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Partial information classes are relaxations

of standard complexity classes where

problems are not solved fully but only in

part
 which turns out to be su�cient in

a number of applications� Truth�table

reductions are a tool from structural

complexity theory used to quantify

the stability and relative di�culty of

complexity classes�

A rich variety of notions studied in the

literature
 including p�selective
 semi�

recursive
 cheatable and approximable

languages to name a few
 are special

cases of the general notion of a partial

information class� As partial information

classes can be represented purely com�

binatorially by so�called families
 all of

the di�erent notions of partial informa�

tion can be compared by comparing

families� In the �rst part of the thesis


the combinatorial properties of families

are studied and as a consequence several

new results on partial information classes

are obtained
 including a generalisation of

the Generalised Non�Speedup Theorem�

In the second part
 the stability and

relative di�culty of partial information

classes are analysed using truth�table

reduction closures� The main result

obtained is
 that these closures may also

be represented purely combinatorially


thus reducing the inclusion problem of

truth�table closures of partial information

classes to �nite combinatorics� Once

more
 an analysis of the combinatorics

yields novel results on the truth�table

closures themselves� We also give a

new proof that all bounded truth�table

closures of the p�selective languages

di�er�
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Abstract

Partial information classes are relaxations of standard complexity classes where prob�
lems are not solved fully but only in part� which turns out to be su�cient in a number
of applications� Truth�table reductions are a tool from structural complexity theory
used to quantify the stability and relative di�culty of complexity classes�

A rich variety of notions studied in the literature� including p�selective� semirecursive�
cheatable and approximable languages to name a few� are special cases of the general
notion of a partial information class� As partial information classes can be represented
purely combinatorially by so�called families� all of the di�erent notions of partial
information can be compared by comparing families� In the �rst part of the thesis�
the combinatorial properties of families are studied and as a consequence several new
results on partial information classes are obtained� including a generalisation of the
Generalised Non�Speedup Theorem�

In the second part� the stability and relative di�culty of partial information classes are
analysed using truth�table reduction closures� The main result obtained is� that these
closures may also be represented purely combinatorially� thus reducing the inclusion
problem of truth�table closures of partial information classes to �nite combinatorics�
Once more� an analysis of the combinatorics yields novel results on the truth�table
closures themselves� We also give a new proof that all bounded truth�table closures
of the p�selective languages di�er�

Zusammenfassung

Teilinformationsklassen sind eine Verallgemeinerung klassischer Komplexit	tsklassen�
bei denen Probleme nicht vollst	ndig� sondern nur zum Teil gel
st werden� Es stellt
sich heraus� da� dies in einer Reihe von Anwendungen ausreichend ist� Truth�Table�
Reduktionen sind ein strukturanalytisches Hilfsmittel� das h	u�g verwendet wird� um
die Stabilit	t und Kompliziertheit von Komplexit	tsklassen zu quanti�zieren�

Viele in der Literatur untersuchte Spielarten der Teilinformation� so zum Beispiel semi�
rekursive� p�selektive� cheatable oder auch approximierbare Sprachen� erweisen sich
als Spezialf	lle der allgemeinen De�nition von Teilinformation� Da Teilinformations�
klassen kombinatorisch repr	sentiert werden k
nnen durch sogenannte Familien� k
n�
nen all diese Arten von Teilinformation verglichen werden� indem man die zugeh
rigen
Familien vergleicht� Untersuchungen der Kombinatorik von Familien im ersten Teil
der Arbeit erm
glichen es� neue Resultate bez�glich der zugeh
rigen Teilinformations�
klassen zu erhalten� Ein solches Resultat ist eine Verallgemeinerung des Generalised
Non�Speedup Theorems�

Im zweiten Teil werden die Stabilit	t und Kompliziertheit von Teilinformationsklassen
mit Hilfe von Truth�Table�Reduktionsabschl�ssen untersucht� Das Hauptresultat lau�
tet� da� solche Abschl�sse ebenfalls rein kombinatorisch beschreibbar sind� Hierdurch
wird das Inklusionsproblem f�r Truth�Table�Abschl�sse auf endliche Kombinatorik
zur�ckgef�hrt� Auch im zweiten Teil ergibt eine Analyse dieser Kombinatorik neue
Resultate bez�glich der Truth�Table�Abschl�sse selbst� Unter anderem ergibt sich ein
neuartiger Beiweis daf�r� da� alle beschr	nkten Reduktionsabschl�sse der p�selektiven
Sprachen unterschiedlich sind�
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Preface

So eine Arbeit wird eigentlich nie fertig� man mu� sie f�r fertig erkl	ren�
wenn man nach Zeit und Umst	nden das m
gliche getan hat�

� Johann Wolfgang von Goethe� Italienische Reise� ����

G
entle reader� Goethe�s words point out a problem you will undoubtedly

have spotted immediately upon taking this thesis into your hands	it is

much longer than I had originally intended� The world of partial information
to which Arfst Nickelsen introduced me� whom I would like to thank once

more for doing so� is a rich and diverse world� I sincerely hope that this text

grew longer than originally anticipated� not so much because I failed to express

myself succinctly� but rather because I tried to give the two main themes of

this thesis	combinatorial representations of partial information classes and of

their truth
table closures	a treatment as thorough as each of them merits� I

hope to reward your reading of this thesis� by giving you some new insights

into an exciting subject�

Motivation and Aims

In computer science� many problems can be solved using divide and conquer

algorithms� A given problem instance is broken up into smaller problems�

which can be decided independently and whose solutions e�ectively solve the

given problem� One motivation for the study of partial information is that

we often do not need to solve all subproblems or that a small fraction of the
solutions may be allowed to be incorrect�

Partial information was �rst used as a theoretical tool in recursion theory� The

earliest de�nition of a notion of partial information is the de�nition of frequency

computations due to Rose 
������ If we represent subproblems by words for

which membership with respect to some language needs to be decided� Rose

considered the situation where for n given distinct words we are required to

decide membership for these words� but are allowed to make up to r mistakes�

If the number of incorrect answers is relatively small� the answers may su�ce

to solve the problem at hand� As a matter of fact� Trakhtenbrot 
����� showed

that for r � n�� deciding a language is no harder than computing partial in�

formation in the recursive case� Phrased di�erently� once we have an algorithm

vi
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that can compute this kind of partial information we can always turn it into

an algorithm that decides the given language� Depending on the problem� this

may be an improvement as it is presumably simpler to �nd an algorithm for

computing �just� partial information than to �nd a decision algorithm�

This thesis presents a general framework for the study of partial information�

which was �rst suggested in De�nition ��� of Beigel et al� 
����a� and put

onto a �rm theoretical foundation by Nickelsen 
����� ������ The basic idea is

to represent partial information combinatorially and to argue in the combina�

torial domain rather than to argue about languages� With the general theory

that has been established for this framework� many questions about partial

information boil down to �nite combinatorial problems� For example� once we
construct a combinatorial representation of Rose�s form of partial information�

Trakhtenbrot�s result becomes an easy consequence of the theory of partial

information�

Combinatorial descriptions of notions of partial information are called families�

Families are made up of pools� which are sets of possible characteristic vectors

for a tuple of words� For example� a pool might contain all bitstrings di�ering

at no more than one position from some �xed bitstring b� If this is a set

of possible characteristic vectors for a tuple of words� then the characteristic

vector of the words is b with an error margin of one bit� Hence Rose�s frequency

computations for r � � can be described by the family of all pools of this form�

Notions of partial information studied in the literature include approximable
or non
superterse languages� cheatable languages� selective languages� easily

sortable languages� as well as cardinality and frequency computations� All of

these	and others	can be described by families and hence the general theory

of partial information applies to them�

The �rst aim of this thesis is to further our understanding of the combinatorial

properties of pools and families and their relationship to the corresponding

notions of partial information�

Once we �x a notion of partial information� all languages for which such partial

information can be computed form a partial information class� Apart from the

problem how partial information classes relate with respect to inclusion and

equality� we will also be interested in their relative di�culty�

A successful approach to the study of the relative di�culty of languages has
been the study of reductions� Relative di�culty can be quanti�ed by examin�

ing which reductions are possible between languages and which are not� For

example� knowing that a language in some partial information class is reducible

to languages in another class with� say� �ve queries� but never with four or less

queries� nicely pinpoints their relative di�culty�

The second aim of this thesis is to demonstrate� that reduction closures of

partial information classes can also be represented combinatorially�

Once representations are available� many reduction closure and reduction hier�

archy problems concerning partial information classes reduce to �nite combina�
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torics� For example� using combinatorial arguments� we can identify the partial

information classes closed under bounded truth
table reductions� As another

example� I give a novel combinatorial proof that the truth
table closures of the

p
selective languages form a strict hierarchy�

Overview and Main Results

This thesis is structured into two parts� The �rst part treats partial informa�

tion classes� while the second part treats their truth�table closures� Both parts

are structured similarly� First� the treated class domains are introduced� par�

tial information classes in the �rst part and their truth
table closures in the

second� next� the class domains are translated into combinatorial domains� The

remaining chapters in each part investigate the structure of the combinatorial

domains� Due to the tight link between class domains and combinatorial do�

mains� all combinatorial results directly re�ect properties of partial information

classes or of their truth
table closures�

Please note� that all notations used in the main text are explained in detail in

the list of notations� starting on page �	
�

Part I � Combinatorial Representations of

Partial Information Classes

� Introduction to Partial Information

This chapter introduces three basic concepts� Pools and families are the ba�

sic combinatorial domains used in this thesis� Cartesian and compositionally

closed function classes are a novel notion used to model the complexity of
computing pools� Putting these two concepts together yields the de�nition of

partial information classes� As applications� we analyse the partial information

complexity of the satis�ability� reachability and circuit value problems�

It is shown� how several notions of partial information studied in the literat�

ure can be described using families� An analysis of the partial information

complexity of the satis�ability problem due to Beigel� Kummer and Stephan

yields that no useful partial information at all can be calculated for this prob�

lem in polynomial time� unless P � NP� Similar but weaker novel results are

obtained for the reachability and circuit value problems�

� Representation of Resource Bounded Partial Information

This chapter establishes a link between the class domain and the family domain

for resource bounded partial information� First� the simple but useful notion of

subset closed families is introduced� A much stronger concept are Nickelsen�s

normal families� which su�ce to produce all partial information classes� A

review is given of recursively presentable function classes� which are used to

model resource boundedness�
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It is shown� that normal families uniquely represent partial information classes�

provided the underlying function class is recursively presentable� This extends

a result of Nickelsen 
����� who considered only polynomial time�

� Structure of Normal Families

Borrowing from linear algebra� this chapter starts with de�nitions of generating

systems� eigenpools and bases� Bases serve as succinct descriptions of normal

families� Next� units are introduced which are sets of pools which generate

the same family� This chapter also treats changing input tuple lengths� which

gives rise to the de�nition of upward translations of families which have been

studied extensively in the literature though not under that name and not in a
uni�ed way�

It is shown� that bases of normal families are almost uniquely determined and
that all bases of a normal family are representative systems of an antichain

in the unit poset� Put together with the upward translation of families� this

result allows to make some progress on the conjecture of Nickelsen 
����� that

inclusion is well�founded on the set of all partial information classes�

� Structure of Stable Families

This chapter makes some progress on the question of stability of families�

Stable families are introduced as the analogue of normal families for unbounded

resources� Hard tuples are introduced as word tuples for which partial informa�

tion is hard to come by� Nevertheless� they can be useful for computing partial

information for other words in the form of hard remainder pools� At the end
of the chapter� all stable �
families are identi�ed�

It is shown� that for any language either no tuple is hard or hard remainder

pools can be computed for all words� As an application� a generalised version

of the Generalised Non�Speedup Theorem is proved�

Part II � Truth�Table Closures of Partial Information Classes

� Introduction to Reductions

After a review of the most important reductions� this chapter introduces a

framework� called ��reductions� for the study of bounded truth
table reduc�
tions� The evaluation types � are sets of Boolean functions�

It is shown� that most notions of query bounded reductions studied in the

literature are ��reductions for appropriate evaluation types �� It turns out

that even query bounded Turing reductions can be modelled by appropriate

evaluation types�

� Representation of Truth�Table Closures

This chapter establishes a link between truth
table closures of partial informa�

tion classes and a special property of pools� namely the cone property� A cone

is a pool whose image under products of Boolean functions lies within a given

family�

It is shown� that the problem� whether a speci�c truth�table closure of some

partial information class is contained in some other class� can be turned into
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a problem concerning the cone property of pools� This result will be called

the Cone Theorem in the following� As applications� some simple closure

properties of partial information classes are established combinatorially� which

have previously been proved directly in the literature�

� Structure of Selective
 Bottom and Top Cones

This chapter treats the question� for which families all selective pools have

the cone property� The basic tool for the description of these families are

walks with bounded change numbers� which are walks on the hypercube B n

where each position may be �bit
�ipped� only a �xed number of times� The

chapter concludes with a translation of the established results to bottom and

top partial information�

It is shown� that the selective pools are all �k�cones exactly over those families�

which contain all walks whose change numbers are at most k� The lengths of

maximal walks with di�erent change numbers di�er� A direct consequence is

that all bounded truth�table closures of the p�selective languages di�er� This

was �rst proved by Hemaspaandra et al� 
����� who used a direct diagonalisa�

tion argument�

� Structure of Cones over Families

This chapter treats the question� which pools are cones over a given family� The

main focus is on the investigation of the cone property of upward translated

families� For bounded truth
table reductions� the cone property of upward

translated families is fully characterised�

It is shown in the �rst section� which partial information classes are closed

under bounded truth�table reductions� The second section shows that ap�

proximable partial information is closed under bounded truth�table reduc�

tions	and the third section shows that this is result is optimal for polyno�

mial time� This latter result is a strengthened version of a result due to

Beigel et al� 
������ who showed that approximable polynomial time is not
closed under truth
table reductions�



Part I

Combinatorial Representations of

Partial Information Classes

� � Was beim Rechnen erfordert werde

Das Rechnen ist die Wissenschaft� Gr
�en zu mehren oder zu mindern und aus be�
kannten unbekannte zu �nden�

Hierzu ist Beurtheilungskraft und Ged	chtnis gleich nothwendig�

Erstere mu� bei jeder Rechnung das Verh	ltnis beurtheilen lehren� in welchem wir
die verschiedenen Dinge� die zu berechnen sind� betrachten und gegeneinander halten
sollen� Das Ged�chtnis hingegen mu� uns helfen� die Zahlen� nach den bekannten
Rechnungsarten zu mindern oder zu mehren�

Beurtheilungskraft bleibt immer der Gegenstand eines denkenden Wesens� das durch
keine Maschine erzeugt wird
 wogegen man dem Ged	chtnis auf mancherlei Art zu
H�lfe kommen kann�

� � Was eine Rechenmaschine leisten k�nne

Hieraus folgt� da� auch bei einer Rechen�Maschine die Anwendung des Verstandes�
im Ordnen der verschiedenen Rechnungs�S	tze� unentbehrlich ist� und da� man sich
daher unter einer dergleichen Maschine kein solches Werkzeug denken d�rfe� welches
f�r sich selbst rechnet und demjenigen� der sich solcher bedient� nichts als die M�he� es
in Bewegung zu setzen� koste
 sondern sich eine solche Maschine vorstellen m�sse� die
auch in ihrer gr
�ten Vollkommenheit� blos ein Erleichterungs�Mittel beim Rechnen
seyn k
nne�

� Johann Paul Bischo	� Versuch einer Geschichte der Rechenmaschine� Ansbach �
��

�
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Introduction to Partial Information

A� C� Jones in his paper �A Note on the Theory of Bo�es��
Proceedings of the National Society� ���

�rst de�ned a Bi�e to be a non�de�nite Bo�e
and asked if every Bi�e was reducible�

C� D� Brown in �On a paper by A� C� Jones�� Bi�e� ���
answered in part this question by de�ning a Wu�e to be a reducible Bi�e

and he was then able to show that all Wu�es were reducible�

� A
 K
 Austin� The Mathematical Gazette� ����������� ����

C
onsider a language and let�s say �ve words� For the decision problem� we are
asked to decide which of these words are elements of the language	possibly

within limited time or space� For instance� if the decision problem can be solved

in deterministic polynomial time� the language is an element of the complexity

class P�

Many interesting languages fail to be decidable in polynomial time� Still� for a

given language and the �ve words we might be asked to compute only a set of

possible values for their characteristic string� such that the correct value is in it�

Such a set will be called a pool and it represents some partial information about
the language and the words� Intuitively� computing partial information appears

to be simpler than deciding a language and indeed� as shall be shown� this

weaker problem can be solved for more languages than the decision problem�

This chapter is divided into �ve sections� The �rst section presents the formal

de�nitions of pools and families which are the basic combinatorial descriptions

of partial information� The second section introduces Cartesian and composi�

tionally closed function classes which are used to describe the complexity of

computing pools� In the third section� we put together the introduced concepts

and de�ne partial information classes�

As an example application of these notions� the fourth section studies the par�

tial information complexity of the satis�ability problem� Partial information

turns out to be rather hard to compute for NP
complete problems� Beigel�

Kummer and Stephan 
����� proved Theorem ���� below� which states that

for them no useful partial information at all can be computed in polynomial

time� unless they are decidable in deterministic polynomial time�

�



Section ��� De�nition of Pools and Families �

To conclude the chapter� the �fth section presents two novel theorems which

treat the partial information complexity of two problems inside P�

Please note� that all notations used in the main text are explained in detail in

the list of notations� starting on page ����

��� De�nition of Pools and Families

In this �rst section� De�nition ��� de�nes a pool to be a subset of B n and a

family to be a covering of B n	these two basic de�nitions are due to Arfst

Nickelsen and partly myself� The rest of the section presents numerous ex�

amples of families whose partial information classes have been studied in the

literature� All of these families are studied in detail in Nickelsen�s PhD thesis�
At the end of the section� Table �
� on page � gives an overview of the families

referred to in this thesis�

When computing partial information we will want to specify what kind of par�

tial information	and hence which pools	we are interested in� For example�

for any language and any n words the pool B n of all bitstrings of length n ne�

cessarily contains their characteristic string	so the pool B n represents rather

useless partial information� A computed pool will be required to be an element

of a set of allowed pools� Following Nickelsen 
����� ����� such a set will be

called a family�

In formal terms� the problem of calculating a given kind of partial information

described by a family F is� Given a language L� is it possible to compute

for any n given words w�� � � � � wn a pool P � F such that the characteristic
string �L�w�� � � � � wn� is in P � If it is possible� we shall write L � REC�F 	�
if the pool can even be computed in deterministic polynomial time� we shall

write L � P�F 	�

Not every set of pools quali�es as a family� The trouble is� we must compute

a pool such that the characteristic string of the given words is in it� Obviously�

this is only possible if there exists such a pool in the set� If is does not� we

cannot compute it� Hence� a set of n
pools is called a family only� if for every

bitstring of length n there exists a pool in the set that contains this bitstring�

i� e�� if the set forms a covering of B n �

�
� De�nition �Pool� Family�
An n�pool is a subset of B n � An n�family is a covering of B n �

For a language L and words w�� � � � � wn we will say P is a pool for w�� � � � � wn

and L� if �L�w�� � � � � wn� � P � In this case the pool represents partial informa�

tion about the words with respect to the language�

�
� Notation �Index of Families�
We write special n�families in capital letters with the number n written as an index


like in seln� The number n will be called the family�s index�
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The index notation is di�erent from the notation used in other publications which deal
with families� There� the index is written in front of the family� like in ��sel� which can
then easily be read as �two�selective�� Unfortunately� most interesting families have
two parameters� namely the index and another variable parameter� The notation
size���� clearly states that the index is �ve and some size parameter is two�while in
the notation ��� ���size it is much harder to remember what is what�

� � � �� �� �� �� ��� ��� ��� � � �Language L

� � � � � � � � � � � � �Characteristic string

w�� w�Input words

� �Characteristic string

Family

�� ��

�� ��

Figure ���
Computation of partial information using pools and families� In the top line�
the tally language L � f�n j n � N g is indicated by circles around its elements�
For the two input words w� � � and w� � �� their characteristic string is
�L�w�� w�� � ��� This string is an element of the two pools shown in bold�
These two pools together with a third pool f��� ��� ��g form a covering of B �

and hence a family�

The following Examples ���� ��� and ��� demonstrate three di�erent ways of

de�ning interesting families for a given index n� All of the families in these

examples were introduced in Nickelsen 
������ In the �rst example� the sizes

of pools are restricted in various ways� Next� we can de�ne families in terms

of order theoretical and topological properties of B n �

The set B n is a Boolean algebra with the bitwise and� bitwise or and the bitwise

negation as operations� Every Boolean algebra induces a partial ordering of

its elements	for B n this results in what will be called the pointwise ordering�

de�ned by b �pw c� i� b�i� � c�i� for all positions i�

Topological properties are induced by the Hamming distance d�b� c� between
two bitstrings b and c� de�ned as the number of bits where these bitstrings

di�er� The Hamming distance yields the Hamming spaces �B n �d�� which are

metric spaces visualised as hypercubes in Figure �
� on the next page�

�
� Example �Size families�
The most natural way to restrict pools in families is to restrict their size� For

a size s � � we de�ne sizen�s� 
� fP � B n j jP j � sg as the set of all n
pools
which contain a maximum of s bitstrings�

Among the size families� some families are special� First of all� sizen��
n��� is

the largest family which does not contain the pool B n which renders a family

useless� This largest family will be denoted approxn�
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Figure ���
The Hamming spaces B � � B � and B � visualised as hypercubes� The length
of the shortest path between two vertices is their Hamming distance� Arrows
indicate the pointwise ordering� In the left algebra� the vertices connected by
the bold arrows form a maximal chain� Together with the other maximal chain�
these two pools make up the maximal pools of the selective family� Inside the
middle algebra� the closed ball of radius � and diameter � around ��� is shown�
To the right� a pool of diameter � is shown�

Some especially well
behaved families	despite their name	are the cheatable
families� de�ned by cheatn 
� sizen�n�� The reason for the unsavoury name

is explained in a small anecdote on page �� after Lemma �����

Size families are important for the analysis of partial information as they often

give a ��rst impression� of the complexity of a problem� As we will often be

interested in the smallest size family that contains a given family� the following

de�nition introduced by Ronneburger 
����� is useful�

�
� De�nition �Maximum Pool Size�
For a family F let �F denote the size of the largest pool in F �

The next example introduces the selective families� whose partial information

classes	which habe been most in�uential	were introduced by Alan Selman

in �����

�
� Example �Selective families�
Recall that a chain in a partial ordering is a linearly ordered subset� The

selective families seln are the sets of all chains in �B
n ��pw�� The two maximal

chains in B � are f��� ��� ��g and f��� ��� ��g� If one of these maximal chains is

a pool for two words� one of the two bitstrings �� and �� is excluded as possible
value of their characteristic string� Examples ���� and ���� will demonstrate

how this information can be put to good use�

�
� Example �Topological families�
The diameter of a subset of a metric space is the supremum of the distances

of the subset�s elements� As B n is a metric space when equipped with the
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Hamming metric� we can talk about the diameter of a pool� We will be espe�

cially interested in the family consisting of all pools of maximal diameter �� A
pool of diameter � cannot contain more than two di�erent bitstrings and these

cannot di�er at more than one position� As the next chapter will show that

this family is the minimal non
trivial weakly normal family of index n� we call
it weakminn�

Alternatively� we can also consider pools which are closed balls in the metric

space� The closed ball around a bitstring b with radius r is the set Br�b� 
�
fc � B n j d�b� c� � rg� The set of all pools contained in closed balls of radius r
around bitstrings in B n forms the frequency family freqn�r��

Table ���
List of important families� De�nitions of many more families can be found
in Nickelsen ������ where all of the below families are studied in detail� Recall
that Br�b� is the closed ball of radius r around the bitstring b� An eigenpool is
obtained from a pool by removing all constant and all duplicate columns�see
De�nition ��� on page �� for details�

Family Property of its Pools

approxn Non
trivial� i� e�� not B n �

bottomn Eigenpool contained in B���
m� for appropriate m�

bottomn�s� Eigenpool contained in Bs��
m� for appropriate m�

cheatn Size bounded by n�

cosmcn Does not contain B���
n��

freqn�r� Contained in a closed ball of radius r�

minn Eigenpool is B or empty�

seln Chain in B n �

sizen�s� Size bounded by s�

smcn Does not contain B���
n��

topn Eigenpool contained in B���
m� for appropriate m�

topn�s� Eigenpool contained in Bs��
m� for appropriate m�

weakminn Diameter bounded by ��

��� De�nition of Cartesian and Compositionally Closed

Function Classes

Which complexity classes can be relaxed to partial information classes� Asked

di�erently� what complexity classes can be considered for the complexity of

computing pools� In the literature� only deterministic polynomial time and

recursiveness have been considered� It seems natural enough to apply the gen�

eral concept of partial information to other classes as well like� say� logarithmic

space� In his PhD thesis� Nickelsen pointed out that most results on partial

information hold if we replace �polynomial time� with other complexity classes�
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In this section� Cartesian and compositionally closed function classes� c�c�c�

in short� are proposed as a new general model of computation for partial in�

formation� Example ��� demonstrates that not only FP� but also many other

well
known function classes are Cartesian and compositionally closed�

To compute partial information from a family F � we would like to use func�

tions of the form f 
 ����n � F � The idea is that we can compute partial

information from the family F with the function f for a language L� if for all
words w�� � � � � wn we have �L�w�� � � � � wn� � f�w�� � � � � wn��

The complexity of computing pools can be described by specifying a function

class from which the function f may be drawn� Unfortunately� allowing the

functions to be drawn from arbitrary function classes inhibits our proving
anything useful about partial information� What we need are basic closure

properties of the function classes� De�nition ��� below lists the properties we

will need� Fortunately� these turn out to be very basic indeed	you should

have no problem proving that your pet complexity class satis�es them�

Common function classes� like the class of all functions computable in polyno�

mial time or the class of all recursive functions� are typically given as a class

of functions mapping words to words� In order to use these standard classes

conveniently we will consider functions of the form f 
 �� � �� as elements of

our function classes� instead of functions of the form f 
 ����n � F �

Naturally� we then have to be able to encode a tuple of words into a single

word as well as to encode a pool into a word� For the encoding of word tuples�
for each n we use a function h � � � � � � � i 
 ����n � �� implemented by writing

its parameter words alongside each other� but doubling all bits in the words

and inserting a �� stop sequence between words� Tuples can be decomposed

using the projection functions pi 
 �
� � ��� which map tuples to their i
th

component and ill
formed words to the empty word� An n
pool can easily be

coded as a word by writing its bitstrings alongside each other�

�
	 De�nition �Cartesian and Compositionally Closed Function Class�
A function class FC of functions from �� to �� is Cartesian and compositionally

closed
 c�c�c� in short
 if

� for all f� g � FC we have f 	 g � FC 
 where �f 	 g�
�
hu� vi

�

�

�
f�u�� g�v�

�
and

�f 	 g��w� 
� �
 if w codes no pair of words�

� for all f� g � FC we have f 
 g � FC 


� we have FL � FC �

�
� Lemma �Closure under Tupling�
Let FC be c�c�c� Then for all f� g � FC we have hf� gi � FC � where hf� gi �w� 
�
hf�w�� g�w�i�

Proof� The function d 
 �� � �� with d�w� 
� hw�wi is in FC as it is clearly

computable in logarithmic space� Hence if f� g � FC � by the closure properties

�f 	 g� 
 d � FC � But �f 	 g� 
 d � hf� gi�
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�
� Example �Logarithmic and polynomial space are c
c
c
�
The class FL of functions computable in logarithmic space is c�c�c� The only

di�culty lies in proving that the composition of two functions f� g � FL is

still computable in logarithmic space� We cannot simply compute f�w� and
then use g to compute g�f�w��� as the output word f�w� may have polynomial

length and hence a machine that computes g 
 f this way would have to re�

member a polynomially long temporary string	which is clearly unacceptable

for logarithmic space� The idea� see Proposition ��� of Papadimitriou 
�����

for details� is not to remember this string at all� Instead� whenever the simu�

lation of g needs some bit of the word f�w�� we simply recalculate this single

bit� From a practical point of view this appears to be a very ine�cient way to
compute g 
 f � however� it is very e�cient with respect to the space used�

Polynomial space is also c�c�c� provided that we limit it to functions whose

output has length polynomial in its input� If we do not add this limitation� then

the function class would not be closed under composition� as the function f
which maps a word w to �jwj many ��s is then computable in polynomial space�
while the function f 
 f which maps w to ��

jwj
many ��s is not�

Considering only functions from �� to �� makes several arguments easier in the

following� but it has the drawback that we must di�erentiate between a pool

and its coding� The following notation is intended to remedy this problem�

�
�
 Notation �Pools as Results of Function Application�
For a function f 
 �� � �� and words w�� � � � � wn we write f�w�� � � � � wn� for the
pool coded by the bitstring f

�
hw�� � � � � wni

�
�

��� De�nition of Partial Information Classes

Pools and families describe notions of partial information� Cartesian and com�

positionally closed function classes model the complexity of computing pools�

Putting them together yields partial information classes which were �rst pro�

posed by Beigel et al� 
����a� for the recursive case and transferred to polyno�
mial time by Nickelsen 
������

�
�� De�nition �Partial Information Class�
Let FC be c�c�c� and let F be an n�family� The partial information classC �F 	 over
F and FC consists of all languages L for which there exists a function f � FC
such that for all words w�� � � � � wn � �� we have

�L�w�� � � � � wn� � f�w�� � � � � wn� � F �

One might wonder why we write C �F 	 instead of perhaps FC �F 	� The notation is
intended to emphasise that although we need a function class to compute pools� a
partial information class contains languages� not functions� However� one should keep
in mind that the de�nition uses function classes �internally��

Sometimes� we will also consider the situation where we are only asked to

compute pools for distinct words for some language L� Following Nickelsen�
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this case will be denoted L �Cdist�F 	� Intuitively� this appears to be marginally

easier than computing pools for any words and indeed� there are families F for

which there exist languages which are an element of Cdist�F 	 but not of C �F 	�
A proof for this claim will have to wait till the next chapter which studies the

separation of partial information classes in detail�

The next three examples present three special cases of partial information

classes which are fundamentally di�erent in many regards� as will be proved

peu � peu in the following three chapters�

�
�� Example �Dedekind cuts are selective� but not necessarily recursive�
Consider a linear ordering � of �� which is decidable in polynomial time� A

typical such ordering is the lexicographical or dictionary ordering �lex of ���
A non
empty set D � �� is called a Dedekind cut of a linear ordering �� if
u � v � D always implies u � D� see Figure �
��
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Figure ���
Dedekind cut induced by the square root of ���� The bitstrings above the
line are mapped to the rational numbers below the line� The lexicographical
ordering of the bitstrings corresponds to reading the bitstrings from left to right�
The bitstrings in the Dedekind cut for ��

p
� are all those bitstrings which are

left of this number� Note� that there exists no bitstring which is interpreted
as ��

p
� directly�

Recall that the selective family sel� is the set of all chains in B
� � Selman 
������

Theorem � page ���� proved that every Dedekind cut of the lexicographical

ordering is in P�sel�	� To see this� consider any two words u and v and a

machine that checks u �lex v� If u �lex v� then if v � D so is u � D as

D is a Dedekind cut� In this case� it is not possible that �D�u� v� � ��� Thus�

f��� ��� ��g is a pool for u and v� if u �lex v� Likewise� if v �lex u then the

set f��� ��� ��g is a pool for u and v� This shows that for any two words u and v
the machine can calculate in polynomial time a pool for these words and hence

there exists a function computable in polynomial time that maps any pair of

words to a pool from sel� for them� But then by de�nition D � P�sel�	�

One can map �� in a natural way into the interval ��� �� by mapping for example

���� to ������ in binary or �����
 in decimal� By a standard argument from

calculus� see for example Proposition ��� of Forster 
������ every real number

in the interval ��� �� is the supremum of the image of some Dedekind cut� which
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shows in turn that there are uncountably many Dedekind cuts and thus P�sel�	
is not recursive�

A Dedekind cut of the lexicographical ordering is also called a standard left cut in
the literature� The more general left cuts have been used to study the computational
complexity of real numbers� see for example Selman ������� where it is also shown
that standard left cuts are in P�sel�	� However� the original idea for this proof came
from McLaughlin and Martin who showed� see Jockusch ������� that every Dedekind
cut is semirecursive� i� e�� in REC�sel�	� As we just saw� their construction works just
as well for polynomial time�and also for logarithmic space for that matter�

�
�� Example �Computing partial information for closed chains�
The notion of a Dedekind cut can be generalised� by replacing linear orderings

with partial orderings� For a partial ordering � of �� decidable in polynomial

time� we can still consider languages L which have the property that u � v � C
implies u � C� As pointed out below� such languages are closed sets in a natural
topology on the partial ordering and will hence be called closed languages�

For a closed language and two words u and v we can easily produce a pool

from the selective family� if u � v or v � u� Unfortunately� if the words are

incomparable with respect to the partial ordering� either word may or may not

be an element of the language� However� if we restrict the languages to chains�

then for incomparable words at most one word can be an element of a chain�

This can be expressed by asserting that f��� ��� ��g is a pool for these words�

To sum up� all closed chains are elements of P�sel� �
�
f��� ��� ��g

�
	�

An important canonical example of a partial ordering of words is the pre�x

ordering ����v� which is best envisioned as a large tree with the empty word

as root� see Figure �
� on page ��� The in�nite closed chains in this tree are
exactly its branches� Such branches will be treated in more detail in Section ����

where we prove that there exist branches which are not selective�

The languages just introduced are called closed because they are� indeed� closed sets
in a topology T� over the set 
�� More precisely� on a partial ordering �S��� we de�ne
a topology �S� T�� as follows� A subbasis is given by all sets of the form fy j x � yg
for some x � S� Then� a closed set in this topology is a set for which x � y � S
implies x � S�

The partial information classes treated in the two previous examples were not

recursive� While this may appear to be a bit alarming� it turns out that these

classes are not as large as it may seem	for example in the next section we
will show that neither of them contains NP
hard languages� unless P � NP�

The next example presents a more well
behaved partial information class	the

minimum non
trivial polynomial time partial information class� Despite having
been introduced by Nickelsen 
����� as a spin
o� of the combinatorial theory

of partial information� it appears to be interesting in its own right�

�
�� Example �But one polynomial languages�
Let B be the �
family of pools of diameter �� i� e�� let B �

�
f��� ��g� f��� ��g�

f��� ��g� f��� ��g
�
� The family contains all pools consisting of pairs of bitstrings

which agree at one position and di�er at the other� Let L � Pdist�B	 and let
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u and v be di�erent words� Then� by de�nition� it is possible to compute

in polynomial time a pool from B for these two words� In such a pool� the

bitstrings agree on one position� Hence� either �L�u� or �L�v� is actually

computed�

Consider a constant number of distinct words w�� � � � � wn� Using L � Pdist�B	
we can compute either �L�w�� or �L�w��� For the word whose characteristic

value we failed to compute� assume it to be w�� we compute the characteristic

value of either �L�w�� or �L�w��� Next� we couple the failed word with w� and

so on� After n steps� all characteristic values but one will have been computed�

For any �nite set of words we can decide all words but one in time polynomial

in the total length of these words� Because of that� such a language will be
called but one in P�

But one polynomial languages are recursive� This will follow from the theory

established in Chapter �� but can also easily be seen directly� For a given

word u simply ask more and more words v� Sooner or later the characteristic
value of u will be output� and if it is never output� hardwire this value and the

values of all other v become known instead�

Families describe notions of partial information combinatorially� Unfortunately�

some concepts studied in the literature cannot be described directly by a single
family� For example� while the concept of being n�approximable as introduced

in Beigel et al� 
����� is directly represented by the family approxn� the con�

cept of being approximable is not represented by a single family� A language

is called approximable� if it is n
approximable for some su�ciently large n�
As every n
approximable language is also �n � ��
approximable� a language

is approximable� i� it is in P�approxn	 for almost all n� Like things happen

for many other notions of partial information studied in the literature� A lan�

guage is cheatable� if it is n
cheatable for almost all n� easily countable� if it is

easily n
countable for almost all n� and so forth� This motivates the following

suggestive notation�

�
�� Notation �Families Without an Index�
For families fam�� fam�� fam�� � � � a language is in C �fam	
 if it is in C �famn	 for
almost all n�

As C �fam	 �
S
m�N

T
n�mC �famn	� the notation actually describes the set algebraic

limes inferior of the sequence C �fam�	�C �fam�	�C �fam�	� � � � of classes�

��� Computing Partial Information for Satis�ability

This section examines how much partial information can be computed for the

satis�ability problem� which is an NP
complete problem by Cook�s Theorem�

It turns out� that it is rather hard to compute	unless P � NP� it is not

possible to compute any useful partial information about any NP
complete

problem�
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Stated more friendly� for many languages being able to compute useful partial

information implies being able to decide the language� The partial information

can be �boosted� to full information� using some clever algorithms�

This section is divided into four examples� Each example uses less partial in�

formation than the previous one� While the �rst example was already included
in the very �rst paper on p
selective sets� see Selman 
������ the last and most

powerful example is due to Beigel et al� 
������

�
�� Example �Satis�ability is not p�selective� unless P � NP�
Assume� that for the satis�ability problem we can compute partial information
from the selective family in polynomial time� i� e�� assume SAT � P�sel�	� We

claim� that we can then decide satis�ability in deterministic polynomial time�

Consider some word w which is interpreted as a formula 	� We must compute

�SAT�w� in deterministic polynomial time� i� e�� we must check if 	 is satis�able�

Starting from 	 we check if 	 contains at least one variable x� If not� then 	
can be evaluated in polynomial time and we are done� Otherwise� we construct

two new formulas 	� and 	�� where we replace all occurrences of x inside 	
with � and � respectively�

Assuming SAT � P�sel�	� we can compute selective partial information for the

two formulas 	� and 	�� More precisely� we can compute a pool P from sel�

with �SAT�	�� 	�� � P � Such a pool excludes 
at least� one of the two bit�
strings �� and ��� Assume that the �rst bitstring is excluded	the other case

is symmetric� Spelled out� this means� �It is not possible� that the formula 	�
is unsatis�able� but 	� is satis�able�� As 	 is satis�able� i� either 	� or 	� is

satis�able� we conclude that 	 is satis�able� i� 	� is satis�able�

Using the postulated selectivity of satis�ability we have reduced	in deter�
ministic polynomial time	the satis�ability problem for the formula 	 to the

satis�ability problem for the formula 	� which has one variable less than 	�
Iterating this reduction yields a polynomial time algorithm for deciding satis�

�ability� Hence� we proved the following Theorem � of Selman 
������

�
�	 Theorem
If SAT � P�sel�	 then P � NP�

�
�� Example �Satis�ability is neither selective nor top� unless P � NP�
In the previous example� we allowed only selective pools to be output� However�
there is another pool which would provide us with useful information� namely

the pool f��� ��� ��g� This pool is missing the bitstring �� only� If this is a pool

for the formulas 	� and 	� from the last example� then we know that at least

one of the two formulas is satis�able and hence 	 is satis�able�

If SAT � P�sel� � f��� ��� ��g	 then P � NP�

�
�� Example �Satis�ability is not COSMC� unless P � NP�
The idea of the previous example can be extended further� Starting from 	 we

get two shorter formulas 	� and 	� such that 	 is satis�able� i� either of these

two formulas is satis�able� Next� from 	� we produce two new even simpler
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formulas 	�� and 	�� by substituting another variable with � and � respectively�

Likewise� from 	� we produce 	�� and 	��� In the four resulting formulas� we

substitute a further variable� yielding eight formulas� We break the expansion

when we either no longer have any variables to substitute or if in some level

we exceed a �xed number of n formulas� At any point� the original formula 	
is satis�able� i� at least one of the generated formulas is satis�able�

Assume that we know that some generated formula 	b has the property that it

is not the only satis�able formula generated� Phrased di�erently� assume that

either 	b is not satis�able or� if 	b is satis�able� so is another of the formulas�

In any case� we can simply ignore the formula 	b� because 	 is satis�able� i�

at least one formula other than 	b is satis�able�

What we need is a procedure that produces the index b of a generated for�

mula 	b such that 	b is not the only satis�able formula� This can be expressed

in the framework of partial information as follows� Assume that it is possible

to compute for any n formulas a pool which misses at least one bitstring of

the form ������ then the position of the � in the missing bitstring denotes the

index of a formula which is not the only satis�able formula� Hence� under this

assumption we can always reduce more than n formulas under consideration
to only n formulas� It is now quite easy to extend this to an algorithm which

decides satis�ability in deterministic polynomial time�

To sum up� consider the closed ball B���
n� of radius � around the bitstring �n

in the Hamming space B n � This pool contains all bitstrings of length n which

have at most one �� The algorithm just described will work �ne� as long as

the closed ball is not output� because then we do not know which formula we

should drop�

We are interested in the family of all pools which do not contain B���
n�� The

complementary notion� i� e�� the family of all pools which do not contain B���
n��

has been studied in the literature under the name strongly membership com�

parable� see De�nition ��� of K�bler 
������ We will denote the families� which

describe the classes of strongly membership comparable languages� by smcn�

This motivates the name cosmcn for the family of all pools which do not

contain B���
n��

Recalling from Notation ���� that P�cosmc	 is the union of all P�cosmcn	� we
just argued�

If SAT � P�cosmc	 then P � NP�

The argument just given works for languages other than SAT� too� Actually we only
used the property of SAT that for any word w we �nd �simpler� words w� and w�
such that w is in SAT� i� either of the simpler words is in SAT� This property is
called the disjunctive self�reducibility of the satis�ability problem
 and we call an
arbitrary languageL disjunctively self�reducible� if for all wordsw we can compute�in
deterministic polynomial time�two shorter words u and v such that w is in L i� either
u or v is in L� For the below corollary� which is due to Hoene and Nickelsen �������
note that cheatable pools never contain the closed ball B���

n��
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�
�
 Theorem
All disjunctively self�reducible languages in P�cosmc	 are in P�

�
�� Corollary
All disjunctively self�reducible languages in P�cheat	 are in P�

�
�� Example �Satis�ability is not approximable� unless P � NP�
This concluding example presents Theorem ��� of Beigel et al� 
����� with a

slightly modi�ed argument�

We now only assume� that the satis�ability problem is approximable� i� e�� we

assume SAT � P�approxn	 for some n� Recall� that this means that for any

n words we can exclude at least one of the �n possible characteristic strings�

Basically� we will try to reduce this case to the idea of the previous example�
Among a set of formulas we will try to �nd one formula which is not the only

satis�able formula� The basic di�erence is� that we now start the elimination

process� not when we have more than n formulas but only if we have more

than �n formulas� Note that n and hence �n are constants�

Assume that we have constructed �n formulas 	� to 	�n � We now try to �nd
one formula which is not the only satis�able formula among them� Construct

a set S� which contains the �rst half of the formulas� Next� construct a set S�
which contains the �rst quarter and the third quarter of the formulas� Let S�
contain the �rst� third� �fth and seventh eighth of the formulas� In general�

let Si contain all those formulas whose index�s i
th bit is �� For each of these

n sets� let 
i denote the logical or of all formulas in Si� For example� we have


� � 	� � � � � � 	�n�� �

Assuming that the satis�ability problem is n
approximable� we can compute

a non
trivial pool for the n formulas 
�� � � � � 
n� One bitstring b is excluded
for the characteristic string of these formulas� We claim that this bitstring b
induces a formula 	i which is not the only satis�able formula� Here� the index i
is given by the index of the formula 	i which is contained in all Sk where

b�k� � � and is not contained in all Sk where b�k� � ��

To prove this claim� for the sake of contradiction assume that 	i is the only

satis�able formula� Then� in a set Sk with 	i � Sk there would be a satis�able

formula and hence 
k would be satis�able� Likewise� in a set Sk with 	i 
� Sk
there would be no satis�able formulas and hence 
k would not be satis�able�

This would imply that indeed �SAT�
�� � � � � 
n� � b� which is impossible�

As has been shown� we can still apply the algorithm of the previous example�

This proves the en suite Theorem ��� of Beigel et al� 
������

�
�� Theorem
If SAT � P�approx	 then P � NP�
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P

NP
complete

NP

REC

P�approx	

P�sel	

Pdist�weakmin	

Figure ���
Class review for the results presented in this chapter� Assuming P �� NP�
by Theorem ���� no NP�complete problem is approximable� Examples ����
and ���� show that P�sel	 is not recursive while Pdist�weakmin	 is�

��� Computing Partial Information for

Reachability and Circuit Value

This last section proves two new theorems intended to demonstrate that the

usage of partial information in complexity theory need not and perhaps should

not be limited to the polynomial time case as has generally been done in the

literature� Partial information inside P is just as lively as outside�

The reachability problem is the following� Given a directed graph and two

vertices s and t� does there exist a path from the �rst vertex to the latter�

This problem is NL
complete� see Theorem ���� of Papadimitriou 
������ The
circuit value problem is this� Given a circuit without input gates and with a

single output gate� what is its value� This problem is P
complete� as show in

Ladner 
������

How much partial information can be calculated for these problems� Just as

in the previous section� partial information turns out to be hard to come by

unless certain complexity classes coincide� The other way round� some partial

information can be boosted to full information for these two problems�

The �rst theorem states that we cannot compute selective partial information

e�ciently in parallel for the circuit value problem unless NC � P� The second

states that the reachability problem is not selective in logarithmic space unless

L � NL� Special thanks go to Arfst Nickelsen for pointing out that one can

use the Immerman
Szelepcs�nyi Theorem here�
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�
�� Theorem
If CIRCUIT�VALUE � NC�sel�	 then NC � P�

Proof� Assume CIRCUIT�VALUE � NC�sel�	� Starting from a word w� inter�
preted as a circuit C without input gates� we construct the negated circuit C �

by adding a negation gate at the output� Then� we compute a selective pool P
for C and C �� As exactly one of the two circuits evaluates to true and as there

is exactly one bitstring in P with exactly one �� the pool P tells us which

circuit evaluates to true� Hence� CIRCUIT�VALUE � NC�

The class NC is not used in any particular way in the proof and the theorem also
holds if we replace NC by� say� logarithmic space� The above formulation is simply a
�weakest precondition� formulation�

�
�� Theorem
If REACHABILITY � L�sel�	 then L � NL�

Proof� Assuming REACHABILITY � L�sel�	� we argue that REACHABILITY is
in L� Let G � �V�E� be a graph and let s and t be vertices from V � We must

decide	in logarithmic space	whether t is reachable from s�

By the Immerman
Szelepcs�nyi Theorem� the unreachability problem is in NL

via some non
deterministic machineM � Let GM �G� be the con�guration graph

of the machine M on input G� By de�nition of the unreachability problem� the

accepting state is reachable from the initial state� i� there exists no path from

s to t in G� Note that GM �G� has polynomial size�

Hence� if t is reachable from s in G� then G � REACHABILITY and GM �G� 
�
REACHABILITY and the other way round� if t is not reachable from s� then
G 
� REACHABILITY and GM �G� � REACHABILITY� In either case� the charac�

teristic string of the tuple
�
G�GM �G�

�
contains exactly one ��

We compute a selective pool for
�
G�GM �G�

�
� As this pool contains only one

bitstring which contains exactly one �� we know which one is correct� Hence�

we can decide REACHABILITY in deterministic logarithmic space�

Bibliographical Notes

Partial information was �rst studied in recursion theory�although not under that
name� Recursive frequency computations were introduced by Rose already back
in ����� However� the most in�uential form of partial information�namely select�
ivity�was introduced by Jockusch in his doctoral dissertation� He introduced semi�

recursive languages which are exactly the languages in REC�sel�	� Naturally� the
original de�nition of semirecursive languages did not use the framework of pools and
families� Rather� semirecursiveness was originally de�ned as follows�

De�nition ��� from Jockusch ����	
� A set of natural numbers A is
semirecursive if there is a recursive function f of two variables such that
for every x and y

� f�x� y� � x or f�x� y� � y and

� �x � A or y � A� �� f�x� y� � A�
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Due to the success in distinguishing reduction closures of the recursively enumerable
sets� Selman introduced the notion of the p�selective languages� which are exactly
the languages in P�sel�	� The original de�nition is a direct adaption of Jockusch�s
de�nition�

De�nition from Selman �����
� Let 
 be a �nite alphabet� A set A�
A � 
�� is p�selective if there is a function f � 
� �
� � 
� so that

� f is computable in polynomial time�

� f�x� y� � x or f�x� y� � y� and

� x � A or y � A �� f�x� y� � A�

Polynomially selective languages have since been studied extensively� starting with
Selman �����a�b�� Especially their di�erent reduction closures have been investi�
gated�for details please refer to the second part of this thesis� especially Chapter  �

Later on� many notions were proposed which can be �tted into the framework of
partial information classes� In his PhD thesis Richard Beigel introduced the notions
of cheatable and non�p�superterse or approximable languages
 Hoene and Nickelsen
introduced the easily countable languages in ����
 Kummer and Stephan adopted
Trakhtenbrot�s frequency computations to the polynomial case in ����� For many
more examples� please refer to Nickelsen �������

The �rst steps towards a uni�ed treatment of partial information were taken in
Beigel et al� ����!a� where the notion of strongly D�verbose languages was introduced�
which corresponds to REC�D	� These ideas were further developed by Nickelsen
���� � ������ While the de�nition of pools and families� De�nition ��� in this thesis�
is exactly the same as in Nickelsen�s PhD thesis� in Nickelsen�s ��� paper a set of
pools is called a family only� if it is a covering of B n and all its pools are maximal�

De�nition ���� of partial information classes is more general than the corresponding
De�nitions ��� to ��� in Nickelsen ������� where only P and REC are studied� Nickel�
sen pointed out quite correctly that the adaption of the concept of partial information
to other function classes is often trivial� However� for some more exotic complexity
classes like linear space as opposed to quadratic space� the de�nition of c�c�c� function
classes helps to quickly decide whether the basic results on partial information really
apply�

In Theorem ����� which states that disjunctively self�reducible languages in P�cosmc	
are already in P� the families cosmcn may be replaced by several other families
and the claim still holds� Many such other families can be found in Hoene and
Nickelsen ������� However� Theorem  �� of Beigel et al� ������ shows that in some
relativised world the family cosmc� cannot be replaced by approx��

While the usage of partial information to decide the satis�ability problem was already
proposed by Selman in the same paper where he introduced the p�selective languages
�Selman� �� ��� to my knowledge partial information has not been used to investig�
ate the complexity of problems in P� Especially� Theorem ���!�which states that
no NL�complete problem is selective in logarithmic space unless deterministic and
non�deterministic logarithmic space coincide�has not been studied before�

To conclude� I would like to point out that the de�nition of partial information based
on pools and families is often more �ne�grained than the original de�nitions� For
example� approximable and cheatable languages can also be de�ned in terms of query
limited reductions� In the following de�nitions� FAk is the characteristic function of A
extended to k input words� i� e�� �kA in the notation of this text� The set PFAk�T
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contains all function computable in polynomial time with k adaptive queries to the
language A�

De�nition ��� from Beigel �����
�

� A set A is k�query p�terse if FAk �� PFA�k����T�

� A set A is p�terse if A is k�query p�terse for all k�

� A set A is k�query p�superterse if �	X�
�
FAk �� PFX�k����T

�
�

� A set A is p�superterse if A is k�query p�superterse for all k�

De�nition ��
 from Beigel �����
�

� An oracle A is k�cheatable if �
X�
�
FA�k � PFXk�T

�
�

� An oracle A is cheatable if A is k�cheatable for some k�

A language is n�query p�superterse in the above sense� i� it is no element of the
partial information class P�sizen��

n���	� To see this� note that if a language is in
P�sizen��

n���	 then for any n words we can compute a pool of size �n��� Hence� it
takes n � � bits to store the information which bitstring is the correct one� and this
information can be coded into an oracle X which must be queried only n � � times�
For the other direction� simply note that if we can decide n words with n� � queries
to some oracle� we can compute �n�� possibilities for the characteristic string without
querying the oracle at all�

A language that is n�cheatable in the sense above is in P �cheat�n 	� because here� too�
even without knowing the oracle we can always compute �n possibilities for the result
of an n�Turing reduction� Vice versa� a language L � P�cheat�n 	 is n�cheatable in
the sense above� because here for any n words we can compute a pool of size �n and
it takes n bits of extra information to pick the correct bitstring from the pool� If
we code this information into an oracle X � the function ��

n

L is even computable with
n non�adaptive queries to X �

In later papers� like Beigel et al� ������� the de�nitions were modi�ed and formulated
without the use of reductions� These modi�ed de�nitions are the same as the ones
used in this thesis�
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Representation of

Resource Bounded Partial Information

H� Greean� P� Smith and D� Jones
in their review of Brown�s paper� Wu�e Review� ���

suggested the name Wo�e for any Wu�e other than the non�trivial Wu�e
and conjectured that the total number of Wo�es

would be at least as great as the number so far known to exist�

They asked if this conjecture was the strongest possible�

� A
 K
 Austin� The Mathematical Gazette� ����������� ����

F
amilies are combinatorial descriptions� but not necessarily unique repres�

entations of partial information classes� The trouble is that di�erent fam�

ilies often describe the same partial information class� In order to represent

partial information� the concept of normal forms of families due to Nickel�

sen 
����� is needed� This chapter presents Nickelsen�s theory of normal forms

and extends it to all recursively presentable c�c�c� function classes�

After the �rst section� which introduces the simple but useful concept of subset

closed families� the second section de�nes normal families which are families

in normal form� These are the basic building blocks of partial information�

For every family there exists a normal family producing the same partial in�

formation classes for all c�c�c� function classes� More importantly� Nickelsen

showed that for the function class FP for every n
family F there exists exactly

one normal n�family G such that P�F 	 � P�G	� This theorem e�ectively re�

duces the equality problem for polynomial time partial information classes to

a combinatorial problem� namely the problem of computing normal forms�

Nickelsen pointed out that polynomial time is not the only function class whose

partial information classes have unique normal representations� but did not

elaborate further on this point� We will make precise Nickelsen�s remark in the

following way� All partial information classes over recursively presentable c�c�c�

function classes have unique normal representations� The third section reviews

recursively presentable function classes in detail� The fourth section adapts

Nickelsen�s proof for polynomial time to the general setting�

�
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��� De�nition of Subset Closed Families

In this section� De�nition ��� introduces subset closed families which were

�rst proposed in Tantau et al� 
����� and which were also adopted in Nickel�

sen 
������ A family is subset closed� if it contains all subpools of all its pools�

Lemma ��� below tells us that for every family there exists a subset closed

family producing the same partial information class�

�
� De�nition �Subset Closure� Subset Closed� Maximal Pool�
The subset closure F of a family F is the family fQ j �P � F 
 Q � P g� A

family F is subset closed if F � F � A pool in F is maximal if it is not contained

in any other pool from F �

�
� Lemma
Let FC be c�c�c� and let F be a family� Then C �F 	 �C �F 	�

Proof� First� we have F � F and hence C �F 	 �C �F 	�

For the other direction� consider a language L � C �F 	 and a function f � FC
that witnesses its membership� Whenever this function outputs a pool Q for

a word tuple� by de�nition there exists a pool P � F with Q � P � By the

composition property of FC � the function g which is identical to f � except that
it outputs the pool P whenever f outputs the pool Q� is also an element of FC �

Hence� g witnesses L �C �F 	�

Whenever we have a family F and a pool P � F � we get the same partial

information class whether we add or remove any proper subpool of P � Only the
maximal pools of a family are important with respect to the partial information

class� The other way round� it does not hurt to add all pools that are contained

in some maximal pool�

�
� Example �But one languages revisited�
Recall the �
family B of all pools of exact diameter � from Example ����� It

consists of all pairs of bitstrings which agree on one position and disagree on

the other� This family contains only maximal pools and we have

B �
�
f��� ��g� f��� ��g� f��� ��g� f��� ��g

�
�

B �
�
�� f��g� f��g� f��g� f��g� f��� ��g� f��� ��g� f��� ��g� f��� ��g

�
�

By Lemma ��� these families produce the same partial information class� The

subset closed family B is exactly weakmin��

In Tantau et al� ������ and Nickelsen ������ subset closed families are called subset
complete� However� the subset closed families are� indeed� exactly the topologically
closed sets with respect to the topology �P�B n �� T�� introduced in the remark after
Example ����� Furthermore� the subset closure of a family is the topological closure
of the family considered as a subset of P�B n �� and the set of the maximal pools of
a family is exactly the smallest dense subset of the family� �Closed� and �complete�
both being topological terms� these observation appear to justify the small change in
terminology�
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��� De�nition of Normal Families

In this section� the important concept of normal families due to Nickelsen is

introduced� Normal families are obtained from subset closed families by remov�

ing �super�uous� maximal pools� Examples ��� and ��� �rst demonstrate how

super�uous pools may be detected� The ideas developed in these examples are

then used to construct Algorithm �
� which will never output any super�uous

pools� Finally� at the end of the section we de�ne normal families and prove

that for any family there exists a normal family that produces the same partial

information classes�

To �x notations� in this section F will denote a subset closed n
family and L a

language with L �C �F 	 via some f � FC �

Given n words w�� � � � � wn� the function f yields a pool P � F for these words�

i� e�� �L�w�� � � � � wn� � P � Often it is possible to compute another pool Q
for the words w�� � � � � wn using an algorithm di�erent from the one used by f �
The important point is� that if P is a pool for the words and Q also� then so

is P �Q which is typically a smaller pool and hence contains more information�

In general� in order to obtain a pool as small as possible for some words� we will
produce a large number P�� � � � � Pk of pools for these words using a number of

di�erent algorithms and then intersect all these pools to obtain a	hopefully

optimal	pool
T
i Pi� This will sometimes by referred to as the intersection

trick in the following�

�
� Example �Producing new pools by permuting the input�
Given some words w�� � � � � wn and a function f we might try to compute a
pool R for a permutation of the words� Such a pool for the permuted words

induces a pool Q for the original words� obtained by inverting the permutation

on the bitstrings in R�

For example� if we have two words w� and w� with �L�w�� w�� � �� then

P � f��� ��g might be the original pool generated by f � Then f applied to the

word tuple hw�� w�i might produce the pool R � f��� ��g� The pool Q would

be given by f��� ��g� and we would hence know that the correct characteristic

string is �� as P �Q � f��g� Naturally� f might also have produced f��� ��� ��g
as a pool for the words w�� w�� which would not have helped at all�

�
� Example �Producing new pools by adding known words to the input�
A second way to produce a pool Q is to choose two �xed �known� words k� 
� L
and k� � L� which is always possible for non
trivial languages� Then one can

apply f to the tuple hk�� w�� � � � � wni� This� too� yields a pool R where we can

ignore all bitstrings which do not begin with �� For all bitstrings which do

begin with �� we get possible values for the characteristic string of the words

w�� � � � � wn� Thus� the pool Q 
� f�b j �b � Rg � f�b j �b � Rg is a pool for

the words w�� � � � � wn�

For example� let w�� w� and w� be words with �L�w�� w�� w�� � ���� Apply�

ing f to the tuple hk�� w�� w�i might produce the pool R � f���� ���� ���� ���g�
Then� knowing �L�k�� � �� we know that the last two elements of R cannot be
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the correct bitstrings� Hence �L�w�� w�� � f��� ��g and hence �L�w�� w�� w�� �
f���� ���� ���� ���g � Q� Again� whether P �Q is actually smaller than P de�

pends on F and f �

Algorithm ���
Generation of a small pool for given words� The two sets K� and K� are
used to denote the positions in the tuple �x�� � � � � xn� which we set to k� and k�
respectively� Then� the pool R is calculated using f � The pool Q is constructed
from R by taking the �inverse image� with respect to i�� � � � � in and the sets K�

and K��

input w�� � � � � wn�

P 
� P�B n��
forall i�� � � � � in � N

�
n do

forall K��K� � N �n with K� �K� � � do

�x�� � � � � xn� 
� �wi� � � � � � win��
forall i � K� do

xi 
� k��
forall i � K� do

xi 
� k��
R 
� f�x�� � � � � xn��
Q 
�

�
b � B n

�� �b� � R 

�
b�i�� � � � � in� � b��
�i � K� 
 b

��i� � ��
�i � K� 
 b

��i� � �
��
�

P 
� P �Q�
output P�

The pool produced by Algorithm �
� might be smaller than the pool gener�

ated by simply applying the function f to the words w�� � � � � wn� As a mat�

ter of fact� consider a maximal pool S such that for some permutation � we

have S������ � � � � ��n�� 
� F � In this case� the pool output by the algorithm

will never be S� because applying the inverse permutation to the bitstrings of

the pool for the tuple
�
w����� � � � � w��n�

�
will not yield a superpool of S� and

hence the intersection P of all the pools Q produced in the algorithm is a

proper subpool of S�

AsFC is c�c�c� and as f � FC � there exists a function g � FC which implements
Algorithm �
�� This function will witness L � C �F 	� but it will never output
a pool P for which we have P�i�� � � � � in� 
� F for some indices i�� � � � � in � N

�
n

or ��P � 
� F for some projection � 
 B n � B n � i� e�� for some composition

� � �b�i� 
 � � � 
 �
bk
ik

of elementary projections� These observations motivate the

following de�nition and prove the en suite theorem due to Nickelsen 
������

�
� De�nition �Normal Family�
An n�family F is closed under selections
 if P � F implies P�i�� � � � � in� � F
for all indices i�� � � � � in � N �n � It is closed under projections
 if P � F implies

��P � � F for all projections � 
 B n � B n � A family is in normal form
 or just

normal
 if it is subset closed
 closed unter selections and closed under projections�
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�
	 Theorem
Let FC be c�c�c� and let F be a subset closed n�family� Let G denote the largest

normal n�family contained in F � Then C �F 	 �C �G	�

For the class Cdist�F 	 the claim of the theorem is too strong� The problem is

that we cannot copy a word in our reduction process as we may not ask the

same word more than once� Nickelsen introduced the term weakly normal for a

family which is closed under projections and permutations� Then� the theorem
is also correct in the following form for Cdist�F 	�

�
� Theorem
Let FC be c�c�c� and let F be a subset closed n�family� Let G denote the largest

weakly normal n�family contained in F � Then Cdist�F 	 �Cdist�G	�

��� De�nition of Recursively Presentable Function Classes

This section reviews the widely studied notion of recursively presentable func�

tion classes� In the next section we will show that partial information classes

over recursively presentable c�c�c� function classes have unique normal repres�

entations�

We will not use recursively presentable function classes directly in the main

proof of the next section� Rather� we will show that the existence of universal

functions with resource help� introduced in De�nition ���� below� is a su�cient

condition for partial information classes to have unique normal representations�
Lemma ���� below states that every recursively presentable c�c�c� function class

contains such a universal function�

�
� De�nition �Recursively Presentable Function Class�
A function class FC is recursively presentable
 if there exists an e�ective enu�

meration M��M��M�� � � � of Turing machines which halt on all inputs
 such that

FC �
�
f i j i � N

�

 where f i is the function computed by M i�

This de�nition is taken from Landweber and Robertson ��� ��� but with the addition
that the machines must halt on all inputs� which restricts the function classes to recur�
sive functions� This addition is also used in Balc"zar et al� ������� An enumeration
is e�ective� if the mapping of indices i to the Turing machines M i is recursive�more
formally� if the mapping taking the binary representation of i to a standard coding
of M i is recursive�

�
�
 Example �Polynomial time is recursively presentable�
The standard enumeration of the class FP is given by mapping i to a simulator
of the i
th Turing machine� However� this simulator does not only stop when

the simulated Turing machine stops� but also after ni � i steps� where n is

the length of the input� First� this de�nition ensures that only functions com�

putable in polynomial time will be listed� Furthermore� if we have any Turing

machine M which is guaranteed to stop after p�n� steps on inputs of length n
for some polynomial p� then there exists an in�nite number of indices i such
that the function computed by the i
th Turing machine is the same as the
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function computed by M � Hence� for some su�ciently large such i we have

p�n� � ni � i for all n and the simulator will compute exactly the function

computed by M �

A prominent example of a function class which is not recursively presentable

are the recursive functions� as a simple diagonalisation argument shows�

Recursively presentable function classes are commonly used in diagonalisation

arguments� most noticeably in the Uniform Diagonalisation Theorem due to
Sch�ning 
������ In the next section� we will also use a diagonalisation argu�

ment to prove the uniqueness of normal representations�

However� recursively presentable function classes will not be used directly in

the diagonalisation� Rather� for the purposes of this chapter a new intermediate

notion of universal functions with resource help is introduced below� which also

allow diagonalisation arguments and which appear to be better suited for the

proofs in the next section�

Universal partial functions are an important concept from recursion theory�

see for example Odifreddi 
������ A function is universal for a set of functions�

if it can somehow �simulate� all other functions of the function class� More

precisely� in recursion theory a partial function u is said to be universal for a

set
�
f i j i � N

�
of partial functions� if u�i� x� � f i�x� for all i � N and all x�

Function classes like polynomial time cannot contain functions which are uni�

versal for polynomial time� In essence� there cannot exist a function com�

putable in polynomial time which can simulate all other functions computable

in polynomial time� However� there exist universal functions which get as input

the number of the function� a word and some kind of resource help� De�ni�

tion ���� below makes this precise�

�
�� De�nition �Universal Function with Resource Help�
A function u 
 �� � �� is universal with resource help r 
 �� � �� for a function

class
�
f i 
 �� � �� j i � N

�

 if

� the graph of r is in L


� we have �jwj � jr�w�j for all words w


� for each i � N 
 we have u
�
h�i� w� r�w�i

�
� f i�w� for almost all words w�

The �rst two properties ensure that the resource help is �well�behaved�� The �rst
condition ensures that we can �invert� the resource help e�ectively� The second con�
dition ensures that once the resource help has been inverted� the resulting words are
so short that we can do complicated operations in space logarithmic in the length of
the original input�

Instead of u
�
h�i� w� r�w�i

�
� the more liberal notation u��i� w� r�w�� will also be

used in the following�

Recursively presentable function classes and universal functions are closely

linked� as the following lemma shows�
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�
�� Lemma
For every recursively presentable function class FC there exists a function u � FL

and a function r 
 �� � �� such that u is universal for FC with resource help r�

Proof� Let M��M��M�� � � � be an e�ective enumeration of Turing machines

which halt on all inputs� such that FC �
�
f i j i � N

�
where f i is the function

computed by the Turing machine M i�

First� there exists some universal function u forFC � not necessarily computable

in logarithmic space� even without any resource help� We simply pick the

function computed by a Turing simulator S which on input
�
�i� w

�
computes

the value f i�w� by simulating M i on input w� which is no problem since the
enumeration of the Turing machines is e�ective and all of them stop on all

inputs�

The time and space taken by the Turing simulator is not limited a priori in any

way� Fortunately� we did not refer to the resource help as yet� de�ning r�w�
large enough� we can ensure that the simulation needs very little resources in

terms of its input�

We replace the universal Turing simulator by a new simulator which on input�
�i� w� r�w�

�
does the same as S on input

�
�i� w

�
but stops whenever it uses

more space than the logarithm of jr�w�j� Obviously� the function u computed

by this simulator is in FL� All we need to ensure is that for each i for almost

all words w the simulator S needs less space than the logarithm of jr�w�j� And
furthermore� we must ensure that the graph of r is also decidable in logarithmic
space� If we can ensure this� the function u is universal for FC in the sense of

De�nition �����

We de�ne r as follows� It is the function computed by a Turing machine R
which maps words w to �s many ��s� where s is the maximum space used by the

simulations of the machinesM j with j � �� � � � � jwj on input w� This de�nition
ensures that� indeed� for each i for almost all words w	namely for all words

of length greater than i	the new simulator yields correct results�

The graph of this resource help r is not necessarily in L� However� it is not

too di�cult to see that every recursive function is dominated by some function

whose graph is in L� More precisely� there exists a function r� 
 �� � �� such
that for all words w we have jr�w�j � jr��w�j and the graph of r� is in L� To see
this� �rst note that the graph of the function w �� �t�w� is in P� where t�w� is
the number of steps needed by R on input w� Second� note that we can then

take as r� the function which maps a word w to �t�w� many ��s� The graph of r�

is in L� because in order to check whether w� � r�w� for some pair �w�w��� we
must simply take the logarithm of the length of w� and check if this logarithm

is exactly the number of steps taken by R on input w�

Note� that we cannot reapply this argument to obtain an r�� whose graph is in

an ever smaller class like logarithmic logarithmic space� as even counting the

length of the input takes logarithmic space�
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��� Proof of the Unique Normal Form Theorem

This section presents the proof of the Unique Normal Form Theorem� Corol�

lary ���� below� The following theorem was �rst stated as Theorem � in Nickel�

sen 
����� for the case FC � FP�

�
�� Theorem
LetFC �

�
fk j k � N

�
be c�c�c� and let u � FC be universal forFC with resource

help r� Then for every normal n�family F there exists a language L �C �F 	 which
is not an element of C �G	 for all subset closed n�families G with F 
� G�

Proof� Let G denote the set of all subset closed n
families G with F 
� G� Note�
that G is �nite� For each G � G let PG denote a pool in F nG�

The proof proceeds in several steps� First� we construct L� Second� for all

G � G we show L 
� C �G	� which will follow easily from the construction as

it diagonalises against all functions which could possibly witness L � C �G	�
Third� we show that indeed L �C �F 	�

Let 
 
 N � N 	 G be a surjection computable in logarithmic space such for
each pair �k�G� � N 	 G there are an in�nite number of i � N which are

mapped to it�

Construction of the language L

The language L is constructed stepwise by a diagonalisation argument� In

step i� a subset of the words W i 
�
�
wi
�� � � � � w

i
n

�
is added to L� No words

other than words from these subsets will be added to the language� For a

�xed step i� the words wi
� are all very much alike	they are all equal to some

word wi tagged with the number �� i� e�� we de�ne wi
� 
�

�
wi� ��

�
� If we let

ti 
�
�
wi
�� � � � � w

i
n

�
denote the tuple consisting of the words inW i� the words wi

are de�ned inductively by w� 
� � and wi�� 
�
�
ti� r�ti�

�
� This de�nition will

ensure that later on if we have words at step i � � as input we always have

enough resources to do simulations at step i and below�

We must fool each function fk which could possibly witness L � C �G	� We

will not fool the function fk directly in step k� Rather� we fool it indirectly by

fooling the universal function u� As the universal function u yields the same

results as fk on input �k almost everywhere� we can fool fk by fooling u on an

in�nite number of inputs�

Given a step number i� compute 
�i� 
� �k�G�� The de�nition of 
 ensures that

we return to each pair �k�G� in�nitively often� We now try to ensure that L is

not inC �G	 via the function fk� Let Q denoted the pool coded by u��k� ti� r�ti��
or the empty set if no pool is coded by it� If Q � G there exists a bitstring

b � PGnQ and we choose the characteristic string of the words wi
�� � � � � w

i
n with

respect to the language L to be b� If Q 
� G we choose the characteristic string
arbitrarily� but still in PG � This concludes the construction of the language L�
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The constructed language is not in any C �G �

We claim L 
�C �G	 for any G � G� To see this� assume that we did indeed have

L � C �G	 via some function fk � FC � As u��k� w� r�w�� � fk�w� for almost

all words w� among the in�nitely many indices i with 
�i� � �k�G� there must
be one with u��k� ti� r�ti�� � fk�ti�� Recall that ti was just a shorthand for�
wi
�� � � � � w

i
n

�
� By construction of the language L� the pool fk�wi

�� � � � w
i
n� is

not a pool for the words wi
�� � � � � w

i
n which would have to be the case� if fk did

indeed witness L �C �G	�

The constructed language is in C �F �

To conclude the proof we must show L � C �F 	� We must �nd a function

g � FC that� given n words v�� � � � � vn� yields a pool from F for them�

The �rst step is to compute in which W ij � if any� the words vj lie� Fortunately�
this problem can be solved in logarithmic space� Starting with a word vj we �rst
check if it is of the correct form

�
x� ��

�
where �� is a tag with � � � � n	recall

that all words in the language are of that form� If so and if x � �� we stop�

Otherwise� we check if x is of the form hy� zi� If so� we check if hy� zi is in the

graph of r� i� e�� we check if z � r�y�� By the �rst property from De�nition ����

of universal functions� this check can be done in logarithmic space� If we do

indeed have x � hy� r�y�i� we check if y is of the form hx�� � � � � xni� If so� we

check if all x� are of the form
�
x�� ��

�
� If so� we restart the whole process with

x� instead of x� As jx�j � log jxj by the second property from De�nition 
����

all following iterations can easily be done in logarithmic space� If we reach the
word �� the number of iterations we made is the correct value for ij � If we do
not reach the word �� we have vj 
�W i for all i � N and hence vj 
� L�

Now� having obtained the indices ij � we can check if we happen to be asked

the tuple wi
�� � � � � w

i
n for some index i� In this case we can easily produce a

pool from F � The pool PG is correct because we carefully setup L in such a

way that PG is correct in this situation�

Next� consider the more complicated case of a permutation wi
����� � � � � w

i
��n��

As F is normal� we can output P������ � � � � ��n�� � F � Likewise� if we are
given a selection of these words we can still easily produce the desired pool

using the normal form properties�

The tricky part comes� when we are not given a subset of words from the same

level� but arbitrary words� Let i� denote the largest index such that there

exists a j with vj �W i�� If no such index exists� none of the words is in L and

we can trivially produce a pool for them�

We will show that there exists a function in FC which maps vj to �L�vj� for
all vj with vj 
� W i�� If this claim holds� we can produce a pool for v�� � � � � vn
by �rst taking an appropriate selection of the pool PG for the words in W i�

and then projecting the positions of the other words to the known values� As

F is normal� this still produces a pool from F �
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Deciding words from lower construction steps

We must now compute �L�vj� for vj 
� W i�� If vj is not element of some

other W i we know �L�vj� � � and we are done� Otherwise� assume vj � W i

for some i � i�	remember that i� was chosen to be maximal�

As a byproduct of the calculation of the index i�� we will also have obtained

the values tij and more importantly
�
tij � r�tij �

�
� Note that we do not have

to compute r�tij � from a known tij
which would typically not be possible

quickly
but we �come across� the value
�
tij � r�tij �

�
during the iteration pro�

cess�

But now� we can compute u��k� tij � r�tij �� and knowing this value we can easily

compute the correct value for �L�vj�� As we need to invoke the function u at

most n times and as all other calculations can be carried out in logarithmic

space we get g � FC �

�
�� Corollary
Let FC be c�c�c� and recursively presentable and let F and G be normal n�families�

Then C �F 	 �C �G	� i� F � G�

Proof� If F � G then we trivially haveC �F 	 �C �G	� Otherwise� let F 
� G� As
FC is recursively presentable� Lemma ���� tells us that there exists a universal

function u � FL for the function class FC � As FL � FC the universal function

is included in FC � Hence� by Theorem ���� we have C �F 	 
�C �G	�

�
�� Corollary �Unique Normal Form Theorem�
Let FC be c�c�c� and recursively presentable� Then for every n�family there exists

exactly one normal n�family which produces the same partial information class

over FC �
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Subset closed families� i� e�� families which contain with any pool also all subpools�
were �rst used in Tantau et al� �������

A general machine independent way to identify resource bounds has been proposed by
Blum ���� � who introduced a general de�nition of complexity measures� The close�
but sometimes involved� relationship between complexity measures and recursively
presentable function classes is discussed in Landweber and Robertson ��� ��� A most
useful application of recursively presentable classes is the Uniform Diagonalisation

Theorem due to Sch
ning ������� Unfortunately� this theorem cannot be used to
prove the Unique Normal Form Theorem as it relies heavily on the considered classes�
being recursive�which is normally not the case for partial information classes�
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Structure of Normal Families

T� Brown in �A collection of �!� papers on Wo�e Theory
dedicated to R� S� Green on his ��rd Birthday�

de�ned a Pi�e to be an in�nite multi�variable sub�polynormal Wo�e
which does not satisfy the lower regular Q�property�

He stated� but was unable to prove�
that there were at least a �nite number of Pi�es�

� A
 K
 Austin� The Mathematical Gazette� ����������� ����

N
ormal families form the backbone of the analysis of partial information�

In the previous chapter� we showed that for all c�c�c� function classes and

any n
family F � there exists a normal n
family G producing the same partial

information class� If the function class is furthermore recursively presentable�

the normal family G is even uniquely determined�

This chapter studies the combinatorics of normal families� The �rst two sec�

tions investigate the �inner structure� of normal families� Borrowing from linear

algebra� we introduce generating systems and bases of families� We show that

bases of normal families are almost uniquely determined� In the third section�

we prove that every base of a normal family is a representative system of an an�

tichain in the so
called unit poset� Bases and antichains provide a new e�cient

way of describing families which has not been studied before�

The fourth section studies upward translations of families� For an m
family E
we can always �nd an n
family F for n � m which produces the same partial

information class� This was �rst proved in Nickelsen 
������

Upward translation is a purely combinatorial process� which enables us to

compare partial information classes for di�ering input numbers combinatorially�

The �fth section gives numerous examples of upward translations of special

families like the selective families	thereby giving combinatorial proofs for a
number of results due to Selman 
����� and Beigel 
������

In the sixth section we put all results of this chapter together to prove that

inclusion is well�founded on cheatable partial information classes� This makes

progress on a remark of Nickelsen 
����� who conjectured that inclusion is

well
founded on partial inclusion classes�

�
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This chapter concludes with a �gure section where all normal �
families are

depicted as well as the unit poset for n � �� Furthermore� the number of units

in all unit posets for n � 
 are listed�

��� De�nition of Generating Systems

It is often awkward to write down a subset closed family� Its like writing down

all elements of a �nite group� where writing down its generating elements would

be su�cient� Nickelsen 
����� proposed the following useful de�nition�

�
� De�nition �Generating System�
Let G be a set of n�pools� We de�ne hGi as the smallest normal n�family that

contains G� We call G a generating system for hGi�

Note� that there does� indeed� always exist a smallest normal n
family as the

intersection of two normal families is still normal�

Generating systems can also be de�ned constructively� Consider a generating

system G for a family F � Then F contains exactly those pools which can

be generated from some pool in hGi by applying selections or projections and

reducing the size of the pool� For example� the pool f����� ����g can be gen�
erated from the pool f����� ����g by swapping the positions � and �� copying
the resulting position � to position � and the projecting the �rst position to ��

Hence we have f����� ����g � hf����� ����gi�

�
� Notation �Stacking Notation�
Swapping of positions and copying can be done more easily
 if we stack the di�erent

bitstrings instead of listing them alongside each other� In this notation f����� ����g
becomes f��������g and f����� ����g becomes f��������g� Using this stacking notation
 it

makes sense to talk about the i�th column of a pool�

�
� Example �Generating systems of the minimal family�
The minimal non
trivial normal �
family

min� �
�
�� f��g� f��g� f��g� f��g�

f��� ��g� f��� ��g� f��� ��g� f��� ��g� f��� ��g
�

has the generating system
�
f��� ��g

�
� Another such system is

�
f��� ��g� f��g

�
�

whereas
�
f��g

�
is no generating system�

�
� De�nition �Eigenpool�
Let P be a pool� The eigenpool of P is obtained by removing from P all constant

columns and for every duplicate column all but the �rst occurrence of the column�

If two pools have the same eigenpool� they can be generated from each other

by permuting and copying columns as well as projecting some columns� Hence�

solely the eigenpools of the pools of a generating system determine the gener�

ated family�
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�
� Example �Eigenpools�
The pool f���� ���g has the eigenpool f��� ��g� The pools f��������g and f��������g
have the same eigenpool� namely the pool f�� �g�

��� De�nition of Bases

Having de�ned a generating system� it is natural enough to de�ne a basis�

Surprisingly� a basis of a family is nearly uniquely determined�

�
� De�nition �Basis�
A set B of n�pools is a basis of a normal family F 
 if B is a minimal generating

system of F 
 i� e�
 hBi � F and hB�i 
� F for all proper subsets B� � B�

�
	 Theorem
Let F be a normal family and B� a basis of F � Then B� is also a basis of F � i�

there exists a bijection 
 
 B� � B� such that for all P � B� the pools P and 
 �P �
have the same eigenpools up to permutation�

Proof� If such a bijection exists� from our de�nition of eigenpools we easily

deduce hB�i � hB�i�

For the other direction� let B� be a basis of F � As B� is a generating system

of F and B� � F � all pools in B� can be generated from pools in B�� This yields
a function 
� 
 B� � B� which assigns each pool P� � B� a pool in P� � B��
such that P� can be generated from P� by selection and projection� Likewise

we get a function 
� 
 B� � B� with analogous properties�

Consider the function 
� 
 
� 
 B� � B�� For a pool P � B� we get a

pool 
� �P � � B� from which we can generate P � From 
� �P � we get a pool


�
�

��P �

�
� B� from which we can generate 
� �P �� Thus� we can generate P

from 
�
�

��P �

�
� However� B� is a basis� In this case� P can only be generated

from another pool Q � B�� if P � Q� This implies P � 
�
�

��P �

�
and hence


� 
 
� � id� Obviously� we also get 
� 
 
� � id� Hence� 
 
� 
� is bijective�

The pools P and 
 �P � have the same eigenpool up to permutation� as P can

be generated from 
 �P � which in turn can be generated from P �

�
� Example �Bases of special families�

� The family sel� has the two bases
nn

��
��
��

oo
and

nn
��
��
��

oo
�

� The family minn has	among many others	the basis
�
f������������g

�
� Here� the

eigenpool is given by the last column�

� The family cheat� has the basis
�
f����g

�
�

� The family approx� has two bases� namely
nn

��
��
��

o
�
n
��
��
��

o
�
n
��
��
��

oo
as well asnn

��
��
��

o
�
n
��
��
��

o
�
n
��
��
��

oo
�
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��� Representing Normal Families by Antichains

In this section� De�nition ��� below introduces the unit poset� A unit is a

set of pools which all have the same eigenpool up to permutation� A partial

ordering is induced on such units by inclusion of the families they generate�

The name units is once more borrowed from linear algebra� namely from unit

vectors� The motivation is that with each basis a unique set of units can

be associated� More precisely� Theorem ���� below states that there exists

a bijection between normal families and antichains in the unit posets� Using

this theorem� we can easily enumerate all normal �
families as we only have to
enumerate all antichains in a small poset�

By virtue of Theorem ��� two pools generate the same family� i� their eigen�

pools are permutations of each other� The other way round� any family gener�

ated by a single pool P is generated exactly by all those pools whose eigenpools

are permutations of the eigenpool of P �

�
� De�nition �Unit� Unit Poset�
Two n�pools are equivalent
 written P � Q
 if hfPgi � hfQgi� An n�unit is an

equivalence class of an n�pool
 i� e�
 an element of the partition Un 
� P�B n����
We de�ne a partial ordering of n�units by U � V
 i� hUi � hVi� This yields the

unit posets �Un����

The partial ordering of units can be expressed in terms of representatives� For
pools P and Q we have �P 	� � �Q	�� i�

�
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The poset �U���� The poset �W����

Figure ���
Unit poset and its weak counterpart for n � �
 for n � � see Figure ��� on
page ��� The units are shown as equivalence classes of one of their elements�
The relation � is de�ned in De�nition ���� For the weak units� there exists a
corresponding relation which we denote �dist�
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Consider an antichain A in �Un���� Recall that an antichain in a partial

ordering is a set� for which no two elements are comparable with respect to the

partial ordering� Let A be a representative system of A� i� e�� for each unit U �
A let there be exactly one pool P � A with P � U � As elements of an antichain

are incomparable� this representative system is a basis of hAi� The other way
round� for any set of units that is no antichain� no representative system G is a

basis� as G necessarily contains two pools P and Q� such that �P 	� � �Q	� and

hence hGi � hGnfPgi� To sum up� a set A of units is an antichain� i� one and

then all representative systems of A are bases� All such representative systems

of an antichain produce the same family�

Consider an arbitrary normal family F � Then every basis B of F is a repre�

sentative system of a set of units� namely of f �P 	� j P � Bg� We summarise

these results in the following theorem�

�
�
 Theorem �Antichain Theorem�
There exists a bijection 
 between the normal n�families and the non�empty anti�

chains in �Un��� such that the bases of a normal n�family F are exactly the

representative systems of 
 �F��

It is straightforward to extend these de�nitions to weakly normal families� We

can de�ne a weak generating system of a weakly normal family F as a set G
such that F is the least weakly normal family which contains all of G� Likewise�
we de�ne a weak basis of F and �nally the weak unit posets �Wn����

At the end of this chapter in Section ���� all antichains in �U���� and �W����
are shown	and hence all 
weakly� normal families of index ��

Table ���
To the left� the sizes and numbers of antichains in the unit posets for n � � are
shown� to the right the same is done for the weak unit posets� The number of
antichains increases swiftly� and starting from n � � this number is no longer
computable using counting algorithms�

The lower bounds for the number of antichains for n � � are obtained from
Table ��� on page �! by noting that for n � � there are 
�
 units of size �� All
of these are incomparable with respect to the partial ordering induced on units�
Hence� every subset of these units is an antichain�and there are �	�	 
 ����


such subsets�

Poset Units Antichains

�U���� � �
�U���� � ��
�U���� �� � ��� ���
�U���� � ��� � �	�	

�U
��� �� ��� 
�� � �
������

Poset Weak Units Antichains

�W���� � �
�W���� � ��
�W���� �� 
 ��� ���
�W���� � ��� � �	�	

�W
��� �� ��� ��� � �
������
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��� Upward Translation of Normal Families

Given an m
family E and a new index n with n � m� does there exist an

n
family F which produces the same partial information class as E� If so�

F can be thought of as the index n version or the upward translation of the

m
family E �

In this section� Lemma ���� demonstrates that upward translation is always

possible� as was �rst noted in Nickelsen 
������ While this lemma solves the

upward translation problem in principle� a stronger result is needed to ensure

that the upward translation of a normal family yields a normal family once
more� This result is presented in Theorem ���� below� We �rst proved this

theorem in Tantau et al� 
������ but the present re�ned form is due to Nickel�

sen 
������

Upward translation is the last missing piece necessary for the representation

theory of partial information by normal families� Corollary ���� below sum�

marises the results obtained up to now on the relationship between partial

information classes and families�

This section concludes with a short look at the problem of downward transla�

tion� Lemma ���� below was �rst proved in Tantau et al� 
������ but a more

thorough treatment of this subject can be found in Nickelsen 
������

�
�� Lemma
Let FC be c�c�c� and E an m�family� For n � m de�ne the n�family F by

F 
� fP � B n j P��� � � � �m� � E g �

Then C �E 	 �C �F 	�

Proof� Assume L � C �E 	� Let w�� � � � � wn be any n words� We construct

a function that witnesses L � C �F 	� For the �rst m words we obtain an

m
pool Q such that �L�w�� � � � � wm� � Q � E � We extend this pool to an

n
pool by setting P 
� fb � B n j b��� � � � �m� � Qg� i� e�� we simply extend all

bitstrings in Q in all possible ways� Then P is a pool for w�� � � � � wn and P � F
by de�nition� as P��� � � � �m� � Q � E �

For the other direction� assume L � C �F 	� For any m words w�� � � � � wm we

add arbitrary words wm��� � � � � wn and compute a pool P for �L�w�� � � � � wn��
Extracting the �rst m columns yields Q 
� P��� � � � �m� with Q � E by

de�nition� But Q is a pool for the �rst m words�

The lemma shows that for increasing n the partial information classes produced

by n
families get more and more �ne
grained� Unfortunately� the construction

in Lemma ���� is asymmetric and it is easy to see that in general the construc�

tion does not yield a normal family� even when E is normal� Naturally� we could

compute the normal form of the family produced by the lemma� Hence� the

lemma solves the upward translation problem in principle� but it is ill
suited

for direct combinatorial arguments� In the following� we remedy this short�

coming and construct a normal n
family directly� which produces the same

partial information class as E �
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The basic idea is to proceed as in Section ��� where we constructed the normal

form of a family by producing many pools for some words and then intersecting

these pools� Given any n words� we can compute a pool Ri������im for any selec�

tion ofm words at distinct indices i� to im� Each such pool can be extended to a
pool for all n words� by setting Qi������im 
� fb � B n j b�i�� � � � � im� � Ri������im g�
i� e�� by allowing the columns not selected to range over all possible values� For

example� if we have m � � and n � � and select the �rst and the fourth column

and if we have R��� � f��g� then Q��� � f����� ����� ����� ����g�

�
�� Theorem �Upward Translation�
Let FC be c�c�c� and let E be an m�family� For n � m let F denote the

n�family of all pools P for which for all distinct indices i�� � � � � im � N �
n we have

P�i�� � � � � im� � E �

� If E is normal� so is F and C �E 	 �C �F 	�

� If E is weakly normal� so is F and Cdist�E 	 �Cdist�F 	�

Proof� We prove only the �rst point� The second can then be obtained easily

as the construction of F only refers to distinct indices�

The family F is a subfamily of fP � B n j P��� � � � �m� � E g by construction�

Hence� by Lemma ���� we can conclude C �F 	 �C �E 	�

For the other direction� assume L � C �E 	 via some function f � Then� there

exists some function g � FC which implements Algorithm �
� as FC is c�c�c�
The algorithm will always output a pool P � F as� indeed� every selection of

m distinct columns of P is a pool from E � Furthermore� P is also a pool for

the input words� Hence� L �C �F 	�

Algorithm ���
An algorithm for the generation of an n�pool for given words�

input w�� � � � � wn�

P 
� P�B m ��
forall distinct i�� � � � � im � N �n do

R 
� f�wi� � � � � � wim��
Q 
� fb � B n j �b� � R 
 b�i�� � � � � im� � b� g�
P 
� P �Q�

output P�

We still need to show that F is normal� It is obvious that F is subset closed�

Furthermore� it is also closed under selections� for consider some P � F and

arbitrary indices j�� � � � � jn � N �
n � Being closed under selections means that

then P�j�� � � � � jn� � F � By de�nition of the family F this is the case� if for

any distinct indices i�� � � � � im � N �
n we have P�j�� � � � � jn��i�� � � � � im� � E �

Phrased di�erently� for a pool P � F we must check if P�ji� � � � � � jim� � E �

If the indices ji� � � � � � jim are distinct� we are done by de�nition� If not� consider

new distinct indices j�i� � � � � � j
�
im obtained from the old ones by replacing repe�

titions of indices by arbitrary fresh indices� As the new indices are distinct
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we have P�j�i� � � � � � j
�
im
� � E � Next� we use an appropriate selection of the

columns of the pool P�j�i� � � � � � j
�
im
� which overwrites all positions where we

used a fresh index with the value we actually wanted for that position� hence

yielding the pool P�ji� � � � � � jim �� As E is normal� this yields a pool from E
once more� But then P�ji� � � � � � jim � � E �

A like argument can be used to show that F is also closed under projections

because E is closed under projections� Thus� F is normal�

�
�� Notation �Upward Translation�
We will denote the family F de�ned in Theorem ���� by dEen� It will be called

the upward translation of E �

The following corollary summarises the consequences of the main combinatorial
results obtained up to now on the structure of normal families�

�
�� Corollary �Summary of Results�
Let FC be c�c�c� and recursively presentable and let F be a family� Let m � N be

minimal� such that there exists an m�family E with C �E 	 � C �F 	� Then� for all

n � m the following propositions hold�

� There exists exactly one normal n�family Fn with C �F 	 �C �Fn	�

� The family Fn is the intersection of all subset closed n�families G for which we

have C �F 	 �C �G	�

� There exists a unique antichain in �Un��� such that one and then all representative

systems of the antichain are bases of Fn�

� We have Fn �


Fm

�
n
�

Proof� For the �rst point from Lemma ���� we know that for each n � m
there exists some family which produces the same partial information class

as F � and by the Unique Normal Form Theorem there exists a unique normal

n
family with that property� The remaining points are direct consequences of

Theorems ���� ���� and ����� respectively�

To �nish this section� the following lemma tells us how to reduce the index of

families� This lemma is only correct for the resource bounded case�

�
�� Lemma �Downward Translation�
Let FC be c�c�c� and recursively presentable and let F be a normal n�family� Then

for m � n the m�family E 
� fP��� � � � �m� j P � F g is normal and it is the

smallest subset closed m�family whose partial information class contains C �F 	�

Proof� Obviously� E is normal� Furthermore� we have C �F 	 � C �E 	� because
F is contained in the family fP � B n j P��� � � � �m� � E g and by our �rst res�

ult on upward translation� Lemma ����� this family produces the same partial

information class as E �

For the minimality� let G be a normal m
family with C �F 	 � C�G	 � C �E 	�
We prove G � E � As dGen and dEen produce the same partial informa�

tion classes as G and E � by the Unique Normal Form Theorem we conclude
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F � dGen � dEen� Now� as E � fP��� � � � �m� j P � F g and likewise E �
fP��� � � � �m� j P � dEen g and �nally also G � fP��� � � � �m� j P � dGen g� we
get E � G � E and thus G � E �

��� Upward Translation of Special Families

This section studies �ve examples which show how the most important families

behave upon upward translation�

�
�� Example �Upward translation of the selective families�
A most important upward translation is



sel�

�
n
� Recall that we de�ned seln

as the set of all chains in B n � It turns out that seln and


sel�

�
n
coincide as

the following combinatorial argument shows� A non
combinatorial proof which

argues in the language domain is due to Selman 
������

First� every chain in B n is in


sel�

�
n
� The reason is that� indeed� every

selection of two positions from a chain in B n is a chain in B � as selections are

monotone functions�

All pools P �


sel�

�
n
are chains in B n � To see this� assume P 
� seln� Order

the bitstrings of P in such a way that P � fb�� � � � � bkg and the number of ��s

in bi increases with i� Now� this is an ordering of P and P 
� seln and

thus there exists an index i and a position j such bi�j� � � and bi���j� � ��
However� as the number of ��s in bi�� is at least equal to the number of ��s in bi
there exists also some di�erent position k such that bi�k� � � and bi���k� � ��

Then P�j� k� � f��� ��g 
� sel� and thus P 
�


sel�

�
n
�

Recalling Notation ���� for families without an index� we have just proved

C �sel�	 �C �seln	 �C �sel	 for n � ��

�
�	 Example �Upward translation of the minimal families�
The smallest non
trivial normal n
family is denoted minn� We show that for

n � � we have minn �


min�

�
n
as pointed out in Nickelsen 
������

Theorem ���� states that every normal family is uniquely identi�ed by a

non
empty antichain in the unit poset� Hence� it su�ces to prove that bases of

minn and


min�

�
n
have the same units� Consider a basis B of minn� As minn

is minimal� this basis consists of a single pool P whose eigenpool is just B �

Likewise� consider a basis B� of


min�

�
n
� Let P � � B�� If P � had an eigenpool

with at least two di�erent columns found at positions i and j in P �� we would
have P�i� j� 
� min�� as every pool in min� has an eigenpool with at most one

column� Thus� every pool in B� has the eigenpool B � By Theorem ���� this

proves the claim�

�
�� Example �Upward translation of bottom and top families�
The bottom family bottomn is generated by the pool B���

n�� Trivially� a

basis of bottomn is fB���
n�g� Using the same techniques as in the preceding

examples� for n � � one can prove


bottom�

�
n
� bottomn� Likewise� one

proves


top�

�
n
� topn� These results are also due to Nickelsen 
������
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�
�� Example �Upward translation of the cheatable families�
Recall� that we de�ned cheatn � sizen�n�� The upward translation of

cheatm is not cheatn� Instead� what happens is that we get the same size

family for the new index�


cheatm

�
n
� sizen�m� for n � m� From this�

we can easily deduce that for m � n � k one generally has


sizen�m�

�
k
�

sizek�m�� We will now give a combinatorial proof for this� which is di�erent

from the proof of Theorem ��� in Beigel 
������ where a slightly stronger claim

is proved using Owings�s Separation Lemma�

We prove sizen���m� �


sizen�m�

�
n��

for n � m� As any pool in sizen���m�
has at mostm bitstrings� so has any selection of columns from such a pool� This

proves inclusion from left to right� For the other direction� we must show that

if every selection of n columns from an �n � ��
pool P has a size at most m�

then so has P a size at most m� The following lemma proves this and hence

the claim�

�
�
 Lemma
Letm � n and let P be an �n����pool such that for all distinct i�� � � � � in � N

�
n��

we have jP�i�� � � � � in�j � m� Then jP j � m�

Proof� For the sake of contradiction assume jP j � m� Then P � fb�� � � � � bm��g
for some pairwise di�erent bi� Consider an undirected graph with vertices bi
and the edges de�ned as follows� As jP��� � � � � j � �� j � �� � � � � n� ��j � m
for every j� for each j there exist indices kj and lj such that bkj and blj are

equal on all positions but position j� where they di�er� For each j� we connect
the vertices bkj and blj by an edge labelled j�

Now� we have constructed a graph with m � � vertices and n � � � m � �
di�erent edges� Then there must exist some cycle bi� � � � � � bip in the graph�

Let j be the label of the �rst edge of the cycle� Then bi� and bi� must di�er

on position j� But bi� and bi� must agree on position j as they are labelled

di�erently� Also� bi� and bi� must agree on position j and so forth� But as bip
and bi� must also agree on position j� so must bi� and bi�	a contradiction�

����� ����� ����� ����� �����

�

�

�

�

�




Figure ���
Example for the construction of Lemma ���� form � n � �� As described in the
lemma� the edges are labelled with the position where connected vertices di�er�
The pool P � f������ ������ ������ ������ �����g cannot have the property� that
every selection of four columns contains only four bitstrings� Although for the
�rst four selection this is the case� the last selection must fail as this would
create a cycle in the graph�
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The name cheatable is perhaps best explained by the following anecdote� Professor
Solomon intends to create a mean exam for her students� There are one hundred
questions which must be answered with �yes� or �no�� The professor knows� that her
students only possess polynomial time thinking capabilities and hence intends to pick
the questions from a language known to be no element of polynomial time�thus ensur�
ing that the students have really studied the topic� Having read about Theorem �����
Professor Solomon happily picks a �ve�cheatable language which is not in P�

The students� however� quickly note that the questions are taken from a cheatable
language� Hence� they can compute �ve possibilities for the correct answers to the

one hundred questions in polynomial time� and they can compute the four interesting
questions� such that if they know the answers to these questions they know the answers
to all questions� If the students succeed in cheating on four questions� they can pass
the whole exam�

�
�� Example �Upward translation of the approximable families�
Translating the family approxm � sizem��

m � �� upward does not yield a

size family again� However� Beigel 
����� proved that for n � m we have

�dapproxmen � S�n�m� 
�
Pm��

i��

�n
i

�
� In the following� a combinatorial proof

is given for the slightly stronger result �dapproxmen � S�n�m�� Spelled out� this
means

�


approxm

�
n
� sizen�S�n�m���

�


approxm

�
n

� sizen�S�n�m�� ���

The second point can be seen as follows� Consider the pool Bm����n� which
consists of all bitstrings containing at most m � � bits �� Then every selec�

tion of m distinct columns from Bm����n� does not contain the bitstring �m

and is hence an element of approxm� Thus� Bm����n� �


approxm

�
n
� As

Bm����n� contains exactly one bitstring with no ��
�n
�

�
bitstrings with exactly

one ��
�
n
�

�
bitstrings with exactly two ��s and so forth� jBm����n�j � S�n�m��

The �rst point can be proved by showing that the pool Bm����n� is in some
sense the �worst case�� The idea is to prove that every pool Q �



approxm

�
n

has the property jQj � jBm����n�j�

Let Q �


approxm

�
n
and for any distinct indices i�� � � � � im � N �n let qi������im

be a bitstring missing from Q�i�� � � � � im�� For example� for Bm����n� such
a bitstring is �m for all indices� Let ri������im be the same as qi������im � except
that we project the bit at the position j with ij � � to �� if such a position
exists� Let R be the largest pool such that R�i�� � � � � im� � B mn

�
ri������im

�
for

all distinct indices i�� � � � � im� Then we obviously have R �


approxm

�
n
as�

indeed� every selection of distinct columns from R misses at least one bitstring�

We now prove jQj � jRj by showing that the following mapping � 
 Q � R is

injective�

��b� 
�

�
b if b � R�

����b� otherwise�

First� we show that the range of � is contained in R� If b � R then ��b� � R
by construction� So� assume b 
� R� Then we necessarily have b��� � � by con�

struction of the pool R� Now� if ����b� 
� R then once more by construction we
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have ����b��i�� � � � � im� � ri������im for some appropriate indices� As the �rst po�

sition of ����b� is trivially �� none of the indices can select this �rst position	for

we explicitly de�ned the bitstring ri������im to be � for such positions� But then

b�i�� � � � � im� � ����b��i�� � � � � im� � ri������im � qi������im � But as b � Q we have

b�i�� � � � � im� � Q�i�� � � � � im� which is impossible since qi������im was explicitly

setup to be no element of Q�i�� � � � � im�� This shows ��b� � ����b� � R�

Second� we argue that � is injective� It su�ce to prove that if b 
� R then

����b� 
� Q� Once more� there exist appropriate indices with b�i�� � � � � im� �
ri������im � As b � Q we have b�i�� � � � � im� 
� qi������im � Hence� ri������im and qi������im
di�er� By construction this means that for some j we have ij � � and

in ri������im at this position there is a �� while in qi������im there is a �� But

then ����b��i�� � � � � im� � qi������im and hence ����b� 
� Q�

We have now shown jQj � jRj� where R has the property that any selection�

which selects the �rst column of R� misses a bitstring with a � at that position�

We now repeat the whole argument to obtain a pool R� with jRj � jR�j and
for which any selection� which selects the �rst two columns of R�� misses a

bitstring with ��s at these positions� Repeating this process for all positions

yields jQj � jRnj where Rn is the largest pool satisfying �m 
� R�i�� � � � � im�

for all distinct indices� But that pool is Bm����n��

��	 Well
Foundedness of Inclusion on

Cheatable Partial Information

A relation is well�founded if every non
empty subset of the relation has a min�

imal element or	equivalently	if there do not exist in�nite descending chains�

In this section we investigate� whether the inclusion relation is well
founded

on the set of all partial information classes� This general problem� raised by

Nickelsen 
������ is not yet solved fully� As a �rst step towards a solution�

we show that the inclusion relation is well
founded on the set of all partial

information classes which are subsets of C �cheat	�

Currently� no in�nite descending chain in the set of all partial information

classes in known� For some chains� the proof that they become stationary

at some point is by no means simple� see for example Hinrichs and Wech�

sung 
������ It would be most satisfactory to prove in general that inclusion

is well
founded on partial information classes�

�
�� Theorem
Let FC be c�c�c� Then inclusion is well�founded on fC �F 	 jC �F 	 �C �cheat	g�

Proof� We show that for each m the class C �cheatm	 has only a �nite number

of partial information subclasses� That means� we claim that the cardinality

of the set fC �F 	 jC �F 	 �C �cheatm	g is �nite� This implies the claim as

any in�nite descending chain would have to start somewhere and there are no

in�nite descending chains in a �nite relation�
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Let C �F 	 � C �cheatm	 for some n
family F � Note� that n may be much

larger than m� but still Example ���� tells us C �F 	 � C �sizen�m�	 and hence

C �F 	 �C �F � sizen�m�	� Thus� for every class C �F 	 there exists an n
family

G 
� F � sizen�m� with C �F 	 �C �G	 and �G � m�

Theorem ���� states that there exists an antichain A in �Un���� such that the
bases of G are the representative systems of A� By de�nition� all pools in a

unit from A have the same eigenpool up to permutation� Hence� all of these

eigenpools have the same size which is limited by m�

An eigenpool has the property that it has no duplicate columns and no con�

stant columns� Hence� an eigenpool can be described by giving a list of its

columns which may not contain duplicate columns or the constant columns�
Furthermore� the �height� of these columns is limited by the size of the pool�

which is m in our case� But there are only �m � � di�erent non�constant

columns of height m�

The number of di�erent possible eigenpools of size m is independent of n�
Hence� also the number of units in �Un��� whose pools have a size limited

by m depends only on m� not on n� Finally� this implies that the number
of antichains which are made up of such units is depended only on m� This

proves the claim�
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size���� min� cheat� bottom� top� nonsel�

sel� sel� �
cheat�

sel� �
bottom�

sel� �
top�

approx� size����

Figure ���
The twelve antichains in �U����� see also Figure ��� on page ��� The partial
information classes over recursive function classes of the families in the top line
are recursive while those of the bottom line are not� see Fact �����

size���� weakmin� cheat�nW bottom�nW top�nW nonsel�nW

min� cheat� bottom� top� nonsel�

sel� sel� �
cheat�

sel� �
bottom�

sel� �
top�

approx� size����

Figure ���
The seventeen antichains in �W����� The �rst line contains� except for the
trivial family� only families which are only weakly normal and miss W ���f��� ��g�� The �rst two lines are recursive� the bottom line is not�
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non
recursive recursive

Figure ��	
The weakly normal ��families� The families shown in bold are weakly normal
but not normal� An arrow from F to G indicates G � F � As discussed in the
next chapter� the partial information classes produced by the families to the
right are recursive� the ones to the left are not�
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Visualisation of the poset �W���� by representatives� For connected pools�
the pool further down can be produced from the pool further up� Pools with
subscript �d� have duplicate non�constant columns�
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Table ���
This table lists the numbers of units for n � � to the left and of weak units
to the right� In a unit� all pools have the same size and the eigenpools are
equal up to permutation� For example� the number � in the third line tells us�
that there are six units� whose pools contain exactly three bitstrings and whose
eigenpools have three columns� A typical such unit is

�f���� ���� ���g��
It took a C�� program about three hours on a ���MHz CPU to compute the
below numbers using an optimised brute�force counting algorithm�

Units Weak units

Pool Columns of Eigenpool Columns of Eigenpool
Size Three Four Five Three Four Five
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Structure of Stable Families

T� Smith� L� Jones� R� Brown and A� Green in their collected works
�A short introduction to the classical theory of the Pi�e�� Pi�e Press� � gns��

showed that all bi�universal Pi�es were strictly descending
and conjectured that to prove a stronger result would be harder�

It is this conjecture which motivated the present paper�

� A
 K
 Austin� The Mathematical Gazette� ����������� ����

O
riginally� partial information classes were studied in recursion theory only�

The �rst de�nition of a resource bounded partial information class	the

p
selective languages	was given in ���� by Selman� and the systematic study

of such classes only began in the last decade� Surprisingly� while the inclusion
problem for resource bounded partial information classes is completely solved

by Theorem ����� for recursively computable partial information deciding in�

clusion is still an open problem� Using the following de�nition� this can be

rephrased� No algorithm is known for deciding whether a family is stable�

�
� De�nition �Stable Family�
A family F is in stable normal form
 or just stable
 if it is subset closed and there

exists no subset closed family F � � F such that REC�F 	 � REC�F �	�

This chapter makes some progress on the question which families are stable�

The �rst section introduces the simple but useful concept of hard tuples� Based

on this concept� the second section introduces hard remainder pools� Such

pools are obtained by shrinking the size of a given pool using the knowledge

that some input words are hard	the hard remainder pool then contains all

bitstrings which could not be eliminated�

In the third section we prove that for all languages either no tuple is hard or

hard remainder pools can be computed for all words� As a corollary we obtain

the Generalised Non�Speedup Theorem due to Beigel� Kummer and Stephan�

At the end� the fourth section identi�es all stable �
families�

��
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��� De�nition of Hard Tuples

This section introduces hard tuples� A language for which no word tuple is
hard is relatively� well� easy to decide� Fortunately� even if some tuple is hard

for a language� hard remainder pools de�ned in the next section can still be

computed�

To �x notations� in the following the hard tuples will always be m�tuples� The

families E and F will always be m� and n�families� respectively� with m � n�

Consider a language L � C �F 	 via some function f � FC � Given words

w�� � � � � wm we might try to produce a pool from E for these words as follows�

We �x a set S � �� and then pick some words wm��� � � � � wn � S and compute

f�w�� � � � � wn� �
 P � F � The �rst m columns of this pool� call them Q� may

happen to be an element of E � But then� we have computed a pool Q � E
for the given words� If we did not succeed� i� e�� if Q 
� E � we simply try some
other extra words from the set S�

If E is not too small and the set S su�ciently large� the algorithm may succeed

sooner or later for a large number of tuples� Naturally� for some tuples the

algorithm may fail no matter how hard we try� but in this case we have every

right to call the words w�� � � � � wm hard over S via f �

�
� De�nition �Hard Tuple�
Let FC be c�c�c� and L �C �F 	 via f � FC and let S � ��� A tuple w�� � � � � wm

of words is E�hard over S via f 
 if there do not exist words wm��� � � � � wn � S
such that the �rst m columns of f�w�� � � � � wn� form a pool from E �

�
� Example �Hard tuples for the trivial family�
Consider the family E 
� cheat�� Here� m � � and �tuples� become single

words� A word w is cheat�
hard via a function f over a set S� if for no words
w�� � � � � wn in S the pool f�w�w�� � � � � wm� has a constant �rst column� Hence�

for a hard word every pool produced by the function f for w and words from S
has a non�constant �rst column� i� e�� contains both � and ��

When dealing with the class of all recursive functions as FC � as we will gener�

ally do in this chapter� we may pick a fairly large set S� namely S � ���

�
� Lemma
Let L � REC�F 	 via f and let no m�tuple be E�hard over �� via f � Then we also

have L � REC�E 	�

Proof� Let
�
hwi

m��� � � � w
i
ni
�
i�N be an enumeration of all �n�m�
tuples of words�

Given words w�� � � � � wm we repeatedly compute f�w�� � � � � wm� w
i
m��� � � � � w

i
n�

until the �rst m columns are an element of E � As no tuple is E
hard� the
computation necessarily �nishes after some �nite time� Thus L � REC�E 	�

Note� that if L 
� REC�E 	 there must exist an E
hard tuple over �� via f �
Example ��� below shows that this has a number of interesting consequences�
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��� De�nition of Hard Remainder Pools

Lemma ��� from the previous section showed how to compute partial informa�

tion for some language� if no tuple is hard� The following example demonstrates

how we can compute partial information if there do exist hard tuples� De�ni�

tion ��� generalises the obtained results by de�ning hard remainder pools�

�
� Example �Recursively cheatable languages are recursive�
Let L be a recursively� say� �
cheatable language� i� e�� let L � REC�cheat
	
via some recursive function f � We claim that L is also recursively �
cheatable�

The family E will be the family cheat��

If no tuple is cheat�
hard over �� via f � Lemma ��� states L � REC�cheat�	
and we are done� So� assume that there exists a cheat�
hard tuple w�� � � � � w��

Let b 
� �L�w�� � � � � w��� This is a �xed bitstring� For any given word w
compute the pool P 
� f�w�� � � � � w�� w�� As the tuple is cheat��hard� the

�rst four columns of P � call them Q� are no element of cheat�� By de�nition�

this means jQj � � and as P � cheat
 we even have jQj � 
� Among the �ve

di�erent bitstrings in Q only one can be correct� namely b� But then� we also
know the characteristic value of the last word w� Hence� L is even recursive�

As we can reapply the argument� all recursively cheatable languages are recur�

sive� This fact was �rst proved by Richard Beigel is his PhD thesis where he

labelled it the Non�Speedup Theorem� The funny name is explained in the
remark after Corollary ���� below�

�
� Theorem �Non�Speedup Theorem�
We have REC � REC�cheat	�

�
	 Corollary
No non�trivial family contained in a cheatable family is stable�

Let�s analyse the argument of Example ��� from an abstract point of view�
First� we checked if no tuple of m words from a set S was E
hard over S via

the function f � If so� we could easily produce a pool from E for all tuples�

Second� if there existed an E
hard tuple� we acquired its characteristic string�

For any n�m words we prepended the hard tuple and produced a pool from F �
Knowing the correct value for the �rst m words� we deleted all bitstrings from

this pool which were incorrect for these positions� yielding what will be called

a remainder pool�

The important point is� that we can guarantee to delete several bitstrings�

because the �rst m columns are no pool from E � Because the words for which
we knew the characteristic string formed a hard tuple� the remainder pool

will be called a hard remainder pool� Note that the below de�nitions of hard

remainder pools is purely combinatorial	it neither refers to sets S nor to

functions f �
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�
� De�nition �Remainder Pool�
Let P be an n�pool and b � B m be a bitstring� The remainder of P knowing b is
the �n�m��pool fc � B n�m j bc � P g� A pool is a remainder pool of P 
 if it is
contained the remainder of P knowing some bitstring b�

�
� De�nition �Hard Remainder Pool�
A remainder pool of a pool P is an E�hard remainder pool of P 
 if the �rst

m columns of P form no pool from E � The set of all E�hard remainder pools of

pools from a family F will be denoted F 
 E �

�
�
 Lemma �Basic Properties of Hard Remainder Pools�

� If F � F � then F 
 E � F � 
 E � and if E � E � then F 
 E � F 
 E ��

� �F � F �� 
 E � F 
 E � F � 
 E and �F � F �� 
 E � F 
 E � F � 
 E �

� F 
 �E � E �� � F 
 E � F 
 E � and F 
 �E � E �� � F 
 E � F 
 E ��

� dFen�m 
 E � F �

Proof� As all but the last property follow directly from the de�nition� we argue

only for the last claim� The selection of the last �n�m��m � n many columns

of any pool from dFen�m is a pool from F by de�nition of upward translation�

Hence� no matter what pools are hard or what bitstrings we know� remainder

pools of pools from dFen�m are always in F �

P �

�
�� ��
�� ��
�� ��
�� ��
�� ��
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Figure ���
The pools R� to R� are the remainders of P knowing the di�erent b�s� The
pools Ri are bottom��hard remainder pools of P � but not sel��hard remainder
pools of it� The reason is that the �rst two columns of P are an element of sel��
but no element of bottom��

�
�� Example �Hard remainder pools of size families�
A useful equation is sizen�k� 
 sizem�h� � sizen�m�k � h�� To see this� con�

sider some sizem�h�
hard remainder pool Q � fc � B n�m j bc � P g of a pool

P � sizen�k�� By de�nition� the �rst m columns of P are no element of

sizem�h�� But then� these columns must contain at least h � � di�erent bit�

strings� Hence� the number of bitstrings in P that begin with b cannot be

more than k�h which implies Q � sizen�m�k�h�� The other way round� it is

not too hard to see that all pools in sizen�m�k� h� are indeed sizem�h�
hard
remainder pools of pools from sizen�k��



�	 Structure of Stable Families

Hard remainder pools are exactly those pools which can be computed if the

characteristic string of some hard words is known�

��� Computing Partial Information using Hard Tuples

This section studies applications of hard tuples to the computation of partial

information� Theorem ���� below states that for any language either no tuple

is E
hard or pools from F 
 E can be computed for all words� As an application�

we prove the Generalised Non
Speedup Theorem�

At the end of this section� we show that hard tuples are not only useful in the

recursive case� Theorems ���� and ���� give two applications of hard tuples in
the resource bounded case�

Hard Tuples and Recursively Computable Partial Information

�
�� Theorem
We have REC�F 	 � REC�F 
 E 	 �REC�E 	�

Proof� Let L � REC�F 	 via a recursive function f � First� if no n
tuple is

E
hard by Lemma ��� we have L � REC�E 	�

If there exists some E
hard tuple w�� � � � � wm let b 
� �L�w�� � � � � wm�� Given

any words wm��� � � � � wn we can compute a pool P 
� f�w�� � � � � wn�� The �rst
m columns of P are not an element of E as the tuple is E�hard� As we know the

correct value for the �rst m bits of the bitstrings in P � namely b� we can delete

all bitstrings from P which do not begin with b� yielding the remainder of P
knowing b� which is a pool for the given words� As the words w�� � � � � wm were

E
hard� this remainder pool is even an E
hard remainder pool and is hence an

element of F 
 E �

By Example ����� we have sizen�k� 
 sizem�h� � sizen�m�k � h�� Hence� we
get the following corollary� which was �rst proved in Beigel et al� 
������

�
�� Corollary �Generalised Non�Speedup Theorem�
Let m � n and h � k� Then

REC�sizen�k�	 � REC�sizen�m�k � h�	 �REC�sizem�h�	�

The name Generalised Non�Speedup Theorem stems from the following argument� If
we set m � h � �� we get REC�cheatn	 � REC�cheatn��	 and reapplying the
argument yields REC�cheatn	 � REC� i� e�� the Non�Speedup Theorem�

But why non�speedup# Consider some non�recursive language L� In order to decide
such a language with a Turing machine� the machine must obviously be an oracle
Turing machine equipped with a powerful non�recursive oracle X � Given n words�
we can easily decide membership of these words with respect to L with n queries by
taking X � L and simply querying the input words� But is it possible to make do
with less queries for some other� clever� oracle#
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Assume that there did exist some oracle X such that we could make do with log� n
adaptive queries� In this case� L would be recursively cheatable� To see this� note
that each of the �log� n � n di�erent answers of the oracle induces one possible char�
acteristic string� That would mean� that the language were recursively cheatable and
hence recursive�

Thus� the Non�Speedup Theorem asserts that for any non�recursive language and any

oracle the characteristic string of n given words cannot be computed with less than

blog� nc� � queries to the oracle� in general�

Can the Non
Speedup Theorem be strengthened further� More precisely� which

families above the cheatable families have recursive partial information classes�

Phrased di�erently� which families above the cheatable families are instable and

collapse to the trivial family� By our very �rst example of a partial information

class� Example ����� such a family cannot contain the selective pools�

Fortunately� the question has been solved in a most satisfactory way� All subset

closed families which do not contain the selective family produce recursive

partial information classes� Hence� selectivity is the exact dividing line between

recursive and non
recursive partial information� A proof for this can be found

in Nickelsen 
����� where an earlier result of Kummer 
����� known as the

Cardinality Theorem is extended�

If we introduce the name nonseln for the largest n
family that does not con�

tain the selective family� we get�

�
�� Fact
We have REC � REC�nonsel	�

�
�� Corollary
No non�trivial normal family missing a maximal selective pool is stable�

As a second application of Theorem ���� we show that for recursive selectivity�

allowing cheatable pools to be output does not change the partial information

class�

�
�� Theorem
For n � � we have REC�seln � cheatn	 � REC�sel	�

Proof� First� �seln�cheatn� 
 cheat� � seln���cheatn�� by Lemma �����

Hence� we easily get that REC�seln � cheatn	 is contained in REC�sel� �
cheat�	� The upward translation of sel� � cheat� is sel� � size����� This

can be seen by checking that in Figure �
� on page ��� indeed� no pools other
than the pools in sel� � size���� have the property that all selections of two

di�erent columns yields either a selective or a cheatable pool� But then� as�
sel� � size����

�

 cheat� � sel� we get the claim�

Hard Tuples and Resource Bounded Partial Information

Hard tuples are also useful when examining partial information classes over

function classes much smaller than the class of recursive functions� However�

if we consider function classes like FP� it certainly no longer makes sense to
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have S � ��� Instead� for a word w we will generally consider the set ��w

of words of maximum length jwj� Naturally� even for this set we cannot hope

to examine it fully in deterministic polynomial time	but in non�deterministic

polynomial time we can�

The following theorem demonstrates that hard tuples can also be used to

identify the amount of advice necessary to decide a partial information class�

The notion of advice classes is due to Karp and Lipton 
������ For more details

on results concerning advice bounds and partial information classes� please see

the bibliographical notes�

�
�	 De�nition �Advice Class� Advice Function�
Let K be a class of languages and F be a class of functions from N to N � Then

L is in the advice class K�F
 if there exists some advice function h 
 N � �� such
the mapping n �� jh�n�j is in F and the language fhw� h�jwj�i j w � Lg is in K�

�
�� Theorem
We have P�min	 � ��P���

Proof� Before we start the specialised proof� consider once more the general

situation where we have L � P�F 	 via some polynomial time computable func�

tion f and where E is some arbitrarym
family� In this situation� let w�� � � � � wm

be words of maximum length l�

� The set X� of m
tuples which are not E
hard over ��l via f is in NP� For
an input tuple we simply �guess� some further words wm��� � � � � wn � ��l and
then compute the pool f�w�� � � � � wn�� If the �rst n columns are a pool from E
we accept� Otherwise we reject�

� It is an FPNP
problem to compute a pool from E for a tuple w�� � � � � wm

which is not E
hard over ��l via f � To see this� consider a machine which

enumerates all pools in E and for each P � E it queries an oracle X� about the

word hw�� � � � � wm� P i� The �rst pool for which the oracle answers �yes� for the

query is output� The oracle X� contains a tuple hw�� � � � � wm� P i� i� the �rst

m columns of f�w�� � � � � wn� are P for some additional words wm��� � � � � wn �
��l� By the same argument as above� we have X� � NP� Note� that as the

input tuple is not E
hard� some pool P is indeed output�

We now specialise our argument to F � min� and E � cheat�� Let L be some

language in P�min�	� Note� that by Example ���� we have P�min�	 � P�min	�
We must prove L � ��P��� i� e�� we must show that the language L can be

decided by a deterministic polynomial time algorithm that may query an NP

oracle and which may use one bit of advice per word length� The NP oracle
will be the join of X� and X��

To decide L� upon input w we �rst check� using X�� if this word is not

cheat�
hard for ��jwj� If it is not� we use X� to compute a pool from

E � cheat�� thus deciding the word w�

The family min� has a special property� Any two words which are hard over

the same set ��l have the same characteristic value� To see this� note that the
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only pool in min� that does not have a constant column is the pool f��� ��g�
Hence� to decide a hard word� apart from the queries to the NP
oracles� we

only need one further bit of knowledge for each length l� This extra bit tells

us whether the hard words of length l are in the language or not�

The astute reader may have noticed that the last argument is not entirely precise� In
order to ensure that f��� ��g is indeed a pool for any two hard words� the words must
acutally not only be hard via f but also via f � where f ��u� v� �� f�v� u�� Naturally�
the proof can be modi�ed to take care of this problem also�

The next theorem addresses the following question� Given a c�c�c� function

class FC � is every language C �cheat�	 the symmetric di�erence of languages

in C �min�	� We answers this question a�rmatively for polynomial space� It

is not clear how the following proof might be adopted to polynomial time�

�
�� Theorem
Every language in PSPACE�cheat�	 is the symmetric di�erence of a language in

PSPACE�min�	 and a language in PSPACE�

Proof� Let L � PSPACE�cheat�	 via some function f computable in poly�

nomial space� We must construct two languages M � PSPACE�min�	 and
N � PSPACE such that L �M �N � Like in the previous proof� hardness of

words will once more refer to cheat�
hardness in the following�

The key idea of the proof is the following de�nition of the lookup word lw of

a word w� For words w which are not cheat�
hard over ��jwj� the lookup
word is w itself� However� if w is hard� we de�ne the lookup word as the

lexicographically smallest word which is hard over ��jwj via f �

The lookup word is computable in polynomial space� as we can easily check

whether a word is hard in polynomial space� and if it is� we only have to search

for the smallest word u in ��jwj such that for all other words v in ��jwj the
pool f�u� v� does not have a constant �rst column� thus obtaining the smallest

word cheat�
hard over ��jwj�

Using lookup words� we can now de�ne the languages M and N � For w � ��

let

�M �w� 
� �L�lw��

�N �w� 
� �L�lw�� �L�w��

Note� that we have �N �w� � �M �w� � �L�w� and hence L �M �N �

Deciding N in polynomial space

In order to show N � PSPACE� let w be an input word� First� we compute

the lookup word lw which can be done in polynomial space as argued above�

We must compute �L�w� � �L�lw�� If lw � w we are done� Otherwise� both

w and lw are hard over all of ��jwj� Speci�cally� both f�lw� w� and f�w� lw�
have non
constant �rst columns� From this� we can deduce whether f��� ��g
or f��� ��g is a pool for �L�lw� w�� In the �rst case� �L�w� � �L�lw� � � and

in the second case �L�w� � �L�lw� � ��
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Computing minimal partial information for M

Next� given words u and v we must compute a pool for them from min� for

the language M in polynomial space� Once more� we �rst compute the lookup

words lu and lv�

We must compute a pool for the characteristic string �M �u� v�� By de�nition�

we have �M �u� v� � �L�lu� lv�� But then� we only need to compute a pool for lu
and lv with respect to L� If lu � lv this is trivial� as then f��� ��g � min� is such

a pool� Otherwise� assume lu is the lexicographically smaller word	the other

case is symmetric� As lv is the smallest word which is hard over all of ��jvj

by de�nition� the word lu cannot also be hard over ��jvj� But then� we can

compute �L�lu� in polynomial space and can hence output a pool from min�

for �L�lu� lv��

��� Computing Partial Information for Branches

After the small excursion at the end of the previous section� this last section

returns to the original problem of identifying stable families� This section

identi�es all stable �
families� We have already eliminated a large number of

candidates� Except for the trivial family� only the family sel� can be stable

and families beyond sel� � cheat�� There are only four such other families

which are also normal� namely sel� � bottom�� sel� � top�� approx� and

�nally size����� All of these families are stable as Corollary ���� below proves�

In our second example of a partial information class� Example ����� we showed

that the closed chains of in partial ordering are in REC�sel� � bottom�	�
Furthermore� we gave a canonical example of interesting closed chains in a

partial ordering� All branches in the standard tree ����v� are closed chains�

We now prove that some branches are not recursively selective� Special thanks

once more to Arfst Nickelsen for pointing out the idea of the proof�

�
�
 Theorem
There exists a branch in the standard tree that is not an element of REC�sel	�

Proof� We construct a branch B as follows� Let M i be an enumeration of

all machines that could possibly witness B � REC�sel�	� For each i � N

we will put exactly one word of length i � � into B� Assume� that B is
already constructed up to level i� i� e�� we have constructed a path w�� � � � � wi

to some node wi of length i� For the two successors wi� and wi� of wi compute

M i�wi�� wi��� If the machine fails to produce a pool from sel�� we extend

the path arbitrarily	for example by choosing wi�� 
� wi�� Otherwise� the

machine outputs a pool from sel�� One of the two bitstrings �� and �� is

not in this pool� In the �rst case set wi�� 
� wi�� in the other case set

wi�� 
� wi�� In either case� the machine M i errs on the words wi� and wi��

Thus B 
�
�
wi j i � N

�
is a branch� but B 
� REC�sel�	�

We have seen that closed chains in a partial ordering are in P�sel��bottom�	
and that some closed chains are not selective�
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� �

Figure ���
The standard tree �
��v� used in the construction of Theorem ����� In the
depicted situation� the words w� � �� w� � � and w� � �� have already been
constructed� The path is continued via ��� or via ��� such that the machineM�

errs for these two words� i� e�� we ensure that if the machine outputs a selective
pool� this pool it incorrect�

�
�� Corollary
The following proper inclusions hold�

REC�approx�	

REC�sel� � bottom�	 REC�sel� � top�	

REC�sel�	


�
�

�

�
�

Proof� By Theorem ���� recursive selectivity is a proper subset of the class

to the left� As the class to the right is just the complement of the left class�
neither can the right class be equal to recursive selectivity� As REC�sel�	
is the intersection of the two classes above it� these classes cannot be equal�

Lastly� neither the left nor the right class can be equal to the class at the top�

as REC�approx�	 is closed under complement which the left and right classes

are not�

Bibliographical Notes

Despite the fact that recursively computable partial information has been studied for
quite some time� no general procedure is known for deciding stability of families

A �rst result on the collapse of instable families is the Non�Speedup Theorem which
Richard Beigel proved in his PhD thesis� He also conjectured that a stronger res�
ult holds� namely that all recursively easily countable languages are recursive� A
language L is easily n�countable� if for any n words w�� � � � � wn we can exclude one
possibility for the cardinality of L�fw�� � � � � wng� It quite straightforward to see that
the easily countable languages form a partial information class over an appropriate
family� called cardn�n�� and that we have cheatn � cardn�n��
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REC

REC�cheat	

REC�nonsel	

REC�sel	

REC�sel � cheat	

REC�sel� �
bottom�	

REC�sel� �
top�	

REC�approx�	

Figure ���
Class review for the results established in this chapter� The bordering line
for approx� is dashed� because while we know that REC�approx�	 does not
coincide with any of the other classes� it is unclear whether it is not perhaps
simply the union of the lower classes�

Beigel�s conjecture� also known as the Cardinality Conjecture� was �rst proved for the
case n � � by Owings ������� The general case was proved by Martin Kummer in ����
in the paper A Proof of Beigel�s Cardinality Conjecture� In the paper� Kummer
already pointed out that the theorem can be strengthened in di�erent ways� In
essence� he showed that the theorem also holds for several families between cardn�n�
and the family nonseln� However� lacking the framework of pools and families he
did not to give the exact characterisation which is due to Nickelsen� In his ��� paper�
Nickelsen �nally proved Fact ���� which states that REC � REC�nonsel	 and this
theorem cannot be strengthened any further�at least not within the framework of
pools and families�

Beyond selectivity� the picture is not so clear� The Generalised Non�Speedup The�

orem was �rst proved in Beigel et al� ������� Having a close look at the proof given
there� Theorem ���� is a restating of the Generalised Non�Speedup Theorem in the
framework of pools and families� However Theorem ����� which states REC�sel	 �
REC�sel � cheat	� shows that once more the formulation in the framework of pools
and families is strictly more powerful than the standard formulation�

In the same paper of Beigel� Kummer and Stephan� decision procedures are presented
for the inclusion and the equality problems of partial information classes over size
families� They propose the following de�nition� where gP �k� for some pool P is the
maximum size of selections of k positions from P �

De�nition ��� from Beigel et al� ����

� A nonempty set V � f�� �gs
is called �m�n��good i� for every partition n� � n� � � � � � nk � n with
� � nj � s and k � �� gV �n�� � � � �� gV �nk� � m� k � ��

Their main Theorem ��� states that REC�sizen�m�	 � REC�sizen��m��	� i� every
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�m�n��good n��pool has maximum size m�� As this is a purely combinatorial char�
acterisation� inclusion of recursively computable partial information classes over size
families is decidable� However� this does not identify the stable size families for there
might exist an instable size family that collapses to some non�size family�

As the authors point out� �m�n��goodness of a pool P � B s is a strengthening of
the assertion gP �n� � m� Note� that this weaker assertion is equivalent to P ��
sizen�m�

�
s
� Hence� the theorem is also a strengthened version of the fact that if�

sizen�m�
�
s
� sizes�r� we have REC�sizen�m�	 � REC�sizes�r�	�

Another kind of families for which the inclusion problem has been studied are the
frequency families� Recall that freqn�r� is the family consisting of all n�pools that
are contained in closed balls of radius r� The study of these families�more precisely
of their partial information classes�began as early as ����� In McNaughton ������
page ���� Myhill asked if REC � REC�freqn�r�	 for small r� An a�rmative answer
to this was obtained by Trakhtenbrot ������ who showed that for r � n�� this is
correct�which is now also quite easy to see by noting that selective pools have a
diameter of n and cannot be contained in closed balls of diameter less than n� For
a survey of results concerning the inclusion problem and the equality problem for
r � n�� please see Kummer and Stephan ����!��

Advice classes were introduced by Karp and Lipton ������� The �rst results on the
advice complexity of partial information classes are due to Ko ������� who showed
P�sel	 � P�O�n��� A result due to Hemaspaandra and Torenvliet ������ states that
for the p�selective languages n�� bits of advice are necessary for any resource bound�
in general� but that for NP this is also su�cient�

In his Master�s thesis Upper and Lower Bounds for Token Advice for Partial Informa�

tion Classes� Ronneburger shows that cheatable languages can be decided with a
constant amount of advice using a 
�P�machine� It is not known whether this can be
improved to NP or even P� Theorem ���� is currently the best result in this regard�
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Truth�Table Closures of

Partial Information Classes

� 
 Forderungen wenn sie von Nutzen seyn sollen

Wenn aber auch die Rechen�Maschinen nicht das Denken� sondern blos das Ged	cht�
nis erleichtern k
nnen� so kann dieser Vortheil dennoch manchmal sehr gros seyn und
bei denjenigen Dank verdienen� welche sich 
fters anhaltend dem unangenehmen Ge�
sch	ft des Addirens� Multiplicirens oder Dividirens gro�er Zahlen unterziehen m�ssen�
K
nnte hierdurch noch dem 
ftern Irren vorgebaut� theils auch Zeit erspart werden�
so w	re ihr Nutzen gewi� entschieden� da� dieses aber noch die wenigsten leisten wird
die Folge lehren�

Eine Rechenmaschine� die nicht blos Spielwerk seyn soll� mu� meines Erachtens fol�
gende Eigenschaften haben�

� Mu� sie so einfach als m
glich seyn� Eine Erfordernis� welche theils Dauer� theils
Wohlfeile zum Grunde hat�

� Mu� sie untr�glich seyn� d�i� sie mu�� wenn geh
rig verfahren wird� nie abweichende
Resultate geben�

� Sie mu� das Ausrechnen verwickelter und gro�er Exempel betr	chtlich erleichtern�

� Sie mu� dem Arbeitenden Zeit ersparen� leicht zu stellen und leicht zu bewegen seyn

denn sonst w�rde ihr Nutzen sehr gering seyn� und ein Rechnungskenner w�rde lieber
auf die gew
hnliche Art rechnen� als zu einer Maschine seine Zu�ucht nehmen� welche
ihm nur eine Schwierigkeit mit der andern vertauscht und endlich

� keine besondere Anstrengung des Ged	chtnisses erfordern�

� Johann Paul Bischo	� Versuch einer Geschichte der Rechenmaschine� Ansbach �
��

��
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Introduction to Reductions

Der Inhalt eines Begri�es nimmt ab� wenn sein Umfang zunimmt

wird dieser allumfassend� so mu� der Inhalt ganz verloren gehen�

� Gottlob Frege� Die Grundlagen der Arithmetik� Seite ��� Breslau �

�

A
problem like the halting problem is	in a very natural sense	more di�cult

than any problem solvable in polynomial time� Complexity classes describe

the complexity of languages by asserting that languages in the complexity class
are somehow simpler than the languages outside� However� this simple yes or

no assertion is often too coarse to describe how much more di�cult a language

is than some other language� For example� the unsatis�ability and satis�ability

problems are obviously closely related� the �rst being the complement of the

latter� However� if NP is not closed under complement� the unsatis�ability

problem is no element of NP while the satis�ability problem is�

A more �ne
grained comparison of languages can be achieved by checking which

reductions are possible between them� i� e�� by checking how di�cult it is to

decide a language when another language is somehow �known�� If a language

is reducible to some other language with� say� �ve queries� but not with four or

less queries� the number �ve quanti�es the relative di�culty of the languages�

Reductions form the backbone of structural complexity analysis�

A reduction of a language to another language is determined by four basic

parameters� all of which can be varied independently� which results in a large

number of possible reductions�

� The number of times the other language is consulted can be restricted�

� It can be restricted how the answers to the queries may be used�

� The time or space consumed by the reduction computation can be restricted�

� It can be speci�ed whether adaptive or non�adaptive queries are used�

This chapter starts with a review of the most important reductions studied

in the literature� namely many
one reductions� Turing reductions and positive

reductions� The second section introduces general truth�table reductions and

combinatorial descriptions thereof� called evaluation types� The third section

�
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shows how di�erent forms of truth
table reduction studied in the literature �t

into the framework� Finally� the last section proves the somewhat surprising

result that all bounded reductions� including bounded Turing reductions� can

be represented by appropriate evaluation types�

��� Review of Many
One� Turing and Positive Reductions

This section reviews three important reductions studied in the literature� The

most restrictive reduction is the many
one reduction� The most general reduc�

tion is the Turing reduction� Positive reductions are an appropriate kind of

reduction for analysing the stability of non
deterministic classes� Speci�cally�

while NP is presumably not closed under Turing reductions� Selman 
����b�

proved Theorem ��� below� which states that NP is closed under positive
Turing reductions�

Many�One Reductions

A language L is many�one reducible to a language K� if there exists a Turing

machine M such that a word w is in L� i�M�w� is in K� An important special

case are many
one reductions that need only logarithmic space� In this case�

the four parameters of a reduction are instantiated as follows�

� Just one question is asked�

� The answer to the query must be returned �as is��

� The space used is limited to logarithmic space�

� For a single query� adaptiveness is irrelevant�

Logarithmic space many
one reductions are commonly used in completeness

arguments� because they are one of the most restrictive forms of reductions

possible� If L is many
one reducible to K and we can decide K in some
satisfactory way� we can also decide L just as quickly� Hence� if a language is

complete with respect to logarithmic space many�one reductions for some class

of languages� there is no language in the class which is �more di�cult� than

the given language� Table �
� on the facing page lists a selection of the many

known examples of complete problems for classic complexity classes�

Although logarithmic space many�one reduction is a restrictive reduction� it is by no
means the most restrictive possible� More restrictive reductions become necessary�
if one wishes to study problems which are complete for logarithmic space itself� For
example� the directed trees reachability problem is complete for logarithmic space with
respect to parallel logarithmic time�for more details please confer Jones et al� ��� ��
and Cook and McKenzie ���� ��

Turing Reductions

Turing reductions are quite the opposite of many
one reductions� A language L
is Turing reducible to a language K� if there exists a Turing machine which de�
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Table ���
Examples of problems complete with respect to logarithmic space many�one
reductions� For many more examples� please refer to Papadimitriou �������

Complexity Class Complete Problems

L all languages in L except for � and ��

NL reachability� �
satis�ability

polyL none

P circuit value problem� monotone circuit value

problem

NP satis�ability� travelling salesman problem�

Hamilton path� clique

PSPACE quanti�ed satis�ability� game Go

REC none

cides L with the oracle K� For the important special case of a polynomial time

Turing reduction� the four reduction parameters are instantiated as follows�

� As many questions may be asked as desired�

� The answers may be used in any desired way�

� The used time is limited to polynomial time�

� The questions may be asked adaptively�

While Turing reductions are less useful with respect to completeness arguments

than many
one reductions� they are important with respect to closure proper�
ties� A class is closed under Turing reductions� if every language reducible to

some language in the class is already an element of the class� Hence� being

closed under Turing reductions means that the class is stable	even very gen�

eral operations on languages in the class do not lead outside� A well
known

example of a complexity class closed under polynomial time Turing reductions

is P�

A most intriguing question is� is NP closed under Turing reductions� If this is

not the case� then P 
� NP as P is closed under Turing reductions� The other

way round� if NP is closed under Turing reductions� then NP � coNP�

Positive Reductions

�
� De�nition �Positive Turing Machine�
An oracle Turing machine is positive
 if
 whenever a word is accepted for some

oracle
 it is also accepted for all larger oracles�

Phrased di�erently� an oracle Turing machine M is positive� if the mapping

L�M� � � which maps oracles to accepted languages is monotone with respect

to inclusion� The importance of positive reductions for polynomial time lies in

the following fact� taken from Theorem � of Selman 
����b��



�� Introduction to Reductions

�
� Theorem
The class NP is closed under positive polynomial time Turing reductions�

Proof� Assume that L is reducible via a positive Turing machine R to a lan�

guage K and assume K � NP via some machine MK � We construct a

non
deterministic Turing machine ML which decides L and runs in polyno�

mial time� hence proving L � NP�

For an input word w let ML simulate the reduction machine R� Whenever

the reduction machine produces a query q for its oracle� the simulation of R is

interrupted and the machine ML starts a non
deterministic simulation of MK

on input q� If a sub
simulation path answers �yes�� the simulation of R is

continued with the assumption q � K� if a sub
simulation path answers �no��

the simulation of R is also continued but with the assumption q 
� K� Note�

that if� indeed� q � K� there exists some path which resumes the simulation

of R with the correct assumption q � K� and if q 
� K� all paths resume the

simulation of R with the correct assumption q 
� K� Hence� there always exists
at least one simulation path for which the assumptions are correct�

As the correct assumptions are always made on some path� we must only

argue that it is not possible that a word is inadvertently accepted� presumably
because we make wrong assumptions on some path� But wrong assumptions

can only be made for queries with q � K� So� assume that ML makes wrong

assumptions on queries q�� � � � � qk � K� If R does not accept the word� neither

will it with the smaller oracle Knfq�� � � � � qkg� But with respect to this oracle

the assumptions on the path were correct	and hence this path rejects�

��� De�nition of Truth
Table Reductions

In this section� a general framework for the study of truth
table reductions is

introduced� After an introduction to truth
table reductions in general� De�ni�

tion ��� introduces a uni�ed way of describing truth�table reductions combina�

torially� General bounded truth
table reductions are de�ned in De�nition ����

A detailed overview how notions of truth
table reducibility studied in the lit�

erature �t into the presented framework can be found in the next section�

For a truth
table reduction� all queries must be made non
adaptively� Con�

sider once more two languages L and K� where the language K is assumed

to be �known� in some way� for example if K is the satis�ability problem� we

might have a very expensive and fast computer for solving the problem like a

DNA computer� If the language L is Turing reducible to K� then there exists a

machine which produces a query to K� then produces another query based on

the answer� then yet another� and so forth� Hence� a Turing reduction might

be envisioned as a kind of search for information inside the language K�

It might be more useful to pose questions not sequentially� but rather in parallel�

For example� we might have ten DNA computers available� Then� if the queries

are posed in parallel� all ten answers can be computed in parallel which might
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save time� However� if we have to ask questions in parallel� we can no longer

really search inside the language� Rather� what we do is a sophisticated lookup

inside the language K� In general� a truth
table reduction of a language L to

a language K works as follows�

� Given an input word w� a function called the generator produces a tuple

q�� � � � � qk of queries to the language K�

� A second function called the evaluator also gets the word w as input� but

also the characteristic string of the queries produced by the generator� The

evaluator� presumably using the extra information� must then decide whether

w � L holds�

For each �xed input word� the behaviour of the evaluator in terms of the charac�

teristic bits can be modelled by a Boolean function� hence the name truth�table

reductions� The di�erent ways the evaluator uses the characteristic bits can

be described by the Boolean functions computed by the evaluator for di�erent

input words� This motivates the following de�nition� where �k denotes the set
of all k
ary Boolean functions�

�
� De�nition �Evaluation Type�
A k�ary evaluation type is a subset of �k containing a non�constant function�

Based on this de�nition� we can now make precise the notion of truth
table

reductions with a speci�c evaluation type� De�nition ��� below extends the

de�nition of Ladner et al� 
����� of truth
table reductions by allowing them to
be parametrised over evaluation types�

�
� De�nition ���Reduction�
LetFC be c�c�c� and let � be a k�ary evaluation type� A language L is ��reducible

to a language K
 written L �C
 K
 if there exists a generator g � FC and an

evaluator e � FC such that for all input words w � ��

� we have ew � � where ew 
 B
k � B is the Boolean function computed by the

evaluator with its �rst input �xed to the word w
 i� e�
 ew�b� 
� e
�
hw� bi

�



� we have �L�w� � ew
�
�K�q��� � � � � �K�qk�

�
where qi 
� pi

�
g�w�

�
denotes the

i�th query produced by the generator for the input word�

From time to time� the evaluator will want to reject or accept some words

without looking at the extra bits it is given� For example� the evaluator might

reject some ill
formed words outright� If we wish to allow outright acceptance

or rejection� the evaluation type must contain the verum and falsum functions�

Fortunately� even if the evaluation type does not contain these functions� a

small trick allows us to put them into the evaluation type without changing

the reduction power�

�
� Lemma
Let � be an evaluation type and let K be a non�trivial language� i� e�� K 
� �����
Then for every language L we have L �C
 K� i� L �C
�f	�
g K�
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Proof� We obviously only need to show that L �C
�f	�
g K via some g and e

implies L �C
 K via some g� and e�� Let u� 
� K and u� � K be words� which
exist by assumption� By De�nition ��� of evaluation types� there exists some

non
constant Boolean function 
 � �� Let 
�b�� � � and 
�b�� � ��

We construct the generator g� as follows� Upon input w� it checks� if ew is

verum or falsum� If not� it outputs g�w�� Otherwise� if ew � �� the generator g�

outputs hub����� � � � � ub��k�i� and if ew � �� it outputs hub����� � � � � ub��k�i� The
evaluator e� does the same as the old evaluator e� except if ew � � or ew � ��
where it uses the function 
 instead�

To see that g� and e� witness L �C
 K� simply note that if ew is verum or falsum�

then e�w � 
 and the new evaluator is fed with the appropriate bitstring b�
or b� by construction�

For a language or a class of languages and a �
reduction� one is often interested
in the class of all languages which are reducible to one of the given languages�
This class is denoted the reduction closure of the language or set of languages�

�
� De�nition �Reduction Closure�
The ��closure of a class K of languages
 written RC


�
K
�

 is the class of all

languages ��reducible to some language in K�

Every evaluation type induces a special kind of truth
table reduction� Due

to the large number of evaluation types� this may seem a bit alarming	the

de�nition might be too general to allow our proving anything useful about

evaluation types in general� Fortunately� this is not the case� rather the next

chapter shows that a decision procedure exists for deciding closure under ar�

bitrary ��reductions for partial information classes�

While the above de�nitions are restricted to �xed numbers of queries produced by
the generator� De�nition !�� can easily be adapted to non�constant number of queries�
The number of queries should then be some well�behaved function of the input length�
For the polynomial case� De�nition !� gives a useful notion of �well�behavedness� due
to Krentel ������� page ����

In the following� we will nevertheless almost exclusively consider the case where the
number of queries is �xed� because only in this case a combinatorial theory is currently
available� The only exceptions are Theorems  ���  �� and ��� which are formulated
explicitly for polynomial time�

�
	 De�nition �Smooth Function�
A monotone function s 
 N � N is smooth
 if the mapping w �� �s�jwj� is in FP�

��� Representing Bounded Truth
Table Reductions by

Evaluation Types

This section demonstrates that di�erent notions of truth
table reducibility

studied in the literature� see for example Ladner et al� 
������ can be de�

scribed using appropriate evaluation types� Examples ��� to ���� show that the
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well
known forms of normal� positive� disjunctive and conjunctive truth
table

reductions are �
reductions for appropriate �� Examples ���� and ���� demon�

strate the same for two more specialised reductions� namely parity and cardi�

nality reductions�

�
� Example �Many�one reduction�
A many
one reduction can be modelled by the evaluation type � � fidg con�

taining only the unary identity function� In this case� the evaluator does

nothing with the answer to the generator�s query� Conversely� if a language L
is �
reducible to another language K� it is also many
one reducible to K via

the generator	for the evaluator must use the identity function�

�
� Example �Bounded truth�table reduction�
If we do not restrict in any way how the evaluator may use the extra information�

the evaluation type is given by �k� the set of all k
ary Boolean functions� In

the literature� L ��k K is usually denoted L �k�tt K�

�
�
 Example �Positive bounded truth�table reduction�
In a positive reduction� the evaluator is required to behave like a positive

machine� This means� that if the evaluator yields the result � when applied to
the characteristic string of some words with respect to some oracle K� it must

also yield � when fed with the characteristic string of the words with respect

to larger oracles�

The evaluation type of a positive truth
table reduction is given by a set of

monotone Boolean functions� for every monotone function 
 does indeed have

the property that b �pw b� implies 
�b� � 
�b��� If we let �k denote the set of

all monotone k
ary Boolean functions� i� e�� �k 
�
�

 j 
 
 B k � B monotone

�
�

the standard notation for L ��k K found in the literature is L �k�ptt K�

�
�� Example �Disjunctive and conjunctive truth�table reductions�
Two special cases of monotone functions are the logical and the logical or of
k bits� These functions give rise to the sets �k � f�kg and �k � f�kg� The
standard notation for the disjunctive case is L �k�dtt K and for the conjunctive

case L �k�ctt K�

The above examples treated the most prominent forms of truth
table reduction

studied in the literature� However� evaluation types are just as useful for
describing less commonly used reductions� The reductions presented in the

following examples are taken from Agrawal et al� 
������

�
�� Example �Parity reduction�
For parity reductions� the evaluator must compute either the k
ary parity
function �k� which counts the number of ��s in its input modulo �� or the

negation of the parity function� or it may accept or reject the word outright�

The corresponding evaluation type �k is the set f�k�� 
 �k����g�

The only action to be taken by the evaluator is to decide which function to

use for a speci�c input word� Phrased di�erently� the evaluator must decide

the input word knowing only the parity of the queries�
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To appreciate the importance of this reduction� note that it follows from the

results of Wechsung 
����� that any language� which is k�truth�table reducible
to the satis�ability problem� is already k�parity reducible to the satis�ability

problem� Phrased di�erently� �k
reducibility to SAT implies �k
reducibility
to SAT� We will show in Theorem ��� that satis�ability shares this property

with all p�selective languages�

�
�� Example �Cardinality reductions�
A reduction less restrictive than parity reduction is the cardinality reduction�

While for the parity reduction the evaluator has to decide membership knowing

only the parity of the number of words in the oracle language� for a cardinality

reduction the evaluator knows the cardinality itself� Phrased di�erently� the

evaluator must �rst apply a counting function to the characteristic string but

may then do whatever it wants with the obtained number�

If we let �� 
 B
k � N denote the function that counts the number of ��s in

its input� the k
cardinality reduction is represented by the evaluation type
f� 
 �� j � 
 N � B g�

��� Representing Bounded Turing Reductions by

Evaluation Types

This last section demonstrates that bounded Turing reductions can be mod�

elled by appropriate evaluation types� This result is perhaps surprising as

truth
table reductions and Turing reductions are generally considered to be

incompatible notions�

First� we prove Lemma ���� below which shows how a Turing reduction with

k queries can be simulated by a truth
table reduction with �k�� queries� The
converse of this lemma does not hold in general� but we show in Example ����
how this can be remedied by shrinking the evaluation type� As a generalisation

of the ideas used in the example� De�nitions ���� and ���� introduce the notions

of navigation paths and Turing evaluation types �k� Finally� Theorem ����

shows that Turing evaluation types model exactly Turing reducibility�

Consider a language L which is Turing reducible to a language K with a

maximum of k queries via a machine R� In order to describe the Turing

reduction using a truth
table reduction� we construct a generator as follows�

On any given input� it simulates all paths which could possibly be taken by the

reduction machine R� Along each path� k queries may be asked� In total there

may be up to �k � � many di�erent queries� These are the queries generated

by the generator�

The evaluator can now decide the input word by simply simulating R once

more� However� whenever the oracle is queried by R the evaluator can lookup

the correct value in its extra answer vector�
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�
�� Lemma
A language which is k�Turing reducible to a language K is also ��k����truth�table
reducible to K�

The ��k � ��
truth
table reductions are strictly more powerful than k
Turing
reductions in general� The reason is� in essence� that the constructed evalu�

ator does not use all ��k � ���ary Boolean functions� The following example

demonstrates which functions are not used for the case k � ��

�
�� Example �Turing reduction with two queries�
Consider for the case k � � two languages L and K with L ���T K via R� For
an input word w three questions are generated as described above� call them q��
q� and q�� The query q� is the �rst query produced during the reduction� The

query q� is produced� if the answer to q� was �no�� the query q� is produced� if
the answer was �yes��

Let�s trace the calculation of the evaluator� As input� the evaluator gets a

word w and a bitstring b �
 b�b�b� of length three� It starts a simulation of R
and whenever the oracle is queried� the evaluator does a lookup in b� Now�

assume b� � �� Then the evaluator will next look at b� and will not bother

about b� any more� Phrased di�erently� the construction of the evaluator

guarantees ew��� b�� �� � ew��� b�� ��� Like things happen� if b� � �� Hence� the

evaluator will satisfy the following conditions for all words w�

ew��� �� �� � ew��� �� ��� ew��� �� �� � ew��� �� ���

ew��� �� �� � ew��� �� ��� ew��� �� �� � ew��� �� ���

The other way round� assume that a generator is given which produces three

queries and an evaluator which uses only functions ful�lling the above equa�

tions� This reduction can be replaced by a �
Turing reduction as follows� We

start by querying the �rst word q� produced by the generator� If the answer

is �no�� we ask q� and� getting the answer b�� we output ew��� b�� ��� where
the question mark denotes an arbitrary value	the value does not matter any�

how� by assumption� Likewise� if the answer to the �rst question was �yes��

we query q� and getting the answer b� we output ew��� �� b��� In any case�

this Turing reduction will give exactly the same outputs as the truth
table

reduction�

The idea of the previous example can be generalised to larger numbers of

queries� The key observation is that the evaluator navigates through the answer
vector� For any two answer vectors which are navigated in the same way� the

evaluator must output the same value�

Assume that the answers to the queries are given in the order produced by a

preorder traversal� i� e�� �rst the answer to the root question� then all answers

to the left subtree and then all answers to the right subtree� How does the

evaluator navigate this bitstring� It will �rst look at the answer to the �rst

query� If this bit is �� the search continues inside the left subtree� i� e�� inside

the �k���� many bits following the �rst bit� If the bit is �� the search continues

inside the right subtree given by the �k�� � � last bits�
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�
�� De�nition �Navigation Functions�

The navigation functions navk 
 B
�k�� � B k are de�ned as follows�

navk�b�� � � � � b�k��� 
�

���
��
� if k � ��

� navk��
�
b�� � � � � b�k����

�
if b� � ��

� navk��
�
b�k��� � � � � b�k��

�
if b� � ��

With this de�nition� we can now de�ne the evaluation type employed by the

k
Turing reduction� Recall that the kernel of a function is the smallest equival�

ence relation on the function�s domain such that non
equivalent elements are
mapped to di�erent values�

�
�	 De�nition �Turing Evaluation Type�
The k�Turing evaluation type �k consists of all ��k � ���ary Boolean functions

whose kernels include the kernel of navk
 i� e�
 of all functions 
 
 B
�k�� � B k

with 
�b� � 
�c� whenever navk�b� � navk�c��

The following theorem� which states that �k
reductions faithfully describe

k
Turing reductions� is formulated for polynomial time only� The reason is�

that it is not immediately clear how Turing reductions over arbitrary func�

tion classes should be de�ned� We need not elaborate further on this for

�k�reductions can be used to de�ne a notion of bounded Turing reducibil�

ity for arbitrary function classes
even for function classes not produced by

Turing machines� Hence� the theorem is just a justi�cation that we may adopt

�k
reducibility as a general notion of bounded Turing reducibility�

�
�� Theorem
For all k � � and all languages L and K we have L �Pk�T K� i� L �P�k K�

Proof� Assume L �Pk�T K via a polynomial time bounded Turing machine R�
We show L �P�k K�

First� let�s de�ne the generator� Upon input w the �rst query produced by the

generator is the �rst query produced by the reduction machine R on input w�
Next� the generator produces �k�� � � many queries� which are all queries

produced by the reduction machine R if the answer to its �rst query is �no��

Next� the generator produces another �k�� � � many queries which are the

queries produced if the �rst query is answered by �yes�� Naturally� each of the
sub
blocks of size �k�� � � is in turn is structured in this way�

The evaluator e� upon input w and the answers to the queries generated by

the generator� must now decide the word w with respect to L� It does so

by simulating R and consulting the answer vector whenever the reduction

machine consults the oracle� We must only argue that for each input word w
we have ew � �k� By de�nition� we must show that navk�b� � navk�c� implies

ew�b� � ew�c�� However� the lookups done by the evaluator for answers b
are� in order� exactly the bits of the navigation path navk�b� by construction�

Hence� navk�b� � navk�c� implies ew�b� � ew�c��
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For the other direction� assume L �P�k K via a generator g and an evaluator e�

We must show L �Pk�T K�

We construct the reduction machine as follows� It �rst asks the �rst query

produced by the generator� yielding an answer b�� The second answer b� is
determined as follows� If b� � �� the reduction continues recursively by asking

the �rst of the queries q�� � � � � q�k����� If b� � �� the reduction continues

recursively by asking the �rst query of q�k��� � � � � q�k��� The recursive descend
yields a sequence b�� � � � � bk of answers�

The reduction machine has now obtained some k answers out of the needed
�k�� answers� Nevertheless� whatever the correct answers to the other queries
might be� the navigation path of the the full answer vector is exactly b� � � � bk�
Hence� ew applied to the correct answers yields the same value as ew applied

to any bitstring with whose navigation path is b� � � � bk� But then� we can

complete the reduction by returning exactly this value�

Bibliographical Notes

For a general introduction to structural complexity theory� please see Balc"zar et al�
������ ������ Polynomial time many�one reductions are also called Karp reductions
in the literature� The usage of logarithmic space many�one reductions instead of
polynomial time many�one reductions for completeness arguments is advocated in
Papadimitriou ������� Polynomial time Turing reductions are also called Cook reduc�
tions�

For a comparison of the relative power of the four basic forms of truth�table reduc�
tions� namely normal� positive� disjunctive and conjunctive truth�table reductions� see
Ladner et al� ��� !��

The split of truth�table reductions into a generation phase and an evaluation phase
in De�nition !�� is taken from Ladner et al� ��� !�� However� in their paper the
reductions are not parameterised over evaluation types
 instead the di�erent types of
truth�table reductions are de�ned later on by ad�hoc restrictions of the behaviour of
the evaluator�

Reductions like parity and cardinality reductions have been studied in a number of pa�
pers which have been initiated by the surprising result of Wechsung andWagner ����!�
that k�truth�table reducibility to the satis�ability problem implies k�parity reducibil�
ity to this problem� Han and Thierauf ����!� extended this result by examining how
modulo reductions can be strengthened� Note� that parity reduction corresponds to
modulo � reduction�

A di�erent way of modelling truth�table reductions has been introduced by K
bler and
Thierauf ������� who showed how complexity restricted advice functions can be used
to model parity and modulo truth�table reductions� Unfortunately� their approach
is not really suited as a general model of truth�table reductions because for instance
positive reductions cannot be modelled�
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Der Beweis hat eben nicht nur den Zweck�
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der Wahrheiten von einander zu gew	hren�

� Gottlob Frege� Die Grundlagen der Arithmetik� Seite �� Breslau �

�

G
eneral bounded truth
table closures of partial information classes can be

represented combinatorially� More precisely� for every notion of bounded

truth
table reducibility and for any two families� it can be decided combina�

torially whether the truth
table closure of the partial information class of the

�rst family is included in the partial information class of the second family�

The �rst section introduces in De�nition ��� the notion of cones� which form
the combinatorial domain where the truth
table closures of partial information

classes are represented� Given a evaluation type �� a pool is called a �
cone
over a family F � if the image of the pool under all products of functions from �
is an element of F �

The central theorem of this chapter is the Cone Theorem for recursively pre�

sentable function classes� Corollary ���� It states that for any evaluation type �
we have RC


�
C �C	

�
�C �F 	� i� all pools in C are �
cones over the family F � The

Cone Theorem provides both a su�cient and necessary condition for inclusion

of language classes in terms of the combinatorial property of cones�

Before the Cone Theorem is proved in the third section� the second section

treats languages which are many
one complete for �
reduction closures� We
show in Lemma ��� that such many
one complete languages always exist and

we also construct a canonically many�one complete language�

This chapter concludes with some immediate applications of the Cone The�

orem in the fourth section� Speci�cally� all partial information class are closed

under many
one reductions� exactly those partial information classes are closed

under �
tt
reductions� whose families are closed under bit
�ip� and the select�

ive languages are closed under bounded positive truth
table reductions� More

sophisticated applications of the Cone Theorem are given in the next chapters�

where the structure of cones is studied in detail�

�	
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	�� De�nition of Cones

How much partial information can be computed for the closure of a partial

information class� To tackle this problem� we make some simple observations�

For a language K� assume K � C �C	 witnessed by some function f � FC �

Next� assume that a language L is �
reducible to K for some k
ary evaluation
type �� i� e�� assume L �C
 K via a generator g and an evaluator e�

We now try to compute partial information for the language L for given words
w�� � � � � wn� knowing only L �C
 K� Using the generator g� for the �rst word we

can produce some k queries q�� � � � � � q
k
� with q

i
� 
� pi

�
g�w��

�
� Then by de�nition

of a �
reduction we have �L�w�� � ew�

�
�K�q

�
��� � � � � �K�q

k
� �
�
� Likewise� we can

compute queries for the other input words� This results in a total of n�k queries�
see the left part of Figure �
� on the next page�

Observe� that we can compute a pool from C with respect to the language K for

these nk words	provided that C has index nk� which we will tacitly assume

in the following� Let Q be such a pool for the bitstring �K�q
�
� � � � � � q

k
n�� If we

knew which bitstring in b � Q is the correct one� we could easily produce the

correct characteristic bitstring for the original input words by applying ew� to

the �rst n bits of b� applying ew� to the next n bits and so forth� yielding the

bitstring �ew� 	 � � � 	 ewn��b�� Although we do not know this correct bitstring�

we know that it is in Q somewhere� Hence� each bitstring in Q induces one

possible characteristic bitstring for the original words and the totality of all

these possible characteristic bitstrings is a pool P � �ew� 	 � � � 	 ewk��Q� for
the original words�

Naturally� all of this helps only� if P � F for some family F for which we would

like to have L �C �F 	� Now� if for all poolsQ in C the pool �
�	� � �	
n��Q� lies
in F for all possible functions 
�� � � � � 
n � �� then we necessarily have P � F �
This motivates the below de�nition of a cone and proves the en suite lemma�

�
� De�nition �Cone�
Let � be a k�ary evaluation type� An nk�pool Q is a ��cone over an n�family F 


if for all functions 
�� � � � � 
n � � we have �
� 	 � � � 	 
n��Q� � F �

�
� Lemma
Let FC be c�c�c� and � a k�ary evaluation type� Let F be an n�family and let all

pools in an nk�family C be ��cones over F � Then RC
 �C �C	� �C �F 	�

For the situation in the lemma� we say C is a family of ��cones over F �

�
� Example �Cones over size families�
Let Q be any nk
pool of size m� i� e�� let Q contain exactly m bitstrings� Then
the image of Q under the product of any n Boolean functions trivially has a

maximum of m bitstrings� that is j�
� 	 � � � 	 
n��Q�j � jQj� Thus� Q is a

cone over the family sizen�m��

�
� Corollary
Let FC be c�c�c� and C an nk�family and � a k�ary evaluation type� Then

RC
 �C �C	� �C �sizen��C�	�
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Figure ���
Situation of Lemma ��� for the case k � �� For the input words wi� the
generator g produces the queries qij � A function f can then produce a pool P
for the queries� Each bitstring in P induces one possible �L�w�� � � � � wn�� In
the �gure� the function ew�

is the logical and� whereas the function ewn is the
logical or�

Q

P� P�

P�

P�
P


Pm�� Pm


� 	 � � � 	 
n 
�� 	 � � � 	 
�n

F

Figure ���
Motivation for the name �cone�� The pool Q on top is called a ��cone over the
family F � fP�� � � � � Pmg� i� for all functions �i � � the image of Q under
their product lies within F �
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	�� De�nition of Canonically Complete Languages

One of the �rst things to ask about a complexity class is� does it have complete

problems� This section tackles the problem of �nding a many
one complete

language K
 for the reduction closure RC
 �K� of a non
trivial language K�

De�nition ��� explicitly constructs such a language and Lemma ��� shows that

it is� indeed� a many
one complete language and that the construction works

for all c�c�c� function classes�

For every language L � RC
 �K� we would like to have L �Cm K
� The lan�

guage L being �
reducible to K means� that for a word w we can generate

queries q� to qk by the generator and have a function ew � �� such that the

word w is in L� i� ew
�
�K�q��� � � � � �K�qk�

�
� �� This motivates the following

de�nition�

�
� De�nition �Canonically Many�One Complete Language�
For a languageK and a k�ary evaluation type� the canonically many�one complete

language is

K
 
�
�
hq�� � � � � qk� 
i j 


�
�K�q��� � � � � �K�qk�

�
� �� 
 � �

�
�

�
� Lemma
Let FC be c�c�c� and � a k�ary evaluation type� For all non�trivial languages K
we have RC
 �K� � RCm�K
�� i� e�� the language K
 is complete for RC
 �K� with
respect to many�one reductions�

Proof� As K is non
trivial� by Lemma ��� we may assume f���g � ��

First� we show that L �C
 K implies L �Cm K
� Let L be �
reducible to K
via a generator g � FC and an evaluator e � FC � We must show that there

exists a function f � FC such that w � L� i� f�w� � K
� By construction

of the language K
� the function f must simply map an input word w to

hq�� � � � � qk� ewi where qi 
� pi
�
g�w�

�
are the queries produced by the generator�

Second� we must �
reduce K
 to K� The generator for this reduction� which

simply extracts the queries� is even in FL� The evaluator extracts the coding

of the function stored in the input word� If the function is in �� it applies this
function to the answer vector� otherwise the word is rejected outright� Note�

that this actually proves K
 �L
 K�

	�� Proof of the Cone Theorem

In this section two theorems are proved� namely Theorem ��� below and the

Cone Theorem� Corollary ���� While the �rst theorem holds for all c�c�c�

function classes� the Cone Theorem holds only for c�c�c� function classes which

are recursively presentable�

�
	 Theorem
Let FC be c�c�c� and � a k�ary evaluation type� Let K be a class of languages

and F a normal n�family� Let C denote the nk�family of all ��cones over F � Then

RC

�
K
�
�C �F 	 implies K �C �C	�
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Proof� Let RC

�
K
�
� C �F 	 and let K � K� We must show that for any

nk words w�
�� � � � � w

k
n we can compute partial information from C with respect

to the language K� We may assume that K is non
trivial�

De�nition ��� introduced the canonically many�one complete language K
� For

this language Lemma ��� states K
 � RC
 �K� and by assumption RC
 �K� �
C �F 	� Hence� we have K
 �C �F 	�

Consider arbitrary functions 
�� � � � � 
n � �� We construct n words u�� � � � � un
by setting ui 
�

�
w�
i � � � � � w

k
i � 
i

�
for i � �� � � � � n� As K
 � C �F 	� for the

n words u�� � � � � un we can compute a pool P � F with respect to the lan�

guage K
�

�K�
�u�� � � � � un� � �K�

�
hw�

�� � � � � w
k
� � 
�i� � � � � hw

�
n� � � � � w

k
n� 
ni

�
� P�

We de�ne the pool Q��������n 
�
�
b � B nk j �
� 	 � � � 	 
n��b� � P

�
� The im�

portant point is� that this is a pool for the original words and the language K�

To see this� consider the pool P � Somewhere in the pool there is the bit�

string �K�
�u�� � � � � un�� By De�nition ���� for each of the words ui we have

�K�
�ui� � 
i

�
�L�w

�
i �� � � � � �L�w

k
i �
�
� Hence� if we put all the characteristic

values of the words ui alongside� we get

�K�
�u�� � � � � un� � 
�

�
�L�w

�
��� � � � � �L�w

k
��
�
� � �
n

�
�L�w

�
n�� � � � � �L�w

k
n�
�

� �
� 	 � � � 	 
n�
�
�L�w

�
� � � � � � w

k
n�
�

Hence� the correct characteristic value b of the original input words has indeed
the property �
� 	 � � � 	 
n��b� � P �

The pool Q��������n is a pool for the input words� but typically it is not a �
cone
over F � Although it does have the property �
� 	 � � � 	 
n��Q��������n� �
P � F � we need this property for all functions from �	not just for the

functions 
�� � � � � 
n we happened to choose� Fortunately� this is easy to �x

by employing once more the pool intersection trick� For each tuple of func�

tions 
�� � � � � 
n we compute a pool Q��������n � Then� the intersection Q of these

pools is still a pool for the input words and a �
cone over F � Indeed� for any
functions 
�� � � � � 
n we have �
�	� � �	
n��Q� � �
�	� � �	
n��Q��������n� � F �

To see that the poolQ can produced by a function inFC � simply note that there

are only �nitely many combinations of Boolean functions to be considered�

�
� Corollary �Cone Theorem�
Let FC be c�c�c� and recursively presentable� let C and F be respectively normal

nk� and n�families� Then RC

�
C �C	

�
�C �F 	� i� C is a family of ��cones over F �

Proof� If C is a family of �
cones over F � then Lemma ��� asserts RC
 �C �C	� �
C �F 	� Vice versa� if RC
 �C �C	� � C �F 	� then Theorem ��� asserts that there

exists a subset closed nk
family C� of cones over F with C �C	 �C �C�	� By the

Unique Normal Form Theorem� this implies C � C�� But then� C contains only

cones over F �
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Corollary ��� allows us to check RC
 �C �C	� � C �F 	 for given families purely

combinatorially� Most importantly� we can check whether a partial information

class is closed under some given truth
table reduction� simply by checking if

the upward translated version of the family contains only cones over itself�

	�� Checking Basic Closure Properties using Cones

Concluding this chapter� this section demonstrates how the Cone Theorem

can be used to establish basic closure properties of partial information classes�

We study in order many
one reductions� �
tt
reductions and bounded positive
truth
table reductions�

The standard proofs to be found in the literature for the results of this section

argue directly in the domain of languages and reductions� Opposed to this� the

below proofs are of purely combinatorial nature�

Nickelsen 
����� showed that all polynomial time partial information classes

are closed under polynomial time many
one reductions� Recall that many
one

reductions can be represented by the unary evaluation type � � fidg� When

instantiated with this evaluation type� Lemma ��� states that C �F 	 is closed
under many
one reductions provided that all pools in F are �
cones over F �
But because � contains only the identity function� every pool in F is trivially

a �
cone over F �

The question� whether partial information classes are closed under many�one

reductions� boils down to the trivial question whether the identical image of

all pools in a family lie within that family�

For the case where we may only ask distinct words� these claims are too strong�

Here� the �tting reduction is a one to one reduction� which is a many
one

reduction with the special property that no two di�erent words are mapped to

the same word� Putting it all together� we get the following theorem�

�
� Theorem
Let FC be c�c�c� and let F be a family� Then Cdist�F 	 is closed under one to one

reductions� and closed under many�one reductions� i� Cdist�F 	 �C �F 	�

Proof� As we just argued� C �F 	 is closed under many
one reductions and an

easy modi�cation of Lemma ��� yields that Cdist�F 	 is closed under one to one

reductions� So� we only need to show that if Cdist�F 	 is closed under many
one

reductions� then Cdist�F 	 �C �F 	�

But if Cdist�F 	 is closed under many to one reductions� for a language L �
Cdist�F 	 the tagged language Ltag 
� fw j p��w� � Lg is also an element

of Cdist�F 	� because it is trivially many
one reducible to L via the projec�

tion p� which projects word tuples to their �rst component� But then� any

n non
distinct words as input for L can be turned into n distinct words as

input for Ltag by simply adding a unique tag to each input word� Hence� in

this case we have L �C �F 	 and hence C �F 	 �Cdist�F 	�
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Nickelsen 
����� gave a characterisation of the classes P�F 	 which are closed

under truth
table reductions with a single query� A polynomial time partial

information class P�F 	 is closed under �
tt
reductions� i� the normal family F
is closed under �bit
�ip� of columns in pools� Using cones� we can easily prove

Nickelsen�s result combinatorially�

�
�
 Theorem
Let FC be c�c�c� and recursively presentable� and let F be a normal family� Then

C �F 	 is closed under ��tt�reductions� i� F is closed under bit��ip�

Proof� A truth
table reduction with a single query can be represented by the

unary evaluation type � � fid������g� A pool Q � F is a �
cone over the
normal family F � i� every bit
�ip of Q is an element of F � Hence� the Cone

Theorem specialises to the claim�

To see the di�erence between many
one reductions and �
tt
reductions� con�

sider the selective family sel� and C � P� All partial information classes are

closed under many
one reductions� and hence also P�sel	� However� the class
P�sel	 is not closed under �
tt
reductions� simply because the bit
�ip of the

�rst position of the chain f��� ��� ��g yields the top pool B������ which is not a

selective pool� However� the selective classes are closed under bounded positive
truth
table reductions�

�
�� Theorem
LetFC be c�c�c� Then the classC �sel	 is closed under bounded positive truth�table

FC �reductions�

Proof� We show that for each k the pools in


sel�

�
�k

are �k
cones over sel��

As


sel�

�
�k

� sel�k� we only need to show that the images of chains in B �k

under products of monotone functions are chains in B � � But as a product of

monotone functions is monotone itself� these products map chains to chains�

This proves the claim�

Actually� the above theorem does not tell the full story� Selman 
����a� proved

that P�sel	 is even closed under unbounded positive truth
table reductions�

This result was improved by Buhrman� Torenvliet and van Emde Boas 
�����

in their paper Twenty questions to a p�selector� where they proved that P�sel	
is closed under positive Turing reductions�

Note however� that Theorem ���� holds for all c�c�c� function classes� Spe�

ci�cally� L�sel	 is closed under logarithmic space bptt
reductions� It is not

clear whether the stronger results of Selman and Buhrman et al� also hold for

logarithmic space�

Bibliographical Notes

We �rst introduced the notion of cones in a research report� see Tantau et al� �������
where we also proved the Cone Theorem for the polynomial case� Nickelsen uses a
slightly restricted and simpli�ed version of cones in his PhD thesis� He introduces
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k�cones� which correspond to �k�cones� and positive k�cones� which correspond to
�k�cones�

The notion of canonically complete languages is also introduced in the research report�
Apart from its application in the proof of the Cone Theorem� these languages are also
useful for the study of cylinders� see page ��� of Myhill ���!�� for a motivation of the
name� In Beigel et al� ������ cylinders are introduced as follows�

A set A is a bd�cylinder i� there is f � FP such that �	x� y��x � A �
y � A � f�x� y� � A	� A bc�cylinder is de�ned similarly� � is replaced
by �� A set is a bptt�cylinder i� it is a bd�cylinder and a bc�cylinder�
Finally� A is a btt�cylinder i� A is a pbtt�cylinder $sic% and A �p

m
�A�

Using the canonically complete languages and evaluation types� these de�nitions can
also be expressed as follows� A language is a ��cylinder� if A� �Cm A� Then bd�� bc��
bptt� and btt�cylinders correspond to 
k�� �k�� �k� and �k�cylinders for all k � ��



�

Structure of

Selective� Bottom and Top Cones

De�nitionen bew	hren sich durch ihre Fruchtbarkeit�
Solche� die ebensogut wegbleiben k
nnten�

ohne eine L�cke in der Beweisf�hrung zu 
�nen�
sind als v
llig wertlos zu verwerfen�

� Gottlob Frege� Die Grundlagen der Arithmetik� Seite 
�� Breslau �

�

C
ones are not only useful for proving closure properties of partial information

classes� but also for establishing strict hierarchies of reduction closures of

partial information classes� This chapter gives a combinatorial proof that all

bounded truth�table closures of the selective classes di�er� More precisely�

we show that in the resource bounded case for all k there exists a language

�k
reducible to a language in C �sel	� but not �k��
reducible to any language

in C �sel	� For the polynomial case� this was �rst proved in Theorem ��� of

Hemaspaandra et al� 
������ In this chapter we also show how this result can

be modi�ed to establish strict hierarchies of reduction closures of bottom and
top partial information�

The proofs of this chapter are elaborations of the following� surprisingly simple
argument� which shows that the �
tt
 and the �
tt
closures of P�sel	 di�er� The
�
tt
reduction closure of P�sel	 is �
approximable� as Corollary ��� tells us this

is the case provided �sel� � � which is indeed true� However� the ��tt�closure is
not ��approximable� To see this� note that by the Cone Theorem we only need

to show that some selective ��pools are no cones over approx�� and indeed�

the image of the selective pool f����� ����� ����� ����� ����g under �� 	 �� is

exactly f��� ��� ��� ��� ��g � B � 
� approx��

The basic idea of the general proof is to construct exact representations of the

amount of partial information computable for the k�tt�closure of the selective

languages and then to prove that these representations di�er�

The �rst section introduces these representations� namely walks with bounded

change numbers� The second section proves that this notion does� indeed�

represent the reduction closures of the selective languages�

��
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Based on these representations� the third section proves that the k
tt
reduction
closures of the selective languages di�er by showing that their representations

di�er�

The fourth section is a small excursion which shows that we can often shrink the
evaluation types used in reductions to selective languages� Speci�cally� we show

that k
tt
reductions to a selective language can always be replaced by k
parity
reductions to that language� Furthermore� we show that ��k���
tt
reductions
to a selective language can be replaced by k
Turing reductions to that language�
These results show that also the bounded parity and bounded Turing closures

of the selective languages all di�er�

In the �fth and sixth section� we translate the established results to the bot�

tom classes� For them� we can even establish strict hierarchies of the normal�

positive and disjunctive truth
table closures�

��� De�nition of Walks and Change Numbers

A walk on the hypercube B n is a sequence of bitstrings of length n such that any

two consecutive bitstrings di�er at exactly one position� As shall be shown in
the next section� the images of selective pools under tuples of Boolean functions

are exactly walks with bounded change numbers�

	
� De�nition �Walk� Transition Sequence�
An n�walk is a sequence b�� � � � � bm � B n such that the Hamming distance between

any two consecutive bitstrings is exactly one�

The transition sequence of a walk is the list of bit positions where consecutive

bitstrings of the walk di�er�

	
� De�nition �Change Number�
The change number of a position in a walk is the number of appearances of the

position in the corresponding transition sequence�

Note that a walk may �visit� a bitstring more than once� The names transition se�

quence and change number are taken from Reingold et al� ���  � and Gilbert ���!���
respectively�

	
� Example �Maximal selective pool�
Consider a maximal pool P in seln� i� e�� a maximal chain in B n � If we sort

the bitstrings in P according to their number of ��s� they form a walk� The

transition sequence is a permutation of the numbers in N �
n � The change number

of each position is exactly �� as each position gets bit
�ipped exactly once�

	
� Example �Binary re�ected Gray code�
A Gray n�code is a self�avoiding walk of length �n� The most important

example is the binary re�ected Gray code� called thus because if we depict the

code in a table� the lower part is a re�ection of the upper part disregarding

the �rst column� Table �
� on the following page shows the binary re�ected

Gray code for the case n � �� Note� that the Gray code has the property that

it touches each vertex of the hypercube exactly once�
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� Example �Symmetric Gray code�
A Gray code is symmetric� if the change numbers of all positions di�er by no

more than �� Gilbert 
����� discovered a symmetric Gray �
code� shown in

Table �
�� According to Faloutsos 
����� no systematic way is known to obtain

symmetric Gray codes for n � ��

Table 	��
Binary re�ected Gray code for n � � and a symmetric Gray code discovered
by Gilbert�

Gray code Transition Symmetric Transition
sequence Gray code sequence

���� � ���� �

���� � ���� �

���� � ���� �

���� � ���� �

���� � ���� �

���� � ���� �

���� � ���� �

���� � ���� �
���� � ���� �

���� � ���� �

���� � ���� �

���� � ���� �

���� � ���� �

���� � ���� �

���� � ���� �

���� 
�� ���� 
��

��� Characterising the Cone Property for Selective Families

This section shows that walks with change numbers at most k represent the

k
truth
table closures of the selective languages�

	
� Theorem
The pools in selnk are all �k�cones over a normal n�family F � i� F contains all

walks with change numbers at most k�

Proof� First� assume that F contains all walks with change numbers at most k�
We must show that then all selective nk
pools are all �k
cones over F � i� e��
we must show that the image of any chain in B nk under functions from �k is

contained in a walk with change numbers at most k�

Let Q be a chain in B nk and let 
i � �k be any Boolean functions� First� we

extend Q to a maximal chain Q�� Then Q� � fc�� � � � � cnk��g with ci �pw ci���
This means� that starting from c� � �nk each ci has exactly one � more than

the previous bitstring� ending with cnk�� � �nk�
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����
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���� ����

����
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����

����

����

����

����

����

����

����

����

Symmetric Gray code

����

Figure 	��
Di�erent walks through the Hamming space B � � The left walk is the binary
re�ected Gray code� Although it touches all vertices exactly once� its maximal
change number �n�� is rather high� The symmetric Gray code shown on the
right also touches all vertices� but its maximal change number is � opposed to �
for the binary re�ected Gray code�

Consider the bitstrings b�i 
� �
� 	 � � � 	 
n��ci� � B n � We claim that this is


nearly� an n
walk with change numbers at most k� The Hamming distance

between any two consecutive elements of the sequence is at most one� as from ci
to ci�� exactly one position changes� so in the image also at most one position

may change� Hence� it makes sense to talk about the change numbers of the

sequence� The change numbers of the sequence are bounded by k� because for
any position j a bit
�ip between bitstrings b�i and b�i�� at position j can only

occur if the bitstrings ci and ci�� di�er at one of the positions k�j � �� � �
to kj�

As the ci form a chain in B nk � so do the selection of the positions k�j � �� � �
through to kj form a chain in B k � But such a chain can have no more than
k � � elements� Hence� there are only k � � di�erent indices i such that ci
and ci�� di�er at some position between k�j � ���� and kj� And hence there

can be no more than k bit
�ips in the image� This shows that the change

numbers of the sequence b�i are at most k�

In order to turn the sequence b��� � � � � b
�
nk�� into a walk we simply remove

consecutive duplicates� yielding the walk b�� � � � � bm with change numbers at

most k� By assumption� this walk is an element of F � Hence� the image of the

original pool Q under the functions 
i is contained in F �

For the other direction� assume that all chains in B nk are �k
cones over F �
Given a walk b�� � � � � bm with change numbers at most k� we must show P �
fb�� � � � � bmg � F � To do so� we show that P is the image of some chain Q
in B nk under some Boolean functions� For now� we will also assume b� � �n�

First� we construct the Boolean functions� These are all identical and given by
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the parity function �k� Next� we construct a sequence c�� � � � � cm with ci � B
nk �

such that we have bi � ��k 	 � � � 	 �k��ci� and Q � fc�� � � � � cmg� We set

c� 
� �n� Note� that then b� � �n� Having constructed ci� we construct ci��
as follows� From bi to bi�� exactly one position j changes its value� Then from

ci to ci�� we change one � to a � among the ��s between positions k�j � �� � �
and kj� This ensures that the image of bi�� will di�er exactly at position j
from bi� Naturally� it is only possible to de�ne ci�� in this way� if there still

exists at least one � at the positions k�j � �� � � to kj� But fortunately this

is necessarily the case� as we assumed the sequence bi to have change numbers

at most k and hence we will not run out of ��s�

The construction ensures that the image of Q is P and hence P � F � It

remains to show that the sequence b�� � � � � bm may also start with a bitstring

di�erent from �n� But if this is the case� for all positions j with b��j� � �� we

simply replace the parity function 
j with the inverted parity function� This

completes the argument�

��� Separating the Closures of Selective Classes

In this section� we �nally prove that the k
tt
closure and the �k���
tt
closure
of selective partial information di�er for all k in the resource bounded case� For

polynomial time� this result is due to Hemaspaandra et al� 
����� who used a

direct diagonalisation argument�

	
	 Theorem
Let FC be c�c�c� and recursively presentable� Then

C �sel	 � RC��tt
�
C �sel	

�
� RC��tt

�
C �sel	

�
� RC��tt

�
C �sel	

�
� � � � �

Proof� We show RCk�tt
�
C �sel	

�
� RC�k����tt

�
C �sel	

�
� Let k be arbitrary�

First� we pick some n such that the lattice of n
families is �ne
grained enough
to distinguish the di�erent truth
table closures� It turns out� that it su�ces to

have nk � � � �n�

Next� consider the family selnk� All pools in this family have a maximum size

of nk � �� Corollary ��� tells us that selnk is then a family of �k
cones over

sizen�nk � ��� Then� if m is the smallest number such that selnk is a family

of cones over sizen�m�� we have m � nk � � � �n� By Corollary ���� we have
RCk�tt

�
C �sel	

�
�C �sizen�m�	�

To �nish the proof� we only need to show that the truth
table closure ofC �sel	
with k � � queries is not contained in C �sizen�m�	� But for this in turn� by

Theorem ��� we only need to �nd an n
walk with change numbers at most k��
which visits more than m bitstrings�

As m is minimal such that selnk is a family of cones over sizen�m�� by The�

orem ��� there exists a walk b�� � � � � bm� with change numbers at most k such

that jfb�� � � � � bm�gj � m� Note� that we might have m� � m as some bitstrings

might be visited more than once�
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As m � �n there exists at least one bitstring b which does not occur in

the sequence b�� � � � � bm� � We extend the sequence b�� � � � � bm� by bitstrings

bm���� bm���� � � � in the following way� Starting from bm� we �ip the �rst posi�

tion where bm� and b di�er� obtaining bm���� Then in bm��� we �ip the next

position where they di�er and so forth� After exactly d�bm� � b� steps� we will

have reached b� The important point is that we still have a walk by construc�

tion� and its change numbers are at most k � � as every position gets �ipped

at most once more� Hence� we have found the desired walk�

One can rephrase the main idea of the proof just given a little less technical

as follows� Let b�� � � � � bm be a walk with change numbers at most k touching

as many vertices in B n as possible� Then� as long as there still exists at least

one vertex not visited� we can �nd a walk with change numbers at most k� �
going through more vertices that b�� � � � � bm� simply by extending the path�s

end bm to the remaining vertex b directly� This extension raises the maximal

change number by at most one�

��� Shrinking the Evaluation Type of

Reductions to Selective Languages

This section proves two theorems� which state that if a language is �k
reducible

to a selective language� it is also reducible to this languages via two smaller

evaluation types� As an application of these results� we show that not only the

truth
table closures of the selective languages all di�er� but also the Turing
closures as well as the parity closures�

The following two theorems are formulated for polynomial time� because they

then hold even for non
constant numbers of queries used in the reduction� If

the number of queries is constant� they hold for arbitrary c�c�c� function classes�

For the following theorem� recall from De�nition ��� that a function s 
 N � N

is smooth� if w �� �s�jwj� is in FP� The theorem is also stated in Hemaspaan�

dra et al� 
����� for �xed k � k�n�� although the proof seems a little hard to

spot in their paper�

	
� Theorem
Let �k�n� be a smooth function and K a p�selective language� Then a language L
is
�
�k�n� � �

�
�truth�table reducible K� i� L is k�n��Turing reducible to K�

Proof� As the reverse implication has given by Lemma ���� and the fact that

�k�n� is smooth� assume that L is
�
�k�n� � �

�

truth
table reducible to K� We

wish to construct a Turing reduction from L to K�

Upon input w compute the queries q�� � � � � q�k�n��� produced by the generator

of the truth
table reduction� Using the selectivity of K� compute a pool for

the queries and then compute a permutation � such that �L�q�i� � �L�q�i	���
For the sorted words� we use a binary search to �nd the �rst query which is

an element of K� Knowing this word� we know the characteristic string for all

queries and can hence use the evaluator to compute �L�w��



�� Structure of Selective
 Bottom and Top Cones

	
� Theorem
Let s be a smooth function and K a p�selective language� Then a language L is

s�n��truth�table reducible to K� i� L is s�n��parity reducible to K�

Proof� We only need to prove the �rst direction� Assume that L is s�n�
truth�
table reducible to K via a generator g and an evaluator e� We must show that
L is also s�n�
truth
table reducible to K via a generator g� and an evaluator e�

which may only use the parity or the negated parity function�

Upon input w the new generator g� �rst computes the queries q�� � � � � qs�n�
produced by g upon input w� Using the selectivity ofK� it computes a maximal

selective pool for these words� Let
�
c�� � � � � cs�n���

�
be this pool with ci �pw

ci�� and let t�� � � � � ts�n� be its transition sequence�

The new generator� starting with c�� iterates until it �nds an index i such
that ew�ci� 
� ew�ci���� The �rst word generated by the new generator is

then qti � Next� the search is continued until a new index i� is found with

ew�ci�� 
� ew�ci����� The second word produced is qti� � In this fashion� the

search continues and queries are produced until no more bitstrings are left� If

less than s�n� many queries are produced� the remaining queries are �lled up

with a dummy word known to be not an element of K�

We claim� that the new generator must simply use the parity function if

ew�c�� � � and the negated parity function if ew�c�� � �� To see this� note that
if none of the queried words is in K� then the answer of the new evaluator is�

indeed� correct� If exactly one of the queries in in K� it must be the �rst query�

But then� the answer is also correct by construction� If exactly two queries are

in K� it must be the �rst two queries and again the answer is correct� and so

forth� This shows that the new evaluator correctly computes �L�w��

	
�
 Corollary
Let FC be c�c�c� and recursively presentable� Then all k�Turing and all k�parity
closures of C �sel	 di�er� i� e��

C �sel	 � RC��
�
C �sel	

�
� RC��

�
C �sel	

�
� RC��

�
C �sel	

�
� � � � �

C �sel	 � RC��
�
C �sel	

�
� RC��

�
C �sel	

�
� RC��

�
C �sel	

�
� � � � �

��� Separating the Closures of Bottom and Top Classes

This section shows that the combinatorial arguments used to establish that all

k
tt
closures of the selective languages di�er can be modi�ed to establish a new

result� namely that all k
tt
closures of the top and bottom classes di�er� As

the top classes are just the complements of the bottom classes� the arguments

will be restricted to the bottom case� Recall� that bottomn � hB���
n�i and

that


bottom�

�
n
� bottomn�
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�� Theorem
Let FC be c�c�c� and recursively presentable� Then

C �bottom	 � RC��tt
�
C �bottom	

�
� RC��tt

�
C �bottom	

�
� � � � �

Proof� We prove RCk�tt
�
C �bottom	

�
� RC�k����tt

�
C �bottom	

�
�

First� we must pick an n large enough such that the lattice of n
families

is �ne
grained enough to distinguish the k
tt
 and the �k � ��
tt
closures of

C �bottom	� Again� as in Theorem ��� where we proved the like claim for

selective partial information� it su�ces to have nk � � � �n�

Consider the family bottomnk� We have �bottomnk � nk � �� Hence� this

is a family of �k
cones over the family sizen�nk � ��� as Corollary ��� states

exactly that� Let m be minimal such that the pools in bottomnk are cones

over sizen�m�� Then we have m � nk � � � �n�

Once more� we now have the situation that the k
tt
closure of C �bottom	 is
contained in C �sizen�m�	 and it su�ces to prove that the �k � ��
tt
closure is
not� By the Cone Theorem� it su�ces to �nd a pool Q� � bottomn�k��� and

�k���
ary Boolean functions 
��� � � � � 

�
n such that the image of Q� under their

product has size m� ��

As m is minimal such that all pools in bottomnk are �k
cones over sizen�m��
there must exist an n
pool P of size m and k
ary Boolean functions 
�� � � � � 
n
and �nally a maximal pool Q � bottomnk such that P � �
�	 � � � 	
n��Q��

First� we �argue away� any constant columns of ��s in Q� If Q has such a column�

then the pool where we replace this column with a column of ��s has the same

size� Furthermore� by rede�ning the functions 
i appropriately it has the same

image as Q�

The basic idea of how to de�ne the desired �nk � n�
pool Q� is shown in
Figure �
� on the following page� First� after every block of k positions we

add a column of ��s� Then� we add one further bitstring which is � for all old

positions and � for the positions where we inserted the columns of ��s�

We claim that the pool Q� obtained in this way from Q is indeed an element

of bottomnk�n� Consider the eigenpool of Q
�� Recall that the eigenpool was

de�ned as the pool where we remove all constant columns and for duplicate

columns all but the �rst occurrence� As Q � hB���
n�i its eigenpool is contained

in a closed ball of radius � around �p for some appropriate p�

The eigenpool of Q� is very similar to the eigenpool of Q� We simply add a

new column which is � but for the last position where it is �� This last position

is part of a new bitstring which is also constantly � but for the new column�

But then� the eigenpool is contained in a closed ball of radius � around �p���

This shows that Q� is in bottomnk�n�

Now that we know that Q� is element of bottomnk�n it is quite easy to de�ne

functions 
��� � � � � 

�
n such that the image of Q� under their product is larger

than the image of Q under the product of 
�� � � � � 
n�
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Q �

����������
���������

����� � � � �����
����� � � � �����
����� � � � �����
����� � � � �����
����� � � � �����
����� � � � �����
������ �z �

k

� � � ������ �z �
k� �z �

nk

����������
���������

Q� �

������������
�����������

������ � � � ������
������ � � � ������
������ � � � ������
������ � � � ������
������ � � � ������
������ � � � ������
������ � � � ������
������� �z �

k��

� � � ������� �z �
k��� �z �

nk�n

������������
�����������

Figure 	��
Extension of a pool Q of the family bottomnk to a pool Q� of the family
bottomnk�n� Every block of k positions is extended by adding a column�
shown in bold� which is always � but for a new last bitstring where it is ��
Furthermore� in the new last bitstring all other columns are extended by ��

Let b 
� P � We de�ne 
�i�c �� 
� 
i�c� and 
�i�c �� 
� b�i� for all c � B k � Then
we have �
�� 	 � � � 	 
�n��Q�� � P � fbg� But this proves the claim�

��	 Separating the Positive Closures of

Top and Bottom Classes

In this last section� we establish a strict hierarchy of the positive truth
table

closures of bottom and top partial information� Note� that for the selective

languages such a strict hierarchy does not exist as these are closed under

positive reductions�

	
�� Theorem
Let FC be c�c�c� and recursively presentable� Then

RC��ptt
�
C �bottom	

�
� RC��ptt

�
C �bottom	

�
� � � � �

Proof� We argue as in Theorem ���� where the k
tt
closures were treated�

Recall that we had n functions 
i� this time elements of �k� such that P �
�
�	� � �	
n��Q� where P has a maximum size andQ is maximal in bottomnk�

First� we argued that if the pool Q had a column of ��s we could replace this

column of ��s with a column of ��s� and we could then modify the functions 
i
appropriately so that the image of this new pool under the new functions
was still P � Note� that this �appropriate� modi�cation does not destroy the

functions� being monotone� Hence� we can also apply this modi�cation in the

monotone case�

Next� we may assume 
i��
k� � �� for otherwise 
i�c� � � for all c � B k and we

can restart the whole argument with the function 
i replaced by c �� �� and

with the pool P replaced by the pool where the column of ��s at position i is
replaced by a column of ��s�
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As the next step� for all i with b�i� � �� we project the i
th newly added

column in Q� to �� see once more Figure �
�� After the modi�cation� the

pool Q� is still an element of bottomn�k����

To conclude� set 
�i�c �� 
� 
i�c� and 
�i�c �� 
� � for all c � B k � This ensures
�
�� 	 � � � 	 
�n��Q�� � P � fbg and we are done�

Using the Cone Theorem� one easily checks that the classC �bottom	 is closed
under �
ctt
reductions and that it is not closed under �
dtt
reductions� The
last theorem of this chapter shows that all disjunctive truth
table closures

di�er�

	
�� Theorem
Let FC be c�c�c� and recursively presentable� Then

RC��dtt
�
C �bottom	

�
� RC��dtt

�
C �bottom	

�
� � � � �

Proof� We argue as in the above Theorem ����� only this time all functions

are always �xed to be the logical or� The only di�erence occurs if we have a

column of ��s in the pool Q� But such a column of ��s in Q implies a column

of ��s in P � Hence� replacing the column of ��s in Q by a column of ��s will only

make the image of Q larger rather than smaller� Thus� we may assume that Q
has no column of ��s� The rest of the argument does not need to be modi�ed�

Note especially� that the constructed functions 
�i are all the logical or�
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P�sel	
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�
P�sel	

	
�
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Structure of Cones over Families

So ger	t jene formale Theorie in Gefahr�
auf das Aposteriorische oder doch Synthetische zur�ckzufallen�

wie sehr sie sich auch den Anschein gibt�
in der H
he der Abstraktionen zu schweben�

� Gottlob Frege� Die Grundlagen der Arithmetik� Seite ���� Breslau �

�

W
hile the previous chapter studied in detail for what families the select�
ive� bottom and top pools are cones� this chapter studies under which

circumstances pools are cones over given families�

In the �rst section� we show that the pools in dFenk are �k
cones over F
for all k� i� F is of the form sizen�m� with m � n or m � �n� By the

Cone Theorem� this proves that a non
trivial C �F 	 is closed under bounded

truth
table reductions in the resource bounded case� i� C �F 	 �C �cheatn	 for
some n� We �rst proved this in Tantau et al� 
����� for polynomial time�

The second section shows thatC �approx	 is closed under bounded truth
table

reductions� This was �rst proved by Richard Beigel in his PhD thesis for
polynomial time�

The third and last section shows that the result of the second section is optimal

for polynomial time� This improves on a result of Beigel et al� 
������ First� the

truth
table closure of any partial information class containing non
cheatable

languages is not approximable� Second� the approximable languages are not

closed under any unbounded truth
table reduction� Note� that for once these

results are not obtained combinatorially� but rather by a direct diagonalisation

argument�


�� Characterising the Cone Property for

Upward Translated Families

Given a normal n
family F � when are the pools of the upward translation dFenk
cones over F� This question is important� because if we can answer it in some

satisfactory way� we can also e�ectively decide which classes C �F 	 are closed

��
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under bounded truth�table reductions�

Lemma ��� below shows that the upward translation of a non�size family never

yields a family of �k
cones over the family for su�ciently large k� Together

with the results of the previous chapter� this yields the main characterisation
theorem� Theorem ��� below� For a stronger result for polynomial time� please

see the bibliographical notes�

�
� Lemma
Let F be a normal n�family and not a size family� Then dFenk is no family of

�k�cones over F for k � n�

Proof� By assumption� F misses some pool P with jP j � �F � Then we can
�nd functions 
i such that the image of some pool in dFenk is exactly P as

follows�

Let Q be some pool in F with jQj � �F and let Q � fc�� � � � � c	F g� Then

any nk
pool Q� whose eigenpool is Q is an element of dFenk� One such
nk
pool is given by Q duplicated n � � times in the new positions� that is

Q� � fbn j b � Qg� Now� let P � fb�� � � � � b	F g� We setup the functions 
i as
follows� let 
i�cj� 
� bj�i�� This ensures �
� 	 � � � 	 
n��Q

�� � P �

�
� Theorem
Let FC be c�c�c� and recursively presentable� Then for every normal n�family F
the following propositions are equivalent�

� We have F � sizen�m� for some m � n or m � �n�

� The class C �F 	 is closed under bounded truth�table FC �reductions�

Proof� The �rst proposition implies the second� As the case m � �n is triv�
ial� consider m � n� We wish to show that C �sizen�m�	 is closed under

k
tt
reductions for all k� In Example ���� we showed that


sizen�m�

�
nk

�
sizenk�m�� But then Corollary ��� implies the claim�

For the other direction� assume that C �F 	 is closed under bounded truth
table
reductions� Assume furthermore that F 
� sizen��

n�� We must now argue

F � sizen�m� for some m � n�

By the Cone Theorem� dFenk is a family of �k
cones over F for all k� But

Lemma ��� states exactly that we then have F � sizen�m� for some m� Next�
if we had m � n� then seln � sizen�m� � F � In this situation� Theorem ���

states that F must contain all walks with change numbers at most k� But for
k � �n�� the binary re�ected Gray code is such a walk and hence B n � F
contrary to the assumption F 
� sizen��

n��


�� Closure Property of Approximable Classes

For any c�c�c� function class FC � the class C �approx	 is closed under bounded

truth
table reductions� For polynomial time� this was �rst proved by Richard

Beigel in his PhD thesis�
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�
� Theorem
Let FC be c�c�c� Then C �approx	 is closed under bounded truth�table FC �

reductions�

Proof� Given a non
trivial m
family F and a number k� we wish to �nd a

number n large enough such that RC�k
�
C �F 	

�
� C �approxn	� For this� we

have to show that dFenk is a family of �k
cones over approxn for some n�

Let�s analyse the e�ect of upward translation of the family F on the size of its

largest pool� In Example ���� we saw that �dFenk � S�nk�m� �
Pm��

i��

�
nk
i

�
�

This is a polynomial in n� Hence� it is dominated by �n � � for su�ciently

large n�

For the su�ciently large n we have dFenk � sizenk��
n � ��� But then Corol�

lary ��� states RC�k
�
C �F 	

�
�C �sizen��

n � ��	�


�� Closure Property of Approximable Polynomial Time

is Optimal

This last section establishes that Theorem ��� of the previous section is optimal

for polynomial time� This improves on a result of Beigel et al� 
����� who

showed that the set of approximable languages is not closed under truth
table
reductions�

As we deal with unbounded truth
table reductions� we will not be able to

apply the general theory of cones in this case� but use a direct diagonalisation

instead�

�
� Theorem
Let P�F 	 
� P�cheat	� Then RPs�n��tt

�
P�F 	

�

� P�approx	 for all smooth un�

bounded function s�

Proof� Let m be the index of the family F which we may assume to be normal�

Then P�F 	 
� P�cheat	 implies then for all n � m we have dFen 
� cheatn�

Hence� for all n � m there exists a pool Pn � dFen such that jPnj � n� We

will now construct languages L and K such that L �Ps�n��tt K and K � P�F 	
but L 
� P�approx	� thus proving the claim�

Let 
 
 N � N	N be a surjection computable in polynomial time such that for

each pair �j� k� the set f i j 
�i� � �j� k�g is in�nite and its minimum is larger

than both j and k� Let M j be a standard enumeration of Turing machines

which stop after lj � j steps where l is the input length� In the following�

j and k are just a shorthands for the �rst and second component of 
�i��

First� we construct a very sparse language L using a diagonalisation argument�

For each i we will put some subset of the words W i �
�
wi
�� � � � � w

i
nk

�
into L�

Here� nk is the function nk 
� log s�k�� The words wi
�� � � � � w

i
nk

are the lexico�

graphically �rst words of length tow�i�� de�ned by tow�i � �� 
� �tow�i� and
tow��� 
� m�
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Let Q � approxnk denote the pool output by the machine M j upon input

wi
�� � � � � w

i
nk

or the empty set if no pool from approxnk is output� Then� we

setup the intersection L �W i in such a way that the pool Q is no pool for

�L�w
i
�� � � � � w

i
nk
�� As nk is unbounded in k� the construction ensures L 
�

P�approx	�

We also construct K as a very sparse language which contains only subsets

of sets V i� which are the lexicographical �rst �nk words also of length tow�i��
For each i� we code the information �L

�
wi
�� � � � � w

i
nk

�
into the language K� If

c denotes the number coded by �L
�
wi
�� � � � � w

i
nk

�
� we obviously have c � �nk �

Now� recall that the pool P�nk has the property jP�nk j � �nk � We put words

from V i into K such that the characteristic string of the words in V i is the

c�th bitstring in P�nk �

We claim L �Ps�n��tt K� Upon input w the reduction machine computes an i

such that w � W i	if no such i exists we have w 
� L and we are done�

Otherwise� we query the words in V i� Then� we compute the position of the

bitstring in P�nk and use this information to output �L�w�� The de�nition

of nk ensures �nk � s�nk� � s�i� � s�jwj�� i� e�� that we do not ask too many
questions� Furthermore� as i � log��jwj��O��� and nk is logarithmic in i� the
pool P�nk can easily be computed in time polynomial in jwj�

We claim K � P�F 	� Upon input words w�� � � � � wm we �rst compute the

largest i such that V i � fw�� � � � � wmg is non
empty� For words outside V i

we can compute their characteristic value by simulation� because tow�i� grows
fast enough such that this simulation is easily possible in polynomial time�

By construction� for the words in V i the pool P�nk is the correct pool� As
P�nk � dFe�nk � any selection of m columns from P�nk yields a pool in F � As
F is normal� we can hence output a pool for the words w�� � � � � wm�

�
� Corollary
For all non�trivial families F and all smooth unbounded functions s we have

RPbtt
�
P�F 	

�
� P�approx	 and

RPs�n��tt
�
P�F 	

�
� P�approx	� i� P�F 	 � P�cheat	�

Proof� The �rst claim holds as P�approx	 is closed under bounded truth
table

reductions�

For the second claim� the �rst direction is the contraposition of Theorem ����

For the other direction� it su�ces to show that each P�cheatn	 is closed under

arbitrary unbounded truth
table reductions� But if L �Ptt K � P �cheatn	�
then for any n input words for L we can compute a polynomial number of

queries to K� Using K � P�cheatn	� we get a total of n possibilities for the

answers to all queries� But this induces a pool of size n for the input words�

Bibliographical Notes
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Nickelsen ������� In both texts� the following strengthened version for the polynomial
time case is given�

Theorem ��
� from Nickelsen �����
� For D � Nn with D �� ��n� n��size
the following are equivalent�

� D � �m�n��size for some m � n�

� P�D	 is closed under polynomial time ��tt reductions�

� P�D	 is closed under polynomial time Turing reductions�

Here�Nn is the lattice of normal n�families� This strengthened version can be obtained
from Theorem ��� in the polynomial case� First� note that closure under ��query
truth�table reductions implies closure under bounded truth�table reductions in general�
see Nickelsen ������� Second� Lemma �� of Amir et al� ������ states that for each n
the class P�cheatn	 is even closed under Turing reductions� This was discovered
independently by Goldsmith et al� �������

Theorem ��� is a strengthened version of the following theorem�

Theorem 
�� of Beigel et al� �����
� There are sets A�B such that A is
p�superterse� B is ��� ��p�recursive� and A �p

tt B�

Translated into the notation of this text� they construct languages A �� P�approx	
and B � P�freq����	 such that A �Ptt B� Nickelsen ������ pointed out that their
proof actually even asserts B � P�bottom�	�

Theorem ��� settles another small open question� Theorem ��� of Beigel et al� ������
states that if SAT is truth�table reducible to an approximable language with a sub�

linear number of queries� then P � NP� However� it was not clear whether this
result was actually stronger than Theorem ���� on page ��� which states that if SAT
is approximable� then P � NP� The reason is that it was unclear whether the approx�
imable languages are not perhaps closed under unbounded but sublinear truth�table
reductions� Theorem ��� shows that this is not the case�
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&Mondenkind'� ��sterte er� &ist das nun das Ende#'

&Nein'� antwortete sie� &es ist der Anfang�'

� Michael Ende� Die unendliche Geschichte

This thesis tried to demonstrate that many problems concerning partial in�

formation can be turned into �nitary combinatorial problems� These combina�

torial problems often have simple� sometimes even elegant solutions�

Representing Classes by Families

The �rst part of the thesis treated combinatorial representations of partial

information classes� Three basic questions were addressed�

How exactly do families and partial information classes relate�

Chapter � gave a partial answer to this question by extending Nickelsen�s

Unique Normal Form Theorem to all function classes which are c�c�c� and recur�

sively presentable� Chapter � addressed the problem for the class of recursive

functions� but could only identify the stable families for index ��

As normal families represent resource bounded partial information classes� a

result on the structure of normal families is also a result on partial information

classes� Hence� combinatorial properties of normal families re�ect properties

of partial information classes�

What are the combinatorial properties of normal families�

Chapter � addressed this question� Normal families correspond to antichains

in the unit posets� We saw how families can be translated upward� As an appli�

cation� I proved that inclusion is well
founded on cheatable partial information

classes�

What are the combinatorial properties of stable families�

Stable families are the counterpart of normal families for the class of recursive

functions� While Chapter � treats stable families� I could give no general theory

of the combinatorics of stable families there� because no decision procedure

for stability of families is known� Hence� I had to address the question in a


�
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roundabout manner and often had to argue in the class domain� rather than

in the family domain�

Nevertheless� at least one combinatorial property of stable families can be

obtained as a consequence of Theorem ����� Every stable n
family F is either

contained in dEen or in dF 
 Een for any normal family E � As an application�

I could prove a generalisation of the Generalised Non
Speedup Theorem�

Representing Closures by Cones

In the second part� this thesis tried to demonstrate that not only the inclu�

sion problem of partial information classes� but also the inclusion problem of

their bounded truth
table closures can be turned into a combinatorial problem�
Again� three basic questions were addressed�

How can reductions themselves be represented combinatorially�

Chapter � answered this question for bounded reductions by introducing the
notion of evaluation types� While the de�nition appeals to the notion of

truth
table reductions� I could show that all bounded reductions considered

in the literature including bounded Turing reductions can be modelled by

evaluation types�

How can bounded reductions of partial information classes be represented�

The Cone Theorem answered this question in part� It states that in the resource
bounded case� the �
reduction closure of a classC �F 	 is a subset of a classC �G	�
i� the pools of F are �
cones over G� An immediate consequence of the theorem

was that it is combinatorially decidable which partial information classes are

closed under a speci�c bounded reduction� The Cone Theorem does not answer

the question which closures coincide	which is an intriguing question on which

only little is known�

What are the combinatorial properties of cones�

Results on the structure of cones induce theorems on the reduction closures of

partial information classes� Two such theorem were obtained�

The selective pools are all �k
cones over a family� i� it contains all walks with

change numbers at most k� This purely combinatorial result implied that all

bounded truth
table closures of the p
selective languages di�er� simply because

walks with di�erent maximum change numbers di�er�

A non
trivial family can only be a family of �k
cones over itself	after up�

ward translation	if it is a sizen�m� family with m � n� As a consequence

I obtained a characterisation of the partial information classes closed under

bounded truth
table reductions� These classes are exactly the cheatability

classes�
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�

Outlook

An important open problem is the stability problem of families� A decision

procedure for stability of families would complete the translation process from

the class domain to the family domain� which is currently available only for

resource bounded function classes�

The analysis of stable families yielded the Non
Speedup Theorem due to Beigel�

I could also prove a theorem which states that allowing a cheatable pool to be

output does not change the power of selectivity� Perhaps� this is no coincidence

and we generally have REC�F 	 � REC�F � cheatn	 for all n
families F � At
least for n � � this conjecture is correct�

The upward translation of families still deserves further research� While the

combinatorics of upward translation is solved in principle by Theorem �����

it remains unclear how upward translation can be done quickly and easily�

Apart from the Cone Theorem� also a construction of Ronneburger 
�����

would bene�t from a quick algorithm for upward translations� Ronneburger

introduced the concept of dedicated pools which are maximal pools of the

upward translated families and showed that if dedicated pools can easily be

computed for a given family� their size is a lower bound on the advice necessary

to decide the corresponding partial information class� Currently� no algorithm
is known for computing dedicated pools in polynomial time in general�

Nickelsen�s conjecture that inclusion is well
founded on partial information

classes remains unproven despite the progress made in Section ���� The proof

in Section ��� of the somewhat weaker result that inclusion is well
founded

on cheatable partial information relied heavily on the correspondence between

normal families and antichains in the unit posets� To me� it seems promising
to attempt a proof of the general result also using antichains� Nevertheless�

antichains might also be helpful in refuting the conjecture� In any case� a

better understanding of the e�ects of upward translation would also be most

helpful in this context�

Cones are a powerful tool for representing the inclusion of bounded truth
table

closures of partial information classes in other classes� It would be most satis�
factory if the combinatorial theory of cones could be extended to truth
table

reductions with unbounded numbers of queries�

Cones cannot be used to solve the equality problem of bounded truth
table

closures� Can a theorem be stated� preferably of combinatorial nature� which

gives exact conditions in terms of evaluation types � and � and families F
and G under which we have RC
 �F� � RC� �G� � It might be that the condi�

tions depend on the speci�c resources available in the function class under

consideration� This might even shed some new light on these function classes

themselves�
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List of Notations

Set Theory and Calculus

jSj Cardinality of the set S�

P�S� Powerset of the set S�

N The natural numbers� i� e�� N � f�� �� �� � � �g�
N � The positive integers� i� e�� N � � f�� �� � � � g�
N �n Set of the �rst n positive integers� i� e�� N �n � f�� � � � � ng�
�S�x� Characteristic value of x� i� e�� �S�x� � � for x � S and �S�x� � �

otherwise�

�S�x�� � � � � xn� Extension to tuples� i� e�� �S�x�� � � � � xn� � �S�x�� � � ��S�xn��
f � S � T Assertion that f is a total function from S to T �

S�� Partition of the set S� obtained by factorising S with respect to the
equivalence relation ��

�x	� Equivalence class of the element x with respect to ��
S�T Symmetric di�erence of S and T � i� e�� S�T � SnT � TnS�
log� � N � N Iterated logarithm� i� e�� log��n� �� � � � log�

�blog�n�c	�
tow� N � N Iterated exponentiation� i� e�� tow�n� �� � �tow�n��

Words

�� � The two values of a bit� Denoted in a smaller font than normal
digits�


 An alphabet� In this text 
 � f�� �g�

n Set of all words over 
 of length n�


�n Set of all words over 
 of maximum length n�


� Set of all words over 
�

� The empty word�

w� u� v� � � � Variables for words� Words are elements of 
��

hw�� � � � � wni Tupling of the words w� to wn� obtained by writing the words
alongside� doubling the bits and inserting a �� stop sequence after
each word�

pi � 

� � 
� Projection to the i�th component� i� e�� pi

�hw�� � � � � wni	 � wi for
i � n� and pi�w� � �� if w is no n�tuple with � � i � n�

f � g Concatenation of f and g� i� e�� �f � g��w� � f�g�w���

f � g Parallel application of f and g� i� e�� �f � g�
�hu� vi	 � hf�u�� g�v�i�

hf� gi Tupling of f and g� i� e�� hf� gi �w� � hf�w�� g�w�i�
v Pre�x relation on words�

�lex Lexicographic or dictionary ordering�

�	�



List of Notations �	�

Languages

L� K� N � � � � Variables for languages� Languages are subsets of 
��

Ltag Tagged language� i� e�� Ltag � fw j p��w� � Lg�
L�M� Language accepted by the Turing machine M �

L�M�X� Language accepted by the oracle Turing machineM with oracle X �

Bits and Bitstrings

B The set containing the two values of a bit� i� e�� B � f�� �g�
b� c� d� � � � Variables for bitstrings� Bitstrings are elements of B � � Bits are

bitstrings of length one�

�bi � B
k � B k Projection of the i�th coordinate to b�

�� � B
k � N Function that counts the ��s in its input� i� e�� ���b� �

Pk
i
� b�i��

d�b� c� Hamming distance between b and c� i� e�� the number bits where
they di�er�

b�i�� � � � � in� Bitstring obtained by writing the bits at positions i� to in of the
bitstring b alongside� The leftmost bit is at position ��

P�i�� � � � � in� Extension to sets of bitstrings� i� e�� the set fb�i�� � � � � in� j b � P g�
�pw Pointwise ordering of B n � i� e�� the ordering induced by the Boolean

algebra B n �

Boolean Functions

	� �� � � � Variables for Boolean functions� i� e�� 	 � B k � B for some k�

	�P � Image of the set P of bitstrings under 	�

�� � � � � � �n Product of the functions ��� � � � � �n � B
k � B � going from B nk

to B n �

��� � B k � B Verum and falsum�

�k � B
k � B The k�ary parity function� de�ned as the number of ��s in its argu�

ment modulo ��

navk Navigation functions� See De�nition �����

���� � � � Variables for sets of Boolean functions�

�k The set of k�ary Boolean functions�

�k The set of monotone k�ary Boolean functions�


k The set containing the k�ary logical or�

�k The set containing the k�ary logical and�

�k The set containing �k� its negation� verum and falsum�

�k The set containing all ��k � ���ary Boolean functions whose kernel
includes the kernel of navk� See De�nition ���
�

Pools

P � Q� R� � � � Variables for pools� Pools are subsets of B n �

b�
���
bn

�
Compact notation for the set fb�� � � � � bng for bitstrings bi� See

Notation ����

Special Families

Please see Table ��� on page ��
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Families

F � G� H� � � � Variables for families� Families are coverings of B n � Usually� F de�
notes an n�family� E an m�family� and C an nk�family�

F Subset closure of F � See De�nition ����


F Size of largest pool in F � See De�nition ����

hGi Least normal family containing G� See De�nition ����

hGidist Least weakly normal family containing G� See De�nition ����

dFem Upward translation of F to index m� See Notation �����

�Un��� The poset of n�units� See De�nition ��
�

�Wn��� The poset of weak n�units� See De�nition ��
�

F � E Family of E�hard remainder pools of pools in F � See De�nition ��
�

Complexity Classes

L Class of languages decidable in deterministic logarithmic space�

FL Class of functions computable in deterministic logarithmic space�

NC Nick�s class� i� e�� class of languages computable in parallel poly�
logarithmic time�

polyL Class of languages decidable in poly�logarithmic space�

P Class of languages decidable in deterministic polynomial time�

FP Class of functions computable in deterministic polynomial time�

NP Class of languages decidable in non�deterministic polynomial time�

��P Second delta level of the polynomial hierarchy� i� e�� ��P � PNP�

PSPACE Class of languages decidable in deterministic polynomial space�

FPSPACE Class of functions computable in deterministic polynomial space
whose output length is polynomial in the input length�

REC Class of recursive languages�

K Variable for classes of languages�

K�� Class K with one extra bit of advice per length level�

K�poly Class K with a polynomial amount of advice per length level�

FC Variable for Cartesian and compositionally closed function classes�

C �F 	 Partial information class over the family F � See De�nition �����

Cdist�F 	 Partial information class over the family F where only distinct
words may be given� See De�nition �����

Reductions

�m Many�one reduction�

�� General ��truth�table reduction�

�k�tt���k Truth�table reduction with k queries�

�k�ptt���k Positive truth�table reduction with k queries�

�k�ctt���k Conjunctive truth�table reduction with k queries�

�k�dtt���k Disjunctive truth�table reduction with k queries�

��k Parity truth�table reduction with k queries�

�k�T���k Turing reduction with k queries�
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