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Abstract

Various types of probabilistic proof systems have played a central role in the de�

velopment of computer science in the last decade� In this exposition� we concentrate

on three such proof systems � interactive proofs� zero�knowledge proofs� and proba�

bilistic checkable proofs � stressing the essential role of randomness in each of them�
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� Introduction

The glory given to the creativity required to �nd proofs� makes us forget that it is the less
glori�ed procedure of veri�cation which gives proofs their value� Philosophically speaking�
proofs are secondary to the veri�cation procedure� whereas technically speaking� proof
systems are de�ned in terms of their veri�cation procedures�

The notion of a veri�cation procedure assumes the notion of computation and fur�
thermore the notion of e�cient computation� This implicit assumption is made explicit
in the de�nition of NP� in which e�cient computation is associated with �deterministic	
polynomial�time algorithms�

De�nition � �NP�proof systems	
 Let S � f�� �g� and � 
 f�� �g� � f�� �g� �� f�� �g be a
function so that x � S if and only if there exists a w � f�� �g� such that ��x�w	 � �� If �
is computable in time bounded by a polynomial in the length of its �rst argument then we
say that S is an NP�set and � de�nes an NP�proof system�

For example� in propositional calculus a proof is a sequence of assertions� each being
a form of an axiom or is obtained by applying an inference rule on previous assertions�
Thus� the veri�cation procedure consists of checking the justi�cation of each assertion in
the sequence� Clearly� this procedure can be implemented by a very e�cient algorithm� In
contrast� it is widely believed that there exists no e�cient algorithm for �nding proofs to
given assertions in propositional calculus �since the task is NP�Hard 
 see below	�

Traditionally� NP is de�ned as the class of NP�sets �cf�� ����	� Yet� each such NP�set can
be viewed as a proof system� For example� consider the set of satis�able Boolean formulae�
Clearly� a satisfying assignment � for a formula � constitutes an NP�proof for the assertion
�� is satis�able� �the veri�cation procedure consists of substituting the variables of � by
the values assigned by � and computing the value of the resulting Boolean expression	�

The formulation of NP�proofs restricts the �e�ective� length of proofs to be polyno�
mial in length of the corresponding assertions �since the running�time of the veri�cation
procedure is restricted to be polynomial in the length of the assertion	� However� longer
proofs may be allowed by padding the assertion with su�ciently many blank symbols�
So it seems that NP gives a satisfactory formulation of proof systems �with e�cient ver�
i�cation procedures	� This is indeed the case if one associates e�cient procedures with
deterministic polynomial�time algorithms� However� we can gain a lot if we are willing to
take a somewhat non�traditional step and allow probabilistic veri�cation procedures� In
particular�

� Randomized and interactive veri�cation procedures� giving rize to interactive proof
systems� seem much more powerful �i�e�� �expressive�	 than their deterministic coun�
terparts�

� Such randomized procedures allow the introduction of zero�knowledge proofs which
are of great theoretical and practical interest�
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� NP�proofs can be e�ciently transformed into a �redundant	 form which o�ers a trade�
o� between the number of locations examined in the NP�proof and the con�dence in
its validity �see probabilistically checkable proofs	�

In all abovementioned types of probabilistic proof systems� explicit bounds are imposed
on the computational complexity of the veri�cation procedure� which in turn is personi�ed
by the notion of a veri�er� Furthermore� in all these proof systems� the veri�er is allowed to
toss coins and rule by statistical evidence� Thus� all these proof systems carry a probability
of error� yet� this probability is explicitly bounded and� furthermore� can be reduced by
successive application of the proof system�

Basic background from computational complexity

The following are standard complexity classes

� P denotes the class of sets in which membership can be decided in �deterministic	
polynomial�time� Namely� for every S � P there exists a �deterministic	 polynomial�
time algorithm A so that x � S i� A�x	 � �� for all x � f�� �g�� Note that P
is a subset of NP consiting of these NP�sets for which proofs of membership �i�e��
NP�proofs	 can be e�ciently found �rather than merely exist	�

� RP �resp�� BPP	 denotes the class of sets in which membership can be decided
in probabilistic polynomial�time with one�sided �resp�� two�sided	 error probability�
Speci�cally�

� for every S � RP there exists a probabilistic polynomial�time algorithm A so
that

for every x � S Prob�A�x	��	 �
�

�
whereas

for every x 	� S Prob�A�x	��	 � �

where the probability is taken uniformly over all possible outcomes of the inter�
nal coin tosses of algorithm A�

� for every S � BPP there exists a probabilistic polynomial�time algorithm A so
that

for every x � S Prob�A�x	��	 �
�

�
whereas

for every x 	� S Prob�A�x	��	 

�

�
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In both cases� the non�trivial probability bounds may be changed in various ways
preserving the complexity class�

� NP denotes the class of NP�sets and coNP denotes the class of their complements

�i�e�� S � coNP i� S � NP� where S
def
� f�� �g� � S	�

� A set S is polynomial�time reducible to a set T if there exists a polynomial�time
computable function f so that x � S i� f�x	 � T � for every x� A set is NP�hard if
every NP�set is polynomial�time reducible to it� A set is NP�complete if it is both
NP�hard and in NP�

� PSPACE denotes the class of sets in which membership can be decided in polynomial�
space �i�e�� the work�space taken by the decider is polynomial in length of the input	�

Obviously� P � RP � BPP � PSPACE� It is not hard to see that RP � NP
and that NP � PSPACE� It is widely believed that P 	� NP and NP 	� PSPACE�
Furthermore� it is also believed that NP 	� coNP� NP�hard sets �or tasks	 are assumed
to be infeasible� since if an NP�hard set is in P then NP � P �by virtue of the reductions
of all NP�sets to each NP�hard set	�

Conventions

When presenting a proof system� we state all complexity bounds in terms of the length of
the assertion to be proven �which is viewed as an input to the veri�er	� Namely� polynomial�
time means time polynomial in the length of this assertion� Note that this convention is
consistent with our de�nition of NP�proofs�

Denote by poly the set of all integer functions bounded by a polynomial and by log

the set of all integer functions bounded by a logarithmic function �i�e�� f � log i� f�n	 �
O�log n		�

Basic Background from combinatorics

A �simple	 graph� G� is a pair �V�E	 where E is a set of ��subsets of V � i�e�� for every
e � E it holds je � V j � �� The elements of V are called vertices and the elements of E
are called edges� In this exposition we consider only simple �nite graphs�

Two graphs� G���V�� E�	 and G���V�� E�	� are called isomorphic if there exists a ���
and onto mapping� �� from the vertex set V� to the vertex set V� so that fu� vg � E� if
and only if f��v	� ��u	g � E�� The ��edge preserving�	 mapping �� if existing� is called an
isomorphism between the graphs�

A graph G� �V�E	 is said to be ��colorable if there exists a function � 
V �� f�� �� �g
so that ��v	 	� ��u	 for every fu� vg � E� Such a function� �� is called a ��coloring of the
graph�
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� Interactive Proof Systems

In light of the growing acceptability of randomized and distributed computations� it is only
natural to associate the notion of e�cient computation with probabilistic and interactive
polynomial�time computations� This leads naturally to the notion of interactive proof
systems in which the veri�cation procedure is interactive and randomized� rather than
being non�interactive and deterministic� Thus� a �proof� in this context is not a �xed and
static object but rather a randomized �dynamic	 process in which the veri�er interacts
with the prover� Intuitively� one may think of this interaction as consisting of �tricky�
questions asked by the veri�er to which the prover has to reply �convincingly�� The above
discussion� as well as the following de�nition� makes explicit reference to a prover� whereas
a prover is only implicit in the traditional de�nitions of proof systems �e�g�� NP�proofs	�

��� De�nition

Loosely speaking� an interactive proof is a game between a computationally bounded ver�
i�er and a computationally unbounded prover whose goal is to convince the veri�er of the
validity of some assertion� Speci�cally� the veri�er is probabilistic polynomial�time� It is
required that if the assertion holds then the veri�er always accepts �i�e�� when interacting
with an appropriate prover strategy	� On the other hand� if the assertion is false then the
veri�er must reject with probability at least �

�
� no matter what strategy is being employed

by the prover� A sketch of the formal de�nition is given in Item ��	 below� Items ��	 and
��	 introduce additional complexity measures which can be ignored in �rst reading�

De�nition � �Interactive Proofs 
 IP	 ����


�� An interactive proof system for a set S is a two�party game� between a veri�er executing
a probabilistic polynomial�time strategy �denoted V 	 and a prover which executes a
computationally unbounded strategy �denoted P 	� satisfying

� Completeness� For every x � S the veri�er V always accepts after interacting
with the prover P on common input x�

� Soundness� For every x 	� S and every potential strategy P �� the veri�er V
rejects with probability at least �

�� after interacting with P
� on common input x�

	� Let m and r be integer functions� The complexity class IP�m�
	� r�
		 consists of sets
having an interactive proof system in which� on common input x� the veri�er makes
at most r�jxj	 coin tosses and the total number of messages exchanged between the
parties is bounded by m�jxj	�

�� LetM and R be sets of integer functions� Then� IP�M�R	 denotes �m�M�r�RIP�m�
	� r�
		�

Finally� IP�m�
		
def
� IP�m�
	� poly	 and IP

def
� IP�poly	�
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In Item ��	� we have followed the standard de�nition which speci�es strategies for both the
veri�er and the prover� An alternative presentation only speci�es the veri�er�s strategy
while rephrasing the completeness condition as follows


there exists a prover strategy P so that� for every x � S� the veri�er V always
accepts after interacting with P on common input x�

Arthur�Merlin games� introduced in ��� are a special case of interactive proofs� yet� as
shown in ����� this restricted case has essentially� the same power as the general case
previously introduced in ����� Also� in some sources interactive proofs are de�ned so that
two�sided error probability is allowed� yet� this does not increase their power �����

��� The role of randomness

Randomness is essential to the formulation of interactive proofs� if randomness is not
allowed �or if it is allowed but zero error is required in the soundness condition	 then
interactive proof system collapse to NP�proof systems �i�e�� IP�poly� �	 equals NP	� The
reason being that the prover can predict the veri�er�s part of the interaction and thus it
su�ces to let the prover send the full transcript of the interaction and let the veri�er check
that the interaction is indeed valid� �In case the veri�er is not deterministic� the transcript
sent by the prover may not match the outcome of the veri�er coin tosses�	 The moral is
that there is no point to interact with predictable parties which are also computationally
weaker��

��� The power of interactive proofs

A simple example demonstrating the power of interactive proofs follows� Speci�cally� we
present an interactive proof for proving that two graphs are not isomorphic� It is not
known whether such a statement can be proven via an NP�proof system�

Construction � �Interactive proof system for Graph Non�Isomorphism	 ����


� Common Input
 A pair of two graphs� G� � �V�� E�	 and G� � �V�� E�	� Suppose�
without loss of generality� that V� � f�� �� ���� jV�jg� and similarly for V��

�In Arthur	Merlin games� the veri
er must send the outcome of any coin it tosses �and thus need not
send any other information��

�Here and in the next sentence� not only IP remains invariant under the various de
nitions� but also
IP�m����� for every integer function satisfying m�n� � � for every n� However� it is not known whether
IP�m���� r���� is preserved as well�

�This moral represents the prover�s point of view� Certainly� from the veri
er�s point of view it is
bene
tial to interact with the prover� since it is computationally stronger�
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� Veri�er�s �rst step �V�	
 The veri�er selects at random one of the two input graphs�
and sends to the prover a random isomorphic copy of this graph� Namely� the veri�er
selects uniformly � � f�� �g� and a random permutation � from the set of permuta�
tions over the vertex set V�� The veri�er constructs a graph with vertex set V� and
edge set

E
def
� ff��u	� ��v	g 
 fu� vg�E�g

and sends �V�� E	 to the prover�

� Motivating Remark
 If the input graphs are non�isomorphic� as the prover claims�
then the prover should be able to distinguish 
not necessarily by an e�cient algorithm�
isomorphic copies of one graph from isomorphic copies of the other graph� However�
if the input graphs are isomorphic then a random isomorphic copy of one graph is
distributed identically to a random isomorphic copy of the other graph�

� Prover�s step
 Upon receiving a graph� G� � �V �� E�	� from the veri�er� the prover
�nds a � � f�� �g so that the graph G� is isomorphic to the input graph G� � 
If both
� � �� � satisfy the condition then � is selected arbitrarily� In case no � � f�� �g
satis�es the condition� � is set to 
�� The prover sends � to the veri�er�

� Veri�er�s second step �V�	
 If the message� � � received from the prover equals �

chosen in Step V�� then the veri�er outputs � 
i�e�� accepts the common input��
Otherwise the veri�er outputs 
 
i�e�� rejects the common input��

The veri�er�s strategy presented above is easily implemented in probabilistic polynomial�
time� We do not known of a probabilistic polynomial�time implementation of the prover�s
strategy� but this is not required� The motivating remark justi�es the claim that Con�
struction � constitutes an interactive proof system for the set of pairs of non�isomorphic
graphs� which is a coNP�set �not known to be in NP	�

Interactive proofs are powerful enough to prove any coNP assertion �e�g�� that a graph is not
��colorable	 ����� Furthermore� the class of sets having interactive proof systems coincides
with the class of sets that can be decided using a polynomial amount of work�space �����

Theorem � ����
 IP � PSPACE�

Recall that it is widely believed that NP � PSPACE� Thus� under this conjecture�
interactive proofs are more powerful than NP�proofs�

Concerning the �ner structure of the IP hierarchy it is known that this hierarchy has a
�linear speed�up� property ���� Namely� for every integer function� f � so that f�n	 � �
for all n� the class IP�O�f�
			 collapses to the class IP�f�
		� In particular� IP�O��		
collapses to IP��	� It is conjectured that coNP is not contained in IP��	� and conse�
quently that interactive proofs with unbounded number of message exchanges are more
powerful than interactive proofs in which only a bounded �i�e�� constant	 number of mes�
sages are exchanged� Yet� the class IP��	 contains sets not known to be in NP� e�g��
Graph Non�Isomorphism �as shown above	�
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��� How powerful should the prover be�

Assume that a set S is in IP� This means that there is a veri�er V that can be convinced
to accept any input in S but cannot be convinced to accept any input not in S �except with
small probability	� One may ask how powerful should a prover be so that it can convince
the veri�er V to accept any input in S� More interestingly� considering all possible veri�ers
which give rise to an interactive proof system for S� what is the minimum power required
from a prover which satis�es the completeness requirement with respect to one of these ver�
i�ers� We stress that� unlike the case of computationally�sound proof systems �see Sec� �	�
we do not restrict the power of the prover in the soundness condition but rather consider
the minimum complexity of provers meeting the completeness condition� Speci�cally� we
are interested in relatively e�cient provers which meet the completeness condition� The
term �relatively e�cient prover� has been given three di�erent interpretations�

�� A prover is considered relatively e�cient if� when given an auxiliary input �in addition
to the common input in S	� it works in �probabilistic	 polynomial�time� Speci�cally�
in case S � NP� the auxiliary input maybe an NP�proof that the common input
is in the set�� This interpretation is adequate and in fact crucial for applications in
which such an auxiliary input is available to the otherwise�polynomial�time parties�
Typically� such auxiliary input is available in cryptographic applications in which
parties wish to prove in �zero�knowledge	 that they have conducted some compu�
tation correctly resulting in some string x� In these cases the NP�proof is just the
transcript of the procedure by which x has been computed and thus the auxiliary
input is available to the proving party� See �����

�� A prover is considered relatively e�cient if it can be implemented by a probabilistic
polynomial�time oracle machine with oracle access to the set S itself� �Note that
the prover in Construction � has this property�	 This interpretation generalizes the
notion of self�reducibility of NP�sets� �By self�reducibility of an NP�set we mean that
the search problem of �nding an NP�witness is polynomial�time reducible to deciding
membership in the set�	 See �����

�� A prover is considered relatively e�cient if it can be implemented by a probabilistic
machine which runs in time which is polynomial in the deterministic complexity of
the set� This interpretation relates the di�culty of convincing a �lazy veri�er� to the
complexity of �nding the truth alone� Hence� in contrast to the �rst interpretation
which is adequate in settings where assertions are generated along with their NP�
proofs� the current interpretation is adequate in settings in which the prover is given
only the assertion and has to �nd a proof to it by itself �before trying to convince a
lazy veri�er of its validity	� See �����

�Still� even in this case the interactive proof need not consist of the prover sending the auxiliary input to
the veri
er� e�g�� an alternative procedure may allow the prover to be zero	knowledge �see Construction ���
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� Zero�Knowledge Proof Systems

Zero�knowledge proofs� introduced in ����� are central to cryptography� Furthermore� zero�
knowledge proofs are very intruiging from a conceptual point of view� since they exhibit
an extreme contrast between being convinced of the validity of a statement and learning
anything in addition while receiving such a convincing proof� Namely� zero�knowledge
proofs have the remarkable property of being both convincing while yielding nothing to
the veri�er� beyond the fact that the statement is valid� Formally� the fact that �nothing is
gained by the interaction� is captured by stating that whatever the veri�er can e�ciently
compute after interacting with a zero�knowledge prover� can be e�ciently computed from
the assertion itself without interacting with anyone�

��� A sample de�nition

Zero�knowledge is a property of some interactive proof systems� or more acurately of some
speci�ed prover strategies� The formulation of the zero�knowledge condition considers two
ensembles of probability distributions� each ensemble associates a probability distribution
to each valid assertion� The �rst ensemble respresents the output distribution of the veri�er
after interacting with the prover strategy P � where the veri�er is not necessarily employing
the speci�ed strategy �i�e�� V 	 
 but rather any e�cient strategy� The second ensemble
represents the output distribution of some probabilistic polynomial�time algorithm �which
does not interact with anyone	� The basic paradigm of zero�knowledge asserts that for every
ensemble of the �rst type there exist a �similar� ensemble of the second type� The speci�c
variants di�er by the interpretation given to �similarity�� The most strict interpretation�
leading to perfect zero�knowledge� is that similarity means equality� Namely�

De�nition � �perfect zero�knowledge	 ����
 A prover strategy� P � is said to be perfect
zero�knowledge over a set S if for every probabilistic polynomial�time veri�er strategy� V ��
there exists a probabilistic polynomial�time algorithm� M�� such that

�P� V �	�x	 � M��x	 � for every x � S

where �P� V �	�x	 is a random variable representing the output of veri�er V � after interact�
ing with the prover P on common input x� and M��x	 is a random variable representing
the output of machine M� on input x�

A somewhat more relaxed interpretation� leading to almost�perfect zero�knowledge� is
that similaritymeans statistical closeness �i�e�� negligible di�erence between the ensembles	�
The most liberal interpretation� leading to the standard usage of the term zero�knowledge
�and sometimes referred to as computational zero�knowledge	� is that similarity means
computational indistinguishability �i�e�� failure of any e�cient procedure to tell the two
ensembles apart	� Since the notion of computational indistinguishability is a fundamental
one� it is indeed in place to present a de�nition of it�
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De�nition � �computational indistinguishability	 ���� ���
 An integer function� f � is
called negligible if for every positive polynomial p and all su�ciently large n� it holds that
f�n	 	 �

p�n�
� �Thus� multiplying a negligible function by any �xed polynomial yields a

negiligible function�	
Two probability ensembles� fAxgx�S and fBxgx�S� are indistinguishable by an algorithm D
if

d�n	
def
� max

x�S�f���gn
fjprob�D�Ax	��	� Prob�D�Bx	��	jg

is a negligible function� The ensembles fAxgx�S and fBxgx�S are computationally indistin�
guishable if they are indistinguishable by every probabilistic polynomial�time algorithm�

The de�nitions presented above are a simpli�ed version of the actual de�nitions� For
example� in order to guarantee that zero�knowledge is preserved under sequential compo�
sition it is necessary to slightly augment the de�nitions� For details see �����

��� The power of zero	knowledge

A simple example� demonstrating the power of zero�knowledge proofs� follows� Speci�cally�
we will present a simple zero�knowledge proof for proving that a graph is ��colorable� The
interactive proof will be described using �boxes� in which information can be hidden and
later revealed� Such �boxes� can be implemented using one�way functions �see below	�

Construction � �Zero�knowledge proof of ��colorability	 ����


� Common Input
 A simple graph G��V�E	�

� Prover�s �rst step
 Let 
 be a ��coloring of G� The prover selects a random per�

mutation� �� over f�� �� �g� and sets ��v	
def
� ��
�v		� for each v � V � Hence� the

prover forms a random relabelling of the ��coloring 
� The prover sends the veri�er
a sequence of jV j locked and nontransparent boxes so that the vth box contains the
value ��v	�

� Veri�er�s �rst step
 The veri�er uniformly selects an edge fu� vg � E� and sends it
to the prover�

� Motivating Remark
 The veri�er asks to inspect the colors of vertices u and v�

� Prover�s second step
 The prover sends to the veri�er the keys to boxes u and v�

� Veri�er�s second step
 The veri�er opens boxes u and v� and accepts if and only if
they contain two di�erent elements in f�� �� �g�
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The veri�er strategy presented above is easily implemented in probabilistic polynomail�
time� The same holds with respect to the prover�s strategy� provided it is given a ��coloring
of G as auxiliary input� Clearly� if the input graph is ��colorable then the prover can cause
the veri�er to accept always� On the other hand� if the input graph is not ��colorable
then any contents put in the boxes must be invalid on at least one edge� and consequently
the veri�er will reject with probability at least �

jEj
� Hence� the above game exhibits a

non�negligible gap in the accepting probabilities between the case of ��colorable graphs
and the case of non���colorable graphs� To increase the gap� the game may be repeated
su�ciently many times �of course� using independent coin tosses in each repetition	� The
zero�knowledge property follows easily� in this abstract setting� since one can simulate the
real interaction by placing a random pair of di�erent colors in the boxes indicated by the
veri�er� This indeed demonstrates that the veri�er learns nothing from the interaction
�since it expects to see a random pair of di�erent colors and indeed this is what it sees	�
We stress that this simple argument is not possible in the digital implementation since
the boxes are not totally ine�ected by their contents �but are rather e�ected� yet in an
indistinguishable manner	�

As stated above� the �boxes� need to be implemented digitally� and this is done using an
adaquately de�ned �commitment scheme�� Loosely speaking� such a scheme is a two phase
game beteen a sender and a receiver so that after the �rst phase the sender is �committed�
to a value and yet� at this stage� it is infeasible for the receiver to �nd out the committed
value� The committed value will be revealed to the receiver in the second phase and it
is guaranteed that the sender cannot reveal a value other than the one committed� Such
commitment schemes can be implemented assuming the existence of one�way functions
�i�e�� loosely speaking� functions that are easy to compute but hard to invert� such as
multiplication of two large primes	 ���� ����

Using the fact that ��colorability is NP�complete� one gets zero�knowledge proofs for any
NP�set�

Theorem � ����
 Assuming the existence of one�way functions� any NP�proof can be ef�
�ciently transformed into a �computational	 zero�knowledge interactive proof�

Thm� � has a dramatic e�ect on the design of cryptographic protocols �cf�� ���� ���	�
In a di�erent vein and for the sake of elegancy� we mention that� using further ideas and
under the same assumption� any interactive proof can be e�ciently transformed into a
zero�knowledge one ���� ����

The above results may be contrasted with the results regarding the complexity of
almost�perfect zero�knowledge proof systems� namely� that almost�perfect zero�knowledge
proof systems exist only for sets in IP��	 � coIP��	 ���� ��� and thus are unlikely to exist
for all NP�sets� Also� a very recent result seems to indicate that one�way functions are
essential for the existence of zero�knowledge proofs for �hard� sets �i�e�� sets which cannot
be decided in average polynomial�time	�����
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��� The role of randomness

Again� randomness is essential to all the above mentioned �positive	 results� Namely� if
either veri�er or prover is required to be deterministic then only BPP�sets can be proven
in a zero�knowledge manner ����� However� BPP�sets have trivial zero�knowledge proofs
in which the prover sends nothing and the veri�er just test the validity of the assertion by
itself	� Thus� randomness is essential to the usefulness of zero�knowledge proofs�

� Probabilistically Checkable Proof Systems

When viewed in terms of an interactive proof system� the probabilistically checkable proof
setting consists of a prover which is memoryless� Namely� one can think of the prover
as being an oracle and of the messages sent to it as being queries� A more appealing
interpretation is to view the probabilistically checkable proof setting as an alternative way
of generalizing NP� Instead of receiving the entire proof and conducting a deterministic
polynomial�time computation �as in the case of NP	� the veri�er may toss coins and query
the proof only at location of its choice� Potentially� this allows the veri�er to utilize very
long proofs �i�e�� of super�polynomial length	 or alternatively examine very few bits of an
NP�proof�

��� De�nition

Loosely speaking� a probabilistically checkable proof system consists of a probabilistic
polynomial�time veri�er having access to an oracle which represents a proof in redundent
form� Typically� the veri�er accesses only few of the oracle bits� and these bit positions
are determined by the outcome of the veri�er�s coin tosses� Again� it is required that if
the assertion holds then the veri�er always accepts �i�e�� when given access to an adaquate
oracle	� whereas� if the assertion is false then the veri�er must reject with probability at
least �

�� no matter which oracle is used� The basic de�nition of the PCP setting is given in
Item ��	 below� Yet� the complexity measures introduced in Items ��	 and ��	 are of key
importance for the subsequent discussions� and should not be ignored�

De�nition � �Probabilistic Checkable Proofs 
 PCP	


�� A probabilistic checkable proof system �pcp� for a set S is a probabilistic polynomial�
time oracle machine �called veri�er	� denoted V � satisfying

� Completeness� For every x � S there exists an oracle set �x so that V � on input
x and access to oracle �x� always accepts x�

�Actually� this is slightly inaccurate since the resulting �interactive proof� may have two	sided error�
whereas we have required interactive proofs to have only one	sided error� Yet� since the error can be made
negligible by successive repetitions this issue is insigni
cant� Alternatively� one can use ideas in ���� to
eliminate the error by letting the prover send some random	looking help�

��



� Soundness� For every x 	� S and every oracle set �� machine V � on input x and
access to oracle �� rejects x with probability at least �

�
�

	� Let r and q be integer functions� The complexity class PCP�r�
	� q�
		 consists of sets
having a probabilistic checkable proof system in which the veri�er� on any input of
length n� makes at most r�n	 coin tosses and at most q�n	 oracle queries� We stress
that here� as usual in complexity theory� the oracle answers are always binary 
i�e��
either 
 or ���

�� Let R and Q be sets of functions� Then� PCP�R�Q	 denotes �r�R�q�QPCP�r�
	� q�
		�

The above model was suggested in ���� and shown related to a multi�prover model intro�
duced previously in ����� The �ne complexity measures were introduced and motivated
in ����� and further advocated in ���� A related model was presented in ���� stressing the
applicability to program checking�

We stress that the oracle �x in a pcp system constitutes a proof in the standard math�
ematical sense
� Yet� this oracle has the extra property of enabling a lazy veri�er� to toss
coins� take its chances and �assess� the validity of the proof without reading all of it �but
rather by reading a tiny portion of it	�

��� The power of probabilistically checkable proofs

Clearly� PCP�poly� �	 equals coRP� whereas PCP��� poly	 equals NP� It is easy to prove
an upper bound on the non�deterministic time complexity of sets in the PCP hierarchy�
In particular�

Proposition � 
 PCP�log� poly	 is contained in NP�

These upper bounds turn out to be tight� but proving this is muchmore di�cult �to say the
least	� The following result is a culmination of a sequence of great works ��� �� ��� �� ����

Theorem � ���
 NP is contained in PCP�log� O��		�

Thus� probabilistically checkable proofs in which the veri�er tosses only logarithmi�
cally many coins and makes only a constant number of queries exist for every set in the
complexity class NP� It follows that NP�proofs can be transformed into NP�proofs which

�Jumping ahead� the oracles in pcp systems characterizing NP have the property of being NP proofs
themselves�

�The sequence has started with the characterization of PCP�poly� poly� as equal non	deterministic
exponential	time ���� and continued with its scaled	down in ��� ��� which led to the NP �
PCP�polylog� polylog� result of ����� The 
rst PCP	characterization of NP� by which NP �
PCP�log� log�� has appeared in ��� and the cited result was obtained in ���� This sequence of works�
directly related to the stated theorem� was built on and inspired by works from various settings such as
interactive proofs ���� ��� ���� program	checking ���� ��� ���� and private computation with oracles ����
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o�er a trade�o� between the portion of the proof being read and the con�dence it o�ers�
Speci�cally� if the veri�er is willing to tolerate an error probability of � then it su�ces to
let it examine O�log����		 bits of the �transformed	 NP�proof� These bit locations need to
be selected at random�

The characterization of NP in terms of probabilistically checkable proofs plays a
central role in recent developments concerning the di�culty of approximation problems
�cf�� ����� ��� and ����	� To demonstrate this relationship� we �rst note that Theorem �
can be rephrased without mentioning the class PCP altogether� Instead� a new type of
polynomial�time reductions� which we call amplifying� emerges�

Theorem � �Theorem � � Rephrased	
 There exists a constant � 
 �� and a polynomial�
time computable function f � mapping the set of �CNF formulae� to itself so that

� As usual� f maps satis�able �CNF formulae to satis�able �CNF formulae� and

� f maps non�satis�able �CNF formulae to �non�satis�able	 �CNF formulae for which
every truth assignment satis�es at most a � � � fraction of the clauses�

The function f is called an amplifying reduction�

proof sketch �Thm� � � Thm� �	
 Start by considering the pcp for a satis�able �CNF
�guaranteed by Theorem �	� Use the fact that the pcp system used in the proof of Theo�
rem � is non�adaptive
 �i�e�� the queries are determined as a function of the input and the
random�tape 
 and do not depend on answers to previous queries	� Next� associate the
bits of the oracle with Boolean variables and introduce a �constant size	 Boolean formula
for each possible outcome of the sequence of O�log n	 coin tosses� describing whether the
veri�er would have accepted given this outcome� Finally� using auxiliary variables� convert
each of these formulae into a �CNF formula and obtain �as the output of the reduction	
the conjunction of all these polynomially many clauses� �

As an immediate corollary one gets results concerning the intractability of approximation�
For example�

Corollary � 
 There exists a constant � 
 �� so that the following approximation problem
�known as Max�Sat	 is �NP�hard� �i�e�� cannot be solved in polynomial�time unless P �
NP	

Given a satis�able �CNF formulae� �nd a truth assignment which satis�es at
least a � � � fraction of its clauses�

�A �CNF formula is a Boolean formula consisting of a conjunction of clauses� where each clause is a
disjunction of upto � literals� �A literal is variable or its negation���

	Actually� this assumption is not essential since one can easily convert an adaptive system into a non	
adaptive one� while incurring an exponential blowup in the query complexity �which in our case is a
constant��
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��� The role of randomness

No trade�o� between the number of bits examined and the con�dence is possible if one
requires the veri�er to be deterministic� In particular� PCP��� q�
		 contains only sets
that are decidable by a deterministic algorithms of running time �q�n� 
 poly�n	� It follows
that PCP��� log	 � P� Furthermore� since it is unlikely that all NP�sets can be decided
by �deterministic	 algorithms of running time� say� �n 
 poly�n	� it follows that PCP��� n	
cannot contain NP�

� Other Probabilistic Proof Systems

In this section� we shortly review some variants on the basic model of interactive proofs�
This variants include models in which the prover is restricted in its choice of strategy�
a model in which the prover�veri�er interaction is restricted� and a model in which one
proves �knowledge� rather than �facts��


�� Restricting the prover�s strategy

We stress that the restrictions discussed here refer to the strategies employed by the prover
both in case it tries to prove valid assertions �i�e�� the completeness condition	 and in case
it tries to fool the veri�er to believe false statements �i�e�� the soundness condition	� Thus�
the validity of the veri�er decision �concerning false statements	 depends on whether this
restriction �concerning �cheating� prover strategies	 really holds� The reason to consider
these restricted models is that they enable to achieve results which are not possible in the
general model of interactive proofs �cf�� ���� ��� ��� ���	� We consider restrictions of two
types
 computational or physical�

We start with a physical restriction� In the so�called multi�prover interactive proof
model� denoted MIP �cf�� ����	� the prover is split into several �say� two	 entities and the
restriction �or assumption	 is that these entities cannot interact with each other� Actually�
the formulation allows them to coordinate their strategies prior to interacting with the
veri�er�� but it is crucial that they don�t exchange messages among themselves while
interacting with the veri�er� The multi�prover model is reminiscent of the common police
procedure of isolating collaborating suspects and interrogating each of them separately�
On the other hand� the multi�prover model is related to the pcp model ����� Interestingly�
the multi�prover model allows to present �perfect	 zero�knowledge proofs for all NP�sets�
without relying on any comutational assumptions ����� Furthermore� these proofs can be
made very e�cient in terms of communication complexity �����

We now turn to computational restrictions� Since the e�ect of this restriction is
more noticable in the soundness condition� we refer to these proof systems as being
computationally�sound� Two variants have been suggested� In argument systems �����

�
This is implicit in the universal quanti
er used in the soundness condition�
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the prover stategy is restricted to be probabilistic polynomial�time with auxiliary input
�analogously to item ��	 in Sec� ���	� In CS�proofs ����� the prover stategy is restricted to
be probabilistic and run in time polynomial in the time required to validate the assertion
�analogously to item ��	 in Sec� ���	� Interestigly� computationally�sound interactive proofs
can be much more communication�e�cient than �regular	 interactive proofs� cf� ���� ����


�� Non	interactive zero	knowledge proofs

Actualy the term �non�interactive� is somewhat misleading� The model� introduced in
����� consists of three entities
 a prover� a veri�er and a uniformly selected sequence of bits
�which can be thought of as being selected by a trusted third party	� Both veri�er and
prover can read the random sequence� and each can toss additional coins� The interaction
consists of a single message sent from the prover to the veri�er� who then is left with the
decision �whether to accept or not	� Based on some reasonable complexity assumptions�
one may construct non�interactive zero�knowledge proof systems for every NP�set �cf��
���� ��� ���	�


�� Proofs of knowledge

The concept of a proof of knowledge� introduced in ����� is very appealing� yet� its precise
formulation is much more complex than one may expect �cf� ���	� Loosely speaking� a
knowledge�veri�er for a relation R guarantees the existence of a �knowledge extractor�
that on input x and access to any interactive machine P � outputs a y� so that �x� y	�R�
within complexity related to the probability that the veri�er accepts x when interacting
with P �� By convincing such a knowledge�veri�er� on common input x� one proves that he
knows a y so that �x� y	 �R� It can be shown that the protocol which results by successively
applying Construction � su�ently many time constitutes a �proof of knowledge� of a ��
coloring of the input graph�


�� Knowledge complexity

Zero�knowledge is the lowest level of a knowledge�complexity hierarchy which quanti�es the
�knowledge revealed in an interaction� ����� Knowledge complexity may be de�ned as the
minimumnumber of oracle�queries required in order to �e�ciently	 simulate an interaction
with the prover ����� Preliminary results concerning this measure have appeared in �����
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