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� Introduction

The glory given to the creativity required to �nd proofs� makes us forget that it is the less glori�
�ed procedure of veri�cation which gives proofs their value� Philosophically speaking� proofs are
secondary to the veri�cation procedure� whereas technically speaking� proof systems are de�ned in
terms of their veri�cation procedures�

The notion of a veri�cation procedure assumes the notion of computation and furthermore the
notion of e	cient computation� This implicit assumption is made explicit in the de�nition of NP �
in which e	cient computation is associated with 
deterministic� polynomial�time algorithms�

Traditionally� NP is de�ned as the class of NP�sets� Yet� each such NP�set can be viewed as a
proof system� For example� consider the set of satis�able Boolean formulae� Clearly� a satisfying
assignment � for a formula � constitutes an NP�proof for the assertion �� is satis�able
 
the
veri�cation procedure consists of substituting the variables of � by the values assigned by � and
computing the value of the resulting Boolean expression��

The formulation of NP�proofs restricts the �e�ective
 length of proofs to be polynomial in length
of the corresponding assertions� However� longer proofs may be allowed by padding the assertion
with su	ciently many blank symbols� So it seems that NP gives a satisfactory formulation of proof
systems 
with e	cient veri�cation procedures�� This is indeed the case if one associates e	cient
procedures with deterministic polynomial�time algorithms� However� we can gain a lot if we are
willing to take a somewhat non�traditional step and allow probabilistic veri�cation procedures� In
particular�

� Randomized and interactive veri�cation procedures� giving rise to interactive proof systems�
seem much more powerful 
i�e�� �expressive
� than their deterministic counterparts�

� Such randomized procedures allow the introduction of zero�knowledge proofs which are of
great theoretical and practical interest�

� NP�proofs can be e	ciently transformed into a 
redundant� form which o�ers a trade�o�
between the number of locations examined in the NP�proof and the con�dence in its validity

see probabilistically checkable proofs��

In all abovementioned types of probabilistic proof systems� explicit bounds are imposed on the
computational complexity of the veri�cation procedure� which in turn is personi�ed by the notion
of a veri�er� Furthermore� in all these proof systems� the veri�er is allowed to toss coins and
rule by statistical evidence� Thus� all these proof systems carry a probability of error� yet� this
probability is explicitly bounded and� furthermore� can be reduced by successive application of the
proof system�

� Interactive Proof Systems

In light of the growing acceptability of randomized and distributed computations� it is only natural
to associate the notion of e	cient computation with probabilistic and interactive polynomial�time
computations� This leads naturally to the notion of interactive proof systems in which the veri�ca�
tion procedure is interactive and randomized� rather than being non�interactive and deterministic�
Thus� a �proof
 in this context is not a �xed and static object but rather a randomized 
dynamic�
process in which the veri�er interacts with the prover� Intuitively� one may think of this interaction
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as consisting of �tricky
 questions asked by the veri�er to which the prover has to reply �convinc�
ingly
� The above discussion� as well as the actual de�nition� makes explicit reference to a prover�
whereas a prover is only implicit in the traditional de�nitions of proof systems 
e�g�� NP�proofs��

��� The De�nition

Interaction� Going beyond the uni�directional �interaction
 of the NP�proof system� 
If the
veri�er does not toss coins then interaction can be collapsed to a single message��

�computationally unbounded� Prover� As in NP� we start by not considering the complexity
of proving�

�probabilistic polynomial�time� Veri�er� We maintain the paradigm that veri�cation ought
to be easy� alas we allow random choices 
in our notion of easiness��

Completeness and Soundness� We relax the traditional soundness condition by allowing small
probability of being fooled by false proofs� The probability is taken over the veri�er�s random
choices� 
We still require �perfect completeness
� that is� that correct statements are proven with
probability ��� Error probability� being a parameter� can be further reduced by successive repeti�
tions�

Variations� Relaxing the �perfect completeness
 requirement yields a two�sided error variant of
IP 
i�e�� error probability allowed also in the completeness condition�� Restricting the veri�er to
send only �random
 
i�e�� uniformly chosen� messages yields the restricted Arthur�Merlin interactive
proofs 
aka public�coins interactive proofs�� Alas� both variants are essentially as powerful as the
one above�

��� An Example� interactive proof of Graph Non�Isomorphism

The problem� 
not known to be in NP�� Proving that two graphs are isomorphic can be done
by presenting an isomorphism� but how do you prove that no such isomorphism exists�

The construction� the �two di�erent object protocol
 � if you claim that two objects are di�erent
then you should be able to tell which is which 
when I present them to you in random order�� In
the context of the Graph Non�Isomorphism interactive proof� two 
supposedly� di�erent objects
are de�ned by taking random isomorphic copies of each of the input graphs� If these graphs are
indeed non�isomorphic then the objects are di�erent 
the distributions have distinct support� else
the objects are identical�

��� Interactive proof of Non�Satis�ability

Arithmetization of Boolean �CNF� formulae� Observe that the arithmetic expression is a
low degree polynomial� Observe that� in any case� the value of the arithmetic expression is bounded�
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Moving to a Finite Field� Whenever we check equality between two integers in ���M �� it su	ces
to check equality mod q� where q � M � The bene�t is that the arithmetic is now in a �nite �eld

mod q� and so certain things are �nicer
 
e�g�� uniformly selecting a value�� Thus� proving that a
CNF formula is not satis�able reduces to proving equality of the following form

X

x�����

� � �
X

xn����

�
x�� ���� xn� � � mod q

where � is a low degree multi�variant polynomial�

The construction� stripping summations in iterations� In each iteration the prover is supposed
to supply the polynomial describing the expression in one 
currently stripped� variable� 
By the
above observation� this is a low degree polynomial and so has a short description�� The veri�er
checks that the polynomial is of low degree� and that it corresponds to the current value being
claimed 
i�e�� p
��� p
�� � v�� Next� the veri�er randomly instantiates the variable� yielding a new
value to be claimed for the resulting expression 
i�e�� v � p
r�� for uniformly chosen r � GF
q���
The veri�er sends the uniformly chosen instantiation to the prover� 
At the end of the last iteration�
the veri�er has a fully speci�ed expression and can easily check it against the claimed value��

Completeness of the above� When the claim holds� the prover has no problem supplying the
correct polynomials� and this will lead the veri�er to always accept�

Soundness of the above� It su	ces to bound the probability that for a particular iteration the
initial claim is false whereas the ending claim is correct� Both claims refer to the current summation
expression being equal to the current value� where �current� means either at the beginning of the
iteration or at its end� Let T 
�� be the actual polynomial representing the expression when stripping
the current variable� and let p
�� be any potential answer by the prover� We may assume that
p
�� � p
�� � v and that p is of low�degree 
as otherwise the veri�er will reject�� Using our
hypothesis 
that the initial claim is false�� we know that T 
�� � T 
�� �� v� Thus� p and T are
di�erent low�degree polynomials and so they may agree on very few points� In case the veri�er
instantiation does not happen to be one of these few points� the ending claim is false too�

Open Problem � 
alternative proof of coNP � IP�� Polynomials play a fundamental role in the
above construction and this trend has even deepened in subsequent works on PCP� It does not seem
possible to abstract that role� which seems to be very annoying� I consider it important to obtain
an alternative proof of coNP � IP� a proof in which all the underlying ideas can be presented at
an abstract level�

��� The Power of Interactive Proofs

IP � PSPACE

Interactive Proofs for PSPACE� Recall that PSPACE languages can be expressed by Quan�
ti�ed Boolean Formulae� The number of quanti�ers is polynomial in the input� but there are
both existential and universal quanti�ers� and furthermore these quanti�ers may alternate� Con�
sidering the arithmetization of these formulae� we face two problems� Firstly� the value of the
formulae is only bounded by a double exponential function 
in the length of the input�� and sec�
ondly when stripping out summations� the expression may be a polynomial of high degree 
due
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to the universal quanti�ers which are replaced by products�� The �rst problem is easy to deal
with by using the Chinese Reminder Theorem 
i�e�� if two integers in ���M � are di�erent then they
must be di�erent modulo most of the primes up�to poly
logM��� The second problem is resolved
by �refreshing
 variables after each universal quanti�er 
e�g� 	x
y	z�
x� y� z� is transformed into
	x
y	x�
x � x�� � 	y�
x�� y� z���

IP in PSPACE� We show that for every interactive proof there exists an optimal prover strategy�
and furthermore that this strategy can be computed in polynomial�space� This follows by looking
at the tree of all possible executions�

The IP Hierarchy� Let IP
r
��� denote the class of languages having an interactive proof in
which at most r
� messages are exchanges� Then� IP
�� � coRP � BPP� The class IP
�� is a
randomized version of NP� witnesses are veri�ed via a probabilistic polynomial�time pprocedure�
rather than a deterministic one� The class IP
�� seems fundamentally di�erent� the veri�cation
procedure here is truly interactive� Still� this class seems close to NP� speci�cally� it is contained in
the polynomial�time hierarchy 
which seems �low� when contrasted with PSPACE � IP
poly��� In�
terestingly� IP
�r
��� � IP
r
���� and so in particular IP
O
��� � IP
��� 
Note that �IP
�r
��� �
IP
r
���
 can be applied successively a constant number of times� but not more��

Open Problem � 
the structure of the IP
�� hierarchy��

Suppose that L � IP
r�� What can be said about L �

Currently� we only know to argue as follows� IP
r� � IP
poly� � PSPACE and so L � PSPACE
and is in IP
poly�� This seems ridiculous� we do not use the extra information on IP
r�� On the
other hand� we don�t expect L to be in IP
g
r��� for any function g� since this will put coNP �
coIP
�� in IP
��� So another parameter may be relevant here� how about the lengths of the
messages exchanged in the interaction� Indeed� if L has an interactive proof in which the total
message length is m then L has an interactive proof in which the total message length is O
m���
	This just follows by the known PSPACE � IP construction�
 I consider it important to obtain a
better result� In general� it would be interesting to get a better understanding of the IP
�� Hierarchy�

��	 How Powerful Should the Prover be


The Cryptographic Angle� Interactive proofs occur inside �cryptographic
 protocols and so
the prover is merely a probabilistic polynomial�time machine� yet it may have access to an auxiliary
input 
given to it or generated by it in the past�� Such provers are relatively weak 
i�e�� they can only
prove languages in IP
���� yet� they may be of interest for other reasons 
e�g�� see zero�knowledge��

The Complexity Theoretic Angle� It make sense to try to relate the complexity of proving
a statement 
to another party� to the complexity of deciding whether the statement holds� This
gives rise to two related approaches�

�� The prover is a probabilistic polynomial�time oracle machine with access to the language� This
approach can be thought of as extending the notion of self�reducibility 
of NP�languages��
These languages have an NP�proof system in which the prover is a polynomial�time machine
with oracle access to the language� Indeed� alike NP�complete languages� the IP�complete
languages also have such a �relatively e	cient
 prover� 
Recall that an optimal prover strategy
can be implemented in polynomial�space� and thus by a polynomial�time machine having
oracle access to a PSPACE�complete language��
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�� The prover runs in time which is polynomial in the complexity of the languages�

Open Problem 	 Further investigate the power of the various notions� and in particular the one
extending self�reducibility on NP languages� Better understanding of the latter is also long due�
A speci�c challenge� provide an NP�proof system for Quadratic Non�Residucity 	QNR
� using a
probabilistic polynomial�time prover with access to QNR language�

��� Computationally�Sound Proofs

Such proofs systems are fundamentally di�erent from the above discussion 
which did not e�ect
the soundness of the proof systems�� Here we consider relations of the soundness conditions � false
proofs may exist 
even with high probability� but are hard to �nd� Variants may correspond to the
above approaches� speci�cally� the following has been investigated�

Argument Systems� One only considers prover strategies implementable by 
possibly non�
uniform� polynomial�size circuits 
eq�� probabilistic polynomial�time machines with auxiliary in�
puts�� Under some reasonable assumptions there exist argument systems for NP having poly�
logarithmic communication complexity� Analogous interactive proofs cannot exists unless NP is
contained in Quasi�Polynomial Time 
i�e�� NP � Dtime
exp
poly
logn�����

CS Proofs� One only considers prover strategies implementable in time polynomial in the com�
plexity of the language� In an non�interactive version one asks for �certi�cates a la NP�type
 which
are only computationally sound� In a model allowing both prover and veri�er access to a random
oracle� one can convert interactive proofs 
alike CS proofs� into non�interactive ones� As a heuris�
tics� it is also suggested to replace the random oracle by use of �random public functions
 
a fuzzy
notion� not to be confused with pseudorandom functions��

Open Problem 
 Try to provide �rm grounds for the heuristics of making proof systems non�
interactive by use of 
random public functions�� I advise not to try to de�ne the latter notion 	in a
general form
� but rather devise some ad�hoc method� using some speci�c but widely believed com�
plexity assumptions 	e�g�� hardness of deciding Quadratic Residucity modulo a composite number
�
for this speci�c application�

� Zero�Knowledge Proofs

Zero�knowledge proofs are central to cryptography� Furthermore� zero�knowledge proofs are very
intriguing from a conceptual point of view� since they exhibit an extreme contrast between being
convinced of the validity of a statement and learning anything in addition while receiving such
a convincing proof� Namely� zero�knowledge proofs have the remarkable property of being both
convincing while yielding nothing to the veri�er� beyond the fact that the statement is valid�

The zero�knowledge paradigm� Whatever can be e	ciently computed after interacting with
the prover on some common input� can be e	ciently computed from this input alone 
without
interacting with anyone�� That is� the interaction with the prover can be e	ciently simulated in
solitude�
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A Technical Note� I have deviated from other presentation in which the simulator works in
average 
probabilistic� polynomial�time and require that it works in strict probabilistic polynomial�
time� Yet� I allow the simulator to halt without output with probability at most �

� � Clearly this
implies an average polynomial�time simulator� but the converse is not known� In particular� some
known positive results regarding perfect zero�knowledge 
with average polynomial�time simulators�
are not known to hold under the above more strict notion�

��� Perfect Zero�Knowledge

The De�nition� A simulator can produce exactly the same distribution as occurring in an inter�
action with the prover� Furthermore� in the general de�nition this is required with respect to any
probabilistic polynomial�time veri�er strategy 
not necessarily the one speci�ed for the veri�er��
Thus� the zero�knowledge property protects the prover from any attempt to obtain anything from
it 
beyond conviction in the validity of the assertion��

Zero�Knowledge NP�proofs� Extending the NP�framework to interactive proof is essential for
the non�triviality of zero�knowledge� It is easy to see that zero�knowledge NP�proofs exist only for
languages in RP� 
Actually� that�s a good exercise��

A perfect zero�knowledge proof for Graph Isomorphism� The prover sends the veri�er a
random isomorphic copy of the �rst input graph� The veri�er challenges the prover by asking the
prover to present an isomorphism 
of graph sent� to either the �rst input graph or to the second
input graph� The veri�er�s choice is made at random�
The fact that this interactive proof system is zero�knowledge is more subtle than it seems� for
example� 
many� parallel repetitions of the proof system are unlikely to be zero�knowledge�

��� �Computational
 Zero�Knowledge

This de�nition is obtained by substituting the requirement that the simulation is identical to the
real interaction� by the requirement that the two are computational indistinguishable�

Computational Indistinguishability is a fundamental concept of independent interest� Two
ensembles are considered indistinguishable by an algorithm A if A�s behavior is almost invariant of
whether its input is taken from the �rst ensemble or from the second one� We interpret �behavior

as a binary verdict and require that the probability that A outputs � in both cases is the same up�to
a negligible di�erence 
i�e�� smaller than ��p
n�� for any positive polynomial p
�� and all su	ciently
long input lengths 
denoted by n��� Two ensembles are computational indistinguishable if they are
indistinguishable by all probabilistic polynomial�time algorithms�

A zero�knowledge proof for NP � abstract �boxes� setting� It su	ces to construct such a
proof system for ��Colorability 
�COL�� 
To obtain a proof system for other NP�languages use the
fact that the 
standard� reduction of NP to �COL is polynomial�time invertible��
The prover uses a �xed ��coloring of the input graph and proceeds as follows� First� it uniformly
selects a relabeling of the colors 
i�e�� one of the � possible ones� and puts the resulting color of
each vertex in a locked box 
marked with the vertex name�� All boxes are sent to the veri�er who
response with a uniformly chosen edge� asking to open the boxes corresponding to the endpoint of
this edge� The prover sends over the corresponding keys� and the veri�er opens the two boxes and
accepts i� he sees two di�erent legal colors�
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A zero�knowledge proof for NP � real setting� The locked boxes need to be implemented
digitally� This is done by a commitment scheme� a cryptographic primitive designed to implement
such locked boxes� Loosely speaking� a commitment scheme is a two�party protocol which proceeds
in two phases so that at the end of the �rst phase 
called the commit phase� the �rst party

called sender� is committed to a single value 
which is the only value he can later reveal in the
second phase�� whereas at this point the other party gains no knowledge on the committed value�
Commitment schemes exist if 
and actually i�� one�way functions exist� Thus� the mildest of all
cryptographic assumptions su	ces for constructing zero�knowledge proofs for NP 
and actually for
all of IP�� Furthermore� zero�knowledge proofs for languages which are �hard on the average
 imply
the existence of one�way functions� thus� the above construction essentially utilizes the minimal
possible assumption�

one�way functions imply

IP � ZKIP

��� Concluding Remarks

The prover�s strategy in the above zero�knowledge proof for NP can be implemented
by a probabilistic polynomial�time machine which is given 
as auxiliary input� an NP�witness
for the input� 
This is clear for �COL� and for other NP�languages one needs to use the fact
that the relevant reductions are coupled with e	cient witness transformations�� The e	cient
implementation of the prover strategy is essential to the applications below�

Applications to Cryptography� Zero�knowledge proofs are a powerful tool for the design of
cryptographic protocols� in which one typically wants to guarantee proper behavior of a party
without asking him to reveal all his secrets� Note that proper behavior is typically a polynomial�
time computation based on the party�s secrets as well as on some known data� Thus� the claim
that the party behaves consistently with its secrets and the known data can be casted as an NP�
statement� and the above result can be utilized� More generally� using additional ideas� one can
provide a secure protocol for any functional behavior� These general results have to be considered as
plausibility arguments� you would not like to apply these general constructions to speci�c practical
problems� yet you should know that these speci�c problems are solvable�

Open Problems do exists� but seem more specialized in nature� For example� it would be
interesting to �gure out and utilize the minimal possible assumption required for constructing
�zero�knowledge protocols for NP
 in various models like constant�round interactive proofs� the
�non�interactive
 model� and perfect zero�knowledge arguments�

Further Reading� see chapter on Zero�Knowledge in my �fragments of a book
 on Foundations
of Cryptography 
available from URL http���theory�lcs�mit�edu��oded�frag�html��

Solution to Exercise regarding Zero�Knowledge NP�proofs� An NP�proof system for a
language L yields an NP�relation for L 
de�ned using the veri�er�� On input x � L a perfect
zero�knowledge simulator either halts without output or outputs an accepting conversation 
i�e��
an NP�witness for x��
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� Probabilistically Checkable Proof Systems

When viewed in terms of an interactive proof system� the probabilistically checkable proof setting
consists of a prover which is memoryless� Namely� one can think of the prover as being an oracle
and of the messages sent to it as being queries� A more appealing interpretation is to view the prob�
abilistically checkable proof setting as an alternative way of generalizing NP� Instead of receiving
the entire proof and conducting a deterministic polynomial�time computation 
as in the case of
NP�� the veri�er may toss coins and probe the proof only at location of its choice� Potentially�
this allows the veri�er to utilize very long proofs 
i�e�� of super�polynomial length� or alternatively
examine very few bits of an NP�proof�

��� The De�nition

The Basic Model� A probabilistically checkable proof system consists of a probabilistic polynomial�
time veri�er having access to an oracle which represents a proof in redundant form� Typically� the
veri�er accesses only few of the oracle bits� and these bit positions are determined by the outcome
of the veri�er�s coin tosses� Completeness and soundness are de�ned similarly to the way they
were de�ned for interactive proofs� for valid assertions there exist proofs making the veri�er always
accepts� whereas no oracle can make the veri�er accept false assertions with probability above �

� �

We�ve speci�ed the error probability since we intend to be very precise regarding some complexity
measures��

Additional complexity measures of fundamental importance are the randomness and query
complexities� Speci�cally� PCP
r
��� q
��� denotes the set of languages having a probabilistic check�
able proof system in which the veri�er� on any input of length n� makes at most r
n� coin tosses
and at most q
n� oracle queries� 
As usual in complexity theory� unless stated otherwise� the oracle
answers are always binary 
i�e�� either � or ����

Observed that the �e�ective
 oracle length is at most �r �q 
i�e�� locations which may be accessed
on some random choices�� In particular� the e�ective length of oracles in a PCP
log� �� system is
polynomial�

PCP augments the traditional notion of a proof� An oracle which always makes the pcp�
veri�er accept constitutes a proof in the standard mathematical sense� However a pcp system has
the extra property of enabling a lazy veri�er� to toss coins� take its chances and �assess
 the validity
of the proof without reading all of it 
but rather by reading a tiny portion of it��

��� The power of probabilistically checkable proofs

The PCP Characterization Theorem states that

PCP
log� O
��� � NP

Thus� probabilistically checkable proofs in which the veri�er tosses only logarithmically many coins
and makes only a constant number of queries exist for every NP�language� It follows that NP�proofs
can be transformed into NP�proofs which o�er a trade�o� between the portion of the proof being
read and the con�dence it o�ers� Speci�cally� if the veri�er is willing to tolerate an error probability
of � then it su	ces to let it examine O
log
����� bits of the 
transformed� NP�proof� These bit
locations need to be selected at random� Furthermore� an original NP�proof can be transformed
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into an NP�proof allowing such trade�o� in polynomial�time� 
The latter is an artifact of the proof
of the PCP Theorem��

The Proof of the PCP Characterization Theorem is one of the most complicated proofs
in the Theory of Computation� Its main ingredients are�

�� A pcp
log� poly
log�� proof system for NP � Furthermore� this proof system has additional
properties which enable proof composition as in item 
�� below�

�� A pcp
poly� O
��� proof system for NP� This proof system also has additional properties
enabling proof composition as in item 
���

�� The proof composition paradigm� Suppose you have a pcp
r
��� O
�
���� system for NP in
which a constant number of queries are made 
non�adaptively� to an ���valued oracle and
the veri�er�s decision regarding the answers may be implemented by a poly
���size circuit�
Further suppose that you have a pcp
r�
��� q
����like system for P in which the input is given in
encoded form via an additional oracle so that the system accepts input�oracles which encode
inputs in the language and reject any input�oracle which is �far
 from the encoding of any
input in the language� In this latter system access to the input�oracle is accounted in the
query complexity� Furthermore� suppose that the latter system may handle inputs which
result from concatenation of a constant number of sub�inputs each encoded in a separate

sub�input oracle� Then� NP has a pcp
�
r
�� � r�
s
����� �q
s
����� where s
n�
def
� poly
�
n���

�The extra factor of � is an artifact of the need to amplify each of the two pcp systems so
that the total error probability sums up to at most �����

In particular� the proof system of item 
�� is composed with itself �using r � r� � log� � � q �
poly
log�� and s
n� � poly
log
n��� yielding a pcp
log� poly
log log�� system for NP� which is then
composed with the system of item 
�� �using r � log� � � poly
log log�� r� � poly� q � O
��� and
s
n� � poly
log log
n��� yielding the desired pcp
log� O
��� system for NP �

The pcp
log� poly
log�� system for NP� We start with a di�erent arithmetization of CNF for�
mulae 
than the one used for constructing an interactive proof for coNP�� Logarithmically many
variables are used to represent 
in binary� the names of variables and clauses in the input formula�
and an oracle from variables to Boolean values is supposed to represent a satisfying assignment�
An arithmetic expression involving a logarithmic number of summations is used to represent the
value of the formula under the truth assignment represented by the oracle� This expression is a
low�degree polynomial in the new variables and has a cubic dependency on the assignment�oracle�
Small�biased probability spaces are used to generate a polynomial number of such expressions so
that if the formula is satis�able then all these expressions evaluate to zero� and otherwise at most
half of them evaluate to zero� Using a summation test 
as in the interactive proof for coNP� and

a low�degree test� this yields a pcp
t
��� t
��� system for NP� where t
n�
def
� O
log
n� � log log
n���

�We use a �nite �eld of poly
log
n�� elements� and so we need 
logn� � O
log log n� random bits

for the summation test�� To obtain the desired pcp system� one uses O�logn�
log logn �long sequences over

f�� ���� logng to represent variable clause names 
rather than logarithmically�long binary sequences��

�We can still use a �nite �eld of poly
log
n�� elements� and so we need only O�logn�
log logn � O
log logn�

random bits for the summation test�� All this is relatively easy compared to what is needed in order
to transform the pcp system so that only a constant number of queries are made to a 
multi�valued�
oracle� This is obtained via 
randomness�e	cient� �parallelization
 of pcp systems� which in turn
depends heavily on e	cient low�degree tests�
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Open Problem 
 As a �rst step towards the simpli�cation of the proof of the PCP Characteri�
zation� one may want to provide an alternative 
parallelization� procedure which does not rely on
polynomials or any other algebraic creatures� A �rst step towards this partial goal was taken by
Safra and myself 
see TR!����� of http���www�eccc�uni�trier�de�eccc�� We have constructed
an e�cient low�degree test which utilizes a simple�ine�cient low�degree test which is parallelized
using a new 
combinatorial consistency lemma��

The pcp
poly� O
��� system for NP� It su	ces to prove the satis�ability of a systems of
quadratic equations over GF
�� 
as this problem in NPC�� The oracle is supposed to hold the
values of all quadratic expressions under a satisfying assignment to the variables� We distinguish
two tables in the oracle� One corresponding to the 
�n� linear expressions and the other to the 
�n

�

pure� bilinear expressions� Each table is tested for self�consistency 
via a linearity test� and the two
tables are tested to be consistent 
via a matrix�equality test which utilizes �self�correction
�� Each
of these tests utilizes a constant number of Boolean queries� and randomness which is logarithmic
in the size of the corresponding table�

��� PCP and Approximation

PCP�Characterizations of NP plays a central role in recent developments concerning the di	culty
of approximation problems� To demonstrate this relationship� we �rst note that the PCP Char�
acterization Theorem can be rephrased without mentioning the class PCP altogether� Instead� a
new type of polynomial�time reductions� which we call amplifying� emerges�

Amplifying reductions� There exists a constant � � �� and a polynomial�time reduction f � of
�SAT to itself so that f maps non�satis�able �CNF formulae to �CNF formulae for which every
truth assignment satis�es at most a � � � fraction of the clauses� I call the reduction f amplify�
ing� Its existence follows from the PCP Characterization Theorem by considering the guaranteed
pcp system for �SAT� associating the bits of the oracle with Boolean variables and introducing a

constant size� Boolean formula for each possible outcome of the sequence of O
logn� coin tosses

describing whether the veri�er would have accepted given this outcome��

Amplifying reductions and Non�Approximability� The above amplifying reduction of �SAT
implies that it is NP�Hard to distinguish satis�able �CNF formulae from �CNF formulae for which
every truth assignment satis�es less than a ��� fraction of its clauses� Thus� Max��SAT is NP�Hard
to approximate to within a �� � factor�

Stronger Non�Approximability Results were obtained via alternative PCP Characterizations
of NP� For example� the NP�Hardness of approximating Max�Clique to within N���� 
� � �� was
obtained via NP � FPCP
log� ��� where the second parameter in FPCP measures the �amortized
free�bit
 complexity of the pcp system�

Open Problems regarding various parameters in PCP Characterizations of NP will probably
remain also after the turbulence currently created by works in progress by Hastad and by Raz "
Safra�

��


