��� CSAT and SAT

De�ne Boolean circuits �directed acyclic graphs with vertices labeled by Boolean operation�� Prove
the NP
completeness of the circuit satisfaction problem �CSAT�� The proof boils down to encoding
possible computations of a Turing machine by a corresponding layered circuit� where each layer
represents a con�guration of the machine� and the conditions of consecutive con�gurations are
captured by uniform local gadgets in the circuit�

De�ne Boolean formulae �i�e�� a circuit with tree structure�� Prove the NP
completeness of the
formula satisfaction problem �SAT�� even when the formula is given in a nice form �i�e�� CNF�� The
proof is by reduction from CSAT� which in turn boils down to introducing auxiliary variables in
order to cut the computation of a deep circuit into a conjunction of related computations of shallow
�i�e�� depth
�� circuits �which may be presented as CNFs��

��� NP sets that are neither in P nor NP�complete

Many �to say the least� other NP
sets have been shown to be NP
complete� Things reach a situation
in which people seem to expect any NP
set to be either NP
complete or in P� This naive view is
wrong�

Theorem ��� Assuming NP �� P� there exist NP�sets that are neither NP�complete nor in P�

The proof is by modifying a set in NP n P such that to fail all possible reductions �to this set�
and all possible polynomial
time decision procedures �for this set�� Speci�cally� we start with some
L � NP n P and derive L� 
 L �which is also in NP n P� by making each reduction �say of L� to
L� fail by dropping �nitely many elements from L �until the reduction fails�� whereas all possible
polynomial
time fail to decide L� �which di�er from L only on a �nite number of inputs�� We use
the fact that any reduction �of some set in NPnP� to a �nite set �i�e�� a �nite subset of L� must fail
�while making only a �nite number of possible queries�� whereas any e�cient decision procedure for
L �or L modi�ed on �nitely many inputs� must fail on some �nite portion of all possible inputs �of
L�� The process of modifying L into L� proceeds in iterations� alternatively failing a reduction �by
dropping su�ciently many strings from the rest of L� and failing a decision procedure �by including
su�ciently many strings from the rest of L�� This can be done e�ciently because it is inessential
to determine the �rst location where we have enough strings as long as we determine some location
where we have enough�

We mention that some natural problems �e�g�� factoring� are conjecture to be neither solvable
in polynomial
time nor NP
hard� See discussion following Theorem ����
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��� NP	 coNP and NP�completeness

By prepending the name of a complexity class �of decision problems� with the pre�x �co� we mean
the class of complement sets	 that is�

coC def
� ff�� �g� n L � L � Cg

Speci�cally� coNP � ff�� �g� n L � L � NPg is the class of sets that are complements of NP

sets� That is� if R is an NP
relation and LR � fx � �y �x� y� � Rg is the associated NP
set then
f�� �g� n LR � fx � �y �x� y� �� Rg is the corresponding coNP
set�

It is widely believed that NP is not closed under complementation �i�e�� NP �� coNP�� Indeed�
this conjecture implies P �� NP �because P is closed under complementation�� and is implied by
the conjecture that NP � coNP is a proper superset of P� The conjecture NP �� coNP means
that some coNP
sets �e�g�� the complements of NP
complete sets� do not have NP
proof systems	
that is� there is no NP
proof system for proving that a given formula is not satis�able�

If indeed P �� NP then some �non
trivial� NP
sets cannot be Karp
reducible to coNP
sets
�exercise� why�� �Recall that the empty set cannot be Karp
reducible to f�� �g��� In contrast�
all NP
sets are reducible to coNP
sets �by a straightforward general reduction that just �ips the
answer�� A less obvious fact is that NP �� coNP implies that some NP
sets cannot be reduced to
sets in NP � coNP �even under general reductions�� Speci�cally�

Theorem ��� If NP � coNP contains an NP�hard set then NP � coNP�

Recall that a set is NP�hard if every NP
set is reducible to it �possibly via a general reduction��
Since NP � coNP is conjectured to be a proper superset of P� it follows �using the conjecture
NP �� coNP� that there are NP
sets are neither in P nor NP
hard� Notable examples are sets
related to the integer factorization problem �e�g�� the set of pairs �N� s� such that s has a square
root modulo N that is a quadratic residue modulo N and the least signi�cant bit of s equals ���

Proof� Suppose that L � NP � coNP is NP
hard� Given any L� � coNP � we will show that
L� � NP � We will merely use the fact that L� reduces to L �which is in NP � coNP�� Such a

reduction exists because L� is reducible L
� def

� f�� �g�nL� �via a general reduction�� whereas L
� � NP

and thus is reducible to L �which is NP
hard��
To show that L� � NP� we will present an NP
relation� R�� that characterizes L� �i�e�� L� �

fx � �y �x� y� � R�g�� The relation R� consists of pairs of the form �x� ��z�� ��� w��� ���� �zt� �t� wt���
where on input x the reduction of L� to L accepts after making the queries z�� ���� zt� obtaining the
corresponding answers ��� ���� �t� and for every i it holds that if �i � � then wi is an NP
witness for
zi � L� whereas if �i � � then wi is an NP
witness for zi � f�� �g� n L�

We stress that we use the fact that both L and L
def
� f�� �g� n L are NP
sets� and refer to the

corresponding NP
witnesses� Note that R� is indeed an NP
relation� The length of solutions is
bounded by the running
time of the reduction �and the corresponding NP
witnesses�� Membership
in R� is decided by checking that the sequence of �zi� �i��s matches a possible query
answer sequence
in an execution of the reduction� �regardless of the correctness of the answers�� and that all answers
�i�e�� �i�s� are correct� The latter condition is easily veri�ed by use of the corresponding NP
witness�

�That is� we need to verify that on input x� after obtaining the answers ��� ���� �i�� to the �rst i � � queries� the
ith query made by the reduction equals zi�
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��
 Optimal search algorithms for NP�relations

Actually� this section does not relate to NP
completeness� but rather to NP
relations�
The title sounds very promising� but our guess is that the students will be less excited once

they see the proof� We claim the existence of an optimal search algorithm for any NP�relation�
Furthermore� we will explicitly present such an algorithm� and prove that it is optimal in a very
strong sense� for any algorithm correctly solving the same search problem� it holds that up
to some
�xed additive polynomial term �which may be disregarded in case the NP
problem is not solvable
in polynomial
time�� our algorithm is at most a constant factor slower than the other algorithm�
That is�

Theorem ��
 For every NP�relation R there exists an algorithm A that satis�es the following�

	� A correctly solves the search problem of R�


� There exists a polynomial p such that for every algorithm A� that correctly solves the search
problem of R and for every x � LR it holds that tA�x� � O�tA��x� ! p�jxj��� where tA �resp��
tA�� denotes the number of steps taken by A �resp�� A�� on input x�

Interestingly� we establish the optimality of A without knowing what its �optimal� running
time
is� We stress that the hidden constant in the O
notation depends only on A�� but in the following
proof the dependence is exponential in the length of the description of algorithm A� �and it is not
known whether a better dependence can be achieved��

Proof sketch� Fixing R� we let M be a polynomial
time algorithm that decides membership in
R� and let p be a polynomial bounding the running
time of M � We present the following algorithm
A that merely runs all possible search algorithms �in parallel� and checks the results provided by
each of them �using M�� halting whenever it obtains a correct solution�

Since there are in�nitely many possible algorithms� we should clarify what we mean by �running
them all in parallel�� What we mean is to run them at di�erent rates such that the in�nite sum
of rates converges to � �or any other constant�� Viewed in di�erent terms� for any unbounded
function � � N 
 N� we proceed in iterations such that in the ith iteration we let each of the �rst
��i� algorithms run for at most �i steps� In case some of these algorithms halts with output y�
algorithm A invokes M on input �x� y� and output y if and only if M�x� y� � �� The veri�cation of
a solution provided by an algorithm is also emulated at the expense of its step
count� �Put in other
words� we augment each algorithm with a canonical procedure �i�e�� M� that checks the validity of
the solution o�ered by the algorithm��

�In case we want to guarantee that A also stops on x �� LR� we may let it run an exhaustive
search for a solution� in parallel to all searches� and halt with output � in case this exhaustive
search fails��

Clearly� whenever A�x� outputs y �i�e�� y �� �� it must hold that �x� y� � R� Now suppose
A� is an algorithm that solves R� Fixing A�� for every x� let us denote by t��x� the number of
steps taken by A� on input x� where t��x� also accounts for the running time of M�x�� Then�
the t�x�
step execution of A on input x is �covered� by the i�x�th iteration of A� provided that
i�x� � max�jA�j� log� t

��x��� where jA�j denotes the length of the description of A�� Thus� the

running time of A on input x� denoted t�x�� is at most
Pi�x�

j�� ��j� � �j � and for su�cintly large x it
holds that t��x� � jA�j� Using �say� ��j� � j� it follows that t�x� � O�t��x� � log t��x��� which almost
establishes the theorem �while we don�t care about establishing it as stated��
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Historical Notes

Many sources provide historical accounts of the developments that led to the formulation of the
P vs NP Problem and the development of the theory of NP
completeness� We thus refrain from
attempting to provide such an account�

One technical point that we mention is that the three �founding papers� of the theory of NP

completeness use the three di�erent terms of reductions used above� Speci�cally� Cook uses the
general notion of polynomial
time reduction #��$� often referred to as Cook
reductions� The notion
of Karp
reductions originates from Karp�s paper #��$� whereas its augmentation to search problems
originates from Levin�s paper #��$� It is worth noting that unlike Cook and Karp�s works� which
treat decision problems� Levin�s work is stated in terms of search problems�

The existence of NP
sets that are neither in P nor NP
complete �i�e�� Theorem ���� was proven
by Ladner #��$� and the existence of optimal search algorithms for NP
relations �i�e�� Theorem ����
was proven by Levin #��$�
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Lecture Series II

The most traditional material
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The partition of the rest of the lectures into two lecture series is only due to historical reasons�
We start with the more traditional material� most of it is due to the �����s and the early �����s�

Notation� We will try to always use n to denote the length of the �main� input�
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Lecture �

Complexity classes de�ned by a

sharp threshold

There is something appealing in de�ning complexity classes according to a sharp threshold like the
class of problems that can be solved within time t� for some function t �e�g�� t�n� � n��� Contrast
this de�nition with the class of problems that can be solved within some time t that belongs to a
class of functions T �e�g�� polynomials�� The problem with classes de�ned according to a �single�
sharp threshold is that they are very sensitive to the speci�c model of computation and may not be
closed under natural algorithmic operations� Typically� these problems do not occur when de�ning
complexity classes that correspond to a resource bounded by a class of functions� provided this
class has some desirable closure properties�

��� De�nitions

Focusing on two natural complexity measures �i�e�� time and space�� we may de�ne for each function
f � N
 N classes such as Dtime�f� and Dspace�f� corresponding to the class of decision problems
that are solvable within time and space complexity f � respectively� �That is� on input x the deciding
algorithm runs for at most f�jxj� steps or uses at most f�jxj� bits of storage��

We stress that when measuring the space complexity of the algorithm� we don�t allow it to use
its input and�or output device �i�e�� tape in case of Turing machines� as temporary storage� �This
is done by postulating that the input and output devices are read
only and write
only respectively��

Note that classes as above are very sensitive to the speci�c model of computation� For example�
the time complexity of multiple
tape Turning machines may be quadratic �but not more� in the
time complexity of single
tape Turning machines �e�g�� consider the set fxx � x � f�� �gg��

��� Hierarchies and Gaps

A natural property that we may expect from complexity measures is that more resources allow for
more computations� That is� if g is su�ciently greater than f then the class of problems solvable
in time �or space� g should be strictly larger than the class of problems solvable in time �or space�
f � This property �corresponding to a time or space hierarchy� does hold in the natural cases� where
the key question is what is su�ciently greater� The answer will be clari�ed from the way such
hierarchy theorems are proved� which is by using diagonalization�
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Speci�cally� suppose we want to prove that Dtime�g� is a strict superset of Dtime�f�� This
is done by �diagonalizing against all f 
time machines�� That is� we construct a set L along with
a decision algorithm for it� such that no f 
time machine can correctly decide L� In order to
�e�ectively� de�ne L� we should be able to emulate the execution of each f 
time machine� Since
we cannot e�ectively enumerate all f 
time machines� what we do instead is emulate each possible
machine while using a time
up mechanism that stops the emulation at time f � In order to do this
we need� in particular� to be able to compute f �relatively fast�� Note that the running
time of our
decision procedure for L is determined by the time it takes to compute f and the time it takes to
emulate a given number of steps� Thus� time constructible functions� play a central rule in such
proofs� where f is time constructible if on input n the value f�n� can be computed within time f�n��
As for the emulation overhead� it depends on the speci�c model of computation �typically� t steps
can be emulated within time t log t�� Similar considerations apply to space hierarchies� but here
one talks about space constructible function and the emulation overhead is typically only linear�
For simplicity� in case of multiple
tape Turing machines� we get�

Theorem 
�� �sketch�� For any time�constructible function t� the class Dtime�t� is strictly con�
tained in Dtime���t log t��� For any space�constructible function s� the class Dspace�s� is strictly
contained in Dspace���s���

The existence of functions that are not time �or space� constructible is the reason for so
called
gap theorems� Typically� such theorems say that there exist functions f �which are certainly not

time constructible� such that Dtime�f� � Dtime�f�� �or Dtime�f� � Dtime���
f
��� The reason

for this phenomena is that �for such a function f� there are no machines that run more than time

f but less than time f� �or ��
f
��
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Lecture �

Space Complexity

Space complexity is aimed to measure the amount of temporary storage required for a computational
task� On one hand� we don�t want to count the input and output themselves within the space of
computation� but on the other hand we have to make sure that the input and output device
cannot be abused to provide work space �which is uncounted for�� This leads to the convention of
postulating that the input device �e�g�� a designated input
tape of a multi
tape Turing machine� is
read
only� whereas the output device �e�g�� a designated output
tape of a such machine� is write

only� Space complexity accounts for the amount of space on other �storage� devices �e�g�� the
work
tapes of a multi
tape Turing machine� that is used throughout the computation�

��� Deterministic space complexity

Only regular languages can be decided in constant space� This follows by combining two facts�
Firstly� constant
space Turing machines are equivalent to a generalization of �nite automata that
can scan �parts of the� input back and forth �in both directions and for several times�� Second� the
latter �sweeping automata� can be simulated by ordinary �nite automata �which scan the input
only once� from left to right��

At �rst glance one may think that sub
logarithmic �deterministic� space is not more useful than
constant space� because it seems impossible to allocate a sub
logarithmic amount of space �since
measuring the input length requires logarithmic space�� However� this intuition is wrong� because
the input itself �in case it is of the proper form� can be used to determine its length� whereas in
case the input is not of the proper form this fact may be detectable �within sub
logarithmic space��
In fact�

Theorem ��� Dspace�o�log n�� is a proper superset of Dspace�O�����

One proof consists of presenting a double�logarithmic space algorithm for recognizing the non�
regular set L � fxk � k � Ng 
 f�� �� �g� where xk equals the concatenation of all k
bit long strings
�in lexicographic order� separated by %�s �i�e�� xk � �k���� � �k���� � �k���� � �k���� � � � � � �k��
Note that jxkj � �k� and we claim that xk can be recognized in space O�log k� � O�log log jxkj��
Furthermore� the membership of any x in L can be determined in space O�log log jxj�� by iteratively
checking �in space O�log i�� whether x � xi� for i � �� �� ���� �Details are left as an exercise�� In
contrast to Theorem ���� double
logarithmic space is indeed the smallest amount of space that is
more useful than constant space	 that is�

Theorem ��� Dspace�o�log log n�� � Dspace�O�����
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The proof proceeds by considering� for each input location� the sequence of �storage� con�gurations
of the machine at all times that it crosses this input location� For starters� the length of this
�crossing sequence� is upper
bounded by the number of possible storage con�gurations �i�e�� in
case of Turing machines� we consider the contents of the tape and the head location�� which is

at most t
def
� �s�n� � s�n�� where s is the machine�s space complexity� Thus� the number of such

sequences is bounded above by tt� But if the latter is smaller than n	� then there exist three input
locations that have the same sequence of con�gurations� Using cut
and
paste� we get a shorter

input on which the machine used space s�
def
� s�n�� which is not possible in case the original n
bit

long input was the shortest one on which the machine uses space at least s�� We conclude that
tt � n	� must hold� and s�n� � &�log t� � &�log log n� follows�

Logarithmic Space� Although Theorem ��� asserts that �there is life under log
space�� log

arithmic space will be the lowest space
complexity class that we will care about� The class
of sets recognizable by deterministic machines that use logarithmic space is denoted L	 that is�

L def
� �cDspace�c log� n��

Theorem ��� L � P�

In general� if s is at least logarithmic and is computable within time �s then Dspace�s� �
Dtime��s�� This follows as a special case from Theorem ���� �The phenomena that time relates
exponentially to space occurs also in other settings��

Another class of important log
space computations is the class of logarithmic space reductions	
that is� reductions �or oracle machines� that use only logarithmic space �and as usual polynomial

time�� In accordance with our conventions regarding input and outputs� we stress that the queries
�resp�� answers� are written on �resp�� read from� a special device�tape that is write
only �resp��
read
only� for the calling algorithm and read
only �resp�� write
only� for the invoked oracle� We ob

serve that all known �Karp
�reductions establishing NP
completeness results are in fact logarithmic
space� Observe that if L� is log
space reducible to L�� and L�� � L then so is L�� �See Section �������

Polynomial Space� As stated above� we will rarely treat computational problems that require
less than logarithmic space� On the other hand� we will rarely treat computational problems that
require more than polynomial space� The class of decision problems that are solvable in polynomial


space is denoted PSPACE def
� �cDspace�nc�� A complete problem for PSPACE is presented in

Section ����

��� Non�deterministic space complexity

����� Two models of non�determinism

We discuss two models of non
deterministic machines� In the standard model� called the on�line

model� the machine makes non
deterministic �on the �y� �or alternatively reads a non
deterministic
input from a read
only tape that can be read only in a uni�directional way�� Thus� if the machines
wants to refer to such a non
deterministic choice at a latter stage then it must store the choice
on its storage device �and be charged for it�� In the so
called o��line model� the non
deterministic
choices �or the bits of the non
deterministic input� are read from a special read
only record �or
tape� that can be scanned in both directions like the main input� Although the o�
line model �ts
better the motivations to NP �as presented in the �rst lecture�� the on
line model seems more
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adequate for the study of non
deterministic in the context of space complexity� The latter thesis is
based on observing that an o�
line non
deterministic tape can be used to code computations� and
in a sense allows to �cheat� with respect to the �real� space complexity of the computation� This
is re�ected in the fact that the o�
line model can simulate the on
line model while using space that
is logarithmic in the space used by the on
line model�� This result is tight� the on
line model can
simulate the o�
line model using �only� exponentially more space�

Theorem ��
 �relating the two models� loosely stated�� For s � N 
 N that is nice and at least
logarithmic� Nspaceon
line�s� � Nspaceo�
line�log s��

To simulate the on
line model on the o�
line model� use the non
deterministic input tape of the
latter to encode an accepting computation of the former �i�e�� a sequence of consecutive con�gura

tions leading from the initial con�guration to an accepting con�guration�� The simulating machine
�which veri�es the legitimacy of the sequence of con�gurations recorded on the non
deterministic
input tape� needs only store its location within the current pair of con�gurations that it exam

ines� which requires space logarithmic in the length of a single con�guration� On the other hand�
the simulation of the o�
line model by the on
line model uses a crossing
sequence argument� For
starters� one shows that the length of such sequences is at most double
exponential in the space
complexity of the o�
line machine� Then the �on
line� non
deterministic input tape is used to en

code the sequence of crossing
sequences� and the on
line machine checks that each consecutive pair
is consistent� This requires holding one �or two� crossing
sequences in storage� which require space
logarithmic in the number of such sequences �which� in turn� is exponential in the space complexity
of the o�
line machine��

����� Some basic facts about NSPACE

We let Nspace�s�
def
� Nspaceon
line�s�� and focus on NL def

� Nspace�O�log n��� Suitable upwards�
translation lemmas can be used to translate simulation results concerningNL �resp�� L� into general
simulation results concerning non
deterministic �resp�� deterministic� space� Typically� the input is
padded till the concrete space allowance becomes logarithmic in the padded input �i�e�� n
bit long
inputs are padded to length N such that s�n� � logN�� Next the simulation result is applied� and
�nally the complexity of the obtained simulation is stated in terms of the original input length� A
notable property of NL is that this class has a very natural complete problem�

Theorem ��� �Directed Connectivity is NL
complete�� Directed Connectivity is in NL� and every
problem in NL is reducible to Directed Connectivity by a log�space reduction�

Proof Sketch� A non
deterministic log
space machine may decide Directed Connectivity by guess

ing �and verifying� the directed path �on
the
�y�� To reduce L � NL to Directed Connectivity� we
consider the non
deterministic log
space machine that decides L� We observe that on input x� this

machine uses 

def
� O�log jxj� space� and it may be in one out of �� � jxj � 
 possible con�gurations

�accounting for the possible contents of its work
tape and its head locations �on the input tape
and work tapes��� Consider a directed graph with these con�guration as vertices� and directed
edges connecting ordered pairs of possibly
consecutive con�gurations �relating to a possible non

deterministic move�� Indeed� unlike the vertices� the edges depend on the input x� Observe that

�A related phenomenon is that Nspaceo��line�s	 is only known to be contained in Dtime�
�
s

	� whereas �as stated
in Theorem ���	 Nspaceon�line�s	 � Dtime�
s	� In fact� the power of the o��line model emerges from the fact that
its running time is not bounded �even not 
without loss of generality�	 by an exponent in the space�complexity�
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x � L if and only if there exists a directed path in this graph leading from the initial con�guration
to an accepting con�guration� Furthermore� this graph can be constructed in logarithmic space
�from the input x�� Thus� L is log
space reducible to Directed Connectivity�

Theorem ��� �non
deterministic space versus deterministic time�� If s is at least logarithmic and
is computable within time �s then Nspace�s� � Dtime��s��

Proof Sketch� By a suitable upwards
translation lemma� it su�ces to prove the result for log

arithmic s	 that is� we need to show that NL � P� Using Theorem ���� we just need to show
that directed connectivity can be solved in polynomial
time� This fact is well known �e�g�� by the
directed
DFS algorithm��

Theorem ��� �Non
deterministic versus deterministic space�� Nspace�s� � Dspace�s�� provided
that s � N
 N is space�constructible and at least logarithmic�

In particular� for any polynomial p� it holds that Nspace�p� 
 PSPACE � where the strict inclusion
is due to the space hierarchy theorem �e�g�� Dspace�nc� 
 Dspace�nc����� Contrast Theorem ���
with the �trivial� fact that Ntime�t� � Dtime��t�� provided that t � N 
 N is time
constructible
�and at least logarithmic��

Proof Sketch� Again� it su�ces to show that directed connectivity can be solved in deterministic
O�log n�� space� The basic idea is that checking whether or not there is a path of length at most

 from u to v in G� reduces �in log
space� to checking whether there is an intermediate vertex w
such that there is a path of length at most d
	�e from u to w and a path of length at most b
	�c
from w to v� Let pG�u� v� 
�

def
� � if there is a path of length at most 
 from u to v in G and

pG�u� v� 
�
def
� � otherwise� Thus� pG�u� v� 
� can be decided recursively by scanning all vertices w

in G� and checking for each w whether both pG�u�w� d
	�e� � � both pG�w� v� b
	�c� � � hold�
Thus� suppose we are given a directed graph G and a pair of vertices �s� t�� and should decide

whether or not there is a path from s to t in G� Let n denote the number of vertices in G� then we
need to compute pG�s� t� n�� This is done by invoking a recursive procedure that computes pG�u� v� 
�
by scanning all vertices in G� and computing for each vertex w the value of pG�u�w� d
	�e� �
pG�w� v� b
	�c�� The amount of space taken by each level of the recursion is log n �for storing
the current value of w�� and the number of levels is log n� The theorem follows�

We stress that when computing pG�u� v� 
�� we make polynomially many recursive calls� but all
these calls re
use the same work space� That is� when we compute pG�u�w� d
	�e��pG�w� v� b
	�c� we
re
use the space that was used for computing pG�u�w�� d
	�e� �pG�w�� v� b
	�c� �for the previous w���
Furthermore� when we compute pG�w� v� b
	�c� we re
use the space that was used for computing
pG�u�w� d
	�e��

����	 Composition Lemmas

Indeed� as indicated by the proof of Theorem ���� space �unlike time"� can be re
used� In particular�
if one machine makes many recursive calls to another machine then the cost in space of these calls
is the maximum space used by a single call �whereas the cost in terms of time of these calls is
the sum of the time taken by all calls�� Put in other words� Suppose that L� is s��space reducible
to L� and that L� is in XSPACE�s��� where X � fD�Ng� Then L� is in XSPACE�s� ! s����
where s���n� � s���

s��n�� �because �s��n� is an obvious bound on the length of queries made to L���
Proving this claim is less trivial than it seems �even in case of a single call to L�� because we cannot
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a�ord to store the query and the answer �which may have lengths �s� and �s��s� � respectively� in
the working space of the resulting machine�

For simplicity� we focus on the single
query case�� Let M� be the reduction of L� to L� and
M� a machine solving L�� We emulate them both as follows� We allocate each of the machines a
separate work
tape� and begin by emulating M� without specifying its input� When M� wishes to
read the ith �e�g�� �rst� bit of its input �which is the ith bit of the query of M��� we run machine
M� until it produces the ith bit of its query� which we hand to M�� We stress that we do not store
all previous bits of this query� but rather discard them� Thus� we run a new emulation of M�� per
each time that M� wishes to read a bit of its input �i�e�� the query directed to it by M��� When
M� outputs its decision� we store it� and emulate M� for the last time� In this run we discard all
the query bits produced by M�� feed it with M��s answer� and output whatever M� does�

The treatment of reductions to search problems is more complex� because �unless postulated
di�erently� the calling algorithm may scan the answer provided by the oracle back and forth �rather
than read it once from left to right�� To treat this case we may keep two emulations of M�� one for
producing bits of the query and the other for using the bits of the answer� �Note that the second
emulation corresponds to the last emulation of M� in the description above�� Handling of many
oracle calls is performed in a query by query manner� relying of the fact that the ith answer is not
available after the i ! �st query is made� For i � �� �� ���� we handle the i ! �st query
answer by
keeping a record of the temporary con�gurations of M� before it started making the ith and i! �st

queries� We maintain four emulations of M�� the �rst �resp�� third� for producing bits of the ith

�resp�� i ! �st� query� and the second �resp�� fourth� for using the bits of the ith �resp�� i ! �st�
answer� Each time we need to emulate the �rst or second �resp�� third or fourth� copy� we start
the emulation from the recorded con�guration of M� before making the ith �resp�� i ! �st� query�
Once the fourth copy starts to produce the i ! �th query� we refresh all con�gurations and move
to the next iteration� Speci�cally� the con�guration of the fourth copy will be used as the second
temporary con�guration �as it corresponds to the con�guration before making the i ! �th query��
and the current second con�guration �which corresponds to the con�guration before making the
i ! �st query� will be used as the �rst temporary con�guration �for iteration i ! ���

Teaching Note� In the next subsection we will �implicitly� use a composition result� but for that
speci�c composition we do not need the power of the above strong composition lemma� Speci�cally�
the reduction will make queries that are very related to its input �and thus the invoked subroutine
can form the query by itself from the input�� Furthermore� the answers will be of logarithmic length
and thus can be stored by the reduction �as in case of invoking a decision subroutine��

����� NSPACE is closed under complementation

People tend to be discouraged by the impression that �decades of research have failed to answer
any of the famous open problems of complexity theory�� In addition to the fact that substantial
progress towards the understanding of some open problems has been achieved� people tend to forget
that some famous open problems were indeed resolved� The following result relates to a famous
question that was open for three decades��

�We leave the extension to the general multiple�query case as an exercise�
�In particular� using the fact that the class of sets recognized by linear�space non�deterministic machines equals

the set of context�sensitive languages� Theorem ��� resolves the question of whether the latter set is closed under
complementation� This question has been puzzling researchers since the early days of research in the area of formal
languages �i�e�� the �����s	� We mention that Theorem ��� was proven in the late �����s�

��



Theorem ��
 NL � coNL� where coNL def
� ff�� �g� n L � L � NLg�

Again� using an adequate upwards
translation lemma� one can derive the closure under comple

mentation of Nspace�s��

Proof Sketch� It su�ces to show that directed unconnectivity �the complementation of directed
connectivity� can be decided in NL� That is� we will present a non
deterministic log
space machine
M such that

� If there is no directed path from s to t in G then there exists a computation of M that accepts
the input �G� s� t��

� If there is a directed path from s to t in G then all possible computations of M reject �G� s� t��

The above decision problem is log
space reducible to determining the number of nodes that are
reachable from a given vertex in a given graph�	 Thus� we focus on providing a non
deterministic
log
space machine that compute the said quantity� where we say that a non�deterministicM computes

the function f � f�� �g� 
 f�� �g� if the following two conditions hold�

�� For every x� there exists a computation of M that halts with output f�x��

�� For every x� all possible computation of M either halt with output f�x� or halt with a special
�dont know� symbol� denoted ��

Fixing an n
vertex graph G � �V�E� and a vertex v� we consider the set of vertices that are
reachable from v by a path of length at most i� We denote this set by Ri� and observe that
R
 � fvg and that for every i � �� �� ���� it holds that

Ri � Ri�� � fu � �w � Ri�� s�t� �w� u� � Eg �����

Our aim is to compute jRnj� This will be done in n iterations such that at the ith iteration we
compute jRij� When computing jRij we rely on the fact that jRi��j is known to us� which means
that we�ll store jRi��j �but not previous jRj j�s� in memory� Our non
deterministic guess� denoted
g� for jRij will be veri�ed as follows�

� jRij � g is veri�ed in the straightforward manner� That is� scanning V � we guess for g vertices
paths of length at most i from v to them� and verify these �on
the
�y�� �Indeed� we also guess
for which g vertices to verify this fact��

�We use log� n bits to store the currently scanned vertex� another log� n bits to store an
intermediate vertex on a path from v� and another log� i � log� n bits to store the distance
traveled so far��

� The veri�cation of jRij � g is the interesting part of the procedure� Here we rely on the fact
that we know jRi��j� Scanning V �again�� we verify for n� g �guessed� vertices that they are
not reachable from v by paths of length at most i� Verifying that u �� Ri is done as follows�

� We scan V guessing jRi��j vertices that are in Ri��� and verify each such guess in the
straightforward manner� �Implicit here is a procedure that given G� v� i and jRi��j�
produces Ri�� itself��

�Exercise� provide such a reduction�
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� For each w � Ri��� which was guessed and veri�ed above� we verify that both u �� w
and �w� u� �� E�

By Eq� ������ if u passes the above veri�cation then indeed u �� Ri�

�We use log� n bits to store u� another log� n bits to count the number of vertices veri�ed to
be in Ri��� another log� n bits to store such w� and another � log� n bits for verifying that
w � Ri����

If any of the veri�cations fails� the machine halts outputting the �dont know� symbol� Exercise�
assuming that the correct value of jRi��j is used� prove that the above non
deterministic log
space
procedure computes the value of jRij�

Observing that when computing jRij we only need to know jRi��j �and do not need jRj j for
any j � i � ��� the above yields a non
deterministic log
space machine for computing jRnj� The
theorem follows�
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Lecture �

The Polynomial�Time Hierarchy

The Polynomial
Time Hierarchy �PH� is a hierarchy of complexity classes that extends NP � We
will present two equivalent ways of de�ning this hierarchy� and discuss some of its properties�


�� De�ning PH via quanti�ers

Recall that L � NP if there exists a binary �polynomially
bounded� relation R such that R is
polynomial
time recognizable and

x � L if and only if �y s�t� �x� y� � R �����

IdentifyingNP with '�� we de�ne '� as containing sets L such that there exists a ��ary �polynomially

bounded�� relation R such that R is polynomial
time recognizable and

x � L if and only if �y��y� s�t� �x� y�� y�� � R �����

�Above and below� it is important to stress that the universal quanti�ers range only over strings of
the adequate length��

In general� 'i is de�ned as the class consisting of sets L such that there exists a �i ! ���ary
�polynomially
bounded�� relation R such that R is polynomial
time recognizable and

x � L if and only if �y��y� � � �Qiyi s�t� �x� y�� ���� yi� � R �����

where Qi is an existential �resp�� universal� quanti�er in case i is odd �resp�� even�� That is� we
have i alternating quanti�ers� starting with an existential one� where each quanti�er ranges over
strings of length polynomial in the length of x� �Note that indeed '� � NP ��

Similarly� we can de�ne classes referring to alternating sequences of quanti�ers starting with
a universal quanti�er� Speci�cally� L � �i if there exists a �i ! ���ary �polynomially
bounded�
relation R such that R is polynomial
time recognizable and

x � L if and only if �y��y� � � �Qiyi s�t� �x� y�� ���� yi� � R �����

where Qi is an existential �resp�� universal� quanti�er in case i is even �resp�� odd��
The polynomial
time hierarchy� denoted PH� is de�ned as �i'i� That is� L � PH means that

there exists an i such that L � PH�
�We say that R is polynomially�bounded if there exists a polynomial p such that for every �x� y�� y�	 � R it holds

that jy�j� jy�j � p�jxj	�
�Indeed� we say that R is polynomially�bounded if there exists a polynomial p such that for every �x� y�� ���� yi	 � R

it holds that
Pi

j��
jyj j � p�jxj	�
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Exercises� the following facts can be veri�ed by purely syntactic considerations�

�� For every i � �� it holds that �i � co'i �and� in particular� �� � coNP��

�� For every i � �� it holds that 'i � �i�� and �i � 'i��� Thus� PH � �i�i�

�� For every i � �� it holds that 'i � 'i���

It is widely believed that 'i is a strict subset of 'i��� See further discussion in Section ����

Another Exercise� Prove that PH is contained in PSPACE � See further discussion in Sec

tion ����

Complete sets in PH� The above de�nition of 'i �and �i� gives rise to ��semi
natural�� com

plete sets for 'i �and �i�� For example� consider the set of Boolean circuits of the formC such that C
takes as input i equal
length strings� denoted x�� ���� xi� and it holds that �x��x� � � �Qixi C�x�� ���� xi� �
�� where Qi is an existential �resp�� universal� quanti�er in case i is odd �resp�� even�� Clearly� this
set is in 'i� and every set in 'i is Karp
reducible to this set�� �Hint� the xi�s correspond to the
yi�s in the de�nition of 'i� whereas C corresponds to x��

Natural Examples of sets in PH� Recall that natural NP
optimization problems are captured
by NP
sets that refer only to a �one
sided� bound on the value of the optimum� For example�
whereas the optimization version of maxClique requires to �nd the largest clique in a given graph�
the decision problem is to tell whether or not the largest clique has size greater than or equal to
a given number�	 Clearly� the latter decision problem is in NP� whereas its complement �i�e��
determining whether the largest clique has size smaller than a given number� is in coNP � But
what about determining whether the largest clique has size equal to a given number� �That is� the
set we refer to is the set of pairs �G�K� such that the size of the largest clique in G equals K�� Note
that this problem is unlikely to be in either NP or coNP �because this will imply NP � coNP���

but it is certainly in '� �and in ���� �Exercise� Present adequate �
ary relations for the above set��
See further discussion in the next section�


�� De�ning PH via oracles

Recall that the general notion of a reduction is based on augmenting a �deterministic� polynomial

time machine with oracle access� A natural question is what languages can be recognized by such
machines when the oracle is an arbitrary NP
set �or� equivalently an NP
complete set like SAT ���

We denote this class by PNP � standing for an arbitrary �P
machine� given oracle access to some
NP
set� �As indicated below� PNP is likely to be a proper superset of NP � whereas the class of
languages that are Karp
reducible to NP equals NP ��

�The reason that we insist on Karp�reductions here will become clear below�
�Actually� the decision problem is typically phrased as determining whether there exists a clique of size greater

than or equal to a given number�
�If we could have given an NP�proof that the max�clique has size equal to a given number� then we could prove

that it is strictly smaller than a given number� which is a coNP�complete problem �and NP � coNP would follow	�
�Exercise� Show that these two formulations are indeed equivalent�
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Comment� The notation PNP is consistent with the standard notation for oracle machines� That
is� for an oracle machine M � �oracle� set L and string x� we let ML�x� denote the output of M on
input x and oracle access to L� �Thus� when we said that L� is reduced to L we meant that there
exists a polynomial
time oracle machine M such that for every x it holds that ML�x� � � if and
only if x � L��� Thus�

PNP � fL�MSAT � � M is a �P
machine�g
where L�MSAT � denotes the set of inputs that are accepted by M when given oracle access to SAT �

Exercises�

�� Show that both NP and coNP are subsets of PNP �

�� In contrast� prove that the class of languages that are Karp
reducible to NP equals NP �

�� Following the above discussion� de�ne PcoNP and show that it equals PNP �

�� Referring to the set of pairs �G�K� such that the size of the largest clique in G equals K�
show that this set is in PNP �

The de�nition of PNP suggests that we may de�ne also classes such as NPNP � Note that such a
de�nition does not yield a natural notion of a reduction �to NP
sets�� because the �reduction� is
non
deterministic� Still� a well
de�ned class does emerge� Speci�cally� NPNP is the class of sets
that are accepted by a non
deterministic polynomial
time oracle machine that is given access to
some NP
set� Observe that indeed PNP � NPNP �

De	ning 'i by oracles� As before� we let '�
def
� NP � For i � �� we de�ne

'i��
def
� NP
i � �����

Indeed� '� so de�ned equals NPNP � As we will show in the next section� the 'i�s as de�ned here
coincide with the classes de�ned in the previous section�

A general perspective � what does C�C� mean� By the above discussion it should be clear
that the class C�C� can be de�ned for any two complexity classes C� and C�� provided that C� is
associated with a class of machines that extends naturally to access oracles� Actually� the class
C�C� is not de�ned based on the class C� but rather by analogy to it� Speci�cally� suppose that C� is
the class of sets recognizable by machines of certain type �e�g�� deterministic or non
deterministic�
with certain resource bounds �e�g�� time and�or space bounds�� Then we consider analogous oracle
machines �i�e�� of the same type and with the same resource bounds�� and say that L � C�C� if there
exists such an oracle machine M� and a set L� � C� such that ML�

� accepts the set L�

Exercise� For C� and C� as above� prove that C�C� � C�coC� � Note that� in particular� NP
i �
NP�i �

��




�� Equivalence of the two de�nitions of PH

To avoid confusion� let use denote by '�
i the class de�ned via quanti�ers �i�e�� in Eq� ������� and by

'��
i the class de�ned by oracle machines �i�e�� in Eq� �������

Theorem ��� For every i � �� it holds that '�
i � '��

i �

Proof Sketch� The claim holds trivially for i � �� Assuming that equality holds for i � �� we
show that it holds also for i ! �� �Each of the two inclusions uses only the induction hypothesis of
the same direction��

Assuming that '�
i � '��

i � we prove that '�
i�� � '��

i��� by looking at an �i!��
ary relation� R� for
a set L � '�

i��� Recall that x � L i� �y��y� � � �Qi��yi�� such that �x� y�� ���� yi��� � R� De�ne L� as
the set of pairs �x� y� such that �y� � � �Qi��yi�� it holds that �x� y� y�� ���� yi��� � R� Then� L� � co'�

i

and x � L i� there exists a y such that �x� y� � L�� By using a straightforward non
deterministic
oracle machine� we obtain that L � NPco
�i � NP
�i � Using the induction hypothesis� it follows
that L � NP
��i � '��

i���
Assuming that '��

i � '�
i� we prove that '��

i�� � '�
i��� by looking at a non
deterministic oracle

machine M that accepts a set L � '��
i�� when using an oracle L� � '��

i � By the de�nition of
non
uniform acceptance� it follows that x � L i� there exists a computation of M on input x that
accepts� when the queries are answered according to L�� Let use denote by ML��x� y� the output of
M on input x and non
deterministic choices y� when its queries are answered by L�� Then� x � L
i� there exists a y such that ML��x� y� � �� We may assume� without loss of generality� that M
starts its computation by non
deterministically guessing all oracle answers �and acting according
to these guesses�� and that it accept only if these guesses turned out to be correct� In other words�
there exists a polynomial
time computable predicate P � such that ML��x� y� � � i� P �x� y� � �
and the jth answer provided by the oracle in the computation ML��x� y� equals the jth bit of y�
denoted y�j�� Furthermore� since M acts according to the guessed answers that are part of y� the
jth query of M is determined �in polynomial
time� by �x� y�� and is denoted q�j��x� y�� We conclude
that x � L i� there exists a y such that P �x� y� � � and y�j� � � i� q�j� � L� for every j� Using the
induction hypothesis� it holds that L� � '��

i � '�
i� and we let R� denote the corresponding �i!��
ary

relation� Thus� x � L i�

�y
�
��P �x� y� � �� �

�
j

�
��y�j� � ��� �y�j�� �y�j�� � � �Qi��y

�j�
i�� �q�j��x� y�� y

�j�
� � ���� y

�j�
i����R��

��A
The proof is completed by observing that the above expression can be rearranged to �t the de�nition
of '�

i��� �Hint� we may incorporate the computation of all the q�j��x� y��s into the relation R�� and
pull all quanti�ers outside���


�� Collapses

As stated before� it is widely believed that PH is a strict hierarchy	 that is� that 'i is strictly
contained in 'i�� for every i � �� We note that if a collapse occurs at some level �i�e�� 'i � 'i��

�Note that� for predicates P� and P�� the expression �y �P��y	 � �zP��y� z		 is equivalent to the expression
�y ���P��y	��zP��y� z			 ��P��y	���zP��y� z			� which in turn is equivalent to the expression �y�z�
z�� ���P��y	�
P��y� z

�		 	 ��P��y	 � �P��y� z��			� Note that pulling the quanti�ers outside in 	tj���y	j

z	j
P �y	j
� z	j
	 yields an
expression of the type �y	�
� ���� y	t

z	�
� ���� z	t
 	tj�� P �y	j
� z	j
	�

��



for some i � �� then the entire hierarchy collapses to that level �i�e�� 'i � PH�� �This fact is
best veri�ed from the oracle
based de�nition� and the veri�cation is left as an exercise��� In fact� a
stronger statement can be proven�

Theorem ��� If 'i � �i holds for some i � � then PH � 'i�

In particular� NP � coNP implies a total collapse �i�e�� PH � NP�� In light of the above
discussion� it su�ces to show that 'i � �i implies 'i � 'i��� This is easiest to prove using the
quanti�er
based de�nition� while relying on ideas used in the previous section� Speci�cally� for
L � 'i��� we �rst derive a set L� � �i such that x � L if and only if there exists y such that
�x� y� � L�� By the hypothesis L� � 'i� and so x � L i�

�y�y��y� � � �Qiyi s�t� ��x� y�� y�� y�� ���� yi� � R�

where R� is the �i ! ��
ary relation guaranteed for L� �w�r�t the de�nition of 'i�� By joining the

two leftmost existential quanti�ers and slightly modifying R� �into R�� def
� f�x� �y� y��� y�� ���� yi� �

��x� y�� y�� y�� ���� yi� � R�g�� we conclude that L � 'i�


�� Comment� a PSPACE�complete problem

Recall that the complete problem of 'i referred to circuits that take i input strings �and to an
alternating existential and universal quanti�cation over these inputs�� A natural question that
arises is what happens if we drop the restriction on the number of such inputs� That is� consider
the set of circuits that take a sequence of input strings� which is �of course� bounded in length by
the size of the circuit� Such a circuit� denoted C� having t � t�G� input strings� denoted x�� ���� xt�
is in the set QC �standing for Quanti�ed Circuits� if and only if �x��x� � � �Qtxt C�x�� ���� xt� � ��

It is easy to see that QC � PSPACE � To show that any problem in PSPACE is reducible �in
fact� Karp
reducible� to QC� we follow the underlying idea of the proof of Theorem ���� That is� let
L � PSPACE � let M be the corresponding polynomial
space machine� and p be the corresponding
polynomial space
bound� For any x � f�� �gn� it holds that x � L i� M passes in at most �p�n�

steps from the initial con�guration with input x� denoted init�x�� to an accepting con�guration�
denoted ACC� De�ne a Boolean predicate pM such that pM��� �� t� � true i� M passes in at
most t steps from the con�guration � to con�guration �� Then� we are interested in the value
pM �init�x�� ACC� �p�n��� On the other hand� for every � and � �and i � N�� it holds that

pM ��� �� �i� � �
 #pM ��� 
� �i��� � pM �
� �� �i���$ �����

If we were to iterate Eq� ����� then the length of the formula will double in each iteration� and after
log� t iterations we�ll just get a straightforward conjunction of t formulae capturing single steps of
M � Our aim is to moderate the growth of the formula size during the iterations� Towards this end�
we replace Eq� ����� by

pM��� �� �i� � �
������� #�� � �
 ��� � � � �� � 
�� � �� � �
 ��� � 
 � �� � ���

� pM���� ��� �i����$ �����

where � � f�� �g� Observe that Eq� ����� is equivalent to Eq� ������ whereas in the latter the size of
the formula grows by an additive term �rather than by a factor of ��� Thus� pM �init�x�� ACC� �p�n��

�Assuming that �i � �i��� we prove by induction on j � i that �j � �i� In the induction step� we have
�j�� � NP
j � NP
i � �i�� � �i�

��



can be written as a quanti�ed boolean formula with O�log t� �alternating� quanti�ers� The formula
being quanti�ed over will be a conjunction of �O�log t�� simple logical conditions �of the type
introduced in Eq� ������ as well as �a single occurrence of� the formula pM ��� �� ��� Hence� we have
actually established the PSPACE
hardness of a special case of QC corresponding to Quanti�ed
Boolean Formulae� denoted QBF �

��



Lecture �

Randomized Complexity Classes

So far� our approach to computing devises was somewhat conservative� we thought of them as
�repeatedly� executing a deterministic rule� A more liberal and quite realistic approach pursued
in this lecture considers computing devices that use a probabilistic �or randomized� rule� Specif

ically� we allow probabilistic rules that choose uniformly among two predetermined possibilities�
and observe that the e�ect of more general probabilistic rules can be e�ciently approximated by a
rule of the former type� We still focus on polynomial
time computations� but these are probabilis�
tic polynomial
time computations� Indeed� we extend our notion of e�cient computations from
deterministic polynomial
time computations to probabilistic polynomial
time computations�

Rigorous models of probabilistic machines are de�ned by natural extensions of the basic model	
for example� we will talk of probabilistic Turing machines� Again� the speci�c choice of model is
immaterial	 as long as it is �reasonable�� We consider the output distribution of such probabilistic
machines on �xed inputs	 that is� for a probabilistic machine M and string x � f�� �g�� we denote
by M�x� the distribution of the output of M on input x� where the probability is taken over the
machine�s random moves� Focusing on decision problems� three natural types of machines arise�

�� The most liberal notion is of machines with two�sided error probability� In case of search
problems� it is required that the correct answer is output with probability that is signi�cantly
greater than �	� �e�g�� probability at least �	��� When this approach is applied to deci

sion problems �solvable by probabilistic polynomial
time machines�� we get the class BPP �
standing for Bounded
error Probabilistic Polynomial
time�

�� Machines with one�sided error probability� In case of search problems� a natural notion is of
machines that output a �correct� solution �in case such exists� with probability at least �	��
and never output a wrong solution� In case of decision problems� there are two natural cases
depending on whether the machine errs on YES
instances �but not on NO
instances�� or the
other way around�

�� Machines that never err� but may output a special don�t know symbol� say� with probability
at most �	��

We focus on probabilistic polynomial
time machines� and on error probability that may be reduced
to a �negligible� �e�g�� exponentially vanishing in the input length� amount by polynomially many
independent repetitions�

We comment that an alternative formulation of randomized computations is captured by �de

terministic� machines that take two inputs� the �rst representing the actual input and the second
representing the coin tosses �or the �random input��� For such machines� one considers the output

��



distribution for any �xed �rst input� when the second input is uniformly distributed among the set
of strings of adequate length�

��� Two�sided error� BPP

The standard de�nition of BPP is in terms of machines that err with probability at most �	��
That is� L � BPP if there exists a probabilistic polynomial
time machine M such that for every
x � L �resp�� x �� L� it holds that Pr#M�x� � �$ � �	� �resp�� Pr#M�x� � �$ � �	� �� In other
words� letting �L denote the characteristic function of L� we requite that Pr#M�x� �� �L�x�$ � �	�
for every x � f�� �g�� The choice of the constant �	� is immaterial� and any other constant smaller
than �	� will do �and yield the very same class�� In fact� a more general statement� which is proved
by so
called �ampli�cation� �see next�� holds�

Error reduction �or con	dence ampli	cation�� For any function � � N 
 ��� ����� consider
the class BPP� of sets L such that there exists a probabilistic polynomial
time machine M for
which Pr#M�x� �� �L�x�$ � ��jxj� holds� Clearly� BPP � BPP���� However� a wide range of other
classes also equal BPP � In particular�

�� For every positive polynomial p� the class BPP�� where ��n� � ��	�� � ��	p�n��� equals
BPP � That is� any error that is ��noticeably�� bounded away from ��� �i�e�� error ��	�� �
��	poly�n��� can be reduced to an error of �	��

�� For every positive polynomial p� the class BPP�� where ��n� � ��p�n�� equals BPP � That is�
an error of �	� can be further reduced to an exponentially vanishing error�

Both facts are proven by applying an adequate Law of Large Numbers� That is� consider inde

pendent copies of a random variable that represents the output of the weaker machine �i�e�� the
machine having larger error probability�� Use the adequate Law of Large Numbers to bound the
probability that the average of these independent outcomes deviates from the expected value of the
original random variable� Indeed� the resulting machine will invoke the original machine su�ciently
many times� and rule by majority� We stress that invoking a randomized machine several times
means that the random choices made in the various invocations are independent of one another�

BPP is in the Polynomial�Time Hierarchy� Clearly P � BPP � and it is commonly con

jectured that equality holds �although a polynomial slow
down may occur when transforming�
according to these conjectures� a probabilistic polynomial
time algorithm into a deterministic one��
However� it is not known whether or not BPP is contained in NP� In view of this ignorance� the
following result is of interest�

Theorem ��� BPP � '��

Proof� Suppose that L � BPP � and consider �by suitable error
reduction� a probabilistic polynomial

time algorithm A such that Pr#A�x� �� �L�x�$ � �	�
�jxj� for all x � f�� �g�� where 
�jxj� denotes
the number of coins tossed by A�x�� Let us consider the residual deterministic two
input algorithm
A� such that A��x� r� equals the output of A on input x and random choices r � f�� �g��jxj�� We
claim that x � L if and only if

�s�� s�� ���� s��jxj� � f�� �g��jxj��r � f�� �g��jxj�
��jxj��
i��

�A��x� si � r� � �� �����

��



Once the claim is proved� the theorem follows by observing that Eq� ����� �ts the de�nition of '��
In order to prove the claim� we �rst consider the case x � L� We use the Probabilistic Method to
show that an adequate sequence of si�s exists� That is� we show that most sequences of si�s are
adequate� by upper bounding the probability that a random sequence of si�s is not adequate�

Prs��s������s�	jxj
#��r � f�� �g��jxj�
��jxj��
i��

�A��x� si � r� � ��$

� Prs��s������s�	jxj
#�r � f�� �g��jxj�
��jxj��
i��

�A��x� si � r� �� ��$

�
X

r�f
��g�	jxj


Prs��s������s�	jxj
#

��jxj��
i��

�A��x� si � r� �� ��$

�
X

r�f
��g�	jxj


��jxj�Y
i��

Prsi #A
��x� si � r� �� �$

� ���jxj� �
	

�

�
�jxj�

��jxj�

�

	
�

�
�jxj�

��jxj�

� �

where the last inequality is due to the fact that� for any �xed x � L and r� it holds that Prsi #A
��x� si�

r� �� �$ � Prs#A
��x� s� �� �L�x�$ � �	�
�jxj�� On the other hand� for any x �� L and every sequence

of si�s� it holds that Prr#
W��jxj�
i�� A��x� si � r� � �$ � �	� � � �since x �� L�� Thus� Eq� ����� cannot

possibly hold for x �� L�

We comment that the same proof idea yields a variety of similar statements �e�g�� see Sec

tion ������

��� One�sided error� RP and coRP

The class RP is de�ned as containing any set L such that there exists a probabilistic polynomial

time machine M satisfying the following two conditions

x � L �� Pr#M�x� � �$ � �

�
�����

x �� L �� Pr#M�x� � �$ � � �����

Observe that RP � NP �e�g�� note that NP is obtained by replacing Eq� ����� with the condition
Pr#M�x� � �$ � �� for every x � L�� Again� the speci�c probability threshold in Eq� ����� is
immaterial as long as it is noticeable �and su�ciently bounded from ���� Thus� RP � BPP �

Exercise� Prove that L� is in the class coRP � ff�� �g� n L � L � RPg if and only if there exists
a probabilistic polynomial
time machine M � satisfying the following two conditions

x � L� �� Pr#M ��x� � �$ � � �����

x �� L� �� Pr#M ��x� � �$ � �

�
�����

�Exercise� Let RP� denote the class obtained by replacing Eq� ���
	 by the condition Pr�M�x	 � �� � � � ��jxj	�
for every x � L� Observe that RP��� � RP� and prove that RP��	��p	n

 � RP and RP��p�n� � RP� for any
positive polynomial p� �Note that ampli�cation is easier in this case �of one�sided error	�	

��



The well
known randomized primality testing algorithms always accept prime numbers and rejects
composite number with high probability� Thus� these algorithms establish that the set of prime
numbers is in coRP �

��� No error� ZPP

Whereas in case of BPP we have allowed two
sided errors� and in case of RP �and coRP� we
have allowed one
sided errors� we now allow no errors at all� Instead� we allow the algorithm to
output a special don�t know symbol� denoted �� with some bounded �away from �� probability�
The resulting class is denoted ZPP � standing for Zero
error Probabilistic Polynomial
time� The
standard de�nition of ZPP is in terms of machines that output � with probability at most �	��
That is� L � ZPP if there exists a probabilistic polynomial
time machine M such that Pr#M�x� �
f�L�x���g$ � � and Pr#M�x� � �L�x�$ � �	� for every x � f�� �g�� Again� the choice of the
constant �i�e�� �	�� is immaterial� and �ampli�cation� can be conducted as in case of RP �and
yield the very same class�� In fact� as in case of RP � a more general statement holds�

Exercise� Prove that ZPP � RP � coRP � �Indeed� ZPP � RP �as well as ZPP � coRP�
follows by a trivial transformation of the ZPP
machine� On the other hand� RP � coRP � ZPP
can be proved by combining the two machines guaranteed for a set in RP � coRP ��

��� Randomized space complexity

The class RL �Random LogSpace� is de�ned analogously to the class NL� and is indeed contained
in the latter� Speci�cally� the syntax of Random LogSpace machines is identical to the one of
Non
deterministic LogSpace machines� but the acceptance condition is probabilistic as in the case
of RP � In addition� we need to require explicitly that the machine runs in polynomial
time �or else
RL extends up to NL���

Recall that Directed Connectivity is complete for NL �under log
space reductions�� Below we
show that undirected connectivity is solvable in RL� Speci�cally� consider the set of triples �G� s� t�
such that the vertices s and t are connected in the �undirected� graph G� On input �G� s� t�� the
randomized �log
space� algorithm starts a poly�jGj�
long random walk at vertex s� and accepts the
triplet if and only if the walk passed through vertex t� By a random walk we mean that at each
step we select uniformly one of the neighbors of the current vertex and move to it� Observe that
the algorithm can be implemented in logarithmic space �because we only need to store the current
vertex as well as the number of steps taken so far�� and that we never accept �G� s� t� in case s and
t are not connected� We claim that if s and t are connected in G � �V�E� then a random walk
of length O�jV j � jEj� starting at s passes through t with probability at least �	�� It follows that
undirected connectivity is indeed in RL�

�Recall that� w�l�o�g� a non�deterministic log�space machine need only run for polynomial�time� Such a computation
can be simulated by a randomized log�space machine that repeatedly guesses non�deterministic moves and simulates
the original machine on it� Note that we expect at most 
t tries before we guess an accepting t�time computation�
where t is polynomial in the input length� But what if there are no accepting t�time computations� To halt with a
probabilistic rejecting verdict we should implement a counter that counts till 
t� but we need to do so within space
O�log t	 �rather than t which is easy	� In fact it su�ces to have a randomized counter that with high probability
counts to approximately 
t� This can be implemented by tossing t coins until all show us heads� The expected
number of times we need to repeat the experiment is 
t� and we can implement this by a counter that counts till t
�using space log� t	�
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On proving the Random Walk Claim� �Indeed� this has little to do with the current course�	 Consider

the connected component of vertex s� denoted G� � �V �� E�	� For any pair� �u� v	� let Tu�v be a random variable

representing the number of steps taken in a random walk starting at u until v is �rst encountered� First verify that

E�Tu�v� � 
jE�j� for any �u� v	 such that fu� vg � E��� Next� letting cover�G�	 be the expected number of steps in a

random walk starting at s and ending when the last of the vertices of V � is encountered� and C be any directed cyclic

tour that visits all vertices in G�� we have cover�G�	 � P
	u�v
�C

E�Tu�v� � jCj � 
jE�j� Letting C be a traversal of

some spanning tree of G�� we conclude that cover�G�	 � � � jE�j � jV �j� Thus� with probability at least ��
� a random

walk of length � � jE�j � jV �j starting at s visits all vertices of G��

�For example� let Cu�v�n	 be a random variable counting the number of minimal u�to�v sub�paths within a
random walk of length n� where the walk starts at the stationary vertex distribution �assuming the graph is not
bipartite or is sligtly modi�ed otherwise	� On one hand� E�Tu�v� � limn���n�E�Cu�v�n	�	 �due to the memoryless
property of the walk	� On the other hand� E�Cu�v�n	� � � is lower bounded by the expected number of times
that the edge �v� u	 was travesed �from v to u	 in such a �n�step	 walk� where the latter expected number equals
n�
jE�j �because each directed edge appears �in each step	 on the walk with equal probability	� It follows that
E�Tu�v� � limn���n���n�
jE�j	� �		 � 
jE�j�
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Lecture 	

Non�Uniform Complexity

All complexity classes considered so far are �uniform� in the sense that each set in each of these
classes was de�ned via one �nite machine �or �nite expression�� which applied to all input lengths�
This is indeed in agreement with the basic algorithmic paradigm of designing algorithms that can
handle all inputs�

In contrast� non
uniform complexity investigates what happens when we allow to use a di�erent
algorithm for each input length� Indeed� in such a case� we must bound the description size of
the algorithm �otherwise any problem can be solved by incorporating in the algorithm the answers
to all �nitely many inputs of the adequate length�� By considering non
uniform complexity� we
are placing an upper
bound on what can be done by the corresponding uniform
complexity class�
The hope is that by abstracting away the ��evasive�� uniformity condition� we will get a �nite
combinatorial structure that we may be able to understand�


�� Circuits and advice

Focusing on non
uniform polynomial
time� we mention two standard ways of de�ning non
uniform
complexity classes� The �rst way is by considering �families of� Boolean circuits �as in Section �����
Speci�cally� L is said to be in non
uniform polynomial
time� denoted P	poly� if there exists an
in�nite sequence of Boolean circuits C�� C�� ��� such that for some polynomial p the following three
conditions hold�

�� The circuit Cn has n inputs and one output�

�� The size �e�g�� number of edges� of the circuit Cn is at most p�n��

�� For every x � f�� �gn� it holds that Cn�x� � � if and only if x � L�

That is� Cn is a non
trivial algorithm �i�e�� it cannot explicitly encode all �n answers� for deciding
the membership in L of n
bit long strings� However� although Cn has size at most p�n�� it is not
clear whether one can construct Cn in poly�n�
time �or at any time	 see below��

An alternative way of de�ning P	poly proceeds by considering �machines that take advice��
That is� we consider deterministic polynomial
time machines that get two inputs� where the second
input �i�e�� the advice� has length that is at most polynomial in the �rst input� The advice may
only depend on the input length� and thus it cannot explicitly encode the answers to all inputs �of
that length�� Speci�cally� L � P	poly if there exists a deterministic polynomial
time machine M
and an in�nite sequence of advice strings a�� a�� ��� such that for some polynomial p the following
conditions hold�
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�� The length of an is at most p�n��

�� For every x � f�� �gn� it holds that M�x� an� � � if and only if x � L�

Exercise� Prove that the two formulations of P	poly are indeed equivalent� Furthermore� prove
that without loss of generality� the machine M �as above� may be a universal machine�


�� The power of non�uniformity

Waiving the �uniformity condition� allows non
uniform classes to contain non
recursive sets� This
is true for P	poly as well as for most reasonable non
uniform classes� and is due to the obvious
reason that there exists non
recursive unary sets� Speci�cally� any unary set L � f�g� �possibly non


recursive�� can be decided by a linear
time algorithm that uses �
bit long advice �i�e�� an
def
� �L��n�

and M�x� ajxj� � � if and only if both x � �jxj and ajxj � ���
On the other hand� the existence of sets that are not in P	poly can be proven in a more

�concrete� way than the corresponding statement for P� Fixing any super
polynomial and sub

exponential function f � we observe that the number of possible f�n�
bit long advice is much smaller
than the number of possible subsets of f�� �gn� whereas these advice account for all the sets that
P	poly may recognize �using a universal machine��

We took it for granted that P � P	poly� which is indeed true �e�g�� by using empty advice
strings�� The fact that P	poly also contains BPP is less obvious� Before proving this fact� let use
mention that it is widely believed that P	poly does not contain NP � and indeed proving the latter
conjecture was suggested as a good way for establishing that P �� NP� �Whether or not this way
is a good one is controversial��

Theorem 
�� BPP 
 P	poly

Proof� As in the proof of Theorem ���� we consider an adequate ampli�cation of BPP � Here� for
L � BPP � we consider �by suitable error
reduction� a probabilistic polynomial
time algorithm A
such that Pr#A�x� �� �L�x�$ � ��jxj� Again� let us consider the residual deterministic two
input
algorithm A� such that A��x� r� equals the output of A on input x and random choices r � f�� �g��jxj��
Then� by a trivial counting argument� there exists a string r � f�� �g��n� such that A��x� r� � �L�x�
for all x�s of length n� Using this string r as the advice for n
bit long inputs� we are done�


�� Uniformity

The non
uniform aspect of the de�nition of P	poly is the lack of requirements regarding the con

structibility of the circuits �resp�� advice�� As a sanity check� we note that requiring that these
objects be polynomial
time constructible results in a cumbersome de�nition of P� That is� suppose
that we require that there is a polynomial
time algorithm A that given �n outputs the circuit Cn

�resp�� the advice an� for deciding L � P	poly �as per the de�nition above�� Then� combining A
with the standard circuit
evaluation algorithm �resp�� the advice
taking machine M�� we obtain an
ordinary polynomial
time algorithm for deciding L�


�� Evidence that P�poly does not contain NP

Recall that a major motivation towards studying P	poly is the desire to prove that P	poly does
not contain NP �and thus also BPP � P does not contain NP�� In view of the fact that P	poly
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contains non
recursive sets� one may wonder how feasible is the conjecture that P	poly does not
contain NP � It would have been best if we knew that NP 
 P	poly if and only if P � NP � But
we only know that NP 
 P	poly implies a collapse of the Polynomial
time Hierarchy� That is�

Theorem 
�� NP � P	poly implies that PH � '��

Proof sketch� We show that �� � '�� and the claim follows by Theorem ���� Suppose that L � ���
and let us consider the corresponding quanti�ed expression �for x � L�� �y�zR�x� y� z� � �� where

y� z � f�� �gpoly�jxj�� Let L�
def
� f�x� y� � �zR�x� y� z� � �g� and observe that L� is in NP � and thus

in P	poly� Thus� x � L if and only if for m � poly�jxj� there exists a poly�m�
size circuit Cm

for deciding L� � f�� �gm such that for all y�s it holds that Cm�x� y� � �� The above expression is
almost of the adequate �i�e�� '�� form� except that we need to check that C is indeed correct on all
inputs of length m� Suppose that L� was downwards self�reducible	 that is� that deciding whether
w � L� could be reduced to deciding membership in L� of shorter �than w� strings� Then� we could
have revised the above expression and assert that x � L if and only if there exists a sequence of
polynomial
size circuits C�� ���� Cm such that

�� for all y�s it holds that Cm�x� y� � �	

�� for i � �� ����m� the circuit Ci correctly determines membership in L�� where correctness of
Ci is expressed by saying that for all w � f�� �gi the value of Ci�w� is consistent with the
values obtained by the downwards self
reduction �as answered by the already veri�ed circuits
C�� ���� Ci����

However� we have no reason to assume that L� is self
reducible� What we do instead is reduce L�

to SAT and apply the argument to SAT �using its polynomial
size circuits �which exist by the
hypothesis� and its downwards self
reducibility �which is a very natural procedure��� Speci�cally�
let f be a Karp
reduction of L� to SAT � Thus� x � L if and only if �y f�x� y� � SAT � Using the
hypothesis� we have SAT � P	poly� and thus there exists a sequence of polynomial
size circuits
C�� C�� ��� for SAT � Now� we assert that x � L if and only if there exists a sequence of polynomial

size circuits C�� ���� Cm� where m � jf�x� y�j� such that the following two conditions hold�

�� For all y�s �of adequate length�� Cm�f�x� y�� � ��

�� For i � �� ����m� the circuit Ci correctly decides membership of i
bit long strings in SAT � Note
that the correctness condition for Ci can be expressed as follows� For every i
long formula �
it holds that Ci��� � � if and only if either Ci���

�� � � or Ci����
��� � �� where �� �resp�� ���� is

the formula obtained from � by replacing its �rst variable with � �resp�� ��� and i� �resp�� i���
is the length of the resulting formula after straightforward simpli�cations �which necessarily
occurs after instantiating a variable��

Observe that the expression obtained for membership in L is indeed of the '�
form� The theorem
follows�


�� Reductions to sparse sets

Another way of looking at P	poly is as the class of sets that are Cook
reducible to a sparse set�
where a sparse set is a set that contains at most polynomially many strings of each length� �The
reason for stressing the fact that we refer to Cook
reductions will be explained below�� Let us �rst
establish the validity of the above claim�
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Proposition 
�� L � P	poly if and only if L is reducible to some sparse set�

Proof sketch� Suppose that L � P	poly and suppose that n is su�ciently large� Then we can
encode the nth advice string �i�e�� an� in �the �rst janj strings of� the n
bit slice of a set S �i�e�� by
placing the ith �n
bit� string in S � f�� �gn if and only if the ith bit of an equals ��� Observe that
S is indeed sparse �because janj � poly�n��� On input x� the reduction �rst retrieves the advice
string ajxj �by making polynomially
many n
bit long queries to S�� and decides according to the
advice
taking M�x� ajxj��

In case L is reducible to a sparse set S� we let the nth advice encode the list of all the strings
in S that have length at most q�n�� where q is the polynomial bounding the running
time of the

reduction� Given this advice �which is of length
Pq�n�

i�� jS � f�� �gij � i � poly�n��� the advice
taking
machine can emulate the answers of the oracle machine �of the reduction�� and thus decide L�

As a direct corollary to Proposition ���� we obtain�

Corollary 
�
 SAT is Cook�reducible to a sparse set if and only if NP � P	poly�

Combining Corollary ��� and Theorem ���� it follows that SAT cannot be Cook
reducible to a
sparse set� unless the Polynomial
time hierarchy collapses�

Perspective
 Karp�reductions to sparse sets

We have stressed the fact that we refer to Cook
reductions� because �by Corollary ���� SAT is
Cook
reducible to a sparse set if and only if NP � P	poly� In contrast� it is known that SAT
is Karp
reducible to a sparse set if and only if NP � P� Thus� the di�erence between Cook and
Karp reductions is �re�ected� in the di�erence between NP � P	poly and NP � P�

Theorem 
�� SAT is Karp�reducible to a sparse set if and only if NP � P�

Proof of a special case� Clearly� if NP � P then SAT is Karp
reducible to any non
trivial set
�e�g�� to the set f�g�� We establish the opposite direction only for the special case that SAT is
Karp
reducible to some set S such that S is a subset of a sparse set G � P� �Such a set S is called
guarded� and S � f�g� is indeed a special case�� Speci�cally� using the Karp
reduction of SAT
to S� we present a �deterministic� polynomial
time decision procedure for SAT � The procedure
conducts a DFS on the tree of all possible partial truth assignment to the input formula� while
truncating the search at nodes that are roots of sub
trees that contain no satisfying assignment
�at the leaves��� The key observation is that each internal node �which yields a formula derived
from the initial formulae by instantiating the corresponding partial truth assignment� is mapped
by the reduction either to a string not in G �in which case we conclude that the sub
tree contains
no satisfying assignments� or to a string in G �in which case we don�t know what to do�� However�
once we backtrack from this internal node� we know that the corresponding element of G is not in
S� and we will never extend a node mapped to this element again� Speci�cally� let � be the input
formula� and �� denote the formula resulting from � by setting its �rst j� j variables according to
the partial truth assignment � � Then� the procedure proceeds as follows� using the Karp
reduction
f of SAT to S�

�For an n�variable formulae� the leaves of the tree correspond to all possible n�bit long strings� and an internal
node corresponding to 	 is the parent of nodes corresponding to 	� and 	��
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Initialization� � 	 � and B 	 �� where � is a partial truth assignment for which we wish to
determined whether or not �� � SAT � and B 
 G n S is a set of strings that were already
�proved� not to be in S�

The following steps are recursive and return a Boolean value� representing the whether or not
�� � SAT �

Internal node� Determine whether or not �� � SAT � according to the following three cases�

�� If f��� � �� G then return the value false�

�Since S � G� we have f��� � �� S� and by the validity of the reduction� �� �� SAT ��

�� If f��� � � B then return the value false�

�Since B � G n S� we have f��� � �� S� and by the validity of the reduction� �� �� SAT ��

�� Otherwise �i�e�� f��� � � GnB�� invoke two recursive calls� for ��
 and ���� respectively��

If both calls have returned false and f��� � � GnB then add f��� � to B �since �� �� SAT
holds�� Actually� if the �rst call returns true then the second call does not take place��

In any case� return the OR
value of the two values returned by the recursive calls�

�We stress that only the third case invokes recursive calls��

Bottom Level� If the constant �formula� �� is false and f��� � � G n B then add f��� � to B�
In any case� return the value of �� �

It is easy to verify that the procedure returns the correct answer� The running
time analysis is
based on the observation that if � � and � �� are not pre�xes of one another and f��� �� � f��� ��� then
it cannot be that Case � was applied to both of them� Thus� the number of internal nodes for which
Case � was applied is at most the depth of the tree times j �mi�� Gi n Sj � Pm

i�� jGij � poly�m��

where Gi
def
� G � f�� �gi and m � jf���j � poly�j�j��

�We may re�evaluate the condition f�
� 	 � B after obtaining the answer of the �rst call� but this is not really
necessary�

�Otherwise� the procedure will visit all satisfying assignments� and consequently may run for exponential time�
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Lecture 


Counting Classes

��� The de�nition of �P

A natural computational problem associated with an NP
relation R is to determine the number of

solutions for a given instance	 that is� given x� determine the cardinality of R�x�
def
� fy � �x� y� � Rg�

This problem is the counting problem associated with R� Certainly� the counting problem associated
with R is not easier than the problem of deciding membership in LR � fx � �y s�t� �x� y� � Rg
�which can be casted as determining� for a given x� whether jR�x�j is positive or zero��

The class 
P can be de�ned as a class of functions that count the number of solutions in
NP
relations� That is� f � 
P if there exists an NP
relation R such that f�x� � jR�x�j for all
x�s� Alternatively� we can de�ne 
P as a class of sets� where for every NP
relation R the set


R
def
� f�x� k� � jR�x�j � kg is in 
P� �Exercise� Formulate and show the �equivalence� between

the two de�nitions��

Relation to PP� The class 
P is related to a probabilistic class� denoted PP� that was not
de�ned in Lecture �� We say that L � PP if there exists a probabilistic polynomial
time algorithm
A such that� for every x� it holds that Pr#A�x� � �$ � �	� if and only if x � L �or� alternatively�
Pr#A�x� � �L�x�$ � �	� for every x��� �Recall that� in contrast� L � BPP requires that Pr#A�x� �
�L�x�$ � �	� for every x�� Notice that any L � PP can be decided by a polynomial
time oracle
machine that is given oracle access to 
R� where R describes the actions of the PP
algorithm �i�e��
�x� r� � R i� A�x� accepts when using coins r�� On the other hand� 
P � PP � by virtue of �a minor
modi�cation to� the following algorithm that refers to 
R� where R � �n�Nf�� �gn � f�� �gm�n� �

on input �x� k�� with probability one half select y uniformly in f�� �gm�jxj� and accept i� �x� y� � R�
and otherwise �i�e�� with probability �	�� accept with probability exactly � � �k � ���� � ��m�jxj��
�Exercise� Provide the missing details for all the above claims��

��� �P�complete problems

We say that a computational problem is 
P
complete if it is in 
P and every problem in 
P
is reducible to it� Thus� for an NP
relation R� the problem 
R �which is always in 
P� is 
P

complete if for any NP
relation R� it holds that 
R� is reducible to 
R� Using the standard
Karp
reductions� it is easy to show that for any known NP
complete relation R the set 
R is

�Exercise� show the equivalence of the two formulations�
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P
complete� This is the case because the standard reductions �or minor modi�cations of them�
are �parsimonious� �i�e�� preserve the number of solutions�� In particular�

Proposition ��� 
SAT is 
P�complete� where ��� k� � 
SAT if and only if � has at least k
di�erent satisfying assignment�

Exercise� Verify that the standard reduction of any NP
relation to SAT is parsimonious	 that is� for
any NP
relation R� the standard reduction of R to SAT maps each x to a formula having exactly
jR�x�j satisfying assignments�

As stated above� Proposition ��� is merely a consequence of the nature of the reductions used in
the standard context of NP
completeness results� Speci�cally� it is the case that the same reductions
used to demonstrate NP
completeness of search problems can be used to show 
P
completeness of
the corresponding counting problems� Consequently� �hard� �i�e�� NP
complete� search problems
give rise to �hard� �i�e�� 
P
complete� counting problems� Interestingly� there are �hard� counting
problems �i�e�� 
P
complete problems� for which the corresponding search problem is easy� For
example� whereas the problem of �nding a maximum matching in a given graph is �easy� �i�e��
solvable in polynomial
time�� the corresponding counting problem is �hard� �i�e�� 
P
complete��

Theorem ��� The problem of counting the number of perfect matching in a bipartite graph is

P�complete� Equivalently� the problem of computing the permanent of integer matrices with 
�	�
entries is 
P�complete�
Needless to say� the reduction used in proving Theorem ��� is not parsimonious �or else we could
have used it to reduceNP to the problem of deciding whether a given graph has a perfect matching��
For the same reason� the recent polynomial
time algorithm for approximating the permanent �of
non
negative matrices�� does not yield polynomial
time approximation algorithms for all 
P�

��� A randomized reduction of Approximate��P to NP

By an approximation for a counting problem 
R in 
P� we mean a procedure that on input
x outputs a �good� approximation� denoted A�x�� of jR�x�j� Speci�cally� we require that with
high probability� the ratio A�x�	jR�x�j will be bounded� For many natural NP
relations �and in
particular for SAT �� the following notions are all equivalent�

�� With probability at least �	�� it holds that A�x� is within a factor of � of jR�x�j
�i�e�� � � A�x�	jR�x�j � ����

�� With probability at least �� exp��jxj�� it holds that � � A�x�	jR�x�j � ��

�� With probability at least � � exp��jxj�� it holds that � � A�x�	jR�x�j � � ! jxj�c� where
c � � is any �xed constant�

�� With probability at least �	�� it holds that � � A�x�	jR�x�j � �jxj
c
� where c � � is any �xed

constant�	

�See Jerrum� Sinclair and Vigoda� A Polynomial�Time Approximation Algorithm for the Permanent of a Matrix with

Non�Negative Entries� in Proc� of the ��rd STOC� pages ��
��
�� 
����
�Show that this is equivalent to ability to get A�x	 such that ��

p

 � A�x	�jR�x	j � p


�
�Note that for some constant c that depends on R� the ability to approximate jR�x	j to within a factor of 
jxj

c

merely requires the ability to distinguish the case jR�x	j � � from jR�x	j � � �since jR�x	j � 
jxj
c

always holds	�

Exercise� Show that ability to approximate every jR�x�	j to within a factor of 
jx
�j implies ability to approximate

jR�x	j to within a factor of 
jxj
c

�
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Item � implies Item � by using straightforward error
reduction �as in case of BPP�� To show that
Item � implies Item � �resp�� Item � implies Item ��� we use the fact that for many natural NP

relations it is the case that many instances can be encoded in one �i�e�� R�hx�� ���� xti� � fhy�� ���� yti �
�i yi � R�xi�g��� Thus� suppose that �for every x� we know how to approximate jR�x�j to within

a factor of �jxj
���

� and we want to approximate jR�x�j to within a factor of � �for every x�� Then�

we form x� as a sequence of t
def
� jxj� copies of x� and obtain a �jx

�j���
factor approximation of
jR�x��j � jR�x�jt� Taking the tth root of this approximation� we obtain jR�x�j up
to a factor of

��jx
�j������t � ��t�jxj�

����t � ��
In view of the above� we focus on providing any good approximation to the problem of counting

the number of satisfying assignments to a boolean formula� The same techniques apply to any
NP
complete problem�

Theorem ��� The counting problem 
SAT can be approximated up to a constant factor by a
probabilistic polynomial�time oracle machine with oracle access to SAT �

Proof Sketch� Given a formula � on n variables� we approximate jSAT ���j by trying all possible
powers of � as candidate approximations� That is� for i � �� ���� n� we check whether �i is a
good approximation of jSAT ���j� This is done by uniformly selecting a �good� hashing function
h � f�� �gn 
 f�� �gi� and checking whether there exists a truth assignment � for � such that the
following two conditions hold�

�� the truth assignment � satis�es � �i�e�� ���� � true�� and

�� h hashes � to the all
zero string �i�e�� h��� � �i��

These two conditions can be encoded in a new formula �e�g�� by reducing the above NP
condition
to SAT��� The new formula �� is satis�able if and only if there exists an assignment � �to �� that
satis�es the above conditions� Thus� the answer to the above question �i�e�� whether such a � exists�
is obtained by making a corresponding query �i�e�� ��� to the SAT oracle�

In the analysis� we assume that the hashing function is good in the sense that for any S � f�� �gn�
with high probability� a randomly selected hashing function h satis�es jfe � S � h�e� � �igj � jSj	�i�
In particular� a randomly selected hashing function h maps each string to �i with probability ��i�
and the mapping of di�erent strings is pairwise independent� For further details� see #��� Lect� �$�

Note that if jSAT ���j � �i�� then a randomly selected hashing function is unlikely to map
any of the �fewer than �i��� satisfying assignment of � to �i� Speci�cally� the probability that any
speci�c assignment is mapped to �i equals ��i� and so the bad event occurs with probability less
than �	�� which can be further reduced by repeating the random experiment�

On the other hand� if jSAT ���j � �i�� then a randomly selected hashing function is likely to
map some of the �more than �i��� satisfying assignment of � to �i� This can be proven using the
pairwise independent property of the mapping induced by a random hashing function�

Thus� with high probability� the above procedure outputs a value v � �i such that i � � �
log� jSAT ���j � i ! �� We stress that the entire argument can be adapted to any NP
complete
problem� Furthermore� smaller approximation factors can be obtained �directly� by using tricks as
in the proof of Theorem ����

�For example� the number of satisfying assignments to a formula consisting of t formulae over distinct variables is
the product of the number of satisfying assignments to each of these formulae�

�Alternatively� for some popular hashing functions� the condition h�	 	 � �i is easily transformed to CNF� Thus�
we obtain the formula 
��z�� ���� zn	 � 
�z�� ���� zn	 	 �h�z� � � � zn	 � �i	�
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��� A randomized reduction of SAT to Unique�SAT

The widely believed intractability of SAT cannot be due to instances that have �very many� satis

fying assignments� For example� satisfying assignments for n
variable formula having at least �n	n
satisfying assignments can be found in probabilistic polynomial
time by selecting n� assignments
at random� Going to the other extreme� one may ask whether SAT instances having very few
satisfying assignments �e�g�� a unique satisfying assignment� can be hard� As shown below� the
answer is positive� We show that ability to solve such instances yields ability to solve arbitrary
instances�

In order to formulate the above discussion� we need to introduce the notion of a promise problem�
which extends �or relaxes� the notion of a decision problem� A promise problem � is a pair of
disjoint subsets� denoted ��yes��no�� A �deterministic� machine M is said to solve such a problem
if M�x� � � for every x � �yes and M�x� � � for every x � �no� whereas nothing is required in
case x �� �yes ��no �i�e�� x �violates the promise��� �The notion extends naturally to probabilistic
machines� oracle machines� and so on�� When we say that some problem reduces to the promise
problem � � ��yes��no�� we mean that the reduction yields the correct output regardless of the
way in which queries outside of �yes ��no are answered� �This is consistent with requiring nothing
from a machine that solves � in case the input is not in �yes ��no��

The computational problem of distinguishing instances with a unique solution from instances
with no solution yields a natural promise problem� For example� uniqueSAT �or uSAT � is the
promise problem with yes
instances being formulae having a unique satisfying assignment and no

instances being formulae having no satisfying assignment�

Theorem ��
 SAT is randomly reducible to uSAT �

Proof Sketch� We present a probabilistic polynomial
time oracle machine that solves SAT using
an oracle to uSAT � Actually� it is easier to �rst �randomly� reduce SAT to fewSAT � where
fewSAT is the promise problem with yes
instances being formulae having between � and ���
satisfying assignments and no
instances being formulae having no satisfying assignment�

Observe that the procedure described in the proof of Theorem ��� can be easily adapted to do
the work� Speci�cally� we accept the given SAT instance � if and only if any of the oracle invocations
returns the value true� Note that the latter event may occur only if � is satis�able �because when
� is unsatis�able all queries �� are unsatis�able�� On the other hand� if � has k � � satisfying
assignments then in iteration i � blog� kc � �� with high probability� the query �� is satis�able and
has at most k	�i�� � �� satisfying assignments �i�e�� �� is a yes
instance of fewSAT ���

To �nish
up the proof we reduce fewSAT to uSAT � Given a formula �� for i � �� ���� ����
we construct a formula ��i� that has a unique satisfying assignment if and only if � has exactly i
satisfying assignments� For example� ��i� may consist of the conjunction of i copies of � over distinct
variables and a condition imposing a lexicography order between the corresponding assignments��

�In order to take care of the case k � � � ���� we also query the fewSAT oracle about 
 itself�
�E�g�� 
	�
�x�� ���� xn� y�� ���� yn	

def
� 
�x�� ���� xn	 	 
�y�� ���� yn	 	 ��n��j�� ��xj�� � yj��	 	 �	jk��xk � yk			�
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Lecture ��

Space is more valuable than time

This lecture was not given� The intention was to prove the following result� which asserts that any
computation requires strictly less space than time�

Theorem ���� Dtime�t� � Dspace�t	 log t�

That is� any given deterministic multi
tape Turing Machine �TM� of time complexity t� can be
simulated using a deterministic TM of space complexity t	 log t� A main ingredient in the simulation
is the analysis of a pebble game on directed bounded
degree graphs�
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Lecture ��

Circuit Depth and Space Complexity

This lecture was not given� The intention was to explore some of the relations between Boolean
circuits and Turing machines� Speci�cally�

� De�ne the complexity classes NCi and ACi �i�e�� bounded versus unbounded fan
in circuits of
polynomial
size and O�logi�
depth�� and compare their computational power� Point out the
connection between uniform
NC and �e�cient� parallel computation�

� Establish a connection between the space complexity of a problem and the depth of circuits
�with bounded fan
in� for the problem�
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Historical Notes

For historical discussion of the material presented in Lecture �� the reader is referred to the textbook
of Hopcroft and Ullman #��$� Needless to say� the latter provides accurate statements and proofs
of hierarchy and gap theorems�

Space Complexity� The emulation of non
deterministic space
bounded machines by determin

istic space
bounded machines �i�e�� Theorem ���� is due to Savitch #��$� Theorem ��� �i�e�� NL �
coNL� was proved independently by Immerman #��$ and Szelepcsenyi #��$�

The Polynomial�Time Hierarchy� The Polynomial
Time Hierarchy was introduced by Stock

meyer #��$� The third equivalent formulation via �alternating machines� can be found in #��$�

Randomized Time Complexity� Probabilistic Turing Machines and corresponding complexity
classes �including BPP �RP �ZPP and PP� were �rst de�ned by Gill #��$� The random
walk �log

space� algorithm for deciding undirected connectivity is due to Aleliunas et� al� #�$� Additional
examples of randomized algorithms and procedures can be found in #��$ and #��� Apdx� B$�

The robustness of the various classes under various error thresholds was established using
straightforward ampli�cations �i�e�� running the algorithm several times using independent ran

dom choices�� Randomness
e�cient ampli�cation methods �which use related random choices in
the various runs� have been studied extensively since the mid �����s �cf� #��� Sec� ���$��

The fact that BPP is in the Polynomial
time hierarchy was proven independently by Laute

mann #��$ and Sipser #��$� We have followed Lautemann�s proof� The ideas underlying Sipser�s
proof found many applications in complexity theory	 in particular� they are used in the approxi

mation procedure for 
P �as well as in the emulation of general interactive proofs by public
coin
ones��

Non�Uniform Complexity� The class P�poly was de�ned by Karp and Lipton as part of a
general formulation of �machines which take advise� #��$� They have noted the equivalence to the
traditional formulation of polynomial
size circuits� the e�ect of uniformity� as well as the e�ect
of NP � P	poly on the Polynomial
time hierarchy �i�e�� Theorem ����� Theorem ��� is due to
Fortune #��$�

Theorem ��� is attributed to Adleman #�$� who actually proved that RP � P	poly using a more
involved argument�

Counting Classes� The counting class 
P was introduced by Valiant #��$� who proved that
computing the permanent of �
� matrices is 
P
complete �cf� Theorem ����� Valiant�s proof
�rst establishes the 
P
hardness of computing the permanent of integer matrices �the entries are
actually restricted to f��� �� �� �� �g�� and next reduces the computation of the permanent of integer
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matrices to the the permanent of �
� matrices� A de
constructed version of Valinat�s proof can be
found in #��$�

The approximation procedure for 
P is due to Stockmeyer #��$� following an idea of Sipser #��$�
Our exposition follows further developments in the area� The randomized reduction of SAT to
uniqueSAT is due to Valiant and Vazirani #��$� Again� our exposition is a bit di�erent�
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Lecture Series III

The less traditional material
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These lectures are based on research done in the �����s and the �����s�
The lectures on Probabilistic Proof Systems and Pseudorandomness are related to lectures that

may be given as part of other courses �i�e�� Foundations of Cryptography and Randomness in Com�
putation� respectively�� But the choice of material for the current course as well as the perspective
would be di�erent here�
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Lecture ��

Probabilistic Proof Systems

Various types of probabilistic proof systems have played a central role in the development of com

puter science in the last decade� In these notes� we concentrate on three such proof systems�
interactive proofs� zero�knowledge proofs� and probabilistic checkable proofs�

The notes for this lecture were adapted from various texts that I wrote in the past �see� e�g��
#��� Chap� �$�� In view of the fact that that zero
knowledge proofs are covered at Weizmann in the
Foundation of Cryptography course� I have only discussed IP and PCP in the current course� The
actual notes I have used in the current course appear in Section �����

���� Introduction

The glory given to the creativity required to �nd proofs� makes us forget that it is the less glori

�ed procedure of veri�cation which gives proofs their value� Philosophically speaking� proofs are
secondary to the veri�cation procedure	 whereas technically speaking� proof systems are de�ned in
terms of their veri�cation procedures�

The notion of a veri�cation procedure assumes the notion of computation and furthermore the
notion of e�cient computation� This implicit assumption is made explicit in the de�nition of NP�
in which e�cient computation is associated with �deterministic� polynomial
time algorithms�

Traditionally� NP is de�ned as the class of NP
sets� Yet� each such NP
set can be viewed as a
proof system� For example� consider the set of satis�able Boolean formulae� Clearly� a satisfying
assignment � for a formula � constitutes an NP
proof for the assertion �� is satis�able� �the
veri�cation procedure consists of substituting the variables of � by the values assigned by � and
computing the value of the resulting Boolean expression��

The formulation of NP
proofs restricts the �e�ective� length of proofs to be polynomial in length
of the corresponding assertions� However� longer proofs may be considered by padding the assertion
with su�ciently many blank symbols� So it seems that NP gives a satisfactory formulation of proof
systems �with e�cient veri�cation procedures�� This is indeed the case if one associates e�cient
procedures with deterministic polynomial
time algorithms� However� we can gain a lot if we are
willing to take a somewhat non
traditional step and allow probabilistic veri�cation procedures� In
particular�

� Randomized and interactive veri�cation procedures� giving rise to interactive proof systems�
seem much more powerful �i�e�� �expressive�� than their deterministic counterparts�

� Such randomized procedures allow the introduction of zero�knowledge proofs� which are of
great theoretical and practical interest�
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� NP
proofs can be e�ciently transformed into a �redundant� form that o�ers a trade
o� be

tween the number of locations examined in the NP
proof and the con�dence in its validity
�which is captured in the notion of probabilistically checkable proofs��

In all abovementioned types of probabilistic proof systems� explicit bounds are imposed on the
computational complexity of the veri�cation procedure� which in turn is personi�ed by the notion
of a veri�er� Furthermore� in all these proof systems� the veri�er is allowed to toss coins and
rule by statistical evidence� Thus� all these proof systems carry a probability of error	 yet� this
probability is explicitly bounded and� furthermore� can be reduced by successive application of the
proof system�

���� Interactive Proof Systems

In light of the growing acceptability of randomized and distributed computations� it is only natural
to associate the notion of e�cient computation with probabilistic and interactive polynomial
time
computations� This leads naturally to the notion of interactive proof systems in which the veri�ca

tion procedure is interactive and randomized� rather than being non
interactive and deterministic�
Thus� a �proof� in this context is not a �xed and static object but rather a randomized �dynamic�
process in which the veri�er interacts with the prover� Intuitively� one may think of this interaction
as consisting of �tricky� questions asked by the veri�er to which the prover has to reply �convinc

ingly�� The above discussion� as well as the actual de�nition� makes explicit reference to a prover�
whereas a prover is only implicit in the traditional de�nitions of proof systems �e�g�� NP
proofs��

������ The De�nition

The main new ingredients in the de�nition of interactive proof systems are�

� Randomization in the veri�cation process�

� Interaction between the veri�er and the prover� rather than uni
directional communication
�from the prover to the veri�er� as in the case of NP
proof systems�

The combination of both new ingredients is the source of power of the new de�nition� If the
veri�er does not toss coins then the interaction can be collapsed to a single message� �On the other
hand� combining randomization with uni
directional communication yields a randomized version of
NP
proof systems� called MA�� We stress several other aspects�

� The prover is computationally unbounded� As in NP� we start by not considering the com

plexity of proving�

� The veri�er is probabilistic polynomial�time� We maintain the paradigm that veri�cation
ought to be easy� alas we allow random choices �in our notion of easiness��

� Completeness and Soundness� We relax the traditional soundness condition by allowing small
probability of being fooled by false proofs� The probability is taken over the veri�er�s random
choices� �We still require �perfect completeness�	 that is� that correct statements are proven
with probability ��� Error probability� being a parameter� can be further reduced by successive
repetitions�

We denote by IP the class of sets having interactive proof systems�
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Variations� Relaxing the �perfect completeness� requirement yields a two
sided error variant of
IP �i�e�� error probability allowed also in the completeness condition�� Restricting the veri�er to
send only �random� �i�e�� uniformly chosen� messages yields the restricted notion of Arthur
Merlin
interactive proofs �aka public
coins interactive proofs� and denoted AM�� However� both variants
are essentially as powerful as the original one��

������ An Example
 interactive proof of Graph Non�Isomorphism

The problem �not known to be in NP�� Proving that two graphs are isomorphic can be done
by presenting an isomorphism� but how do you prove that no such isomorphism exists�

The construction � the �two object protocol�� If you claim that two objects are di�erent
then you should be able to tell which is which �when I present them to you in random order�� In
the context of the Graph Non
Isomorphism interactive proof� two �supposedly� di�erent objects
are de�ned by taking random isomorphic copies of each of the input graphs� If these graphs are
indeed non
isomorphic then the objects are di�erent �the distributions have distinct support� else
the objects are identical�

�����	 Interactive proof of Non�Satis�ability

We show that coNP � IP by presenting an interactive proof for Non
Satis�ability �i�e�� SAT ��

Arithmetization of Boolean �CNF� formulae� Given a Boolean �CNF� formula� we replace
the Boolean variables by integer variables �their negations by � minus the variable�� or
clauses by
sums� and the top level conjunction by a product� Note that false is associated with zero� whereas
true is associated with a positive integer� To prove that the given formula is not satis�able� we
consider the sum over all �
� assignments of the resulting integer expression� Observe that the
resulting arithmetic expression is a low degree polynomial �i�e�� the degree is at most the number
of clauses�� and that its value is bounded �i�e�� exponentially in the number of clauses��

Moving to a Finite Field� Whenever we check equality between two integers in #��M $� it su�ces
to check equality mod q� where q � M � The bene�t is that the arithmetic is now in a �nite �eld
�mod q� and so certain things are �nicer� �e�g�� uniformly selecting a value�� Thus� proving that a
CNF formula is not satis�able reduces to proving an equality of the following formX

x��
��

� � �
X

xn�
��

��x�� ���� xn� � � �mod q�

where � is a low degree multi
variant polynomial �and q is exponential in n��

The actual construction� stripping summations in iterations� In each iteration the prover
is supposed to supply the polynomial describing the expression in one �currently stripped� vari

able� �By the above observation� this is a low degree polynomial and so has a short description��
The veri�er checks that the polynomial is of low degree� and that it corresponds to the current
value being claimed �i�e�� p��� ! p��� � v�� Next� the veri�er randomly instantiates the variable�
yielding a new value to be claimed for the resulting expression �i�e�� v 	 p�r�� for uniformly chosen

�See �
�� and ����� respectively� Speci�cally� we can get rid of the completeness error by adapting the proof of
Theorem ��� �cf� �
��	� The proof that AM � IP is signi�cantly more involved �cf� ����	�
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r � GF�q��� The veri�er sends the uniformly chosen instantiation to the prover� �At the end of
the last iteration� the veri�er has a fully speci�ed expression and can easily check it against the
claimed value�� That is� for i � �� ���� n� the ith iteration is intended to provide evidence thatP

xi�
�� � � �
P

xn�
�� ��r�� ���� ri��� xi� ���� xn� � vi�� �mod q�� where r�� ���� ri��� vi�� are as deter


mined in the previous i � � iterations �and v

def
� ��� The prescribed prover is supposed to set

pi�z� �
P

xi���
�� � � �
P

xn�
�� ��r�� ���� ri��� z� xi��� ���� xn�� and send p to the veri�er� which checks
that pi��� ! pi��� � vi�� �mod q� �rejecting immediately if the equivalence does not hold�� selects
ri at random in GF�q�� sends it to the prover� and sets vi � pi�r�� mod q� �In the next iteration�
the veri�er expects to get evidence that

P
xi���
�� � � �

P
xn�
�� ��r�� ���� ri��� ri� xi��� ���� xn� � vi��

�mod q���

Completeness of the above� When the claim holds� the prover has no problem supplying the
correct polynomials� and this will lead the veri�er to always accept�

Soundness of the above� It su�ces to bound the probability that for a particular iteration the
initial claim is false whereas the ending claim is correct� Both claims refer to the current summation
expression being equal to the current value� where  current� means either at the beginning of the
iteration or at its end� Let T ��� be the actual polynomial representing the expression when stripping
the current variable� and let p��� be any potential answer by the prover� We may assume that
p��� ! p��� � v and that p is of low
degree �as otherwise the veri�er will reject�� Using our
hypothesis �that the initial claim is false�� we know that T ��� ! T ��� �� v� Thus� p and T are
di�erent low
degree polynomials and so they may agree on very few points� In case the veri�er
instantiation does not happen to be one of these few points� the ending claim is false too�

Open Problem �� alternative proof of coNP � IP� Polynomials play a fundamental role
in the above construction and this trend has even deepened in subsequent works on PCP� It does
not seem possible to abstract that role� which seems to be very annoying� I consider it important
to obtain an alternative proof of coNP � IP	 a proof in which all the underlying ideas can be
presented at an abstract level�

������ The Power of Interactive Proofs

Theorem ���� �The IP Characterization Theorem�� IP � PSPACE �

Interactive Proofs for PSPACE� Recall that PSPACE languages can be expressed by Quan

ti�ed Boolean Formulae� The number of quanti�ers is polynomial in the input� but there are both
existential and universal quanti�ers� and furthermore these quanti�ers may alternate� Considering
the arithmetization of these formulae� we face two problems� Firstly� the value of the formulae are
only bounded by a double
exponential function �in the length of the input�� and secondly when
stripping out summations� the expression may be a polynomial of high degree �due to the universal
quanti�ers which are replaced by products�� The �rst problem is easy to deal with by using the
Chinese Reminder Theorem �i�e�� if two integers in #��M $ are di�erent then they must be di�er

ent modulo most of the primes in the interval #��poly�logM�$�� The second problem is resolved
by �refreshing� variables after each universal quanti�er �e�g� �x�y�z ��x� y� z� is transformed into
�x�y�x��x � x�� � �z ��x�� y� z��� That is� in the resulting formula� all variables appearing in a
residual formula are quanti�ed �within the residual formula��
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IP is in PSPACE� We show that for every interactive proof system there exists an optimal
prover strategy� and furthermore that this strategy can be computed in polynomial
space� This
follows by looking at the tree of all possible executions� Thus� the acceptance probability of the
veri�er �when interacting with an optimal prover� can be computed in polynomial
space�

������ Advanced Topics

The IP Hierarchy

Let IP�r���� denote the class of languages having an interactive proof in which at most r�� messages
are exchanges� Then� IP��� � coRP � BPP � The class IP��� is a randomized version of NP	 wit

nesses are veri�ed via a probabilistic polynomial
time procedure� rather than a deterministic one��

The class IP��� seems to be fundamentally di�erent	 the veri�cation procedure here is truly inter

active� Still� this class seems relatively close to NP 	 speci�cally� it is contained in the polynomial

time hierarchy �which seems  low� when contrasted with PSPACE � IP�poly��� Interestingly�
IP��r���� � IP�r����� and so in particular IP�O���� � IP���� �Note that �IP��r���� � IP�r�����
can be applied successively a constant number of times� but not more��

Open Problem �� the structure of the IP��� hierarchy� Suppose that L � IP�r�� What can
be said about L� Currently� we only know to argue as follows� L � IP�r� � IP�poly� � PSPACE �
and so L � PSPACE and is in IP�poly�� This seems ridiculous� we do not use the extra information
�i�e�� L � IP�r� and not merely L � IP�� On the other hand� we do not expect L to be in IP�g�r���
for any function g� since this would put coNP � coIP��� in IP�g���� � IP���� Other parameters
of interest are the total lengths of the messages exchanged in the interaction and the total number
of bits sent by the prover�� In general� it would be interesting to get a better understanding of the
IP��� Hierarchy�

How Powerful Should the Prover be�

Here we consider the complexity of proving valid statements	 that is� the complexity of the pre

scribed prover referred to in the completeness condition�

The Cryptographic Angle� Interactive proofs occur inside �cryptographic� protocols and so
the prover is merely a probabilistic polynomial
time machine	 yet it may have access to an auxiliary
input �given to it or generated by it in the past�� Such provers are relatively weak �i�e�� they can only
prove languages in IP����	 yet� they may be of interest for other reasons �e�g�� see zero
knowledge��

The Complexity Theoretic Angle� It make sense to try to relate the complexity of proving
a statement �to another party� to the complexity of deciding whether the statement holds� This
gives rise to two related approaches�

�� Restricting the prover to be a probabilistic polynomial
time oracle machine with oracle access
to the language �in which membership is proven�� This approach can be thought of as
extending the notion of self
reducibility �of NP
languages�� these languages have an NP
proof

�This class is also denoted MA� Observe that the proof of Theorem ��� can be adapted to give BPP � MA�
Thus� BPP 
NP �MA�

�For a study of the latter complexity measure see On interactive proofs with a laconic provers �by Goldreich� Vadhan
and Wigderson	 in Proc� of the ��th ICALP� Springer�s LNCS 
���� pages �������� 
����
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system in which the prover is a polynomial
time machine with oracle access to the language�
Indeed� alike NP
complete languages� the IP
complete languages also have such a �relatively
e�cient� prover� �Recall that an optimal prover strategy can be implemented in polynomial

space� and thus by a polynomial
time machine having oracle access to a PSPACE
complete
language��

�� Restricting the prover to run in time that is polynomial in the complexity of the language �in
which membership is proven��

Open Problem �� Further investigate the power of the various notions� and in particular the
one extending the notion of self
reducibility of NP languages� Better understanding of the latter is
also long due� A speci�c challenge� provide an NP
proof system for Quadratic Non
Resideousity
�QNR�� using a probabilistic polynomial
time prover with access to the QNR language�	

Computationally�Sound Proofs

Computationally
sound proofs systems are fundamentally di�erent from the above discussion �which
did not e�ect the soundness of the proof systems�� here we consider relaxations of the soundness
conditions � false proofs may exist �even with high probability� but are hard to �nd� Variants may
correspond to the above approaches	 speci�cally� the following have been investigated�

Argument Systems� Here one only considers prover strategies implementable by �possibly non

uniform� polynomial
size circuits �equiv�� probabilistic polynomial
time machines with auxiliary
inputs�� Under some reasonable assumptions there exist argument systems for NP having poly

logarithmic communication complexity� Analogous interactive proofs cannot exists unless NP is
contained in Quasi
Polynomial Time �i�e�� NP � Dtime�exp�poly�log n�����

CS Proofs� Here one only considers prover strategies implementable in time that is polynomial
in the complexity of the language� In an non�interactive version one asks for �certi�cates of the NP

type� that are only computationally
sound� In a model allowing both prover and veri�er access to
a random oracle� one can convert interactive proofs �alike CS proofs� into non
interactive ones� As
a heuristics� it was also suggested to replace the random oracle by use of �random public functions�
�a fuzzy notion� not to be confused with pseudorandom functions��

Open Problem 
� Try to provide �rm grounds for the heuristics of making proof systems non

interactive by use of �random public functions�� I advise not to try to de�ne the latter notion �in a
general form�� but rather devise some ad
hoc method� using some speci�c but widely believed com

plexity assumptions �e�g�� hardness of deciding Quadratic Residucity modulo a composite number��
for this speci�c application��

���� Zero�Knowledge Proofs

Zero
knowledge proofs are central to cryptography� Furthermore� zero
knowledge proofs are very
intriguing from a conceptual point of view� since they exhibit an extreme contrast between being

�We mention that QNR has a constant�round interactive proof in which the prover is a probabilistic polynomial�
time prover with access to QNR� This proof system is similar to the one presented above for Graph Non�Isomorphism�

�The reasons for this recommendation are explained in The Random Oracle Methodology� Revisited �by Canetti�
Goldreich and Halevi	� in Proc� of the ��th STOC� pp� 
���
��� �����
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convinced of the validity of a statement and learning anything in addition while receiving such
a convincing proof� Namely� zero
knowledge proofs have the remarkable property of being both
convincing while yielding nothing to the veri�er� beyond the fact that the statement is valid�

The zero�knowledge paradigm� Whatever can be e�ciently computed after interacting with
the prover on some common input� can be e�ciently computed from this input alone �without
interacting with anyone�� That is� the interaction with the prover can be e�ciently simulated in
solitude�

A Technical Note� I have deviated from other presentation in which the simulator works in ex

pected �probabilistic� polynomial
time and require that it works in strict probabilistic polynomial

time� Yet� I allow the simulator to halt without output with probability at most �

� � Clearly this
implies an expected polynomial
time simulator� but the converse is not known� In particular� some
known positive results regarding perfect zero
knowledge �with average polynomial
time simulators�
are not known to hold under the above more strict notion��

���	�� Perfect Zero�Knowledge

The De	nition� A simulator can produce exactly the same distribution as occurring in an inter

action with the prover� Furthermore� in the general de�nition this is required with respect to any
probabilistic polynomial
time veri�er strategy �not necessarily the one speci�ed for the veri�er��
Thus� the zero
knowledge property protects the prover from any attempt to obtain anything from
it �beyond conviction in the validity of the assertion��

Zero�Knowledge NP�proofs� Extending the NP
framework to interactive proof is essential for
the non
triviality of zero
knowledge� It is easy to see that zero
knowledge NP
proofs exist only for
languages in RP� �Actually� that�s a good exercise���

A perfect zero�knowledge proof for Graph Isomorphism� The prover sends the veri�er a
random isomorphic copy of the �rst input graph� The veri�er challenges the prover by asking the
prover to present an isomorphism �of graph sent� to either the �rst input graph or to the second
input graph� The veri�er�s choice is made at random� The fact that this interactive proof system is
zero
knowledge is more subtle than it seems	 for example� �many� parallel repetitions of the proof
system are unlikely to be zero
knowledge�

Statistical �or almost�perfect� Zero�Knowledge� Here the simulation is only required to be
statistically close to the actual interaction� The resulting class� denoted SZK� lies between Perfect
ZK and general �or Computational� ZK� For further details see #��$�

���	�� General �or Computational
 Zero�Knowledge

This de�nition is obtained by substituting the requirement that the simulation is identical to the
real interaction� by the requirement that the two are computational indistinguishable�

�See further details in strict polynomial�time in simulation and extraction �by Barak and Lindell	� ��th STOC� pages
�������� 
��
�

�An NP�proof system for a language L yields an NP�relation for L �de�ned using the veri�er	� On input x � L a
perfect zero�knowledge simulator either halts without output or outputs an accepting conversation �i�e�� an NP�witness
for x	�
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Computational Indistinguishability is a fundamental concept of independent interest� Two
ensembles are considered indistinguishable by an algorithm A if A�s behavior is almost invariant of
whether its input is taken from the �rst ensemble or from the second one� We interpret �behavior�
as a binary verdict and require that the probability that A outputs � in both cases is the same up
to
a negligible di�erence �i�e�� smaller than �	p�n�� for any positive polynomial p��� and all su�ciently
long input lengths �denoted by n��� Two ensembles are computational indistinguishable if they are
indistinguishable by all probabilistic polynomial
time algorithms�

A zero�knowledge proof for NP � an abstract �boxes� setting� It su�ces to construct
such a proof system for �
Colorability ��COL�� �To obtain a proof system for other NP
languages
use the fact that the �standard� reduction of NP to �COL is polynomial
time invertible��
The prover uses a �xed �
coloring of the input graph and proceeds as follows� First� it uniformly
selects a relabeling of the colors �i�e�� one of the � possible ones� and puts the resulting color of
each vertex in a locked box �marked with the vertex name�� All boxes are sent to the veri�er who
response with a uniformly chosen edge� asking to open the boxes corresponding to the endpoint of
this edge� The prover sends over the corresponding keys� and the veri�er opens the two boxes and
accepts i� he sees two di�erent legal colors�

A zero�knowledge proof for NP � the real setting� The locked boxes need to be implemented
digitally� This is done by a commitment scheme� a cryptographic primitive designed to implement
such locked boxes� Loosely speaking� a commitment scheme is a two
party protocol which proceeds
in two phases so that at the end of the �rst phase �called the commit phase� the �rst party
�called sender� is committed to a single value �which is the only value he can later reveal in the
second phase�� whereas at this point the other party gains no knowledge on the committed value�
Commitment schemes exist if �and actually i�� one
way functions exist� Thus� the mildest of all
cryptographic assumptions su�ces for constructing zero
knowledge proofs for NP �and actually
for all of IP�� That is�

Theorem ���� �The ZK Characterization Theorem�� If one�way functions exist then every set in
IP has a zero�knowledge interactive proof system�

Furthermore� zero
knowledge proofs for languages that are �hard on the average� imply the exis

tence of one
way functions	 thus� the above construction essentially utilizes the minimal possible
assumption�

���	�	 Concluding Remarks

The prover�s strategy in the above zero
knowledge proof for NP can be implemented by a proba

bilistic polynomial
time machine which is given �as auxiliary input� an NP
witness for the input�
�This is clear for �COL� and for other NP
languages one needs to use the fact that the relevant
reductions are coupled with e�cient witness transformations�� The e�cient implementation of the
prover strategy is essential to the applications below�

Applications to Cryptography� Zero
knowledge proofs are a powerful tool for the design of
cryptographic protocols� in which one typically wants to guarantee proper behavior of a party
without asking him to reveal all his secrets� Note that proper behavior is typically a polynomial

time computation based on the party�s secrets as well as on some known data� Thus� the claim
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that the party behaves consistently with its secrets and the known data can be casted as an NP

statement� and the above result can be utilized� More generally� using additional ideas� one can
provide a secure protocol for any functional behavior� These general results have to be considered as
plausibility arguments	 you would not like to apply these general constructions to speci�c practical
problems� yet you should know that these speci�c problems are solvable�

Open Problems do exists� but seem more specialized in nature� For example� it would be
interesting to �gure out and utilize the minimal possible assumption required for constructing
�zero
knowledge protocols for NP� in various models like constant
round interactive proofs� the
�non
interactive� model� and perfect zero
knowledge arguments�

Further Reading� See chapter on Zero
Knowledge in #��$�

���� Probabilistically Checkable Proof �PCP� Systems

When viewed in terms of an interactive proof system� the probabilistically checkable proof setting
consists of a prover that is memoryless� Namely� one can think of the prover as being an oracle and
of the messages sent to it as being queries� A more appealing interpretation is to view the proba

bilistically checkable proof setting as an alternative way of generalizing NP � Instead of receiving
the entire proof and conducting a deterministic polynomial
time computation �as in the case of
NP�� the veri�er may toss coins and probe the proof only at location of its choice� Potentially�
this allows the veri�er to utilize very long proofs �i�e�� of super
polynomial length� or alternatively
examine very few bits of an NP
proof�

������ The De�nition

The Basic Model� A probabilistically checkable proof system consists of a probabilistic polynomial

time veri�er having access to an oracle which represents a proof in redundant form� Typically� the
veri�er accesses only few of the oracle bits� and these bit positions are determined by the outcome
of the veri�er�s coin tosses� Completeness and soundness are de�ned similarly to the way they
were de�ned for interactive proofs� for valid assertions there exist proofs making the veri�er always
accepts� whereas no oracle can make the veri�er accept false assertions with probability above �

� �
�We�ve speci�ed the error probability since we intend to be very precise regarding some complexity
measures��

Additional complexity measures of fundamental importance are the randomness and query
complexities� Speci�cally� PCP�r���� q���� denotes the set of languages having a probabilistic check

able proof system in which the veri�er� on any input of length n� makes at most r�n� coin tosses
and at most q�n� oracle queries� �As usual� unless stated otherwise� the oracle answers are always
binary �i�e�� either � or ����

Observed that the �e�ective� oracle length is at most �r � q �i�e�� locations that may be accessed
on some random choices�� In particular� the e�ective length of oracles in a PCP�log� �� system is
polynomial� �Exercise� Show that PCP�log�poly� � NP ��

PCP augments the traditional notion of a proof� An oracle that always makes the pcp

veri�er accept constitutes a proof in the standard mathematical sense� However a pcp system has
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the extra property of enabling a lazy veri�er� to toss coins� take its chances and �assess� the validity
of the proof without reading all of it �but rather by reading a tiny portion of it��

������ The power of probabilistically checkable proofs

Theorem ���� �The PCP Characterization Theorem�� PCP�log� O���� � NP�

Thus� probabilistically checkable proofs in which the veri�er tosses only logarithmically many coins
and makes only a constant number of queries exist for every NP
language� It follows that NP
proofs
can be transformed into NP
proofs which o�er a trade
o� between the portion of the proof being
read and the con�dence it o�ers� Speci�cally� if the veri�er is willing to tolerate an error probability
of � then it su�ces to let it examine O�log��	��� bits of the �transformed� NP
proof� These bit
locations need to be selected at random� Furthermore� an original NP
proof can be transformed
into an NP
proof allowing such trade
o� in polynomial
time� �The latter is an artifact of the proof
of the PCP Theorem��

The Proof of the PCP Characterization Theorem is one of the most complicated proofs
in the Theory of Computation� Its main ingredients are�

�� A pcp�log�poly�log�� proof system for NP � Furthermore� this proof system has additional
properties which enable proof composition as in Item ��� below�

�� A pcp�poly� O���� proof system for NP � This proof system also has additional properties
enabling proof composition as in Item ����

�� The proof composition paradigm� Suppose you have a pcp�r���� O�
����� system for NP in
which a constant number of queries are made �non
adaptively� to an ��
valued oracle and
the veri�er�s decision regarding the answers may be implemented by a poly�
�
size circuit�
Further suppose that you have a pcp�r����� q����
like system for P in which the input is given
in encoded form via an additional oracle so that the system accepts input
oracles that encode
inputs in the language and reject any input
oracle which is �far� from the encoding of any
input in the language� In this latter system access to the input
oracle is accounted in the
query complexity� Furthermore� suppose that the latter system may handle inputs which
result from concatenation of a constant number of sub
inputs each encoded in a separate

sub
input oracle� Then� NP has a pcp���r��� ! r��s������ �q�s������ where s�n�
def
� poly�
�n���

#The extra factor of � is an artifact of the need to amplify each of the two pcp systems so
that the total error probability sums up to at most �	��$

In particular� the proof system of Item ��� is composed with itself #using r � r� � log� 
 � q �
poly�log�� and s�n� � poly�log�n��$ yielding a pcp�log�poly�log log�� system for NP � which is then
composed with the system of Item ��� #using r � log� 
 � poly�log log�� r� � poly� q � O���� and
s�n� � poly�log log�n��$ yielding the desired pcp�log� O���� system for NP �

The pcp�log�poly�log�� system for NP� We start with a di�erent arithmetization of CNF for

mulae �than the one used for constructing an interactive proof for coNP�� Logarithmically many
variables are used to represent �in binary� the names of variables and clauses in the input formula�
and an oracle from variables to Boolean values is supposed to represent a satisfying assignment�
An arithmetic expression involving a logarithmic number of summations is used to represent the
value of the formula under the truth assignment represented by the oracle� This expression is a

��



low
degree polynomial in the new variables and has a cubic dependency on the assignment
oracle�
Small
biased probability spaces are used to generate a polynomial number of such expressions so
that if the formula is satis�able then all these expressions evaluate to zero� and otherwise at most
half of them evaluate to zero� Using a summation test �as in the interactive proof for coNP� and

a low
degree test� this yields a pcp�t���� t���� system for NP � where t�n�
def
� O�log�n� � log log�n���

#We use a �nite �eld of poly�log�n�� elements� and so we need �log n� � O�log log n� random bits

for the summation test�$ To obtain the desired pcp system� one uses O�logn�
log log n 
long sequences over

f�� ���� log ng to represent variable�clause names �rather than logarithmically
long binary sequences��

#We can still use a �nite �eld of poly�log�n�� elements� and so we need only O�log n�
log log n � O�log log n�

random bits for the summation test�$ All this is relatively easy compared to what is needed in order
to transform the pcp system so that only a constant number of queries are made to a �multi
valued�
oracle� This is obtained via �randomness
e�cient� �parallelization� of pcp systems� which in turn
depends heavily on e�cient low
degree tests�

Open Problem �� As a �rst step towards the simpli�cation of the proof of the PCP Characteri

zation Theorem� one may want to provide an alternative �parallelization� procedure that does not
rely on polynomials or any other algebraic creatures��

The pcp�poly� O���� system for NP� It su�ces to prove the satis�ability of a systems of
quadratic equations over GF���� because this problem is NP
complete� The oracle is supposed
to hold the values of all quadratic expressions under a satisfying assignment to the variables� We
distinguish two tables in the oracle� One corresponding to the ��n� linear expressions and the other
to the ��n

�
pure� bilinear expressions� Each table is tested for self
consistency �via a linearity

test� and the two tables are tested to be consistent �via a matrix
equality test which utilizes �self

correction��� Each of these tests utilizes a constant number of Boolean queries� and randomness
which is logarithmic in the size of the corresponding table�

�����	 PCP and Approximation

PCP
Characterizations of NP play a central role in recent developments concerning the di�culty
of approximation problems� To demonstrate this relationship� we �rst note that the PCP Char

acterization Theorem can be rephrased without mentioning the class PCP altogether� Instead� a
new type of polynomial
time reductions� which we call amplifying� emerges�

Amplifying reductions� There exists a constant � � �� and a �polynomial
time� Karp
reduction
f � of �SAT to itself so that f maps non
satis�able �CNF formulae to �CNF formulae for which
every truth assignment satis�es at most a � � � fraction of the clauses� I call the reduction f
amplifying� and its existence follows from the PCP Characterization Theorem� On the other hand�
any amplifying reduction for �SAT yields a proof of the PCP Characterization Theorem� �The
proofs of both directions are left as an exercise���

�A �rst step towards this partial goal was taken in A Combinatorial Consistency Lemma with application to the PCP

Theorem �by Goldreich and Safra	� SICOMP� Volume 
�� Number �� pages ���
������ �����
�Hint� To prove the �rst direction� consider the guaranteed pcp system for �SAT� associate the bits of the oracle

with Boolean variables� and introduce a �constant size	 Boolean formula for each possible outcome of the sequence of
O�log n	 coin tosses �describing whether the veri�er would have accepted given this outcome	� For the other direction�
consider a pcp system that is given oracle access to a truth assignment for the formula resulting from the ampli�ed
reduction�
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Amplifying reductions and Non�Approximability� The above amplifying reduction of �SAT
implies that it is NP
Hard to distinguish satis�able �CNF formulae from �CNF formulae for which
every truth assignment satis�es less than a ��� fraction of its clauses� Thus� Max
�SAT is NP
Hard
to approximate to within a �� � factor�

Stronger Non�Approximability Results were obtained via alternative PCP Characterizations
of NP� For example� the NP
Hardness of approximating Max
Clique to within N���� �� � �� was
obtained via NP � FPCP�log� ��� where the second parameter in FPCP measures the �amortized
free
bit� complexity of the pcp system�

���� The actual notes that were used

I have focused on interactive proofs and probabilistically checkable proofs�

������ Interactive Proofs �IP


Unfortunately� this part of my notes was lost� I have de�ned and discussed the basic model�
exampli�ed it with the Graph Non
Isomorphism protocol� and showed that coNP � IP�

������ Probabilistically Checkable Proofs �PCP


Unfortunately� the �rst part of my notes �introducing the basic model and the complexity measures�
was lost�

Adaptivity versus non�adaptivity in the context of PCP� Whenever one discusses oracle
machines� there is a distinction between adaptive machines that may select their queries based on
answers to prior queries and non�adaptive machines that determine all their queries as a function of
their initial input �and coin tosses�� Adaptive machines can always be converted to non
adaptive
ones at the cost of an exponential increase in their query complexity �i�e�� by considering a
priori
all possible answers�� In our case� where the query complexity is an unspeci�ed constant� this
di�erence is immaterial� Thus� whenever it is convenient� we will assume that the veri�er �in the
PCP scheme� is non
adaptive�

The PCP Characterization Theorem� The theorem states that NP � PCP #O�log n�� O���$�
The easy direction consists of showing that PCP #O�log n�� O���$ is contained inNP � This follows by
observing that the e�ective length of the oracle �i�e�� the number of bits read from the oracle under
all possible settings of the random
tape� is polynomial� The other direction is much more complex�
Here we will only sketch a proof of a much easier result� that is� NP 
 PCP #poly�n�� O���$� We
stress that this result is very interesting by itself� because it states that NP
assertions can be veri�ed
probabilistically by making only a constant number of probes into the �possibly exponentially
long�
proof�

Let QE� be the set of satis�able systems of quadratic equations modulo � �i�e�� quadratic

equations over GF ����� That is� ��c
�k�
i�j �i�j��n�� b

�k��k��m� is in QE� if the quadratic system of equations

fPi�j��n� c
�k�
i�j xixj � b�k�gk��m� modulo � has a solution in the xi�s� Exercise� Prove that QE� is NP


complete� and that this holds also when m � n� �Also note that linear terms can be replaced by
quadratic terms�� We will show that QE� is in PCP #O�n��� O���$� �Below� all arithmetic operations
are modulo ���
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The oracle in the PCP system that we will present is supposed to encode a satisfying assignment
to the system of equations� where the encoding will be very redundant� As we will see redundant
encodings may be very easy to check� Speci�cally� a satisfying assignment � � ���� ���� �n� will be
encoded by providing all the partial sums of the �i�s �i�e�� an encoding of � via the Hadamard code�
as well as all the partial sums of the �i�j�s That is� the �rst �resp�� second� part of the encoding of
� � ���� ���� �n� is the �n
bit long string in which entry � � f�� �gn corresponds to

P
i �i�i �resp�� the

�n
�

bit long string in which entry � � f�� �gn� corresponds to

P
i�j �i�j�i�j�� where � � ���� ���� �n�

�resp�� � � ����� ����� ���� �n�n��

On input ��c
�k�
i�j �i�j��n�� b

�k��k��n� and oracle access to � � ������������ where j��i�j � �n
i
� the

veri�er will perform the following four tests�

�� Test that ���� is close to an encoding of some � � f�� �gn under the Hadamard code� That is�
we check whether there exists a � � f�� �gn such that

Pr�

�
������� �

X
i

�i�i

�
� ���� ������

This checking is performed by invoking the so
called linearity test for a constant number of
times where in each invocation we select uniformly and independently ��� ��� � f�� �gn and
check whether �������� ! ��������� � ������� ! ����� holds� where �� ! ��� denote bit
by
bit
addition� �Although very appealing� the analysis of the linearity test is quite non
trivial and
thus omitted��

�� Test that ���� is close to an encoding of some � � f�� �gn� under the Hadamard code� That
is� we check whether there exists a � � f�� �gn� such that

Pr	



�������� �

X
i�j

�i�j�i�j

�
� � ���� ������

Indeed� we just use the linearity test on �����

�� Test that the string encoded in ���� match the one encoded in ����� Recall that the Hadamard
code has relative distance equal to �	� �i�e�� the encodings of two di�erent strings agree in
exactly ��� of the coordinates�� Thus� Eq� ������ may hold only for one � � and similarly
Eq� ������ may hold only for one �� In the current step we want to test whether the string �
that satis�es Eq� ������ is consistent with the string � that satis�es Eq� ������	 that is� that
�i�j � �i�j holds for all i� j � #n$�

A detour� Suppose we want to test that two n
by
n matrices� A and B are equal� by making
few queries to a suitable encoding� This case be done by uniformly selecting a row vector r
and a column vector s and checking whether rAs � rBs �i�e�� bit equality�� Let C � A�B�
We are actually checking whether C is all zeros by checking whether rCs � �� Clearly� if C
is all zeros then equality will always hold� On the other hand� if C is a non
zero matrix then
it has rank d � � in which case the probability that �for a randomly chosen r� the vector rC
is an all
zero vector is exactly ��d� �The proof is left as an exercise� but do the next exercise
�rst�� Furthermore� for a non
zero vector v � rC� the probability that �for a randomly chosen
s� it holds that vs � � is exactly �	�� �Prove this too�� We conclude that for any non
zero
matrix C� it holds that Prr�s#rCs � �$ � �	��
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Considering the matrices A � ��i�j�i�j and B � ��i�j�i�j� we want to check whether they are
identical� By the above detour� this calls for uniformly selecting r� s � f�� �gn and checking
whether rAs � rBs� Now� observe that rAs � �r����s equals the product of

P
i ri�i andP

i si�i� On the other hand� rBs �
P

i�j risj�i�j� So it seems that all we need to check is

whether �����r� � �����s� equals �����z�� where z is the outer
product of r and s� This is not
quite true� Steps � and � only guarantee that ������� �

P
i �i�i and ������� �

P
i�j �i�j�i�j

with high probability for uniformly distributed � and �� This is �ne with respect to what we
want to retrieve from ����� but not for what we want to retrieve from ���� �because the outer

product of r and s is not uniformly distributed even if r and s are uniformly distributed��
Thus� instead of querying ���� on z� we uniformly select z� � f�� �gn� � query ���� on z� and
z ! z� �which are both uniformly distributed�� and use the value �����z ! z��������z��� This
process is called self�correction�

�� Test that the string encoded in ���� satis�es the quadratic system� That is� for � as in

Eq� ������� we want to check whether
P

i�j��n� c
�k�
i�j �i�j � b�k� holds for all k � #n$� Rather

than performing n tests �which we cannot a�ord�� we uniformly select r � f�� �gn� and check
whether X

k��n�

rk
X

i�j��n�

c
�k�
i�j �i�j �

X
k��n�

rkb
�k�

The left
hand side can be written as
P

i�j�
P

k rkc
�k�
i�j ��i�j� and so we merely need to retrieve

that value� which by Steps ��� can be obtained� via self
correction� from ����� That is�
assuming we did not reject in any of Steps ���� it holds that� with high probability over a

uniformly chosen �� � f�� �gn� � the value of
P

i�j �
�k�
i�j �i�j equals ������!������������� where

we will set � such that �i�j �
P

k rkci�j �

We conclude that if the original system of equations is not satis�able then every � � ����������� is
rejected with probability at least �	� �by one of the above four steps�� whereas the original system
is satis�able then there exists a ����������� that is accepted with probability � �by all the above
steps��

Amplifying reductions� For sake of concreteness� we focus on a speci�c NP
complete problem
�i�e�� �SAT�� but similar statements can be made about some other �but not all� natural NP

complete problems� We say that a Karp
reduction f is an amplifying reduction of �SAT to itself if
there exists a constant � � � such that the following holds�

� If � � �SAT then f��� � �SAT �

� If � �� �SAT then �not only that f��� �� �SAT but rather� every truth assignment to

��
def
� f��� satis�es at most �� � fraction of the clauses of ���

That is� the reduction �ampli�es� the unsatis�ability of � �i�e�� it may be that there exists a
truth assignment that satis�es all but one of the clauses of �� still all truth assignments fail
to satisfy a constant fraction of the clauses of ���

Interestingly� the notion of amplifying reductions captures the entire contents of the PCP Theorem
�and so you should not expect to be able to see a simple amplifying reduction��

Theorem ���
 The following two are equivalent�
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	� �SAT � PCP #O�log n�� O���$�


� There exists an amplifying reduction of �SAT to itself�

Note that �SAT � PCP #O�log n�� O���$ if and only if NP � PCP #O�log n�� O���$�

Proof sketch� We �rst show that amplifying reductions imply the PCP Theorem� Suppose that
f is an amplifying reduction of �SAT to itself �and � � � be the corresponding constant�� Consider
a veri�er that on input a �CNF formula �� computes �� � f���� selects at random a clause of ���
probe the oracle for the values of the corresponding three variables� and decide accordingly� This
veri�er uses a logarithmic amount of randomness� always accepts � � �SAT �when provided an
adequate oracle�� and rejects each � �� �SAT with probability at least � �not matter what oracle
is presented�� Clearly� the error can be reduced to �	� �as required� by invoking this veri�er �	�
times�

On the other hand� given a PCP system as in Item �� we construct an amplifying reduction as
follows� On input a �CNF formula �� we construct a �CNF formula �� as follows� The variables of
�� will correspond to the bits of the oracle used by the PCP veri�er� �Recall� that the number of
e�ective oracle bits is polynomial in j�j�� For each possible random
tape r � f�� �gO�log j
j� of the
veri�er� consider the veri�er�s verdict as a function of the O��� answers obtained from the oracle�
Thus� the veri�er�s decision on input � and random
tape r can be represented as a constant
size
formula in O��� variables �representing the corresponding oracle bits�� Using auxiliary variables�
such a formula can be represented in �CNF �of constant size�� The conjunction of these �O�log j
j�

formulae �each constructible in polynomial time from �� yields ��� Observe that if � is satis�able
then so is ��� On the other hand� if � is not satis�able then every truth assignment to the variables
of �� satis�es at most �	� of the constant
size CNFs �which correspond to individual values of the
random
tape�� Thus� for each of at least �	� of the constant
size CNFs� at least one of the clauses
is not satis�ed� It follows that the reduction constructed above is amplifying �with � that depends
on the constant number of clauses in each of the small CNFs��

Amplifying reductions and the di�culty of approximation� Max�SAT is typically de�ned
as a search problem in which given a �CNF formula� one seeks a truth assignment satisfying as many
clauses as possible� In the �� � ��
approximation version� given a formula �� one is only required
to �nd a truth assignment that satis�es at least �� � �� � opt��� clauses� where opt��� denotes
the maximum number of clauses that can be satis�ed by any truth assignment to �� Observe
that the existence on an amplifying reduction of �SAT to itself� with constant �� implies that the
��� ��
approximation version of Max�SAT is NP
hard� �Proving this fact is left as an exercise��
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Lecture ��

Pseudorandomness

A fresh view at the question of randomness was taken in the theory of computing� It has been
postulated that a distribution is pseudorandom if it cannot be told apart from the uniform distri

bution by any e�cient procedure� The paradigm� originally associating e�cient procedures with
polynomial
time algorithms� has been applied also with respect to a variety of limited classes of
such distinguishing procedures�

Loosely speaking� pseudorandom generators are e�cient procedures that stretch short random
seeds into �signi�cantly longer� pseudorandom sequences� Again� the original approach has required
that the generation be done in polynomial
time� but subsequent works have demonstrated the
fruitfulness of alternative requirements�

The notes for this lecture were adapted from various texts that I wrote in the past �see� e�g�� #���
Chap� �$�� In view of the fact that that the archetypical case of pseudorandom generators is covered
at Weizmann in the Foundation of Cryptography course� I focused in the current course on the
derandomization aspect� The actual notes I have used in the current course appear in Section �����

���� Introduction

The second half of this century has witnessed the development of three theories of randomness� a
notion which has been puzzling thinkers for ages� The �rst theory �cf�� #��$�� initiated by Shan

non #��$� is rooted in probability theory and is focused at distributions that are not perfectly
random� Shannon�s Information Theory characterizes perfect randomness as the extreme case in
which the information content is maximized �and there is no redundancy at all�� Thus� perfect
randomness is associated with a unique distribution � the uniform one� In particular� by de�nition�
one cannot generate such perfect random strings from shorter random seeds�

The second theory �cf�� #��� ��$�� due to Solomonov #��$� Kolmogorov #��$ and Chaitin #��$�
is rooted in computability theory and speci�cally in the notion of a universal language �equiv��
universal machine or computing device�� It measures the complexity of objects in terms of the
shortest program �for a �xed universal machine� that generates the object� Like Shannon�s theory�
Kolmogorov Complexity is quantitative and perfect random objects appear as an extreme case�
Interestingly� in this approach one may say that a single object� rather than a distribution over ob

jects� is perfectly random� Still� Kolmogorov�s approach is inherently intractable �i�e�� Kolmogorov
Complexity is uncomputable�� and � by de�nition � one cannot generate strings of high Kolmogorov
Complexity from short random seeds�

The third theory� initiated by Blum� Goldwasser� Micali and Yao #��� ��� ��$� is rooted in
complexity theory and is the focus of this lecture� This approach is explicitly aimed at providing a
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notion of perfect randomness that allows to e�ciently generate perfect random strings from shorter
random seeds� The heart of this approach is the suggestion to view objects as equal if they cannot
be told apart by any e�cient procedure� Consequently� a distribution that cannot be e�ciently
distinguished from the uniform distribution will be considered as being random �or rather called
pseudorandom�� Thus� randomness is not an �inherent� property of objects �or distributions� but
rather relative to an observer �and its computational abilities�� To demonstrate this approach� let
us consider the following mental experiment�

Alice and Bob play �head or tail� in one of the following four ways� In all of them
Alice �ips a coin high in the air� and Bob is asked to guess its outcome before the coin
hits the �oor� The alternative ways di�er by the knowledge Bob has before making
his guess� In the �rst alternative� Bob has to announce his guess before Alice �ips the
coin� Clearly� in this case Bob wins with probability �	�� In the second alternative�
Bob has to announce his guess while the coin is spinning in the air� Although the
outcome is determined in principle by the motion of the coin� Bob does not have accurate
information on the motion and thus we believe that also in this case Bob wins with
probability �	�� The third alternative is similar to the second� except that Bob has
at his disposal sophisticated equipment capable of providing accurate information on
the coin�s motion as well as on the environment e�ecting the outcome� However� Bob
cannot process this information in time to improve his guess� In the fourth alternative�
Bob�s recording equipment is directly connected to a powerful computer programmed
to solve the motion equations and output a prediction� It is conceivable that in such a
case Bob can improve substantially his guess of the outcome of the coin�

We conclude that the randomness of an event is relative to the information and computing resources
at our disposal� Thus� a natural concept of pseudorandomness arises � a distribution is pseudo�
random if no e�cient procedure can distinguish it from the uniform distribution� where e�cient
procedures are associated with �probabilistic� polynomial
time algorithms�

���� The General Paradigm

A generic formulation of pseudorandom generators consists of specifying three fundamental aspects�
the stretching measure of the generators� the class of distinguishers that the generators are supposed
to fool �i�e�� the algorithms with respect to which the computational indistinguishability requirement
should hold�� and the resources that the generators are allowed to use �i�e�� their own computational
complexity��

Stretching function� A necessary requirement from any notion of a pseudorandom generator
is that it is a deterministic algorithm that stretches short strings� called seeds� into longer output
sequences� Speci�cally� it stretches k
bit long seeds into 
�k�
bit long outputs� where 
�k� � k� The
function 
 is called the stretching measure �or stretching function�� In some settings the speci�c
stretching measure is immaterial �e�g�� see Section ������

Computational Indistinguishability� A necessary requirement from any notion of a pseudo

random generator is that it �fools� some non
trivial algorithms� That is� any algorithm taken from
some class of interest cannot distinguish the output produced by the generator �when the generator
is fed with a uniformly chosen seed� from a uniformly chosen sequence� Typically� we consider a
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class D of distinguishers and a class F of noticeable functions� and require that the generator G
satis�es the following� For any D � D� any f � F � and for all su�ciently large k�s

jPr#D�G�Uk�� � �$ � Pr#D�U��k�� � �$ j � f�k�

where Un denotes the uniform distribution over f�� �gn and the probability is taken over Uk �resp��
U��k�� as well as over the coin tosses of algorithm D in case it is probabilistic�� The archetypical
choice is that D is the set of probabilistic polynomial
time algorithms� and F is the set of functions
which are the reciprocal of some positive polynomial�

Complexity of Generation� The archetypical choice is that the generator has to work in
polynomial
time �i�e�� time that is polynomial in length of its input � the seed�� Other choices
will be discussed as well� We note that placing no computational requirements on the generator
�or� alternatively� putting very mild requirements such as a double
exponential running
time upper
bound�� yields �generators� that can fool any subexponential
size circuit family�

���� The Archetypical Case

As stated above� the most natural notion of a pseudorandom generator refers to the case where both
the generator and the potential distinguisher work in polynomial
time� Actually� the distinguisher
is more complex than the generator� The generator is a �xed algorithm working within some �xed
polynomial
time� whereas a potential distinguisher is any algorithm that runs in polynomial
time�
Thus� for example� the distinguisher may always run in time cubic in the running
time of the
generator� Furthermore� to facilitate the development of this theory� we allow the distinguisher to
be probabilistic �whereas the generator remains deterministic as above�� In the role of the set of
noticeable functions we consider all functions that are the reciprocal of some positive polynomial��

This choice is naturally coupled with the association of e�cient computation with polynomial

time algorithms� An event that occurs with noticeable probability occurs almost always when the
experiment is repeated a �feasible� �i�e�� polynomial� number of times�

�	�	�� The actual de�nition

The above discussion leads to the following instantiation of the generic framework presented in
Section �����

De	nition ���� �pseudorandom generator � archetypical case�� A deterministic polynomial�time
algorithm G is called a pseudorandom generator if there exists a stretching function� 
 �N
N� so
that for any probabilistic polynomial�time algorithm D� for any positive polynomial p� and for all
su�ciently large k�s

jPr#D�G�Uk�� � �$ � Pr#D�U��k�� � �$ j �
�

p�k�

�Thus� we require certain functions �i�e�� the absolute di�erence between the above probabilities	� to be smaller
than any noticeable function on all but �nitely many integers� We call such functions negligible� Note that a function
may be neither noticeable nor negligible �e�g�� it may be smaller than any noticeable function on in�nitely many
values and yet larger than some noticeable function on in�nitely many other values	�

�The de�nition below asserts that the distinguishing gap of certain machines must be smaller than the reciprocal
of any positive polynomial for all but �nitely many n�s� Such functions are called negligible� The notion of negligible
probability is robust in the sense that an event that occurs with negligible probability occurs with negligible probability
also when the experiment is repeated a 
feasible� �i�e�� polynomial	 number of times�
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where Un denotes the uniform distribution over f�� �gn and the probability is taken over Uk �resp��
U��k�� as well as over the coin tosses of D�

Thus� pseudorandom generators are e�cient �i�e�� polynomial
time� deterministic programs that
expand short randomly selected seeds into longer pseudorandom bit sequences� where the latter are
computationally indistinguishable from truly random sequences by e�cient �i�e�� polynomial
time�
algorithms� It follows that any e�cient randomized algorithm maintains its performance when its
internal coin tosses are substituted by a sequence generated by a pseudorandom generator�

Amplifying the stretch function� Pseudorandom generators as de�ned above are only required
to stretch their input a bit	 for example� stretching k
bit long inputs to �k!��
bit long outputs will
do� Clearly generator of such moderate stretch function are of little use in practice� In contrast� we
want to have pseudorandom generators with an arbitrary long stretch function� By the e�ciency
requirement� the stretch function can be at most polynomial� It turns out that pseudorandom
generators with the smallest possible stretch function can be used to construct pseudorandom
generators with any desirable polynomial stretch function� �Thus� when talking about the existence
of pseudorandom generators� we may ignore the stretch function��

Theorem ���� Let G be a pseudorandom generator with stretch function 
�k� � k ! �� and 
� be
any polynomially bounded stretch function� which is polynomial�time computable� Let G��x� denote
the jxj�bit long pre�x of G�x�� and G��x� denote the last bit of G�x� �i�e�� G�x� � G��x�G��x���
Then

G��s�
def
� ���� � � � ����jsj� �

where x
 � s� �i � G��xi��� and xi � G��xi���� for i � �� ���� 
��jsj�

is a pseudorandom generator with stretch function 
��

Proof Sketch� The theorem is proven using the hybrid technique �cf�� #��� Sec� �����$�� One consid


ers distributions Hi
k �for i � �� ���� 
��k�� de�ned by U

���
i P���k��i�U

���
k �� where U

���
i and U

���
k are inde


pendent uniform distributions �over f�� �gi and f�� �gk� respectively�� and Pj�x� denotes the j
bit
long pre�x of G��x�� The extreme hybrids correspond to G��Uk� and U���k�� whereas distinguisha

bility of neighboring hybrids can be worked into distinguishability of G�Uk� and Uk��� Loosely
speaking� suppose one could distinguish Hi

k from Hi��
k � Then� using Pj�s� � G��s�Pj���G��s��

�for j � ��� this means that one can distinguish Hi
k � �U

���
i � G��U

���
k �� P����k��i����G��U

���
k ���

from Hi��
k � �U

���
i � U

����
� � P���k���i����U

����
k ��� Incorporating the generation of U

���
i and the eval


uation of P���k��i�� into the distinguisher� one could distinguish �G��U
���
k �� G��U

���
k �� � G�Uk�

from �U
����
k � U

����
� � � Uk��� in contradiction to the pseudorandomness of G� �For details see #���

Sec� �����$��

�	�	�� How to Construct Pseudorandom Generators

The known constructions transform computation di�culty� in the form of one
way functions �de

�ned below�� into pseudorandomness generators� Loosely speaking� a polynomial�time computable
function is called one
way if any e�cient algorithm can invert it only with negligible success prob

ability� For simplicity� we consider only length
preserving one
way functions�
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De	nition ���� �one
way function�� A one�way function� f � is a polynomial�time computable func�
tion such that for every probabilistic polynomial�time algorithm A�� every positive polynomial p����
and all su�ciently large n�s

Prx�Un

h
A��f�x���f���f�x��

i
�

�

p�n�

where Un denotes the uniform distribution over f�� �gn� and x�X means that x is distributed
according to X�

Popular candidates for one
way functions are based on the conjectured intractability of Integer Fac

torization� the Discrete Logarithm Problem� and decoding of random linear code� The infeasibility
of inverting f yields a weak notion of unpredictability� Let bi�x� denotes the ith bit of x� Then� for
every probabilistic polynomial
time algorithm A �and su�ciently large n�� it must be the case that
Pri�x#A�i� f�x�� �� bi�x�$ � �	�n� where the probability is taken uniformly over i � f�� ���� ng and
x � f�� �gn� A stronger �and in fact strongest possible� notion of unpredictability is that of a hard

core predicate� Loosely speaking� a polynomial�time computable predicate b is called a hard
core
of a function f if all e�cient algorithm� given f�x�� can guess b�x� only with success probability
which is negligible better than half�

De	nition ���
 �hard
core predicate�� A polynomial�time computable predicate b � f�� �g� �

f�� �g is called a hard�core of a function f if for every probabilistic polynomial�time algorithm A��
every positive polynomial p���� and all su�ciently large n�s

Prx�Un #A��f�x���b�x�$ �
�

�
!

�

p�n�

Clearly� if b is a hard
core of a �
� polynomial
time computable function f then f must be one
way��

It turns out that any one
way function can be slightly modi�ed so that it has a hard
core predicate�

Theorem ���� �A generic hard
core�� Let f be an arbitrary one�way function� and let g be de�ned

by g�x� r�
def
� �f�x�� r�� where jxj � jrj� Let b�x� r� denote the inner�product mod 
 of the binary

vectors x and r� Then the predicate b is a hard�core of the function g�

See proof in #��� Apdx C��$ or #��� Sec� �����$�� Finally� we get to the construction of pseudorandom
generators�

Theorem ���� �A simple construction of pseudorandom generators�� Let b be a hard�core predicate

of a polynomial�time computable 	�	 function f � Then� G�s�
def
� f�s� b�s� is a pseudorandom

generator�

Proof Sketch� Clearly the jsj
bit long pre�x of G�s� is uniformly distributed �since f is �
� and
onto f�� �gjsj�� Hence� the proof boils down to showing that distinguishing f�s�b�s� from f�s���
where � is a random bit� yields contradiction to the hypothesis that b is a hard
core of f �i�e�� that
b�s� is unpredictable from f�s��� Intuitively� such a distinguisher also distinguishes f�s�b�s� from
f�s�b�s�� where � � �� �� and so yields an algorithm for predicting b�s� based on f�s��

In a sense� the key point in the proof of the above theorem is showing that the �obvious by
constriction� unpredictability of the output of G implies its pseudorandomness� The fact that �next
bit� unpredictability and pseudorandomness are equivalent in general is proven explicitly in #���
Sec� �����$�

�Functions that are not ��� may have hard�core predicates of information theoretic nature� but these are of no
use to us here� For example� for � � f�� �g� the function f��� x	 � �f ��x	 has an 
information theoretic� hard�core
predicate b��� x	 � ��
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A general condition for the existence of pseudorandom generators� Recall that given
any one
way �
� function� we can easily construct a pseudorandom generator� Actually� the �
�
requirement may be dropped� but the currently known construction � for the general case � is quite
complex� Still we do have�

Theorem ���� �On the existence of pseudorandom generators�� Pseudorandom generators exist
if and only if one�way functions exist�

To show that the existence of pseudorandom generators imply the existence of one
way functions�
consider a pseudorandom generator G with stretch function 
�k� � �k� For x� y � f�� �gk � de�ne

f�x� y�
def
� G�x�� and so f is polynomial
time computable �and length
preserving�� It must be that

f is one
way� or else one can distinguish G�Uk� from U�k by trying to invert f and checking that the
result is correct� Inverting f on its range distribution refers to experimenting with the distribution
G�Uk�� whereas the probability that U�k has an inverse under f is negligible�

The interesting direction is the construction of pseudorandom generators based on any one
way
function� In general �when f may not be �
�� the ensemble f�Uk� may not be pseudorandom� and so
Construction ���� �i�e�� G�s� � f�s�b�s�� where b is a hard
core of f� cannot be used directly� Thus�
one idea is to hash f�Uk� to an almost uniform string of length related to its entropy� using Universal
Hash Functions #��$� �This is done after guaranteeing� that the logarithm of the probability mass
of a value of f�Uk� is typically close to the entropy of f�Uk���	 But �hashing f�Uk� down to length
comparable to the entropy� means shrinking the length of the output to� say� k� � k� This foils the
entire point of stretching the k
bit seed� Thus� a second idea is to compensate for the k � k� loss
by extracting these many bits from the seed Uk itself� This is done by hashing Uk� and the point is
that the �k�k� ! ��
bit long hash value does not make the inverting task any easier� Implementing
these ideas turns out to be more di�cult than it seems� and indeed an alternative construction
would be most appreciated�

�	�	�	 Pseudorandom Functions

Pseudorandom generators allow to e�ciently generate long pseudorandom sequences from short
random seeds� Pseudorandom functions �de�ned below� are even more powerful� They allow e�

cient direct access to a huge pseudorandom sequence �which is infeasible to scan bit
by
bit�� Put in
other words� pseudorandom functions can replace truly random functions in any e�cient applica

tion �e�g�� most notably in cryptography�� That is� pseudorandom functions are indistinguishable
from random functions by e�cient machines that may obtain the function values at arguments
of their choice� �Such machines are called oracle machines� and if M is such machine and f is a
function� then Mf �x� denotes the computation of M on input x when M �s queries are answered
by the function f ��

De	nition ���
 �pseudorandom functions�� A pseudorandom function �ensemble�� with length pa�

rameters 
D� 
R � N
 N� is a collection of functions F
def
� ffs � f�� �g�D�jsj� �
 f�� �g�R�jsj�gs�f
��g�

satisfying

� �e�cient evaluation�� There exists an e�cient �deterministic� algorithm which given a seed�
s� and an 
D�jsj��bit argument� x� returns the 
R�jsj��bit long value fs�x��

�Speci�cally� given an arbitrary one way function f �� one �rst constructs f by taking a 
direct product� of

su�ciently many copies of f �� For example� for x�� ���� xk� � f�� �gk� we let f�x�� ���� xk�	 def
� f ��x�	� ���� f

��xk�	�
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� �pseudorandomness�� For every probabilistic polynomial�time oracle machine� M � for every
positive polynomial p and all su�ciently large n�s

���Prf�Fn #Mf ��n� � �$� Pr��Rn #M���n� � �$
��� � �

p�n�

where Fn denotes the distribution on F obtained by selecting s uniformly in f�� �gn� and Rn

denotes the uniform distribution over all functions mapping f�� �g�D�n� to f�� �g�R�n��

Suppose� for simplicity� that 
D�n� � n and 
R�n� � �� Then a function uniformly selected among
�n functions �of a pseudorandom ensemble� presents an input
output behavior which is indistin

guishable in poly�n�
time from the one of a function selected at random among all the ��

n
Boolean

functions� Contrast this with the �n pseudorandom sequences� produced by a pseudorandom gener

ator� which are computationally indistinguishable from a sequence selected uniformly among all the
�poly�n� many sequences� Still pseudorandom functions can be constructed from any pseudorandom
generator�

Theorem ���� �How to construct pseudorandom functions�� Let G be a pseudorandom generator
with stretching function 
�n� � �n� Let G
�s� �resp�� G��s�� denote the �rst �resp�� last� jsj bits in
G�s�� and

G�jsj��������s�
def
� G�jsj�� � �G���G���s�� � � ��

Then� the function ensemble ffs � f�� �gjsj �
 f�� �gjsjgs�f
��g� � where fs�x�
def
� Gx�s�� is pseudoran�

dom with length parameters 
D�n� � 
R�n� � n�

The above construction can be easily adapted to any �polynomially
bounded� length parameters

D� 
R �N
N�

Proof Sketch� The proof uses the hybrid technique� The ith hybrid� Hi
n� is a function ensemble

consisting of ��
i�n functions f�� �gn �
 f�� �gn� each de�ned by �i random n
bit strings� denoted

hs�i��f
��gi � The value of such function at x � ��� with j�j � i� is G	�s��� The extreme hybrids

correspond to our indistinguishability claim �i�e�� H

n � fUn and Hn

n � Rn�� and neighboring hybrids
correspond to our indistinguishability hypothesis �speci�cally� to the indistinguishability of G�Un�
and U�n under multiple samples��

�	�	�� The Applicability of Pseudorandom Generators

Randomness is playing an increasingly important role in computation� It is frequently used in
the design of sequential� parallel and distributed algorithms� and is of course central to cryptog

raphy� Whereas it is convenient to design such algorithms making free use of randomness� it is
also desirable to minimize the usage of randomness in real implementations� Thus� pseudorandom
generators �as de�ned above� are a key ingredient in an �algorithmic tool
box� � they provide an
automatic compiler of programs written with free usage of randomness into programs which make
an economical use of randomness� In the context of complexity theory� this yields results of the
following type�

Theorem ����� �Derandomization of BPP�� If there exists non�uniformly strong pseudorandom

generators then BPP is contained in ��

Dtime�t��� where t��n�
def
� �n

�
�
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Proof Sketch� Given any L � BPP and any � � �� we let A denote the decision procedure for L
and G denote a pseudorandom generator stretching n�
bit long seeds into poly�n�
long sequences
�to be used by A on input length n�� Combining A and G� we obtain an algorithm A� � AG that�
on input x� �rst produces a poly�jxj�
long sequence by applying G to a uniformly selected jxj�
bit
long string� and next runs A using the resulting sequence as a random
tape� We note that A and
A� may di�er in their decision on at most �nitely many inputs �or else we can incorporate such
inputs� together with A� into a family of polynomial
size circuits which distinguishes G�Un�� from
Upoly�n��� Incorporating these �nitely many inputs into A�� and more importantly � emulating A�

on each of the �n
�

possible random choices �i�e�� seeds to G�� we obtain a deterministic algorithm
A�� as required�

We comment that stronger results regarding derandomization of BPP are presented in Sec

tion �����

Comment� Indeed� �pseudo
random number generators� have appeared with the �rst computers�
However� typical implementations use generators which are not pseudorandom according to the
above de�nition� Instead� at best� these generators are shown to pass some ad
hoc statistical test
�cf�� #��$�� However� the fact that a �pseudo
random number generator� passes some statistical
tests� does not mean that it will pass a new test and that it is good for a future �untested�
application� Furthermore� the approach of subjecting the generator to some ad
hoc tests fails to
provide general results of the type stated above �i�e�� of the form �for all practical purposes using
the output of the generator is as good as using truly unbiased coin tosses��� In contrast� the
approach encompassed in De�nition ���� aims at such generality� and in fact is tailored to obtain
it� The notion of computational indistinguishability� which underlines De�nition ����� covers all
possible e�cient applications postulating that for all of them pseudorandom sequences are as good
as truly random ones�

�	�	�� The Intellectual Contents of Pseudorandom Generators

We shortly discuss some intellectual aspects of pseudorandom generators as de�ned above�

Behavioristic versus Ontological� Our de�nition of pseudorandom generators is based on the
notion of computational indistinguishability� The behavioristic nature of the latter notion is best
demonstrated by confronting it with the Kolmogorov
Chaitin approach to randomness� Loosely
speaking� a string is Kolmogorov�random if its length equals the length of the shortest program
producing it� This shortest program may be considered the �true explanation� to the phenomenon
described by the string� A Kolmogorov
random string is thus a string which does not have a
substantially simpler �i�e�� shorter� explanation than itself� Considering the simplest explanation
of a phenomenon may be viewed as an ontological approach� In contrast� considering the e�ect of
phenomena �on an observer�� as underlying the de�nition of pseudorandomness� is a behavioristic
approach� Furthermore� there exist probability distributions which are not uniform �and are not
even statistically close to a uniform distribution� that nevertheless are indistinguishable from a
uniform distribution by any e�cient method� Thus� distributions which are ontologically very
di�erent� are considered equivalent by the behavioristic point of view taken in the de�nitions above�

A relativistic view of randomness� Pseudorandomness is de�ned above in terms of its ob

server� It is a distribution which cannot be told apart from a uniform distribution by any e�cient
�i�e� polynomial
time� observer� However� pseudorandom sequences may be distinguished from
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random ones by in�nitely powerful powerful �not at our disposal"�� Speci�cally� an exponential

time machine can easily distinguish the output of a pseudorandom generator from a uniformly
selected string of the same length �e�g�� just by trying all possible seeds�� Thus� pseudorandomness
is subjective to the abilities of the observer�

Randomness and Computational Di�culty� Pseudorandomness and computational di�

culty play dual roles� The de�nition of pseudorandomness relies on the fact that putting com

putational restrictions on the observer gives rise to distributions which are not uniform and still
cannot be distinguished from uniform� Furthermore� the construction of pseudorandom generators
rely on conjectures regarding computational di�culty �i�e�� the existence of one
way functions��
and this is inevitable� given a pseudorandom generator� we can construct one
way functions� Thus�
�non
trivial� pseudorandomness and computational hardness can be converted back and forth�

���� Derandomization of BPP

The above discussion has focused mainly on one aspect of the pseudorandomness question� the re

sources or type of the observer �or potential distinguisher�� Another important question is whether
such pseudorandom sequences can be generated from much shorter ones� and at what cost �or com

plexity�� So far� we have required the generation process to be at least as e�cient as the e�ciency
limitations of the distinguisher�� Indeed� this seems �fair� and natural� Allowing the generator
to be more complex �i�e�� use more time or space resources� than the distinguisher seems unfair�
but still yields interesting consequences in the context of trying to �de
randomize� randomized
complexity classes� For example� as we shall see� one may bene�t from considering generators that
work in time exponential in the length of their seed�

In the context of derandomization� we typically lose nothing by �being more liberal and� al

lowing exponential
time generators� To see why� we consider a typical derandomization argument�
proceeding in two steps �cf� the proof of Theorem ������� First one replaces the true randomness
of the algorithm by pseudorandom sequences generated from much shorter seeds� and next one
deterministically scans all possible seeds and looks for the most frequent behavior of the �modi�ed�
algorithm� Thus� in such a case� the deterministic complexity is anyhow exponential in the seed
length� The question is whether we gain anything by allowing exponential
time generators� The
answer seems to be positive� because with more time at their disposal the generators can perform
better �e�g�� output longer sequences and�or be based on weaker intractability assumptions�� For
example�

Theorem ����� Let E def
� �cDtime�tc�� with tc�n� � �cn� Suppose that there exists a language

L � E and a constant � � � such that� for all but �nitely many n�s� any circuit Cn which correctly
decides L on f�� �gn has size at least ��n� Then� BPP � P�

Indeed� Theorem ����� is related to Theorem ������ but the pseudorandom generators underlying
their proofs are very di�erent�

Proof Sketch� Underlying the proof is a construction of an adequate pseudorandom generator�
This generator operates in exponential
time� and generates an exponentially long output that fools

�If fact� we have require the generator to be more e�cient than the distinguisher� The former was required to be a
�xed polynomial�time algorithm� whereas the latter was allowed to be any algorithm with polynomial running time�
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circuits of size that is a �xed polynomial in the length of the output �or a smaller exponential in
the seed length�� That is� for some constant b � � and all k�s� the generator �running in time
�O�k�� stretches k
bit seeds into sequences of length �bk that cannot be distinguished from truly
random sequences by any circuit of size �bk� �Note that b � �� because a �k
time machine can
easily distinguish the generated sequences from random ones� by trying all possible k
bit seeds��
The derandomization of BPP proceeds by setting the seed
length to be logarithmic in the input
length� and utilizing the above generator�

Speci�cally� let A be a randomized p���
time algorithm that we wish to derandomize�

On input x� we set k
def
� ��	b� � log� p�jxj� � O�log jxj�� and scan all possible k
bit seeds�

For each seed� we produce the corresponding �bk
bit sequence� use it as a random
tape
to A �invoked on input x�� and record the output of A� �Each such invocation takes
time �O�k� ! p�jxj� � poly�jxj�� and we have �k � poly�jxj� many invocations�� We
output the most frequent output obtained in all �k invocations of A�x��

We now turn to the construction of the generator� The construction utilizes a predicate com

putable in exponential
time but unpredictable� even to within a particular exponential advantage�
by any circuit family of a particular exponential size�� �One main ingredient of the proof is sup

plying such a predicate� given the hypothesis� but we omit this part here�� Given such a predicate
the generator works by evaluating the predicate on exponentially
many subsequences of the bits
of the seed so that the intersection of any two subsets is relatively small� That is� for � � � as in
the hypothesis and �� b � poly���� given a k
bit seed� the generator constructs �in �O�k�
time� �bk

subsets of #k$
def
� f�� ���� kg each of size �k such that the intersection of every two sets has size at

most ���k� and evaluates the predicate on the projection of the seed bits determined by each of
these subsets��

The above generator fools circuits of the stated size� even when these circuits are presented
with the seed as auxiliary input� �These circuits are smaller than the running time of the generator
and so they cannot just evaluate the generator on the given seed�� The proof that the generator
fools such circuits refers to the characterization of pseudorandom sequences as unpredictable ones�
Thus� one proves that the next bit in the generator�s output cannot be predicted given all previous
bits �as well as the seed�� Assuming that a small circuit can predict the next bit �of the generator��
we construct a circuit for predicting the hard predicate� The new circuit incorporates the best
�for such prediction� augmentation of the input to the circuit into a seed for the generator �i�e��
the bits not in the speci�c subset of the seed are �xed in the best way�� The key observation is
that all other bits in the output of the generator depend only on a small fraction of the input bits
�i�e�� recall the small intersection clause above�� and so circuits for computing these other bits have
relatively small size �and so can be incorporated in the new circuit�� Using all these circuits� the
new circuit forms the adequate input for the next
bit predicting circuit� and outputs whatever the
latter circuit does�

Speci�cally� using a circuit C for predicting the i! �st bit of the generator �invoked on
k
bit seeds�� we describe a circuit for approximating the value of the predicate on inputs

of length 

def
� �k� Recall that C is given the �rst i bits output by the generator as well

�For future reference� say that for some constant �� � �� no circuit of size 
�
�� can guess the value of the predicate

on a random ��bit input with success probability higher than 
��
���

�Thus� this generator is only 
moderately more complex� than the distinguisher� Viewed in terms of its output�
the generator works in time polynomial in the length of the output� whereas the output fools circuits of size which is
a �smaller	 polynomial in the length of the output�
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as the �k
bit� seed� and predicts the said bit with advantage �say� ���bk� We �rst �x
the best setting �for C�s prediction� of the seed bits that are not in the i ! �st subset�
�Certainly� C�s prediction for a random setting of the bits of the i!�st subset and a best
best setting of the rest is at least as good as its prediction on a random seed�� Next� for
each of the �rst i bits �in the generator�s output�� we consider circuits for computing
the value of these bits as a function of the undetermined seed bits �of the i! �st subset�
and the �xed bits of the rest of the seed� Since the number of undetermined bits is at
most ���k� each such circuit has size ���

�k� Incorporating these i � �bk circuits into
C� we obtain a circuit that predicts the i ! �st output bit when only given the bits
of the i ! �st subset� In other words� the resulting circuit approximates the predicate
on random inputs of length �k with correlation at least ���bk � ���

���k �for �� as in
Footnote ��� The size of the resulting circuit is at most �bk � ����k ! size�C� � ��

���k�
This contradicts the hypothesis regarding the predicate�

Recall that we have only showed how to use a predicate that is hard to approximate in order to
obtain the desired pseudorandom generator� To complete the proof sketch� one has to show how the
existence of predicates �in E� that are hard in the �adequate� worst
case sense implies the existence
of predicates �in E� that are hard to approximate �in the adequate sense�� This part is too complex
to be treated here� and the interested reader is referred to #��$�

���� On weaker notions of computational indistinguishability

Whenever the aim is to replace random sequences utilized by an algorithm with pseudorandom
sequences� one may try to capitalize on knowledge of the target algorithm� Above we have merely
used the fact that the target algorithm runs in polynomial
time� However� for example� if we
know that the algorithm uses very little work
space then we may be able to do better� The same
holds if we know that the analysis of the algorithm only depends on some speci�c properties of the
random sequence it uses �e�g�� pairwise independence of its elements�� In general� weaker notions
of computational indistinguishability such as fooling space
bounded algorithms� constant
depth
circuits� and even speci�c tests �e�g�� testing pairwise independence of the sequence�� arise naturally�
Generators producing sequences that fool such tests are useful in a variety of applications � if the
application utilizes randomness in a restricted way then feeding it with sequences of low randomness

quality may do� Needless to say� we advocate a rigorous formulation of the characteristics of such
applications and a rigorous construction of generators that fool the type of tests that emerge�

In the context of a course on complexity theory� it is most appropriate to mention the pseu

dorandom generators that fool space
bounded algorithms that have on
line access to the inspected
sequence �which is analogous to the on
line access of randomized bounded
space machines to their
random
tape�� Such generators can be constructed without relying on any intractability assump

tions� and yield strong derandomization results� Two such famous results are captured by the
following theorems�

Theorem ����� BPL � SL� where BPL � RL in the class of sets recognized by two�sided log�
space machines� and SL in the class of sets recognized by deterministic polynomial�time algorithms
that use only poly�logarithmic amount of space�

Theorem ����� Suppose that L can be decided by a probabilistic polynomial�time algorithm of
space complexity s� Then L can be decided by a probabilistic polynomial�time algorithm of space
complexity O�s� and randomness complexity O�s��� where s��n� � max�s�n�� n��
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Analogous results hold for search problems� The pseudorandom generator underlying Theorem �����
uses a logarithmic number of hashing functions �each having logarithmic description length� and
a logarithmically
long string to de�ne a polynomially
long sequence� The seed of the generator
consists of the description of the hash functions and the additional string� but for a �xed log
space
distinguisher one can determine a sequence of hashing functions for which the distinguisher is fooled
�when on only varies the additional logarithmically
long string�� The pseudorandom generator un

derlying Theorem ����� uses a �randomness extractor�� which is a more sophisticated construct
�which has been the focus on extensive research in the recent decade	 see #��$��

���
 The actual notes that were used

The general paradigm of pseudorandom generators refers to a deterministic program that stretches
random seeds into longer sequences that look random to a speci�ed set of resource�bounded observers�
Thus� pseudorandomness is not generated deterministically� but rather from a short random seed�
and the above formalism is aimed to make explicit the �relatively small� amount of randomness
used in the generation process� That is� we refer to a deterministic function �or family of functions
one per each value of k� of the form G � f�� �gk 
 f�� �g��k�� satisfying three properties�

�� Stretching� At the very least 
�k� � k for every k�

�� Pseudorandomness� For every observer D taken from an adequate class �which depends on
the setting�� D cannot distinguish a random output of G from a truly random string of the
same length� That is�

Prs�f
��gk #D�G�s�� � �$ � Prr�f
��g�	k
 #D�r� � �$ ������

That is� D as a potential distinguisher� fails to do its job in a very strong sense� Throughout
this lecture� we will focus on potential distinguishers that are implementable by polynomial

size circuits �i�e�� a non
uniform family of circuits of size polynomial in the length of the input
�i�e�� 
�k�����

�� The complexity of generation� This will vary from setting to setting� We mention two impor

tant cases�

�a� The archetypical case� The natural requirement is that G be a polynomial
time algo

rithm� Using such a generator allows to shrink the amount of randomness used in any
�e�cient� application� Note that in this case� the stretch 
 is polynomially
bounded�
and so the shrinkage obtained is 
�� �i�e�� if the original application used m random bits
then we can typically modify it to use only 
���m� random bits��

We stress that in this case the distinguisher� which may use any probabilistic polynomial

time procedure� is more complex than the generator� which has running
time equal a
speci�c ��xed� polynomial�

�b� The case of derandomization� As we�ll see below� in the context of derandomization�
we will anyhow scan all possible seeds� Thus� derandomization is always exponential in
the seed� and so we gain nothing by requiring that the generation process �i�e�� G� is

�Indeed� such a distinguisher may incorporate the output of G on a speci�c seed �or on a few seeds	� but the
probability that this seed will be chosen for the left�hand�side of Eq� �����	 is negligible�
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polynomial
time� Instead� we may allow G to work for exponential time �i�e�� time that is
exponential in the seed length�� In this case� the stretch 
 is only exponentially
bounded�

We stress that in this case the generator may be more complex than the distinguisher�
Speci�cally� whereas the generator is allowed time exponential in the seed length� this
cannot be possibly allowed for the distinguisher �or else the latter may try all seeds and
apply the generator to each such seed��

We stress that the archetypical case yields a general�purpose generator that can be used in
any application� In particular� it yields a compiler for saving randomness in any probabilis

tic polynomial
time algorithm and is the type of thing needed in cryptography �where the
adversary�distinguisher may be more complex than the legitimate strategy that uses the gen

erator�� In contrast� the type of generators used in case of derandomization are sometimes
good only with respect to the speci�c algorithm being derandomized �or a speci�c resource
bound��

To clarify the above� let us spell out how one typically uses a pseudorandom generator� Let A be a
probabilistic polynomial
time algorithm� say running in time n� �where n denote its input length��
Let G be a pseudorandom generator of the �rst type �i�e�� G is polynomial
time computable�� say�
with stretch function 
�k� � k�� We derive a new algorithm A� by replacing the randomness of A
with randomness generated out of a random seed of G� That is� let A�x� r� denote the output of
A on input x and randomness r � f�� �gjxj� �recall that A�x� makes at most jxj� steps�� Then on

input x and randomness s � f�� �gjxj��� � algorithm A� computes G�s� and outputs A�x�G�s��� Note
that A� runs in polynomial
time because so do A and G� We claim that A� performs as well as A�
while using signi�cantly less random bits� The proof is left as an exercise �hint� use the fact that
inputs on which A� di�ers signi�cantly from A can be hard
wired into a distinguishing circuit��
Note that using an adequate pseudorandom generator we can shrink the amount of randomness
used by any probabilistic polynomial
time algorithm to n�� for any constant � � ��

So far we have only shrinked the amount of randomness used by probabilistic polynomial
time
algorithms� Full derandomization is obtained by scanning all possible random
tapes used by the
resulting algorithm �or in other words scanning all possible seeds for the generator�� That is� given
A� as above� we derive a deterministic algorithm A�� by scanning all possible s�s and outputting�
on input x� the majority value of A��x� s� �taken over all relevant s�s�� If we use a generator G of
running time tG and stretch 
�k� � tG�k�� then the running
time of A�� on input an n
bit string
will be

��
���n� �

�
tG�
���n�� ! timeA�n�

�
For 
 that is exponential �i�e�� 
�k� � ���k��� whenever A is polynomial
time and G is exponential

time �i�e�� tG�k� � �O�k��� we obtain a polynomial
time algorithm A��� because 
���n� � O�log n�
and tG�
���n�� � �O�����n�� � poly�n�� Let use take a closer look at what we need in order to
obtain such a result� We need a generator �G � f�� �gk 
 f�� �g��k�� that ��� runs in at most
exponential
time �i�e�� tG�k� � �O�k��� and ��� stretches its seed by an exponential amount �i�e��

�k� � ���k��� such that ��� these outputs are indistinguishable from random 
�k�
bit long sequences
by circuits of size� say� 
�k�� �or even 
�k��� �Note that the complexity of the distinguisher circuit
is dominated by the complexity of A� but we have set 
�k� � timeA�n���

The question is whether such generators exist� The answer depends on the existence of su�

ciently hard problems� Note that this is not surprising� because the de�nition of pseudorandomness
actually refers to a problem �i�e�� the one of distinguishing� that should be hard �although it is �solv

able� when waiving resource
bounds� because the pseudorandom sequences are not truly random��
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Indeed� we have�

Theorem ����
 �Theorem ������ restated�� Suppose that there exists a predicate f
 that is com�
putable in exponential�time and a constant c
 � � such that� for all but �nitely many m�s� any
circuit Cm that correctly compute f
 on f�� �gm has size at least �c�m� Then� there exists a con�
stant c � � and an exponential�time generator G � f�� �gk 
 f�� �g��k� such that 
�k� � ���k� and
for circuit C of size �ck it holds that���Prs�f
��gk #C�G�s�� � �$� Prr�f
��g�	k
 #C�r� � �$

��� � �	��

Note that c
 � � must hold or else the hypothesis cannot possibly hold �i�e�� because a circuit of size
�m may just incorporate the values of f
 for all m
bit strings�� Exercise� Show that Theorem �����
implies Theorem ����� �i�e�� if for some c� � � the class E does not have �c�n
size circuits then
BPP � P�� The proof of Theorem ����� consists of two steps�

�� Hardness Ampli�cation� Given f
 as in the hypothesis� we construct an exponential
time
computable predicate f� that cannot be approximated �on random m
bit inputs� by �c�m

sized circuits� where c� � � is a constant depending on c
� Speci�cally� for any such circuit
C� it holds that

Prx�f
��gm #C�x� � f��x�$ �
�

�
! ��c�m

That is� whereas f
 is �only� hard to compute in the worst
case� f� is even hard to guess with
signi�cant advantage �over the obvious random guess��

�� The actual construction� Average
case of the latter type is naturally linked to pseudoran

domness� Speci�cally� given f � f� as above� G�s� � s� f�s� is a pseudorandom generator
�alas with �pitiful� stretch��� However� our goal is to obtain exponential stretch �rather than
one
bit stretch�� Clearly� we cannot just repeat the above �i�e�� G�s� � s� f�s�� f�s�� ���� f�s�
is clearly not a pseudorandom generator� regardless how complex f is�� One natural idea
is to apply f to di�erent parts of the seed	 that is� to parts of the seed with small pairwise
overlap� This is indeed the construction in use� Let T�� ���� T��k� be a collection of sets such
that Ti 
 f�� ���� kg� jTij � k� � &�k�� and jTi � Tj j � k�� � k�	O��� for every i �� j� On in

put a k
bit seed s� the generator will construct such a collection in exponential
time �details
omitted�� and will output the sequence

f�s#T�$�� f�s#T�$�� ���� f�s#T��k�$�

where s#Ti$ is the projection of s on coordinates Ti�

Observe that since f is computable in exponential
time so is G� and that G has the desired stretch�
The issue is to establish the pseudorandomness of G� An important theorem in that respect is the
connection of pseudorandomness and unpredictability �i�e�� hardness of guessing the next bit in the
output sequence when given the previous bits�� Clearly� pseudorandomness implies unpredictability
�because ability to predict the next bit in the output of G yields ability to distinguish G�s output
from a truly random sequence�� However� we care about the opposite direction �i�e�� that unpre

dictability implies pseudorandomness� or put di�erently� ability to distinguish from random implies
ability to predict��

�Exercise� Prove that G�s	 � s� f�s	 is indeed a pseudorandom generator�
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Unpredictability implies pseudorandomness� Suppose that a circuit C can distinguish with
gap ��k� between Xk �in our case the output of G on a random k
bit seed� and the uniform
distribution over f�� �g��k�� Consider� for i � �� ���� 
�k�� the hybrid distributions Hi

k� where Hi
k

consists of the �rst i bits of Xk augmented with an �
�k�� i�
bit long uniformly distributed string�

Observe that H
��k�
k � G�Uk� and H


k � U��k�� where Um denotes the uniform distribution over
f�� �gm� Thus� although �not designed for that purpose�� there exists an i such that C distinguishes
with gap at least ��k�	
�k� between Hi��

k and Hi
k� On the other hand� Hi��

k and Hi
k di�er only in

the distribution of the i ! �st bit� and so C can be easily converted into a predictor of the i ! �st
bit of G�Uk�� �Exercise� Fill
up the details��

Predictability of G implies approximation of f � By the above� it su�ces to prove that
the output of G is unpredictable �with the suitable parameters�� Towards the contradiction� we
consider a circuit C �of size at most �ck� predicting the i ! �st bit of G�Uk�� Using the de�nition
of G� we have

Prs�f
��gk #C�f�s#T�$�� ���� f�s#Ti$�� � f�s#Ti��$�$ �
�

�
! ��k�

For simplicity of notations� suppose that Ti�� � f�� ���� k�g� and write s � hx� s�i� where jxj � k��
Using an averaging
argument �i�e�� �xing the best s��� we infer that there exists a string s� �
f�� �gk�k� such that

Prx�f
��gk� #C�f�hx� s�i#T�$�� ���� f�hx� s�i#Ti$�� � f�x�$ �
�

�
! ��k�

The key observation is that� for j � i� the value of f�hx� s�i#Tj $� depends only on at most k�� bits of
x �i�e�� the bits in positions Tj � Ti���� Thus� there exists a circuit of size at most exp�k��� �which
depends on the �xed s��� that given x computes f�hx� s�i#Tj $� �i�e�� by using a look
up table for the
relevant bits of x�� Combining all these circuits� we obtain a circuit C � �which is only 
�k� � exp�k���
bigger than C� such that Prx�f
��gk� #C

��x� � f�x�$ � �
� ! ��k�� For a suitable setting of the

constants c� c� � k�	k and c�� � k��	k�� we obtain a contradiction to the hypothesis regarding f
�since C � has size at most �ck!�ck�k

��
� �����c�c���c���k� and approximates the value of f on random

k�
bit inputs� whereas �c	c�� ! c�� � c���
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Lecture ��

Average�Case Complexity

In ����� Leonid Levin has initiated a theory of average
case complexity� We provide an exposition
of the basic de�nitions suggested by Levin� and discuss some of the considerations underlying these
de�nitions� The notes for this lecture were adapted from #��$�

���� Introduction

The average complexity of a problem is� in many cases� a more signi�cant measure than its worst

case complexity� This has motivated the development of a rich area in algorithmic research� the
probabilistic analysis of algorithms �cf� #��� ��$�� However� this line of research has so far been
applicable only to speci�c algorithms and with respect to speci�c� typically uniform� probability
distributions�

The general question of average
case complexity was addressed for the �rst time by Levin #��$�
Levin�s work can be viewed as the basis for a theory of average NP
completeness� much the same way
as Cook�s #��$ �and Levin�s #��$� works are the basis for the theory of NP
completeness� Subsequent
works have provided few additional complete problems� Other basic complexity problems� such as
decision versus search� were studied in #��$�

Levin�s average�case complexity theory in a nutshell� An average
case complexity class
consists of pairs� called distributional problems� Each such pair consists of a decision �resp��
search� problem and a probability distribution on problem instances� We focus on the class

DistNP
def
� hNP �P
computablei� de�ned by Levin #��$� which is a distributional analogue of NP�

It consists of NP decision problems coupled with distributions for which the accumulative measure
is polynomial
time computable� That is� P
computable is the class of distributions for which there
exists a polynomial time algorithm that on input x computes the total probability of all strings
y � x� The easy distributional problems are those solvable in �average polynomial
time� �a notion
which surprisingly require careful formulation�� Reductions between distributional problems are
de�ned in a way guaranteeing that if �� is reducible to �� and �� is in average polynomial
time�
then so is ��� Finally� it is shown that the class DistNP contains a complete problem�

Levin�s average�case theory� revisited� Levin�s laconic presentation #��$ hides the fact that
choices has been done in the development of the average
case complexity theory� We discuss some
of these choices here� Firstly� we stress that the motivation here is to provide a theory of e�cient
computation� rather than a theory of infeasible computation �e�g�� as in Cryptography�� �The
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two are not the same"� Furthermore� we note that a theory of useful
for
cryptography infeasible
computations does exist �cf�� e�g�� #��$�� A key di�erence between the two theories is that in
Cryptography we needs problems for which one may generate instance
solution pairs so that solving
the problem given only the instance is hard� In the theory of average
case complexity considered
below� we consider problems that are hard to solve� but do not require an e�cient procedure for
generating hard �on the average� instances coupled with solutions�

Secondly� one has to admit that the class DistNP �i�e�� speci�cally� the choice of distributions�
is somewhat problematic� Indeed P
computable distributions seem �simple�� but it is not clear if
they exhaust all natural �simple� distributions� A much wider class� which is easier to defend� is
the class of all distributions having an e�cient algorithm for generating instances �according to
the distribution�� One may argue that the instances of any problem we may need to solve are
generated e�ciently by some process� and so the latter class of P
samplable distribution su�ces
for our theory #��$� Fortunately� it was show #��$ that any distributional problem that is complete
for DistNP�hNP �P
computablei� is also complete with respect to the class hNP �P
samplablei�
Thus� in retrospect� Levin�s choice only makes the theory stronger� It requires to select complete
distributional problems from the restricted class hNP �P
computablei� whereas hardness holds with
respect to the wider class hNP �P
samplablei�

As hinted above� the de�nition of average polynomial
time is less straightforward than one may
expect� The obvious attempt at formulation this notion leads to fundamental problems which� in
our opinion� deem it inadequate� �For a detailed discussion of this point� the reader is referred
to the Appendix�� We believe that once the failure of the obvious attempt is understood� Levin�s
de�nition �presented below� does look a natural one�

���� De�nitions and Notations

In this section we present the basic de�nitions underlying the theory of average
case complexity�
Most de�nitions originate from Levin #��$� but the reader is advised not to look there for further
explanations and motivating discussions�

For sake of simplicity� we consider the standard lexicographic ordering of binary strings� Any
�xed e�cient enumeration will do� �An e�cient enumeration is a �
� and onto mapping of strings
to integers that can be computed and inverted in polynomial
time�� By writing x � y we mean
that the string x precedes y in lexicographic order� and y� � denotes the immediate predecessor of
y� Also� we associate pairs� triples etc� of binary strings with single binary strings in some standard
manner �i�e� encoding��

De	nition �
�� �Probability Distribution Function�� A distribution function � � f�� �g� 
 #�� �$
is a non�decreasing function from strings to the unit interval #�� �$ that converges to one� that is�
���� � �� ��x� � ��y� for each x � y� and limx	
 ��x� � �� The density function associated with
the distribution function � is denoted �� and de�ned by ����� � ���� and ���x� � ��x� � ��x� ��
for every x � ��

Clearly� ��x� �
P

y�x �
��y�� For notational convenience� we often describe distribution functions

converging to some c �� �� In all the cases where we use this convention it is easy to normalize
the distribution� so that it converges to one� An important example is the uniform distribution
function �
 de�ned as ��
�x� � �

jxj� ���jxj� �A minor modi�cation that does converge to � is obtained

by letting ��
�x� � �
jxj��jxj��� � ��jxj��
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De	nition �
�� �A Distributional Problem�� A distributional decision problem �resp�� distribu

tional search problem� is a pair �D��� �resp� �S� ���� where D � f�� �g� 
 f�� �g �resp�� S �
f�� �g� � f�� �g�� and � � f�� �g� 
 #�� �$ is a distribution function�

In the sequel we consider mainly decision problems� Similar formulations for search problems can
be easily derived�

������ Distributional�NP

Simple distributions are identi�ed with the P
computable ones� The importance of restricting
attention to simple distributions �rather than allowing arbitrary ones� is demonstrated in #���
Sec� ���$� essentially� making no such restrictions would collapse the average
case theory to the
standard worst
case theory�

De	nition �
�� �P
computable�� A distribution � is in the class P
computable if there is a de�
terministic polynomial time Turing machine that on input x outputs the binary expansion of ��x�
�i�e�� the running time is polynomial in jxj��

It follows that the binary expansion of ��x� has length polynomial in jxj� An necessary condition
for distributions to be of interest is their putting noticeable probability weight on long strings �i�e��
for some polynomial� p� and su�ciently big n the probability weight assigned to n
bit strings should

be at least �	p�n��� Consider to the contrary the density function ���x�
def
� ���jxj� An algorithm of

running time t�x� � �jxj will be considered to have constant on the average running
time w�r�t this
� �as

P
x �

��x� � t�jxj� �
P

n ��n � ���

If the distribution function � is in P
computable then the density function� ��� is computable
in time polynomial in jxj� The converse� however� is false� unless P � NP � In spite of this remark
we usually present the density function� and leave it to the reader to verify that the corresponding
distribution function is in P
computable�

We now present the class of distributional problems which corresponds to �the traditional� NP�
Most of results in the literature refer to this class�

De	nition �
�
 �The class DistNP�� A distributional problem �D��� belongs to the class DistNP
if D is an NP�predicate and � is in P
computable� DistNP is also denoted hNP �P
computablei�

A wider class of distributions� denoted P
samplable� gives rise to a wider class of distributional NP
problems� which was discussed in the introduction� A distribution � is in the class P
samplable
if there exists a polynomial p and a probabilistic algorithm A that outputs the string x with
probability ���x� within p�jxj� steps� That is� elements in a P
samplable distribution are generated
in time polynomial in their length� We comment that any P
computable distribution is P
samplable�
whereas the converse if false �provided one
way functions exist�� For a detailed discussion see #��$�

������ Average Polynomial�Time

The following de�nitions� regarding average polynomial
time� may seem obscure at �rst glance� It
is important to point out that the naive formalizations of these de�nitions su�er from serious prob

lems such as not being closed under functional composition of algorithms� being model dependent�
encoding dependent etc� For a more detailed discussion� see Appendix�
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De	nition �
�� �Polynomial on the Average�� A function f � f�� �g� 
 N is polynomial on the

average with respect to a distribution � if there exists a constant � � � such that

X
x�f
��g�

���x� � f�x��

jxj ��

The function l�x� � f�x�� is linear on the average w�r�t� ��

Thus� a function is polynomial on the average if it is bounded by a polynomial in a function that is
linear on the average� In fact� the basic de�nition is that of a function that is linear on the average	
see #��� Def� �$�

De	nition �
�� �The class Average
P�� A distributional problem �D��� is in the class Average
P
if there exists an algorithm A solving D� so that the running time of A is polynomial on the average
with respect to the distribution ��

We view the classes Average
P and DistNP as the average
case analogue of P and NP �respectively��

�����	 Reducibility between Distributional Problems

We now present de�nitions of �average polynomial time� reductions of one distributional problem
to another� Intuitively� such a reduction should be e�ciently computable� yield a valid result and
�preserve� the probability distribution� The purpose of the last requirement is to ensure that
the reduction does not map very likely instances of the �rst problem to rare instances of the
second problem� Otherwise� having a polynomial time on the average algorithm for the second
distributional problem does not necessarily yield such an algorithm for the �rst distributional
problem� Following is a de�nition of randomized Turing reductions� De�nitions of deterministic
and many
to
one reductions can be easily derived as special cases�

De	nition �
�� �Randomized Turing Reductions�� We say that the probabilistic oracle Turing
machine M randomly reduces the distributional problem �D�� ��� to the distributional problem
�D�� ��� if the following three conditions hold�

�� E�ciency� Machine M is polynomial time on the average taken over x with distribution �� and
the internal coin tosses of M with uniform probability distribution �i�e�� let tM �x� r� be the
running time of M on input x and internal coin tosses r� then there exists � � � such thatP

x�r �
�
��x���
�r� � tM �x�r��

jxj ��� where �
 is the uniform distribution��

�� Validity� For every x � f�� �g��

Prob�MD��x� � D��x�� � �

�

where MD��x� is the random variable �determined by M �s internal coin tosses� which denotes
the output of the oracle machine M on input x and access to oracle for D��

�� Domination� There exists a constant c � � such that for every y � f�� �g��

����y� � �

jyjc �
X

x�f
��g�

AskM �x� y� � ����x�

where AskM �x� y� is the probability �taken over M �s internal coin tosses� that �machine M
asks query y on input x��

��



In the de�nition of deterministic Turing reductions MD��x� is determined by x �rather than being
a random variable� and AskM �x� y� is either � or � �rather than being any arbitrary rational in
#�� �$�� In case of a many
to
one deterministic reduction� for every x� we have AskM �x� y� � � for
a unique y�

It can be proven� that if �D�� ��� is deterministically �resp�� randomly� reducible to �D�� ���
and if �D�� ��� is solvable by a deterministic �resp�� randomized� algorithm with running time
polynomial on the average then so is �D�� ����

Reductions are transitive in the special case in which they are honest	 that is� on input x they
ask queries of length at least jxj�� for some constant � � �� All known reductions have this property�

������ A Generic DistNP Complete Problem

The following distributional version of Bounded Halting� denoted �BH � �BH��BH�� is known to
be DistNP
complete �see Section ������

De	nition �
�
 �distributional Bounded Halting��

� Decision� BH�M�x� �k� � � i� there exists a computation of the non�deterministic machine
M on input x which halts within k steps�

� Distribution� The distribution �BH is de�ned in terms of its density function

��BH�M�x� �k�
def
�

�

jM j� � �jM j
� �

jxj� � �jxj �
�

k�

Note that ��BH is very di�erent from the uniform distribution on binary strings �e�g�� consider
relatively large k�� Yet� as noted by Levin� one can easily modify �BH so that has a �uniform�
distribution and is DistNP
complete with respect to randomized reduction� �Hint� replace the
unary time bound by a string of equal length� assigning each such string the same probability��

���� DistNP�completeness of �BH

The proof� presented here� is due to Guretich #��$� �An alternative proof is implied by Levin�s
original paper #��$��

In the traditional theory of NP
completeness� the mere existence of complete problems is almost
immediate� For example� it is very easy to show that Bounded Halting is NP
complete�� In the
case of distributional
NP an analogous theorem is much harder to prove� The di�culty is that
we have to reduce all DistNP problems �i�e�� pairs consisting of decision problems and simple

�Hint� Suppose that� for � � �� we have
P

x
����x	

t	x
�


jxj
� O��	� and for some c � � we have ����x	 � jxjc����x	

�
x	� Then� let S
def
� fx � t�x	 � jxj�c��g� and split the sum

P
x
����x	

t	x
���c

jxj
according to x � S or not� The sumP

x�S
����x	

t	x
���c

jxj
is bounded by �� using t�x	���c � jxj� whereas P

x��S
����x	

t	x
���c

jxj
is bounded by O��	� using

��� � jxjc����x	 and jxjc � t�x	��� �and
P

x
����x	

t	x
�

jxj

� O��		�
�Recall that Bounded Halting �BH	 is de�ned over triples �M�x� �k	� where M is a non�deterministic machine� x is

a binary string and k is an integer �given in unary	� The problem is to determine whether there exists a computation
of M on input x which halts within k steps� Clearly� Bounded Halting is in NP �here its crucial that k is given in
unary	� Let D be an arbitrary NP problem� and let MD be the non�deterministic machine solving it in time PD�n	
on inputs of length n� where PD is a �xed polynomial� Then the reduction of D to BH consists of the transformation
x �� �MD� x� �

PD	jxj
	�

��



distributions� to one single distributional problem �i�e�� Bounded Halting with a single simple
distribution�� Applying reductions as in Footnote � we end
up with many distributional versions of
Bounded Halting� and furthermore the corresponding distribution functions will be very di�erent
and will not necessarily dominate one another� Instead� one should reduce each distributional
problem� �D���� with an arbitrary P
computable distribution � to the same distributional problem
with a �xed �P
computable� distribution �e�g� �BH�� The di�culty in doing so is that the reduction
should have the domination property� Consider for example an attempt to reduce each problem in
DistNP to �BH by using the standard transformation of D to BH �i�e�� x �
 �MD� x� �

PD�jxj���� This
transformation fails when applied to distributional problems in which the distribution of �in�nitely
many� strings is much higher than the distribution assigned to them by the uniform distribution�
In such cases� the standard reduction maps an instance x having probability mass ���x� ��jxj to
a triple �MD� x� �

PD�jxj�� with much lighter probability mass �recall ��BH�MD� x� �
PD�jxj�� � ��jxj��

This violates the domination condition� and thus an alternative reduction is required�
The key to the alternative reduction �of �D��� to �BH� is an �e�ciently computable� encoding

of strings taken from an arbitrary polynomial
time computable distribution by strings that have
comparable probability mass under a �xed distribution� This encoding will map x into a codeword
of length bounded above by the logarithm of �	���x�� Accordingly� the reduction will map x to a

triple �MD��� x
�� �jxj

O	�

�� where jx�j � O��� ! log� �	���x�� and MD�� is a non
deterministic Turing

machine that �rst retrieves x from x� and then applies the standard non
deterministic machine �i�e��
MD� of the problem D� Such a reduction will be shown to satisfy all three conditions �i�e� e�ciency�
validity� and domination�� Thus� instead of forcing the structure of the original distribution � on
the target distribution �BH � the reduction will incorporate the structure of � into the the reduced
instance� The following technical lemma is the basis of the reduction�

Coding Lemma� Let � be a polynomial
time computable distribution function� Then there exist
a coding function C� satisfying the following three conditions�

�� Compression� For every x � f�� �g�

jC��x�j � � ! min

	
jxj� log�

�

���x�




�� E�cient Encoding� The function C� is computable in polynomial
time�

�� Unique Decoding� The function C� is one
to
one �i�e� C��x� � C��x�� implies x � x���

Proof� The function C� is de�ned as follows� If ���x� � ��jxj then C��x� � �x �i�e� in this case x
serves as its own encoding�� If ���x� � ��jxj then C��x� � �z� where z is the longest common pre�x
of the binary expansions of ��x� �� and ��x� �e�g� if ������� � ������� and ������� � ����������
then C������� � �z with z � ���� Consequently� ��z� is in the interval ���x � ��� ��x�$	 that is�
��x� �� � ��z� � ��x��

We now verify that C� so de�ned satis�es the conditions of the lemma� We start with the
compression condition� Clearly� if ���x� � ��jxj then jC��x�j � � ! jxj � � ! log���	�

��x��� On the
other hand� suppose that ���x� � ��jxj and let z � z� � � � z� be as above �i�e�� the longest common
pre�x of the binary expansions of ��x� �� and ��x��� Then�

���x� � ��x�� ��x� �� �
�
� �X
i��

��izi !

poly�jxj�X
i����

��i

�
A� �X

i��

��izi � ��jzj

��



and jzj � log���	�
��x�� follows� Thus� jC��x�j � �!log���	�

��x�� in both cases� Clearly� C� can be
computed in polynomial
time by computing ��x� �� and ��x�� Finally� note that C� is one
to
one
by considering the two cases� C��x� � �x and C��x� � �z� �In the second case� use the fact that
��x� �� � ��z� � ��x���

Using the coding function presented in the above proof� we introduce a non
deterministic machine
MD�� so that the distributional problem �D��� is reducible to �BH � �BH��BH� in a way that
all instances �of D� are mapped to triples with �rst element MD��� On input y � C��x�� machine
MD�� computes D�x�� by �rst retrieving x from C��x� �e�g�� guess and verify�� and next running
the non
deterministic polynomial
time machine �i�e�� MD� that solves D�

The reduction maps an instance x �of D� to the triple �MD��� C��x�� �P �jxj��� where P �n�
def
�

PD�n� !PC�n� !n� PD�n� is a polynomial bounding the running time of MD on acceptable inputs
of length n� and PC�n� is a polynomial bounding the running time of an algorithm for encoding
inputs �of length n��

Proposition� The above mapping constitutes a reduction of �D��� to �BH��BH��

Proof� We verify the three requirements�

� The transformation can be computed in polynomial
time� �Recall that C� is polynomial
time
computable��

� By construction of MD�� it follows that D�x� � � if and only if there exists a computation
of machine MD�� that on input C��x� halts outputting � within P �jxj� steps� �Recall� on
input C��x�� machine MD�� non
deterministically guesses x� veri�es in PC�jxj� steps that x
is encoded by C��x�� and non
deterministically �computes� D�x���

� To see that the distribution induced by the reduction is dominated by the distribution �BH � we
�rst recall that the transformation x
 C��x� is one
to
one� It su�ces to consider instances
of BH that have a preimage under the reduction �since instances with no preimage satisfy the
condition trivially�� All these instances are triples with �rst element MD��� By the de�nition
of �BH

��BH�MD��� C��x�� �P �jxj�� � c � �

P �jxj�� �
�

jC��x�j� � �jC��x�j
where c � �

jMD��j���
jMD��j

is a constant depending only on �D����

By virtue of the coding Lemma
���x� � � � ��jC��x�j

It thus follows that

��BH�MD��� C��x�� �P �jxj�� � c � �

P �jxj�� �
�

jC��x�j� �
���x�

�

�
c

� � jMD��� C��x�� �P �jxj�j� � �
��x�

The Proposition follows�
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���� Conclusions

In general� a theory of average
case complexity should provide

�� a speci�cation of a broad class of interesting distributional problems	

�� a de�nition capturing the subclass of �distributional� problems that are easy on the average	

�� notions of reducibility that allow to infer the easiness of one �distributional� problem from
the easiness of another	

�� and� of course� results���

It seems that the theory of average
case complexity� initiated by Levin and further developed in
#��� ��� ��$� satis�es these expectations to some extent� Following is my evaluation regarding its
�performance� with respect to each of the above�

�� The scope of the theory� originally restricted to P
computable distributions has been signi�

cantly extended to cover all P
sampleable distributions �as suggested in #��$�� The key result
here is by Impagliazzo and Levin #��$ show proved that every language that is hNP �P
computablei

complete is also hNP �P
samplablei
complete� This important result makes the theory of
average
case very robust� It allows to reduce distributional problems from an utmost wide
class to distributional problems with very restricted�simple type of distributions�

�� The de�nition of average polynomial
time does seem strange at �rst glance� but it seems that
it �or similar alternative� does captures the intuitive meaning of �easy on the average��

�� The notions of reducibility are both natural and adequate�

�� Results did follow� but here indeed much more is expected� Currently� DistNP
complete
problems are known for the following areas� Computability �e�g�� Bounded
Halting�� Combi

natorics �e�g�� Tiling and a generalization of graph coloring�� Formal Languages and Algebra
�e�g�� of matrix groups�� However the challenge of �nding a really natural distributional prob

lem that is complete in DistNP �e�g�� subset sum with uniform distribution�� has not been met
so far� It seems that what is still lacking are techniques for design of �distribution preserving�
reductions�

In addition to their central role in the theory of average
case complexity� reductions that preserve
uniform �or very simple� instance distribution are of general interest� Such reductions� unlike most
known reductions used in the theory of NP
completeness� have a range that is a non
negligible part
of the set of all possible instances of the target problem �i�e� a part that cannot be claim to be only
a �pathological subcase���

We note that Levin views the results in his paper #��$ as an indication that all �simple� �i�e��
P
computable� distributions are in fact related �or similar��

Appendix� Failure of a naive formulation

When asked to motivate his de�nition of average polynomial
time� Leonid Levin replies� non

deterministically� in one of the following three ways�

� �This is the natural de�nition��

��



� �This de�nition is not important for the results in my paper	 only the de�nitions of reduc

tion and completeness matter �and also they can be modi�ed in many ways preserving the
results���

� �Any de�nition that makes sense is either equivalent or weaker��

For further elaboration on the �rst argument the reader is referred to Leonid Levin� The second
argument is� of course� technically correct but unsatisfactory� We will need a de�nition of �easy
on the average� when motivating the notion of a reduction and developing useful relaxations of it�
The third argument is a thesis which should be interpreted along Wittgenstein�s suggestion to the
teacher� �say nothing and con�ne yourself to pointing out errors in the students� attempts to say
something�� We will follow this line here by arguing that the de�nition that seems natural to an
average computer scientist su�ers from serious problems and should be rejected�

De	nition X �naive formulation of the notion of easy on the average�� A distributional problem
�D��� is polynomial�time on the average if there exists an algorithm A solving D �i�e� on input x
outputs D�x�� such that the running time of algorithm A� denoted tA� satis�es �c � ��n�X

x�f
��gn

��n�x� � tA�x� � nc

where ��n�x� is the conditional probability that x occurs given that an n�bit string occurs �i�e��
��n�x� � ���x�	

P
y�f
��gn �

��y���

The problem which we consider to be most upsetting is that De�nition X is not robust under
functional composition of algorithms� Namely� if the distributional problem A can be solved in
average polynomial
time given access to an oracle for B� and problem B can be solved in polynomial

time then it does not follow that the distributional problem A can be solved in average polynomial

time� For example� consider uniform probability distribution on inputs of each length and an oracle
Turing machine M which given access to oracle B solves A� Suppose that MB runs �

n
� steps on

�
n
� of the inputs of length n� and n� steps on all other inputs of length n	 and furthermore that

M when making t steps asks a single query of length
p
t� �Note that machine M � given access to

oracle for B� is polynomial
time on the average�� Finally� suppose that the algorithm for B has
cubic running
time� The reader can now verify that although M given access to the oracle B is
polynomial
time on the average� combining M with the cubic running
time algorithm for B does
not yield an algorithm which is polynomial
time on the average according to De�nition X� It is easy
to see that this problem does not arise when using the de�nition presented in Section ��

The source of the above problem with De�nition X is the fact that the underlying de�nition of
polynomial
on
the
average is not closed under application of polynomials� Namely� if t � f�� �g� 
 N

is polynomial on the average� with respect to some distribution� it does not follow that also t����
is polynomial on the average �with respect to the same distribution�� This technical problem is
also the source of the following problem� that Levin considers most upsetting� De�nition X is not
machine independent� This is the case since some of the simulations of one computational model on
another square the running time �e�g�� the simulation of two
tape Turing machines on a one
tape
Turing machine� or the simulation of a RAM �Random Access Machine� on a Turing machine��

Another two problems with De�nition X have to do with the fact that it deals separately with
inputs of di�erent length� The �rst problem is that De�nition X is very dependent on the particular
encoding of the problem instance� Consider� for example� a problem on simple undirected graphs
for which there exist an algorithm A with running time tA�G� � f�n�m�� where n is the number of

��



vertices in G and m is the number of edges �in G�� Suppose that if m � n
�
� then f�n�m� � �n and

else f�n�m� � n�� Consider the distributional problem which consists of the above graph problem
with the uniform probability distribution on all graphs with the same number of vertices� Now� if
the graph is given by its �incident� matrix representation then De�nition X implies that A solves
the problem in average polynomial
time �the average is taken on all graphs with n nodes�� On
the other hand� if the graphs are represented by their adjacency lists then the modi�ed algorithm
A �which transforms the graphs to matrix representation and applies algorithm A� is judged by
De�nition X to be non
polynomial on the average �here the average is taken over all graphs of m
edges�� This of course will not happen when working with the de�nition presented in Section ��
The second problem with dealing separately with di�erent input lengths is that it does not allow
one to disregard inputs of a particular length� Consider for example a problem for which we are
only interested in the running
time on inputs of odd length�

After pointing out several weaknesses of De�nition X� let us also doubt its �clear intuitive
advantage� over the de�nition presented in Section �� De�nition X is derived from the formulation
of worst
case polynomial
time algorithms which requires that �c � � �n�

�x � f�� �gn � tA�x� � nc

De�nition X was derived by applying the expectation operator to the above inequality� But why
not make a very simple algebraic manipulation of the inequality before applying the expectation
operator� How about taking the c
th root of both sides and dividing by n	 this yields �c � � �n�

�x � f�� �gn �
tA�x�

�
c

n
� �

Applying the expectation operator to the above inequality leads to the de�nition presented in
Section ���� We believe that this de�nition demonstrates a better understanding of the e�ect of the
expectation operator with respect to complexity measures"

Summary� Robustness under functional composition as well as machine independence seems to
be essential for a coherent theory� So is robustness under e�ciently e�ected transformation of the
problem encoding� These are one of the primary reasons for the acceptability of P as capturing
problems that can be solved e�ciently� In going from worst
case analysis to average
case analysis
we should not and would not like to lose these properties�
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Lecture ��

Circuit Lower Bounds

See old survey by Boppana and Sipser #��$�

���� Constant�depth circuits

���� Monotone circuits
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Lecture ��

Communication Complexity

See textbook by Kushilevitz and Nisan #��$�

�
�� Deterministic Communication Complexity

�
�� Randomized Communication Complexity
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Historical Notes

Probabilistic Proof Systems

For a more detailed account of the history of the various types of probabilistic proof systems� we
refer the reader to #��� Sec� �����$�

Interactive Proofs� Interactive proof systems were introduced by Goldwasser� Micali and Rack

o� #��$� with the explicit objective of capturing the most general notion of e�ciently veri�able proof
systems� The original motivation was the introduction of zero
knowledge proof systems� which in
turn were supposed to provide �and indeed do provide� a powerful tool for the design of complex
cryptographic schemes �cf� #��� ��$��

First evidence that interactive proofs may be more powerful than NP
proofs was given by Gol

dreich� Micali and Wigderson #��$� in the form of the interactive proof for Graph Non
Isomorphism
presented above� The full power of interactive proof systems was discovered by Lund� Fortnow�
Karlo�� Nisan� and Shamir �in #��$ and #��$�� The basic technique was presented in #��$ �where
it was shown that coNP � IP� and the �nal result �PSPACE � IP� in #��$� Our presentation
follows #��$�

Public
coin interactive proofs �also known as Arthur
Merlin proofs� were introduced by Babai #�$�
The fact that these restricted interactive proofs are as powerful as general ones was proved by Gold

wasser and Sipser #��$� The linear speed
up �in number of rounds� of public
coin interactive proofs
was shown by Babai and Moran #�$�

Zero�knowledge proofs� The concept of zero
knowledge has been introduced by Goldwasser�
Micali and Racko� �in the very same paper quoted above	 i�e�� #��$�� Their paper contained also
a perfect zero
knowledge proof for Quadratic Non
Residuosity� The perfect zero
knowledge proof
system for Graph Isomorphism is due to Goldreich� Micali and Wigderson #��$� More importantly�
the latter paper presents a zero
knowledge proof systems for all languages in NP� using any secure
commitment scheme� which in turn can be constructed based on any one
way function #��� ��$� For
the comprehensive discussion of zero
knowledge see #��� Chap� �$�

Probabilistically Checkable Proofs� The PCP Characterization Theorem is attributed to
Arora� Lund� Motwani� Safra� Sudan and Szegedy �cf� #�$ and #�$�� These papers� in turn� built on
numerous previous works	 for details see the papers themselves or #��$� In general� our presentation
of PCP follows #��� Sec� ���$� and the interested reader is referred to the latter for a survey of
further developments and more re�ned considerations�

The �rst connection between PCP and hardness of approximation was made by Feige� Gold

wasser� Lovasz� Safra� and Szegedy #��$� They showed the connection to maxClique �presented
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above�� The connection to max�SAT and other �MaxSNP approximation� problems was made
later in #�$�

We did not present the strongest known non
approximability results for max�SAT and max

Clique� These can be found in Hastad�s papers� #��$ and #��$� respectively�

Pseudorandomness

The notion of computational indistinguishability was introduced by Goldwasser and Micali #��$
�within the context of de�ning secure encryptions�� and given general formulation by Yao #��$�
Our de�nition of pseudorandom generators follows the one of Yao� which is equivalent to a prior
formulation of Blum and Micali #��$� For more details regarding this equivalence� as well as many
other issues� see #��$� The latter source presents the notion of pseudorandomness discussed here as
a special case �or archetypical case� of a general paradigm�

The discovery that computational hardness �in form of one
wayness� can be turned into a
pseudorandomness was made by Blum and Micali #��$� Theorem ���� �asserting that pseudorandom
generators can be constructed based on any one
way function� is due to H(astad� Impagliazzo� Levin
and Luby #��$� who build on #��� ��$�

The fact that pseudorandom generators yield signi�cantly better derandomization than the
straightforward one was �rst exploited by Yao #��$� The fact that for purpose of derandomization
one may use pseudorandom generators that run in exponential time was �rst observed by Nisan
and Wigderson #��$� who presented a general framework for such constructions� All improved
derandomization results build on the latter framework� In Particular� Theorem ����� is due to
Impagliazzo and Wigderson #��$� who build on #��� �� ��$�

Theorems ����� and ����� �regarding derandomization of space
bounded randomized classes�
are due to Nisan #��� ��$ and Nisan and Zuckerman #��$� respectively�

Average�Case Complexity

The theory of average
case complexity was initiated by Levin #��$� Levin�s laconic presentation #��$
hides the fact that important choices have been made in the development of the average
case
complexity theory� These choices were discussed in #��$� and our presentation follows the latter
text�
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