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Abstract

Several alternative formulations of the concept of an e�cient proof system are nowadays
coexisting in our �eld� These systems include the classical formulation of NP � interactive proof

systems �giving rise to the class IP�� computationally�sound proof systems� and probabilistically

checkable proofs �PCP�� which are closely related to multi�prover interactive proofs �MIP��
Although these notions are sometimes introduced using the same generic phrases� they are
actually very di�erent in motivation� applications and expressive power� The main objective of
this essay is to try to clarify these di�erences�

�This is a revised version of a survey which has appeared in Complexity Theory Retrospective II� L�A� Hemaspaan�
dra and A� Selman �eds��� ���	�
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� Introduction

In recent years� alternative formulations of the concept of an e�cient proof system have received
much attention� Not only have talks and papers concerning these systems �ooded the �eld of
theoretical computer science� but also some of these developments have reached the non�theory
community and a few were even reported in non�scienti�c forums such as the New York Times�
Thus� I am quite sure that the reader has heard of phrases such as �interactive proofs	 and results
such as IP 
 PSPACE�

By no means am I suggesting that the interest in the various formulations of e�cient proof
systems has gone out of proportion� Certainly� the notion of an e�cient proof system is central to the
�eld of computer science and I �nd it hard to conceive of circumstances in which one might say that
it was receiving too much attention� Furthermore� the research area established by these notions
has been one of the most successful and rewarding enterprises in which the theoretical computer
science community has been involved� For example� zero�knowledge proofs have revolutionized the
design of cryptographic protocols� and the characterization of NP in terms of probabilistically
checkable proofs has contributed to �and� in fact� revived� the attempts to classify the complexity
of approximation problems�

Except for NP� all proof systems reviewed below are probabilistic and furthermore have a non�
zero error probability� However� the error probability is explicitly bounded and can be reduced by
successive applications of the proof system� In all cases� non�zero error probability is essential to
the interesting properties and consequences that these probabilistic proof systems have�

Referencing convention

I have decided to proceed in a somewhat unconventional way and have decoupled the technical
exposition from the story behind its evolution� These parts appear in separate sections� which can
be read independently of each other� When reading the technical part� the reader should bear
in mind that the references in this part are minimal �and de�nitely sub�standard�� with the sole
objective of referring the reader to the best source for more details� �I wish to stress that the �best
source for more details	 is not necessarily the source that deserves the most credit
� The situation
is reversed in the �story part�	 which contains only credits� or more accurately my evaluation of
the contribution of the various works to the development of the �eld�

Addendum

The current version is augmented by an open problems section�
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� A Technical Exposition

The notion of a proof is one of the more fundamental notions of our culture� In particular� it
is central to science and speci�cally to mathematics and computer science� Yet� although people
always talk of proofs� the fundamental issue is the veri�cation procedure� Proof systems are de�ned
by their veri�cation procedure� and it is the veri�cation procedure that gives them their value�

The notion of a veri�cation procedure assumes the notion of computation and furthermore
e�cient computation� This implicit assumption is made explicit in the de�nition of NP � It is the
association of e�cient computation with �deterministic� polynomial�time algorithms that yields the
association of e�cient proof systems with the class NP � Namely� to prove the validity of some
statement �� one supplies a �relatively short� proof �� and the veri�cation procedure consists of
running a polynomial�time algorithm on input ��� ���

Technical Remarks� All complexity measures mentioned in the subsequent exposition are assumed
to be constructible in polynomial time� We denote by poly the set of all polynomials and by log

the set of all logarithmic functions �i�e�� integer functions bounded by O�logn��� We adopt the

standard notations EXP
def

 DTIME��poly� and NEXP

def

 NTIME��poly��

��� Interactive Proof Systems

In light of the growing acceptability of randomized and interactive computations� it is only natural
to associate the notion of e�cient computation with probabilistic and interactive polynomial�time
computations� This leads naturally to the notion of an interactive proof system in which the veri��
cation procedure is interactive and randomized� rather than being non�interactive and deterministic
�as in NP�� A sketch� of the formal de�nition is given in Item ��� below� �We stress that no com�
putational restrictions are placed on the prover�� Items ��� and ��� introduce additional complexity
measures that can be ignored in a �rst reading�

De�nition � �Interactive Proofs � IP�

�� An interactive proof system �ips� for a language L is a pair �P� V � of interactive machines� so
that V is a probabilistic polynomial�time machine� satisfying

� Completeness� For every x � L the veri�er V always accepts after interacting with the
prover P on common input x�

� Soundness� For every x �� L and every potential prover P �� the veri�er V rejects with
probability at least �

�� after interacting with P � on common input x�

�� Let m and r be integer functions� The complexity class IP�m���� r���� consists of languages
having an interactive proof system in which� on common input x� the veri�er uses at most
r�jxj� coin tosses and the total number of messages exchanged between the parties is bounded
by m�jxj��

	� Let M and R be sets of integer functions� Then�

IP�M�R�
def

 �m�M�r�RIP�m���� r�����

Finally� IP�m����
def

 IP�m���� poly� and IP

def

 IP�poly��

�We avoid the de
nition of �interacting machines�� This de
nition can be found in 
��� ����
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In Item ���� we have followed the common convention of specifying both the veri�er and the prover�
An alternative presentation only speci�es the veri�er while rephrasing the completeness condition
as follows�

There exists a machine P �a prover� so that� for every x � L� the veri�er V always
accepts after interacting with P on common input x�

The soundness condition allows for errors� that is� executions in which the veri�er accepts x �� L�
Yet� the error is explicitly bounded by �

� � In general� one may consider the error probability �in
the soundness condition� as another parameter� It is not hard to see that the error probability in
interactive proofs can be reduced by independent sequential and�or parallel repetitions� Actually�
this holds even for somewhat dependent parallel repetitions� see ����� which is instructive also for
the simpler case of independent parallel repetitions� On the other hand� requiring zero soundness
error� in interactive proof systems� restricts their existence to languages in NP �����

We stress that although we have relaxed the requirements from the veri�cation procedure� by
allowing it to interact� toss coins and err with bounded probability� we did not restrict the validity
of the assertions by assumptions concerning the potential prover� �This should be contrasted with
later notions of proof systems� such as computationally�sound ones and multi�prover ones� in which
the validity of the soundness condition depends on assumptions concerning the external proving
entity��

����� Known results

Clearly� IP��� poly� equals coRP� whereas IP��� �� equals NP� Furthermore� IP��� poly� con�
tains BPP �see ���� or ������ Hence� IP � IP��� poly� contains BPP �NP� whereas we currently
do not know whether NP contains BPP� It is also easy to see that IP��� log� collapses to
IP��� �� 
 P � whereas IP�poly� log� collapses to IP��� �� 
 NP� The main result concerning
interactive proof systems is that they exist for any language recognizable in polynomial space�
Namely�

Theorem � ���� ��� IP 
 PSPACE��

Theorem �� was established using algebraic methods� In particular� the following approach �
unprecedented in complexity theory � was employed� In order to demonstrate that a particular
language is in a particular class� an arithmetic generalization of the Boolean problem is presented�
and �elementary� algebraic methods are applied to show that the arithmetic problem is solvable
within the class� Interestingly� this technique �does not relativize�	 and� furthermore� yields results
�e�g�� IP 
 PSPACE� that are false relative to most oracles� providing a dramatic refutation of
the �Random Oracle Hypothesis	� see �����

Concerning the �ner structure of the IP�hierarchy� the following is known�

� For every integer function� f � so that f�n� � � for all n� the class IP�O�f����� collapses to
the class IP�f����� and in particular IP�O���� collapses to IP��� �����

� The class IP��� contains languages not known to be inNP� e�g�� Graph Non�Isomorphism �����

�See 
	�� for the general technique and 
��� for its application yielding the quoted result�
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� The class IP��� is contained in NP�poly �i�e�� nonuniform�NP�� analogously to BPP 	
P�poly�

� If coNP 	 IP��� then the polynomial�time hierarchy collapses �����

It is conjectured that coNP is not contained in IP���� and consequently that interactive proofs
with an unbounded number of message exchanges are more powerful than interactive proofs in
which only a bounded �i�e�� constant� number of messages are exchanged�

The IP�hierarchy �i�e�� IP���� equals an analogous hierarchy in which the veri�er is restricted to
send the outcome of any coin it tosses ����� The latter restricted proof systems are called Arthur�
Merlin games or public�coin interactive proofs� In addition� aside from the zero�level and ��level�
the IP�hierarchy equals an analogous two�sided error hierarchy ����� In the latter proof systems
the completeness condition is relaxed so that the veri�er is required to accept each x � L with
probability at least �

� �

����� Zero�Knowledge and Knowledge Complexity

Zero�knowledge is a central notion in cryptography� Here� we only discuss its conceptual signif�
icance to the theory of proof systems� Zero�knowledge proofs are interesting as they exhibit a
somewhat extreme contrast between being convinced of the validity of a statement and learning
something in addition while receiving such a convincing proof� Namely� zero�knowledge proofs have
the remarkable property of being convincing while yielding nothing to the veri�er beyond the fact
that the statement is valid�

In the formulation of the statement ��P� V � is a zero�knowledge proof system for the language
L	 one considers two probability distributions� for each input x in L �

�� The output distribution of the veri�er� after interacting with the speci�ed prover P on com�
mon input x�

�� The output distribution of some probabilistic polynomial�time machine �not interacting with
anyone�� on input x�

The basic paradigm of zero�knowledge asserts that for every distribution of type ��� there exist
a �similar	 distribution of type ���� The speci�c variants di�er by the interpretation given to
�similarity�	 The most strict interpretation� leading to perfect zero�knowledge� is that similarity
means equality� A somewhat relaxed interpretation� leading to almost�perfect zero�knowledge� is
that similarity means statistical closeness �i�e�� negligible di�erence between the distributions��
The most liberal interpretation� leading to the standard usage of the term zero�knowledge �and
sometimes referred to as computational zero�knowledge�� is that similarity means computational
indistinguishability �i�e�� failure of any e�cient procedure to tell the two distributions apart��

The most important result concerning zero�knowledge is that� assuming the existence of one�way
functions� each language in NP �and actually even in IP� has a zero�knowledge interactive proof
system� see ���� ��� ��� �and ����� respectively�� This result should be contrasted with the results
regarding the complexity of almost�perfect zero�knowledge proof systems� namely� that such proof
systems exist only for languages in IP��� 
 coIP��� ��� ����� Also� a recent result indicates that
one�way functions are essential for the existence of zero�knowledge proofs for hard languages �i�e��
languages that cannot be decided in average polynomial time� ����� Non�zero error probability is

�The veri
er is not necessarily the one speci
ed �i�e�� V � � yet� for sake of simplicity this issue is ignored here�
�See also an appendix in 
��� indicating an error in 
����
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essential also to zero�knowledge proofs �which otherwise exist only for coRP ������ Hence� besides
the apparent strengthening of expressive power� interactive proof systems do o�er some properties
�speci�cally� zero�knowledge� that cannot be o�ered by an NP�proof system�

An extensive treatment of zero�knowledge can be found in ����� Zero�knowledge is the lowest
level of several knowledge�complexity hierarchies that quantify the �amount of knowledge revealed	
by a proof system� De�nitions and results concerning these hierarchies can be found in ����� ����
and ����

����� How powerful should the �	completeness
� prover be�

Assume that a language L is in IP� This means that there is a veri�er V that can be convinced
to accept any input in L but cannot be convinced to accept an input not in L� One can ask how
powerful should a prover be so that it can convince the veri�er V to accept an input in L� More
interestingly� considering all possible veri�ers that give rise to an interactive proof system for L�
what is the minimum power required from a prover that satis�es the completeness requirement
with respect to one of these veri�ers� We stress that� unlike in the case of computationally�sound
proof systems �discussed below�� we do not restrict the power of the prover in the soundness con�
dition but rather consider the minimum complexity of provers meeting the completeness condition�
Speci�cally� we are interested in relatively e
cient provers �meeting the completeness condition��
The term �relatively e�cient prover	 has been given three di�erent interpretations�

�st interpretation� A prover is considered relatively e
cient if� when given an auxiliary input �in
addition to the common input in L�� it works in �probabilistic� polynomial time� Speci�cally� in the
case L � NP � the auxiliary input may be an NP�witness that the common input is in the language�
Even in this case� the interactive proof need not consist of the prover sending the auxiliary input
to the veri�er� for example� an alternative procedure may allow the prover to be zero�knowledge
�see ������ This interpretation is adequate and in fact crucial for applications in which such an
auxiliary input is available to the otherwise polynomial�time parties� Typically� the auxiliary input
is available in cryptographic applications in which both the input and an NP�witness for it are
generated by some party who later wishes to prove �in zero�knowledge� that the input is in the
language�� See �����

�nd interpretation� A prover is considered relatively e
cient if it can be implemented by a proba�
bilistic polynomial�time oracle machine with oracle access to the language L itself� This interpre�
tation generalizes the notion of self�reducibility of NP languages� �By self�reducibility of an NP
language we mean that the search problem of �nding an NP�witness is Cook�reducible to deciding
membership in the language� Thus� every NP�complete language has a relatively e�cient proof
system�� See �����

�rd interpretation� A prover is considered relatively e
cient if it can be implemented by a proba�
bilistic machine that runs in time that is polynomial in the deterministic complexity of the language�
This interpretation relates the di�culty of convincing a �lazy	 veri�er to the complexity of �nding
the truth alone� Hence� in contrast to the �rst interpretation� which is adequate in settings where
NP�assertions are generated along with their NP�proofs� the current interpretation is adequate in
settings in which the prover is given only an assertion and has to convince itself of the validity of
the assertion �before trying to convince a lazy veri�er of its validity�� See �����

�For example� suppose a party generates a composite number by multiplying together two primes� and that it
later wishes to prove in �in zero�knowledge� that the number it has chosen indeed has this form� Then this is an
NP�statement and the primes are the NP�witness for it�
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��� MIP and PCP

In contrast to the setting of interactive proofs� where no restrictions have been placed on the prover�
the two settings discussed in this section do impose restrictions on the prover� Interestingly� the
��expressive	� power of the proof system is increased by these restrictions� unless PSPACE 

NEXP �in which case the systems are equally powerful�� We wish to stress that there is nothing
wrong in the fact that a proof system becomes more powerful once the prover is restricted� Indeed�
this restricts the prover�s abilities in case the input is in the language� but it also restricts the
prover�s ability in case the input is not in the language� Thus� in general� when restricting the
power of the prover� the expressive power of the proof system can change in an arbitrary way �and
in particular � stay the same�� Yet� the e�ect of these restrictions in typically more drastic on the
soundness condition than on the completeness condition �since the former employs an existential
quanti�er whereas the latter employs a universal quanti�er��

But what is the justi�cation for restricting the prover� One answer is that in particular ap�
plications this restriction can be imposed �on the potential provers�� A second answer is that this
restriction yields an alternative characterization for a fundamental complexity class �i�e�� NP� and
that this alternative characterization enables one to get important results�

����� Multi�Prover Interactive Proof Systems �MIP�

In the multi�prover interactive proof setting� the prover is split into two �or more� entities and the
restriction �or assumption� is that these entities cannot interact with each other� Actually� the
formulation allows them to coordinate their strategies prior to interacting with the veri�er� but it
is crucial that they do not exchange messages among themselves while interacting with the veri�er�
It is customary to call each of these proving�entities a �prover	 and hence the term �multi�prover
proof systems�	 It turns out that two�prover systems are as powerful as multi�prover ones �even
such in which the number of provers is a parameter that is polynomially related to the input length��
For sake of concreteness� a de�nition of two�prover proof systems is given below�

De�nition � �Two�Prover Interactive Proofs� A two�prover interactive proof system for a lan�
guage L is a triplet �P�� P�� V � of interactive machines� so that V is a probabilistic polynomial�time
machine� satisfying

� Completeness� For every x � L the veri�er V always accepts after interacting separately and
concurrently with the provers P� and P�� on common input x�

� Soundness� For every x �� L and every potential pair of provers� P �
� and P �

� � the veri�er
V rejects with probability at least �

�� after interacting separately and concurrently with the
provers P �

� and P �
� � on common input x�

The set of languages having two�prover proof systems is denoted by MIP�

The two�prover model is reminiscent of the common police procedure of isolating collaborating
suspects and interrogating each of them separately� A typical application in which the two�prover
model may be assumed is an ATM that veri�es the validity of a pair of smart�cards inserted
in two isolated slots of the ATM� The advantage in using such a split system is that it enables
the presentation of �perfect� zero�knowledge proof systems for any language in NP � using no
intractability assumptions �����

�This is implicit in the universal quanti
er used in the soundness condition�
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����� Probabilistically Checkable Proofs �PCP�

When viewed in terms of an interactive proof system� the probabilistically checkable proof �PCP�
setting consists of a prover that is memoryless� Namely� one can think of the prover as being an
oracle and of the messages sent to it as being queries� A more appealing interpretation is to view
the PCP setting as an alternative way of generalizing NP� Instead of receiving the entire proof and
conducting a deterministic polynomial�time computation �as in the case of NP�� the veri�er may
toss coins and query the proof only at locations of its choice� Potentially� this allows the veri�er to
utilize very long proofs �i�e�� of super�polynomial length� or alternatively inspect very few bits of a
�polynomially long� proof� The basic de�nition of the PCP setting is given in Item ��� below� Yet�
the complexity measures introduced in Items ��� and ��� are of key importance for the subsequent
discussions� and should not be ignored�

De�nition � �Probabilistic Checkable Proofs � PCP�

�� A probabilistic checkable proof system �pcp� for a language L is a probabilistic polynomial�time
oracle machine �called veri�er�� denoted V � satisfying

� Completeness� For every x � L there exists an oracle set �x so that V � on input x and
access to oracle �x� always accepts x�

� Soundness� For every x �� L and every oracle set �� machine V � on input x and access
to oracle �� rejects x with probability at least �

� �

�� Let r and q be integer functions� The complexity class PCP�r���� q���� consists of languages
having a probabilistic checkable proof system in which the veri�er� on any input of length n�
uses at most r�n� random coins and makes at most q�n� queries�

	� Let R and Q be sets of integer functions� Then�

PCP�R�Q�
def

 �r�R�q�QPCP�r���� q�����

Note that the oracle �x in a pcp system constitutes a proof in the standard mathematical sense�
�Jumping ahead� the oracles in pcp systems characterizing NP have the property of being NP
proofs themselves�� Yet� this oracle has the extra property of enabling a lazy veri�er to toss coins�
take its chances and verify the proof without reading all of it �but rather by reading a tiny portion
of it��
Typical applications for probabilistically checkable proofs arise from settings in which the prover is
�committed	 to a single �proof	 and cannot modify it depending on previous queries of the veri�er�
See� for example� ��� ����

����� The expressive power of PCP

Clearly� PCP�poly� �� equals coRP� whereas PCP��� poly� equals NP� It is easy to prove an upper
bound on the nondeterministic time complexity of languages in the PCP hierarchy� Namely�

Proposition � For every integer function r���� the class PCP�r���� poly� is contained in NTIME��O�r��	
log��		��
Hence� PCP�log� poly� 	 NP�

Proof Sketch
 Observe that guessing the best oracle amounts to guessing only �r�n	 � poly�n�
many oracle values� �

These upper bounds turn out to be tight� but proving this is much more di�cult �to say the least��
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Theorem � ��� ��� �� �� NP is contained in PCP�log� O������

Corollary � �The PCP characterization of NP� NP 
 PCP�log� O�����

I consider the proof of Theorem � to be one of the most complicated proofs in computer science
and believe that it is very important to �nd a simpler proof that may be taught in an advanced
complexity theory class� By adapting the proof of Theorem �� one gets also�

Theorem � �Theorem � � Generalized�� Let t��� be an integer function so that n�t�n���poly�n	�
for all n
s� Then� the class NTIME�t���� is contained in the class PCP�O�log t����� O�����

Corollary � NEXP 
 PCP�poly� O�����

Interestingly� the two complexity measures in the PCP�characterization of NP can be traded o��
so that at the extremes we get NP 
 PCP�log� O���� and NP 
 PCP��� poly�� respectively�

Proposition � There exist constants �� � 	 � such that for every integer function l���� so that
�� l�n��� log� n�

NP 
 PCP�r���� q�����

where r�n� 
 � log� n � l�n� and q�n� 
 ��l�n	�

Proof Sketch
 Starting with Theorem �� one can scan all possibilities for the l�n��long pre�x of
the random tape of the veri�er� �

Sequential repetitions can be used to reduce the error probability of pcp�mip systems� Furthermore�
error reduction can be obtained at very moderate cost in the randomness complexity �cf� ������
Parallel repetition is a much more complex matter �than in the context of interactive proof systems��
see ���� �and do not get misled by an error in an early version of ������ On the other hand� non�
zero error probability is essential to the above results as otherwise one can eliminate randomness
altogether and use PCP��� q����	 DTIME��q � poly��

Finally� we mention that one can convert a multi�prover interactive proof system into a probabilis�
tically checkable proof� and vice versa� The translation in the �rst direction is easy �i�e�� just pre�x
each veri�er�message by the identity of the prover�� but the translation in the other direction is
more complex� see ���� ����

����� PCP and Approximation

Interestingly� Theorem � can be rephrased without mentioning the class PCP at all�� Instead� a
new type of polynomial�time reduction� which we call amplifying� emerges�

�The result NP � PCP�poly log�poly log� can be found in 
��� although this paper uses a di�erent model and
terminology� Furthermore� NP � PCP�log�poly log� is easily obtained from 
��� by using standard de�randomization
techniques� For a proof of NP � PCP�f���� f���� with f�n� � O�log n � log log n�� see 
���� The proof of the quoted
result is more complex and can be found in 
	� �� �see also 
�� �����

�Below we prove that Theorem � implies the rephrased form� The converse is proven by starting with an amplifying
reduction of �SAT to itself and constructing a pcp system for �SAT as follows� The oracle in this system is viewed
as a function from variables �of the reduced formula� to Boolean values� The veri
er uniformly selects a clause �in
the reduced formula� and inspects the value of the variables that appear in it�
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Theorem � �Theorem � � Rephrased�� There exist a constant 
 � �� and a polynomial�time
reduction of 	SAT to itself� so that the reduction maps non�satis�able 	CNF formulae to 	CNF
formulae for which every truth assignment satis�es at most a 
 fraction of the clauses�

Proof Sketch
 Start by considering the pcp system for �SAT �guaranteed by Theorem ��� Use
the fact that the pcp system used in the proof of Theorem � is non�adaptive
 �i�e�� the queries are
determined as a function of the input and the random�tape � and do not depend on answers to
previous queries�� Next� associate the bits of the oracle with Boolean variables and introduce a
Boolean formula for each possible value of the random tape� describing whether the veri�er would
have accepted given this value of the random tape� Finally� using auxiliary variables� convert
each formula into �CNF and obtain �as the output of the reduction� the conjunction of all these
polynomially many formulae� �

As an immediate corollary one gets results concerning the intractability of approximation� For
example�

Corollary � �Hardness of Approximating Max�SAT� There exists a constant 
 � � so that the
following approximation problem �known as Max�SAT� is NP�hard�

Given a satis�able 	CNF formula� �nd a truth assignment that satis�es at least a 


fraction of its clauses�

Thus� given a satis�able 	CNF formula� it is as hard to �nd a truth assignment that satis�es a 

fraction of its clauses as it is to �nd a truth assignment that satis�es all clauses�

Consequently� for any approximation problem in the class MAX�SNP�complete �cf� ���� and ������
there exists a constant so that approximating the problem up to this constant is NP�hard� It follows
that� unless P 
 NP� there exist no polynomial�time approximation schemes �i�e�� a sequence of
polynomial�time approximation algorithms� one for each constant approximation ratio� for any
problem in the class MAX�SNP�complete� Results for approximation problems not in the class
MAX�SNP can be derived as well � see ���� An alternative perspective� aimed at obtaining tight
non�approximability results� is presented in �����

I believe that amplifying reductions are interesting for their own sake and may �nd other applica�
tions in complexity theory�

��� Computationally Sound Proof Systems

In the two settings just discussed �i�e�� MIP and PCP� the restrictions imposed on the prover were of
a �physical	 nature� In the current section we discuss models derived from the model of interactive
proofs by imposing computational restrictions �speci�cally� time bounds� on the prover� Although
these restrictions apply to potential provers in both the completeness condition and the soundness
condition� the e�ect of the restriction is more dramatic on the soundness condition��� Hence�
proof systems with computational restrictions on the potential provers are commonly referred to
as �computationally sound�	 The computational restriction in the soundness condition seems to

	Actually� this is not essential as one can convert an adaptive system into a non�adaptive one� while incurring an
exponential blowup in the query complexity �which in our case is a constant��

�
In fact� the prover in the completeness condition typically has bounded complexity although the de
nition of an
interactive proof system does not impose such a restriction� In particular� every language in IP has a proof system
in which the prover works in polynomial space� For further discussion see subsection ������
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upset the puristic intuition about proofs �even more than the restrictions discussed in the previous
section�� Yet� from the point of view of computer science� the computational restriction is quite
natural and furthermore it is justi�ed in many applications�

There are two types of computationally sound proof systems� In the �rst type� called arguments���

the computational restriction is that the potential provers� given access to an auxiliary input� run
in polynomial time �or more generally� in time that is polynomially related to the nondeterministic
complexity of the language�� In the second type� called CS�proofs��� the computational restric�
tion is that the potential provers run in time that is polynomially related to the deterministic
complexity of the language� These computational restrictions are analogous to two of the interpre�
tations discussed in subsection ������ Speci�cally� in argument system the ��st interpretation	 is
imposed on the provers of both soundness and completeness condition� whereas in CS�proofs the
��rd interpretation	 is imposed�

����� Argument Systems

The de�nition of an argument system is derived from the de�nition of an interactive proof system
by modifying the completeness and soundness conditions as follows�

� Completeness� The prover P runs in time polynomial in the length of the common input� For
every x � L� there exists an auxiliary input �for the prover�� wx� so that the veri�er V always
accepts after interacting with P �wx� on common input x�

� Soundness� For every probabilistic polynomial�time�� machine P �� for all su�ciently long
x �� L� and for all w � f�� �g�� the veri�er V rejects with probability at least �

� � after
interacting with P ��w� on common input x�

Both conditions can be rephrased by using �non�uniform� families of circuits of polynomial size�
As discussed above� argument systems are adequate for modeling the behavior of parties in a real�
life setting� Under strong intractability assumptions� argument systems exhibit advantages over
interactive proof systems��� Let us start by stating these assumptions�

De�nition � �Collision�Free Hashing� Consider a family of hash functions� indexed by strings�

F
def

 ff� �f�� �g

�j�j 
�f�� �gj�jg�� so that there exists a polynomial�time algorithm for evaluating F
�i�e�� on input � and x returns f��x��� The family F is called collision�free w�r�t� complexity c��� if
for every non�uniform family of circuits fCng with size bounded by c���� and all su
ciently large
n
s� the probability that Cn� given a uniformly chosen � � f�� �gn� outputs a pair �x� y� so that
f��x� 
 f��y�� is bounded above by ��c�n�� The family F is called collision�free if it is collision�
free w�r�t� all polynomials� and is called strongly collision�free if� for some � 	 �� it is collision�free

w�r�t� the function f�n�
def

 �n

�

�

��In some early works� and in particular in 
���� argument systems are negligently referred to as �interactive proofs��
This is quite confusing since arguments di�er from interactive proofs not only by de
nition but also in expressive
power �unless PSPACE � IP���� and in zero�knowledge properties 
��� ��� �unless the polynomial�time hierarchy
collapses 
�	���

��Actually� there are three variants of this model � see 
	�� 	��� In the current subsection we concentrate on the
�interactive� variant of 
	��� A brief discussion of the �non�interactive� variants of 
	�� is postponed to subsection ����

��Again� this means a running time polynomial in the length of the common input�
��Below� we consider the expressing power of both models� An additional advantage of argument systems is that�

under strong intractability assumptions� there exist perfect zero�knowledge arguments �rather than computational

zero�knowledge interactive proofs� for any language in NP 
����

��



Collision�free functions exist assuming the intractability of factoring integers �i�e�� in polynomial
time�� Strong collision�free functions exist if integers cannot be factored in time �n

�

� for some � 	 ��

Theorem � ����� Let L � NP and assume the existence of collision�free functions �resp�� strong
collision�free functions�� Then� for every �	�� there exists an argument system for L in which the
randomness and communication complexities of the veri�er� on inputs of length n� are both bounded
by n� �resp�� poly�log�n���� Furthermore� the computational complexity of the veri�er is quadratic
in the length of the input�

We stress that Theorem � is meaningful also in case L � P � in particular� it o�ers quadratic veri��
cation time� independently of the �possibly higher� deterministic complexity of the language� Inter�
estingly� the results of Theorem � are unlikely for interactive proof systems� due to the following���

Proposition � Suppose that L has an interactive proof system in which both the randomness
and communication complexities of the veri�er are bounded by an integer function c���� Then
L � DTIME��O�c��	
log��		��

Proof Sketch
 Consider the tree of all possible executions� �

����� CS�Proof Systems

The de�nition of a CS�proof system is derived from the de�nition of an interactive proof system
analogously to the way the de�nition of an argument system is derived� The only di�erence is that
here the potential provers are uniform probabilistic machines� with no auxiliary inputs� running in
time polynomial in the deterministic complexity of the language� A result analogous to Theorem �
is obtainable also in the current setting� Speci�cally�

Theorem � ����� Let L � EXP� Then� assuming the existence of strong collision�free functions�
there exists a CS�proof system for L� Furthermore� the computational complexity of the veri�er is
quadratic in the length of the input and polylogarithmic in the deterministic complexity of L�

��� Other Types of Proof Systems

Of the other types of proof systems� I�m going to discuss only two� which are slightly problematic�
and also this will be done quite abruptly�

����� Non�Interactive Proof Systems

The phrase �non�interactive	 is often misleading� Indeed� in all models that are called �non�
interactive�	 the interaction between the prover and the veri�er is minimal� it consists of the
prover sending a single message to the veri�er �as in the case of an NP�proof�� Yet� in most
�non�interactive	 models� both the prover and the veri�er interact with a �trusted� random string
�cf�� ���� ���� or even query a random oracle �cf�� the so�called �Guaranteed CS�proofs	 of ������

However� in addition to NP�proofs� there is another model that is truly non�interactive� namely�
the so�called Cryptographic CS�proof ����� Cryptographic CS�proofs are short �certi�cates	 that
can be e�ciently veri�ed �like NP�proofs�� are �relatively easy	 to �nd for inputs in the language�
but are very hard to �nd �rather than do not exist� for inputs not in the language� Namely� for

��See 
��� for further investigations�
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IP arguments CS�proof PCP MIP

restrictions none poly�time polynomial memoryless split
on prover  aux� input in Dtime �i�e�� oracle� entity

motivation generalize restrict IP augment see
�as I see it� NP �see Remark �� NP Remark �

expressive PSPACE IP��� 	 PH EXP�� scalable� NTIME��l�n	��
power for rnd query 
 O�l�n��

Figure �� Comparison of various proof systems

valid assertions� Cryptographic CS�proofs can be found in time polynomial in the �deterministic�
complexity of �deciding� the language� whereas� for invalid assertions� false certi�cates cannot be
found within such time bounds� Unfortunately� the existence of �non�trivial� Cryptographic CS�
proofs is not known to be reducible to standard complexity assumptions� yet� plausibility arguments
towards the existence of the former can be found in �����

����� Proofs of Knowledge

The concept of a proof of knowledge is very appealing� yet its precise formulation is much more
complex than one may expect� see ����� A key notion in the de�nition is that of a knowledge
extractor� Loosely speaking� a knowledge�veri�er for a relation R guarantees the existence of a
knowledge extractor that on input x and access to any interactive machine P � outputs a y so
that �x� y��R� within complexity that is inversely proportional to the probability that the veri�er
accepts x when interacting with P ��

��� Comparison

In Figure �� I�ve tried to summarize the di�erences between the various notions of e�cient proof
systems� The class NP has been omitted for obvious reasons� I view IP as the natural general�
ization of NP� obtained by relaxing the notion of e�cient computation so that probabilism and
interaction are allowed� Except for the negligible probability of error� which can be controlled by
the veri�er� the original �avor of a proof is maintained� Also� I view PCP�log� O���� as an augmen�
tation of NP with the extra property of allowing a hasty veri�er to take its chances and verify the
proof in a super�fast manner� In contrast� the two notions of computationally sound proof systems
�i�e�� arguments and CS�proofs� deviate signi�cantly from the conservative approach of absolute
proofs� Yet� computational soundness seems adequate in most practical settings� The only word
of warning is that typical results in these latter settings depend on intractability assumptions� and
when evaluating these results one should not ignore the relative severeness of these assumptions�

Remark �� Arguments and CS�proof systems are derived by imposing computational restrictions on
the potential provers in both the completeness and soundness conditions� In both cases the moti�
vation for these restrictions is to obtain properties that interactive proofs do not �seem to� have� In
the case of argument systems the advantageous properties are very low communication complexity
and perfect zero�knowledge �for NP�� Interestingly� the expressive power of the system does not
increase in this case �but rather decreases�� In the case of CS�proof systems the advantageous
property is the linking of the complexity of proving to the complexity of deciding� Interestingly�
the expressive power of the system seems to increase as well �unless PSPACE 
 EXP��

��Depending on �strong� intractability assumptions�
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Remark �� The MIP model indeed generalizes the IP model� However� in my opinion� this general�
ization is less natural than the generalization of NP to IP� As far as I am concerned� the MIP model
is justi�ed by cryptographic applications �see subsection on MIP�� �The transformations between
MIP systems and PCP systems does not mean that the motivation of one model can be moved to
the other��
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� The Story

In this section I will try to provide a historical account of the ideas that led to the exciting
developments concerning the various types of e�cient proof systems� My account is certainly a
subjective one and it concentrates on my evaluation of the conceptual contributions� their declared
intentions� and their e�ect on subsequent developments�

The story of these research developments� as any real story� has a complex structure that needs
to be simpli�ed so that the reader does not get lost in its web� Thus I have broken the story into
several independent linearly structured stories� which do cross each other� I will begin with the
story of the evolution of proof systems� and then pass to the story of their applications to deriving
hardness results for approximation problems� program checking and zero�knowledge proofs�

��� The Evolution of Proof Systems

The story of NP is well�known �except maybe for the fact that NP�completeness was discovered by
Levin ���� independently of Cook ���� and Karp ����� see Trakhtenbrot�s survey of Russian research
on NP ������ Our story thus starts with the de�nition of interactive proof systems�

����� Interactive Proof Systems

Motivated by the desire to formulate the most general type of �proofs	 that may be used within
cryptographic protocols� Goldwasser� Micali and Racko� introduced the notion of an interactive
proof system ����� Although the main thrust of their paper is the introduction of a special type of
interactive proofs �i�e�� ones that are zero�knowledge�� the computational complexity potential of
the class of languages possessing interactive proof systems� denoted IP � has been pointed out�

The �rst evidence of the surprising power of interactive proofs was given by Goldreich� Micali
and Wigderson� who presented an interactive proof system for Graph Non�Isomorphism ����� a
language not known to be in NP� Interactive proof systems gained much attention also due to
the interest in the construction of zero�knowledge proofs for languages in NP� presented in ����
�assuming the existence of one�way functions��

Babai ���� independently�� of ����� suggested a di�erent formulation of interactive proofs� termed
Arthur�Merlin Games �and giving rise to the class AM�� Syntactically� Arthur�Merlin Games are
a restricted form of interactive proof systems� yet Goldwasser and Sipser have subsequently shown
that these restricted systems are as powerful as the general ones� namely� AM 
 IP ����� Babai�s
motivation was to place a group�theoretic problem� previously placed in NP under some group�
theoretic assumptions� �as close toNP as possible	 without using any assumptions��� Interestingly�
Babai underestimated the power of the new class� conjecturing that the class AM �even with an
unbounded number of rounds� is �very close	 to NP�

����� Multi�Prover Interactive Proof Systems

A generalization of interactive proofs to multi�prover interactive proofs has been suggested by
Ben�Or� Goldwasser� Kilian and Wigderson ����� Again� the main motivation came from zero�
knowledge aspects� speci�cally� introducing multi�prover zero�knowledge proofs for NP without

��Here �independence� does not mean concurrently� Indeed� both the works of Babai and of Goldwasser� Micali and
Racko� 
rst appeared in the same conference �i�e�� ��th STOC� ������ yet early versions of the paper of Goldwasser�
Micali and Racko� existed as early as ���� and were rejected three times from major conferences �i�e�� FOCS���
STOC��� and FOCS����

��Indeed� Babai placed the Matrix Representation Problem in AM using only two rounds�
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relying on intractability assumptions� Yet� the complexity theoretic prospects of the new class�
denoted MIP� have not been ignored� A more appealing� to my taste� formulation of the class
MIP has been presented by Fortnow� Rompel and Sipser ����� The latter formulation exactly
coincides with the formulation now known as probabilistically checkable proofs �i�e�� PCP��

����� Algebraic Methods Demonstrate the Power of Interactive Proofs

The amazing power of interactive proof systems has been demonstrated by using algebraic methods�
The basic technique has been introduced by Lund� Fortnow� Karlo� and Nisan� who applied it to
show that the polynomial�time hierarchy �and actually P�P� is in IP ����� Subsequently� Shamir
used the technique to show that IP 
 PSPACE ����� and Babai� Fortnow and Lund used it to
show thatMIP 
 NEXP ����

The technique of Lund� Fortnow� Karlo� and Nisan has been inspired by ideas coming from
works on �program checking	 �cf�� ������ In particular� their interactive proof system for the perma�
nent combines Lipton�s �self�testing	 procedure for the permanent �which represents the permanent
as a multi�linear polynomial� ����� and the �downwards self�reducibility	 procedure of Blum� Luby
and Rubinfeld ����� Another idea that is implicit in ���� and made explicit in the subsequent works
of ���� �� is the representation� introduced by Beaver and Feigenbaum ����� of Boolean formulae as
multi�linear polynomials�

It may be of interest to note that the technique of Lund et� al� has been �rst applied in the
context of multi�prover interactive proofs� yielding P�P 	MIP� and that the result quoted above
�concerning IP� followed later� Hence�MIP has played a role in the historical development leading
to the characterization of IP�

����� Scaling Down the BFL Proof System Yields a New Class

The abovementioned multi�prover proof system of Babai� Fortnow and Lund ��� �hereafter referred
to as the BFL proof system� has been the starting point for fundamental developments regarding
NP� The �rst development was the discovery that the BFL proof system can be �scaled�down	�


from NEXP to NP� This important discovery was made independently by two sets of authors�
Babai� Fortnow� Levin and Szegedy ��� and Feige� Goldwasser� Lovasz and Safra ������� However�
the manner in which the BFL proof is scaled�down is di�erent in the two papers� and so are the
consequences of the scaling�down�

Babai� Fortnow� Levin and Szegedy start by considering only inputs encoded using a spe�
cial error�correcting code� The encoding of strings� relative to this error�correcting code� can be
computed in polynomial time� They presented a polynomial�time algorithm that transforms NP�
witnesses �to inputs in a language L � NP� into transparent proofs that can be veri�ed as vouching
for the correctness of the encoded assertion in �probabilistic� polylogarithmic time �by a Ran�
dom Access Machine�� �The fact that the veri�cation procedure never reads the entire �proof	
should not come as a surprise� as the procedures of ���� ��� �� also have this property�� Thus�
once �statements	 and �proofs	 are in the right �error�correcting� form� veri�cation is �super�fast�	
Babai et� al� ��� stress the practical aspects of transparent proofs � speci�cally� for rapidly checking
transcripts of long computations�

�	The term �scaled�down� is used here as a �standard� technical term� Doing so� I do not mean to underestimate
the technical di�culty of obtaining these results�

�
At a later stage� Szegedy improved the randomness and query complexities of the system in 
��� and joined the
latter paper� which has appeared as 
����
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In the proof system of Babai et� al� ���� the total running time of the veri�er is reduced �i�e��
�scaled�down	� to polylogarithmic� In contrast� in the proof system of Feige� Goldwasser� Lovasz
and Safra ����� the veri�er stays polynomial�time and only two more re�ned complexity measures�
speci�cally the randomness and query complexities� are reduced to polylogarithmic� This eliminates
the need to assume that the input is in a special error�correcting form� and yields a more appealing
�i�e�� less cumbersome� complexity class� This complexity class is a re�nement of the class intro�
duced in ����� The re�nement is obtained by specifying the randomness and query complexities�
Namely� PCP�r���� q���� denotes the class of languages having probabilistically checkable proofs in
which� on input x� the veri�er tosses at most r�jxj� coins and makes at most q�jxj� �Boolean� queries
to the proof� Hence� whereas the result of Babai� Fortnow and Lund ��� can be restated as

NEXP 
 PCP�poly� poly�� ���

the result of Feige� Goldwasser� Lovasz� Safra and Szegedy ���� is restated as

NP 	 PCP�f���� f���� � where f�n� 
 O�logn � log logn�� ���

It should be stressed that the result of Babai� Fortnow� Levin and Szegedy ��� also implies a
containment of the above form �with f�n� 
 poly logn�� Interest in the new complexity class
became immense since Feige et� al� ���� ��� demonstrated its relevance to proving the intractability
of approximating some combinatorial problems �speci�cally� Max�Clique�� I will elaborate on this
aspect of their work in subsection ���� Here� I only wish to point out that� when using the method
of Feige et� al�� the randomness and query complexities of the veri�er �in a pcp system for an
NP�complete language� relate to the strength of the negative results obtained for approximation
problems� This fact provided a very strong motivation for trying to reduce these complexities and
obtain a tight characterization of NP in terms of PCP��� ���

����� Tightening the Relation between NP and PCP

Once the work of Feige et� al� ���� had been presented� the challenge was clear� showing that
NP equals PCP�log� log�� This challenge was met by Arora and Safra ���� The proof system
constructed by Arora and Safra is very complex� involving recursive use of proof systems and con�
catenation tests that are much more e�cient than the length of strings being tested� �Interestingly�
the idea of encoding inputs in an error�correcting form� as suggested in ���� is essential to make this
recursion work�� Actually� Arora and Safra showed that

NP 
 PCP�log� f���� � where f�n� 
 o�logn�� ���

Hence� a new challenge arose� namely� further reducing the query complexity � in particular to a
constant � while maintaining the logarithmic randomness complexity� Again� additional motivation
for this challenge came from the relevance of such a result to the study of approximation problems
�see subsection ����� The new challenge was met by Arora� Lund� Motwani� Sudan and Szegedy ���
and is captured by the equation

NP 
 PCP�log� O����� ���

In addition to building on the ideas of Arora and Safra ���� the above result of ��� utilizes ideas
and techniques from the works on self�testing�self�correcting ����� degree�tests for multi�variant
polynomials ���� ���� and parallelization of multi�prover proof systems �����
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����� Computationally Sound Proof Systems

Argument systems were de�ned in ���� by Brassard� Chaum and Cr!epeau ����� but their complexity�
theoretic signi�cance became apparent only in ����� This happened when Kilian� using early results
on PCP �due to ������ showed that� under some intractability assumptions� every language in NP
has a computationally�sound proof in which the randomness and communication complexities are
polylogarithmic �����

Consequently� Micali suggested three new types of computationally�sound proof systems that he
calls CS�proofs ���� ���� Micali showed that Kilian�s construction can be applied also for languages
beyond NP� and more importantly that using interaction with a trusted random oracle allows one
to get rid of the interaction between the parties as well as of the intractability assumptions �����
The latter idea can be traced back to a paper of Fiat and Shamir ����

����� Other Types of Proof Systems

The setting of non�interactive proofs was �rst introduced by Blum� Feldman and Micali ����� The
concept of proofs of knowledge was introduced in the paper of Goldwasser� Micali and Racko� �����
but it is only recently that it has been given a satisfactory formal treatment �����

��� PCP and Approximation

As stated above� probabilistic checkable proofs became the focus of so much attention due to their
relation to the di�culty of approximation�

The relation between PCP and approximation was �rst pointed out by Feige� Goldwasser� Lovasz
and Safra ���� �see ������ Speci�cally� they showed how to construct a graph representing the possible
computations of a pcp veri�er on a speci�c input so that the size of the maximum clique in this
graph equals the accepting probability �scaled down by an easy to determine factor�� The time
needed to construct the graph is �linearly� exponential in the randomness and query complexity
of the pcp system� It follows� for example� that any polynomial�time algorithm approximating
Max�Clique� up to a constant factor� yields an algorithm for deciding a language in PCP�r���� q����
such that the algorithm runs in time �r�n	
q�n	 � poly�n�� This has provided a strong motivation
towards showing that NP 	 PCP�log� log��

Although Feige et� al� only related PCP to the approximation of Max�Clique� it was understood
that the relation between PCP and approximation is not speci�c to the Max�Clique Problem� The
question was how well do the results for Max�Clique translate to other approximation problems� or
alternatively whether better results can be obtained by �directly	 relating PCP to the approxima�
tion of di�erent problems�

It turned out that stronger non�approximability results are possible when treating the two
complexity measures of PCP �i�e�� randomness and query complexities� separately� In particular�
languages in the class PCP�r���� O���� are naturally represented by �CNF formulae of size O��r�n	��
so that if the input is in the language then the formula is satis�able and otherwise no truth
assignment can satisfy more than a constant �� �� fraction of its clauses �see this chapter�s Technical
Part�� Furthermore� the time required to compute this formula is �linearly� exponential in r����
Hence� any polynomial�time approximation scheme for Max�SAT yields a polynomial�time decision
procedure for any language in PCP�log� O����� This implication has provided a strong motivation
towards showing that NP 	 PCP�log� O����� Additional motivation comes from the fact that the
latter inclusion also implies that Max�Clique is NP�hard to approximate even to within a factor of
N �� for some � 	 �� where N denotes the number of vertices in the graph� These facts were observed
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by Arora� Lund� Motwani� Sudan and Szegedy ���� They also observed that� since Max�SAT is in
the class MAX�SNP ����� it followed that each complete problem in that class �e�g�� Max�SAT�
MaxCUT� MinVC� is hard to approximate to within some constant factor���

The results of ���� �� �� have renewed interest in the complexity of approximation problems� after
many years of frustration� Subsequent work established the hardness of approximation problems
via the following two approaches�

�st approach� generic reductions from PCP�MIP� That is� reducing the evaluation of the acceptance
probability of a PCP�MIP system directly to the approximation problem being considered �cf��
Bellare ����� Lund and Yannakakis ������ Furthermore� sometimes such a reduction is coupled with
a new PCP�MIP system that is more e�cient in some parameters yielding stronger negative results
than those obtained by reducing previously known PCP�MIP systems �cf�� Bellare� Goldwasser�
Lund and Russell ����� Bellare and Sudan ���� and Bellare� Goldreich and Sudan ������ Lastly� it
is important to select the �right	 complexity parameters to be optimized �cf�� ���� ��� ����� For an
elaborate discussion of the latter point see �����

�nd approach� reductions among approximation problems� The newly acquired collection of hard
approximation problems motivates and facilitates attempts to prove the hardness of new problems
by using approximation�preserving reductions� Typical examples are given in the works of Lund
and Yannakakis ����� Khanna� Linial and Safra ����� and F"urer �����

��� Interactive Proofs and Program Checking

When introducing the concept of program checking� Blum �cf� ����� was indeed aware of its relation
to interactive proof systems� In particular� his program checker for Graph Isomorphism mimics the
interactive proof of ����� Subsequently� the development paths of the two concepts �i�e�� program
checking and e�cient proof systems� have continued to intersect� The contribution of program
checking techniques to the results concerning IP and PCP has been discussed above� Here I wish
to further discuss the opposite direction in which various proof systems have yielded applications
to program checking�

In ���� Babai� Fortnow� Levin and Szegedy stress the application of their result to program
checking� At the expense of having a powerful computer do some extra work� its computation can
be checked by a much weaker computer� Speci�cally� the powerful computer outputs a certi�cate
for the correctness of the computation so that the certi�cate has length comparable to the �length	
of the computation and yet its correctness can be veri�ed in time that is much shorter than the
time of the original computation� This holds in a Random Access Machine computation model�

Recently� Micali showed that using �Cryptographic CS�proofs	 �see this chapter�s Technical
Part� one can transform programs to ones that in addition to the result of the computation supply
a very short certi�cate of the validity of the computation ����� This certi�cate can then be checked
in time that is negligible �also in a Turing Machine model� compared to the original computation
time�

Both the results of ��� and ���� refer to program checking in a sense di�erent from Blum�s
�cf� ������ namely� the computation of a program � on a speci�c input is checked against the
program � itself �rather than against a functional description of what � is supposed to do�� The
prover� which is an extension of �� needs to run more time than � �but not drastically more�� yet
the advantage is that a veri�er can check this long computation very fast�

��On the other hand� each problem in this class is easy to approximate to within a �di�erent� constant�
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��� Zero�Knowledge Proofs

As mentioned a few times above� the search for zero�knowledge proofs has been the driving force
behind many of the de�nitions of proof systems� In particular� zero�knowledge has motivated the
�rst leap beyond NP taken when interactive proofs were conceived by Goldwasser� Micali and
Racko� ����� The reason being that a more liberal notion of a proof seemed �and in fact is �����
necessary in order to enable simulation of the transcript without ability to perform the interaction
��in real time	��

The notion of computational indistinguishability� introduced by Goldwasser and Micali �in the
context of de�ning security of encryption schemes ����� and Yao �in full generality ������ is central to
the de�nition of zero�knowledge� However� most of the complexity�theoretic impact of the former
notion was on the theory of pseudorandomness �cf�� for example� ���� ��� and ���� ���� which has
evolved almost concurrently to the evolution of interactive proof systems�

The wide applicability of zero�knowledge proofs has been demonstrated by Goldreich� Micali
and Wigderson ����� Most importantly� they showed how to construct zero�knowledge proof systems
for any language in NP��� Their construction uses a cryptographic primitive called a commitment
scheme that may be implemented using any one�way function ���� ���� Actually� under the same
assumption� zero�knowledge proofs exists for any language in IP ���� ���� but the latter elegant
result has almost no applications�

Subsequently� zero�knowledge proofs have become the focus of much attention in cryptographic
circles and� as one may expect� many interesting results followed� But this is a story for a separate
essay�

��Some sources credit Brassard and Cr�epeau 
��� for independently discovering the same result� To say the very
least� this is technically inaccurate since Brassard and Cr�epeau use a much stronger intractability assumption �
speci
cally� the intractability of the Quadratic Residue Problem�
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� Addendum� Some Open Problems

Open Problem �
 Polynomials play a fundamental role in the construction of interactive proof
systems for coNP� and this trend continues in the construction of PCP systems for NP� Fur�
thermore� it does not seem possible to abstract that role� I consider it important to obtain an
alternative proof of coNP 	 IP � a proof in which all the underlying ideas can be presented at an
abstract level�

Open Problem �
 Suppose that L � IP�r�� What can be said about L � Currently� we only
know that L � IP�poly�� This does not utilize the extra information regarding the IP��� level
in which L resides� On the other hand� we don�t expect L to be in IP�g�r��� for any function g�
since this will put coNP 	 coIP��� in IP���� Thus� another parameter may be relevant here� for
example� the lengths of the messages exchanged in the interaction� Indeed� if L has an interactive
proof in which the total message length is m then L has an interactive proof in which the total
message length is O�m��� I consider it important to obtain a better result� In general� it would be
interesting to get a better understanding of the IP��� Hierarchy�

Open Problem �
 Regarding subsection ������ it will be interesting to understand the limitations
of �relatively e�cient provers	 according to the �nd and �rd interpretations� A better understanding
of the self�reducibility on NP�languages is also long due� A speci�c challenge �cf�� ������ provide
an NP�proof system for Quadratic Non�Residucity �QNR�� using a probabilistic polynomial�time
prover with access to QNR language�

Open Problem �
 Try to provide �rm grounds for the heuristics of making proof systems non�
interactive by use of �random public functions	 �cf�� ���� ����� I advise not to try to de�ne the
latter notion �in a general form�� but rather devise some ad�hoc method� using some speci�c but
widely believed complexity assumptions �e�g�� hardness of deciding Quadratic Residucity modulo a
composite number�� for this speci�c application�

Open Problem �
 It would be interesting to �gure out and utilize the minimal possible assump�
tion required for constructing �zero�knowledge protocols for NP	 in various models like constant�
round interactive proofs� the �non�interactive	 model� and perfect zero�knowledge arguments�

Open Problem �
 As a �rst step towards the simpli�cation of the proof of the PCP Character�
ization� one may want to provide an alternative �randomness�e�cient� �parallelization	 procedure
which does not rely on polynomials or any other algebraic creatures� A �rst step towards this par�
tial goal was taken by Safra and myself �cf�� TR������ of ECCC�� We have constructed an e�cient
low�degree test which utilizes a simple�ine�cient low�degree test which is parallelized using a new
�combinatorial consistency lemma	�
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