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Abstract

In this work, we introduce clean, purely information theoretic space-bounded com-
munication complexity models. In our new general space-bounded communication
model, unlike in classical communication complexity models, the players only have
limited space to compress previous communication history. The players remain all-
powerful when performing local computation, the same as in classical models. We also
introduce restricted variants of this general model, in particular the limited-memory
communication model and the memoryless communication model. In these models
the communication is one-way and the players are constrained in the way they utilize
their limited memory. We show several basic properties about these new models, in
particular that the limited-memory communication model can simulate the general
space-bounded two-way communication model with moderate overhead.

We introduce a new combinatorial concept called rectangle overlay, which nat-
urally generalizes the rectangle partition and rectangle cover concepts in classical
communication complexity. This concept fully characterizes our memoryless commu-
nication model.

Our new space-bounded communication models provide several new characteriza-
tions and new lower bound techniques for the study of the communication complexity
polynomial hierarchy [7]. This communication analog of the Turing machine poly-
nomial hierarchy has recently attracted a lot of attention because of its newly found
technical connection with its Turing machine counterpart [2, 18]. In particular, our
rectangle overlay concept fully characterizes PNPcc, the communication analog of the
oracle Turing machine complexity class PNP. It is the first combinatorial charac-
terization of PNPcc and it properly conceptualizes and strengthens previously known
separation results concerning PNPcc. We also provide the first characterization of
the PSPACEcc complexity class, the communication analog of PSPACE, in terms of a
natural space notion.

We show equivalences and separations to other models (e.g. the garden-hose
model [16], bounded-width branching programs, etc.), unify and extend techniques
appeared in [28] and [10] regarding previously proposed space-bounded communica-
tion models, all under the same models we introduce.

Thesis Supervisor: Periklis A. Papakonstantinou
Title: Assistant Professor
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Chapter 1

Introduction

One of the central objectives of theoretical computer science is to unveil the intrinsic
hardness of computational problems. That is, to study lower bound on the amount
of certain kind of resources (e.g. computation time or memory space) required to
successfully solve the problem.

In 1979 Andrew Yao [44] introduced a model called communication complexity.
This model turned out to be a very powerful tool in proving lower bounds. It has
been successfully applied to various areas of computer science, including circuit com-
plexity (e.g. [21, 34]), streaming computation (e.g. [5, 20]), and property testing
(e.g. [11]), to name a few. Typically, a lower bound is obtained through the use of
communication complexity in the following way: we divide a particular computation
process into several phases, or we divide a system or device into several parts (e.g.
several computers connected by a network in a distributed system), then we can ab-
stract away the details of the computation performed inside each phase or inside each
part. We think of individual phases or parts to be all powerful players who can do
whatever information processing with no cost at all, instead, we try to lower bound
the amount of information exchange that must happen among the players for solving
the problem. Interestingly, strong lower bounds can be proved by solely focusing on
this kind of information exchange among the identified parts of the process or system.

In this work we seek to strengthen this lower bound tool by taking into account an-
other resource constraint that is common in real-world computation: memory space.
We consider the information-theoretic approach of classical communication complex-
ity to be its most important aspect which makes this tool so widely applicable. There-
fore, we introduce a set of space-bounded communication complexity models which
are still purely information theoretic, in the sense that the details of the computation
required for information processing are still abstracted away. In this thesis, using
these models, we unify and improve existing techniques, and provide new paradigms,
new characterizations and new combinatorial tools.

Besides the conceptual contribution in introducing these models, the most inter-
esting application of our communication models is that they provide new tools for the
study of some important communication complexity classes, such as the communica-
tion complexity polynomial hierarchy [7]. Recent results [2, 18] connected the study
of these communication complexity classes with some prominent open problems in
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complexity theory concerning Turing machine complexity classes NL, P and NP.
Our new communication models also provide a unified framework for understand-

ing some previous space-bounded communication models that are proposed more than
20 years ago [28, 10], and some contemporary works [16].

We also perform a comprehensive study about these new communication models
themselves and obtain what is commonly understood as “first-order” results for new
models of computation.

Figure 1-1 depicts the relationship between this work and previous works, espe-
cially the rich set of connections among the models and concepts we introduce and
existing models and concepts.

Figure 1-1: The Unified View of Our Treatment

1.1 Philosophy: the “Information-Theoretic” Ap-

proach

To understand the rationales behind our space-bounded communication models we
first elaborate some more about what we understand as the information theoretic
approach.

The term “information-theoretic” is used in this work in a rather liberal way.
When we say a lower bound proof technique is information-theoretic, we mean that
the main argument in it is about some type of “information cost” that we must pay
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to solve the problem. For example, a typical proof of the O(n · log n) lower bound for
comparison-based sorting algorithms on n input elements argues about the fact that
we need to gather at least O(n · log n) bits of information from the input in order
to distinguish between the n! different orderings of n input elements. This type of
argument, which prevails the nature of lower bounds in computational models, is in
contrast to arguments using, for example diagonalization (e.g. space/time hierarchy
theorems). We do not want to discuss further, neither it is appropriate, to get into
the epistemological differences between types of lower bounds.

As a tool for proving lower bounds the standard communication model by defini-
tion focuses on information. In the basic communication complexity setting the two
players Alice and Bob each receives an n-bit input. In each step one player sends a
bit string to the other player. The player who receives that bit string can compute
an arbitrary function (at no cost) based on her input and all the communication bits
received so far, and decide to either send a bit string back or give a final answer. In
such a communication protocol the complexity measure, communication cost, is the
maximum total number of communication bits in the worst case (over all possible in-
put values). The communication complexity of a function is intuitively defined to be
the communication cost of the optimal protocol that correctly computes the function
on every possible input value. Lower bounds proved using classical communication
complexity is based on the amount of information exchange that must happen before
the players can be sure about the correct answer of the problem. The players are
assumed to be all-powerful.

The ability of the players to process an arbitrary amount of local information at
no cost is an important reason why the classical communication complexity model is
so widely applicable as a lower bound tool. Because the details of local information
processing is abstracted away, the players can be anything, e.g. the whole or a
part of a boolean circuit, the whole or a part of a Turing machine, etc. Therefore
many problems in other models of computation can be mapped into a communication
problem.

Before this work there are several attempts to add space bounds to the classical
communication complexity model, the notable ones include Lam, Tiwari and Tompa’s
work on straight-line protocols [28], Beame, Tompa and Yan’s work on communicat-
ing branching programs [10], and Klauck’s work on communicating circuits [23]. In
all these works the authors realized the players in the communication models using
some standard “machines”. These machines specify the details of information pro-
cessing. The “space” in these communication models includes the space required
to store intermediate computation results in local information processing. Although
it is conceivable to obtain stronger lower bounds based on stronger local informa-
tion processing constraints, it becomes harder to map problems in other models of
computation to these communication models, like it is commonly done for classical
communication complexity.

In this work, we introduce space-bounded communication models that are purely
information theoretic like the classical communication complexity model. The details
of local information processing are still abstracted away. The space concept in our
models is not about space requirement for performing local information processing,

17



rather it is for storing previous communication bits in a compressed form.

An interesting fact is that the majority of the proof techniques the authors used
in two of the aforementioned papers [28, 10] are information theoretic. These ar-
guments do not rely on the specific details about local information processing, and
can actually be transferred to the models we introduce in this work, which is a more
general information theoretic setting (see Section 3.4 on page 51). We observe that
this is actually a very common phenomenon. The success of the classical communi-
cation complexity shows that best known lower bounds can oftentimes be obtained
by information theoretic means, while ignoring the details of information processing
in standard “machines” like Turing machines.

Furthermore, our space-bounded communication models have a lot of interest-
ing connections to existing computational models and complexity classes, as we will
discuss later on in Section 1.3.1 (page 21).

1.2 Conceptual Contributions: Space-Bounded Com-

munication Models

1.2.1 The General Model

In our general space-bounded communication complexity model, the players Alice
and Bob have limited memory space to remember their prior communication history.
Consider a protocol in this space-bounded model that computes a boolean-output
function. Again each of them gets part of the input to the function. In each step
they exchange two bits, one from Alice to Bob, and one from Bob to Alice. Upon
receiving the bit from the other player each of them computes an arbitrary transition
function (with no associated cost) which takes three pieces of information as input:
her local input, the content of her local memory, and the communication bit received.
Based on the output of the transition function, each of them may decide to either
give an answer and halt the protocol, or continue by updating the content of her local
memory and sending another bit to the other player.

When defining a protocol to compute a non-boolean function (which may have
more than one bit of output), we allow the players to answer a subset of the output
bits in each step (not necessarily all at the end). The function is correctly computed
if the union of the answers given by both players gives the correct values for all the
output bits of the function.

Concerning how many output bits can be answered in each step, there are two
possible variants

• the fluent variant, in which each player can choose to answer as many output
bits as she wants (or nothing at all) in each step;

• the stuttering variant, in which each player can only answer at most one output
bit in each step.
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In the classical communication complexity model, since the players have no space
constraints at all, one player, e.g. Alice, can send her entire local input to the other
player and rely on the other player to come up with an answer. That is to say, the
input length n is always a trivial upper bound on the communication complexity of
any function with two n-bit inputs (strictly speaking, the upper bound is n+ 1).

In previous works on straight-line protocols [28] and communicating branching
programs [10], the authors all showed that the trivial upper bound in the classical
communication complexity no longer holds when space bound is added to the model.
They gave communication-space tradeoff lower bounds to some non-boolean func-
tions (such as matrix-vector multiplication). By transferring their techniques to the
stuttering variant of our model, we show similar results in our model as well (see
Section 1.3.1 page 30 for more).

As for the fluent variant of our model, we also obtain non-trivial space lower
bound results for some explicitly defined functions (see Theorem 1.18 on page 32
and Theorem 1.19 on page 32). That is, such functions are not computable at all
within certain space-bound (regardless of the amount of communication). In this work
we mainly focus on “computability” problems, whether a function is computable at
all within certain space constraint. This is in contrast to classical communication
complexity.

Proving nontrivial space lower bounds for explicitly defined non-boolean functions
in our general space-bounded communication model is doable. For boolean functions
we can also show that almost every boolean functions will require close to linear
memory space to compute (see Theorem 1.20 page 32). However proving interesting
(e.g. super-logarithmic) space lower bounds for explicitly defined boolean functions in
our general space-bounded model goes beyond current techniques (see Section 3.5.1
page 54).

1.2.2 The Restricted Variants: Main Contribution

The more restricted variants of the space-bounded communication model was ini-
tially introduced to address the difficulties of proving nontrivial space lower bounds
in the general model for explicitly defined boolean functions. These restricted vari-
ants turned out to be very powerful, being able to simulate the general model with
moderate overhead (see Theorem 1.14 on page 30). At the same time they provide
new tools and new characterizations for the study of the communication complexity
analog of the Turing machine polynomial-time hierarchy (see Section 1.3.1 page 21).
These results are conceptually more significant than the results we get so far in the
general model.

In all the restricted variants, the communication is one-way, Bob can receive
information from Alice, but he cannot send any information back to Alice. In addition,
for some special part of his memory, Bob can only access it in restricted ways. For
example, some part of Bob’s memory (we call it “oblivious memory”) can only be
used to compress the information received from Alice, when updating this part of his
memory, Bob cannot mix-in any information about his own local input; some other
part of Bob’s memory (we call it “write-once memory”) can only be written into once,
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each bit in this part is initialized to the special “blank” state, and after writing either
0 or 1 into it, Bob can not change the value of that bit again. A combination of these
restricted types of memory can give rise to a variety of communication models.

The two most important such models are the memoryless communication model
and the limited-memory model. In the memoryless model, a protocol proceeds in
rounds, and like the name suggests, Bob has no permanent memory, he receives a
bounded-length message from Alice in each round. Upon receiving the message, Bob
either decides to give a final answer (based on available information, that is his local
input and the received message) and halt, or completely forget what has happened
so far and continue. In the next round, Bob will receive another brand new message
from Alice. The memoryless complexity of a function is the minimum message length
requirement in the memoryless model to correctly compute the function. Note here
we mainly care about the “space” (message length) requirement, without considering
the total amount of communication. We can also define this model as a restricted
variant of the general model with one-way communication in which all Bob’s memory
is oblivious (see Section 4.1.1 page 62 for more). We prefer the above definition
because it better reflects the spirit of the model.

In the more general limited-memory model, Bob does have some constant size
permanent memory. The communication is still one-way, from Alice to Bob. In each
round, Bob receives a bounded-length message from Alice, then makes a decision
based on available information whether to give a final answer or continue after for-
getting about Alice’s message. Unlike the memoryless model, in the limited-memory
model, if Bob decides to continue, he can update the content of his constant size
permanent memory and carry that memory to the next round. A limited-memory
protocol has two complexity measures: the message length, and the size of Bob’s
permanent memory. We are usually interested in the minimum message length re-
quirement to correctly compute a function when the size of Bob’s memory is fixed,
regardless the total amount of communication. This model can also be defined as a
restricted variant of the general model, in which communication is one-way, and the
vast majority of Bob’s memory is oblivious (see Section 5.1.1 on page 78).

As we will see later (cf. Theorem 1.6 on page 28 and Theorem 1.7 on page 28), with
each additional memory bit, the limited-memory model gains much more power. With
3 memory bits (to be more precise, just 5 memory states), the limited-memory model
can simulate the two-way general model with moderate overhead (see Theorem 1.14 on
page 30). Therefore in order to have a finer analysis of the power of Bob’s permanent
memory, in this work we measure Bob’s permanent memory in the limited-memory
model in terms of the number of memory states instead of the number of memory
bits (s memory bits is obviously equivalent to 2s memory states). The memoryless
model is a special case of the limited-memory model with 1 memory state.

Note that in the limited-memory and memoryless models, the protocols only
have one-way communication by design. The reason behind this is discussed in Sec-
tion 4.1.1 on page 62.
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1.3 Technical Contributions

Now, we list the technical contributions of this work in order of conceptual signif-
icance. We present the important applications of our new models first. Relevant
properties of the models are presented along the way. Answers to certain “first-
order” questions about new models of computation (e.g. does more memory help)
are presented after that.

First comes a new combinatorial concept we introduced, the rectangle overlay.
This surprisingly simple combinatorial concept provides full characterization for both
the memoryless complexity, and the long established class PNPcc, the communication
complexity analog of the oracle Turing machine class PNP. We then put the PNPcc

class into the bigger picture of the communication complexity polynomial hierarchy
(first defined in [7], see Section 2.2 on page 39 for definition) and present more
connections between our limited-memory communication model and the higher levels
of this hierarchy. Some new lower bounds and separation results in the communication
complexity polynomial hierarchy achieved through these newly found connections and
characterizations are presented along the way.

Next, we explore more connections between our new space-bounded communi-
cation models and other related models like space-bounded Turing machines, the
garden-hose model [16], straight-line protocols [27], communicating branching pro-
grams [9]. We show that we provide a unified information theoretic framework in
which we are able put each of these other models at its place.

After discussing these applications of our space-bounded communication models
we present some results pertaining to the models themselves. We start presenting
some properties of the models, compare the power of the general two-way model with
the more restricted variants. Then we present some complexity lower bound results
and some nontrivial protocols.

1.3.1 Applications: New Tools and New Paradigms

Rectangle Overlay and PNPcc

In this work, we introduce a new combinatorial tool called rectangle overlay 1. It is
immensely useful in the study of both our memoryless model and the PNPcc complexity
class. In order to put this new tool into context, we need to first look at the combina-
torial tools in classical communication complexity that precedes it: communication
matrix, rectangle partition, and rectangle cover.

Communication matrix is the central tool in communication complexity research.
Table 1.1 shows the communication matrix of the Greater-Than function (denoted as
GT) for input length n = 2.

Problem 1.1 (Greater-Than, GT). For two n-bit strings x and y, GT(x, y) outputs
1 if and only if x > y when both are interpreted as binary encoded integers.

1see Definition 4.3 on page 63 for formal definition
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Each row in the matrix corresponds to one possible value for input x, and each
column corresponds to one possible value for input y, the entry at the intersection of
a particular row and a particular column is filled with the output of the function on
the corresponding input pair (x, y).

GT(x, y) y = 00 y = 01 y = 10 y = 11
x = 00 0 0 0 0
x = 01 1 0 0 0
x = 10 1 1 0 0
x = 11 1 1 1 0

Table 1.1: Communication Matrix of GT

A combinatorial rectangle (or just rectangle for short) in a communication matrix
is simply a sub-matrix of that communication matrix. In other words, a rectangle
is the Cartesian product of a subset of rows and a subset of columns in the com-
munication matrix. The process of executing a communication protocol is a process
in which Alice and Bob narrow down the set of possible input pairs (x, y) that are
consistent with all the communication bits so far. It is not hard to prove that in
every step of the protocol, this set of possible input pairs always forms a rectangle in
the communication matrix. Originally this rectangle contains of course all the entries
in the communication matrix. And with each bit of communication between Alice
and Bob, the rectangle shrinks. Whenever the rectangle shrinks to a monochromatic
one (that is, it contains either only 0 entries or only 1 entries in the communication
matrix), Alice and Bob may safely give a final answer.

Prior to this work, there are two combinatorial concepts related to rectangles
that are central to the study of communication complexity: rectangle partition and
rectangle cover. A rectangle partition of a communication matrix consists of a set
of monochromatic rectangles. These rectangles should not intersect with each other,
and collectively they should contain every entry in the matrix. That is, every entry
in the matrix is contained in exactly one rectangle from this set. A rectangle cover
also consists of a set of monochromatic rectangles. This set of rectangles should
collectively contain either all 1 entries (a 1-cover) or all 0 entries (a 0-cover) in the
communication matrix, and the rectangles are allowed to intersect with each other.
In a sense, the rectangle cover concept is a generalization of the rectangle partition
concept. An optimal rectangle partition of GT’s communication matrix is shown in
Figure 1-2. An optimal rectangle 0-cover and an optimal rectangle 1-cover of the
same communication matrix are shown in Figure 1-3.

The rectangle overlay concept is a further generalization of the rectangle cover
concept. A rectangle overlay is a sequence of rectangles, each with an associated
“color” of either 0 or 1. Unlike a partition or a cover, the rectangles in an overlay come
in order. These rectangles may intersect with each other, and collectively they should
contain all matrix entries. The output value of an entry must be equal to the color
of the first rectangle in the sequence that contains it. In other words, we “overlay”
the rectangles one-by-one (see Definition 4.3 on page 63 for formal definition). An
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Figure 1-3: Rectangle 0-Cover and 1-Cover of GT’s communication matrix

optimal rectangle overlay of GT’s communication matrix is shown in Figure 1-4 (note
the rectangles are listed from left to right).
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Figure 1-4: Rectangle Overlay of GT’s communication matrix

We care about these combinatorial concepts because they are closely related
to the communication complexity in various communication models. Suppose the
minimum partition, the minimum 1-cover, the minimum 0-cover and the minimum
overlay of the communication matrix of a function f : {0, 1}n × {0, 1}n → {0, 1}
each have RP (f), RC1(f), RC0(f) and RO(f) rectangles respectively, then it is
well-known results that the deterministic communication complexity of f is between
⌈logRP (f)⌉ and O((logRP (f))2), the nondeterministic communication complexity
of f is ⌈logRC1(f)⌉, the co-nondeterministic communication complexity of f is
⌈logRC0(f)⌉ (see Section 2.1 on page 35 for definitions of the communication com-
plexity measures). In this work we show that the memoryless complexity of f is fully
characterized by RO(f):

Theorem 1.1 (restated and proved as Theorem 4.5 on page 65). The memoryless

complexity of a function f : {0, 1}n × {0, 1}n → {0, 1} is between ⌈logRO(f)⌉−1
2

and
⌈logRO(f)⌉.

Recall that memoryless complexity is the minimum message length requirement
to solve a problem in our memoryless communication model, as defined above in
Section 1.2.2. This gives a beautiful parallel between four communication complexity
measures and four combinatorial concepts.

In a 1986 paper, Babai, Frankl and Simon [7] defined a number of communication
complexity classes as analog to the well-known Turing machine classes. These include
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the communication complexity analog of the Turing machine polynomial hierarchy
(see Section 2.2 on page 39 for definitions).

At the bottom level of this communication polynomial hierarchy, we have the
complexity class Pcc, which contains all communication problems with polylog(n) de-
terministic communication complexity; the complexity class NPcc, which contains all
communication problems with polylog(n) nondeterministic communication complex-
ity; and the complexity class coNPcc, which contains all communication problems
with polylog(n) co-nondeterministic communication complexity. (See Section 2.1 on
page 35 for definitions of the various communication complexity measures.)

In the hierarchy, the complexity class that is right above NPcc and coNPcc, is PNPcc

(Definition 2.3 on page 40), the communication analog of the oracle Turing machine
complexity class PNP (polynomial time computable, with access to an NP oracle). An
oracle query in the communication setting is depicted in Figure 1-5. Here Alice and
Bob first each does some arbitrary local preprocessing to their respective inputs x and
y, and get p(x) and q(y). Then they submit their preprocessed inputs to an oracle
O, and they both immediately get the answer of the oracle query O(p(x), q(y)). The
cost of such an oracle query is logm (m being the output length of p(x) and q(y)),
as compared to the cost of one bit of communication, which is always 1. A protocol
in the class PNPcc class has access to a particular oracle in the class NPcc, and have
total cost at most polylog(n).

In this work we show

Theorem 1.2 (restated and proved as Theorem 4.6 on page 66). PNPcc contains
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exactly the set of functions {f ccn }∞n=1
2 with polylog(n) memoryless complexity.

This gives the first combinatorial characterization of the PNPcc class in terms of
combinatorial rectangles that we know of:

Corollary 1.3. PNPcc contains exactly the set of functions {f ccn }∞n=1 with rectangle
overlays of size 2polylog(n).

This long established, actively studied complexity class PNPcc [7, 17, 19] has such a
simple combinatorial characterization that was overlooked for quite some time. Pre-
viously, in the communication complexity polynomial hierarchy, both the complexity
classes immediately below PNPcc (that are, NPcc and coNPcc) and the complexity
classes above immediately PNPcc (that are, Σcc

2 and Πcc
2 ) have combinatorial charac-

terizations in terms of iterated intersections and unions of monochromatic rectangles
[7]. Rectangle overlays complete the picture

As a combinatorial tool, the rectangle overlay concept provides an intuitive lower
bound technique in terms of maximum monochromatic rectangle size

Theorem 1.4 (a simplified version, see Theorem 4.8 on page 68 for general version
and proof). Suppose in the communication matrix of f : {0, 1}n × {0, 1}n → {0, 1},
the maximum monochromatic rectangle contains m entries (note the whole matrix
contains 22n entries), then the length of any rectangle overlay of f must be at least
2n/2−(logm)/4−1/2.

This lower bound technique significantly simplifies and appropriately conceptual-
izes the technique presented by Impagliazzo and Williams in their 2010 paper [19].

Using this technique, we can prove lower bounds for the following boolean func-
tions

Problem 1.2 (Inner-Product, IP). For a prime number p and a positive integer
k, the IPpk function computes the inner product of two n-dimensional vectors in
GF (pk). For x = x1x2 . . . xn and y = y1y2 . . . yn, IPpk(x, y) =

∑n
i=1 xiyi, in which

all multiplication and addition operations are taken in GF (pk). For the special case
where p = 2 and k = 1, we abbreviate IP2 to IP.

Problem 1.3 (List-Non-Equality, LNE). The List-Non-Equality LNEk,l function is

defined on two (lk)-bit strings x = x
(1)
1 x

(1)
2 . . . x

(1)
l x

(2)
1 . . . x

(k)
1 . . . x

(k)
l and

y = y
(1)
1 y

(1)
2 . . . y

(1)
l y

(2)
1 . . . y

(k)
1 . . . y

(k)
l . LNEk,l(x, y) = 1 if and only if ∀i ∈ {1, 2, . . . , k}

x(i) 6= y(i)

Definition 1.4 (Hamming distance). For two n-bit strings x = x1x2 . . . xn and y =
y1y2 . . . yn, the Hamming distance between x and y, denoted as HD(x, y), is defined
to be the cardinality of the set {i | xi 6= yi}

2In this work, when we talk about asymptotics, we use the notation {f cc
n
}∞
n=1

({fn}∞n=1
) to

denote a family of functions, one for each input length n, that is fn : {0, 1}n × {0, 1}n → {0, 1}
(fn : {0, 1}n → {0, 1}). For convenience, sometimes we also refer to such a family as just “one
function” that takes input of arbitrary length.
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Problem 1.5 (Gap-Hamming-Distance,GHD). The partial function Gap-Hamming-
Distance GHD is defined in terms of the hamming distance between two bit strings.
For two n-bit strings x = x1x2 . . . xn and y = y1y2 . . . yn, if the hamming distance
between x and y is at least 2n/3, GHD(x, y) outputs 1; if the hamming distance is at
most n/3, the function outputs 0; otherwise the output of the function is unspecified.

Theorem 1.5 (restated and proved as Theorem 4.9 on page 69, Theorem 4.10 on
page 69, and Theorem 4.11 on page 70). The List-Non-Equality function LNE√

n,
√
n,

the Inner-Product over GF (2) function IP, and (any full-function extension of) the
Gap-Hamming-Distance function GHD have memoryless complexity Ω(

√
n), Θ(n),

and Θ(n) respectively. And none of them is in the communication complexity class
PNPcc.

In their 2010 paper [19], Impagliazzo and Williams proved that IP /∈ PNPcc, and
separated PNPcc from Σcc

2 ∩Πcc
2 using the LNE√

n,
√
n function (Lam and Ruzzo proved

that LNE√
n,
√
n ∈ Σcc

2 ∩Πcc
2 in 1992 [26]). Here we give a more intuitive proof for this

result using the new combinatorial tool we introduce, rectangle overlay. In addition,
we show a stronger separation between PNPcc and Σcc

2 , and between PNPcc and Πcc
2 ,

by proving that there are two full function extensions of the Gap-Hamming-Distance
function GHD, one in Σcc

2 , another in Πcc
2 (see Theorem 4.13 on page 71).

Going Beyond PNPcc in the Communication Polynomial Hierarchy

As mentioned before, the PNPcc class is one of the (infinite) levels of the communication
polynomial hierarchy. Now we show further connections between our model and the
higher levels of this hierarchy.

The communication polynomial hierarchy [7] (see Section 2.2 on page 39 for for-
mal definitions), like its Turing machine counterpart, consists of a towering levels of
complexity classes. A complexity class at a certain level contains all the complexity
classes at lower levels. At “level k” (k = 1, 2, . . .), we have two complexity classes:
Σcc
k and Πcc

k . The aforementioned PNPcc class is between the “first level” (Σcc
1 = NPcc

and Πcc
1 = coNPcc) and the “second level” (Σcc

2 and Πcc
2 ) of this hierarchy. This hi-

erarchy, like its Turing machine counterpart, is defined in terms of alternations of
quantifiers ∀ and ∃. For example, the definition of Πcc

2 can be intuitively represented
as a depth-3 “boolean formula” as depicted in Figure 1-6. The top gate of the formula
is a ∧-gate, corresponding to a ∀ quantifier, with fan-in 2polylog(n). Every middle layer
gate is a ∨-gate, corresponding to an ∃ quantifier, with fan-in 2polylog(n). And every
bottom layer gate is a ∧-gate with fan-in 2, one of its two children is an “input” gate
taking a boolean preprocessing function p·(x) on x, the other is another “input” gate
taking a boolean preprocessing function q·(y) on y. We will more formally discuss
this relationship between the communication polynomial hierarchy and the so-called
circuit with local preprocessing model in Fact 2.6 on page 43.

The “level number” k can be defined to be a function of the input length n, and
the “largest” meaningful value for k is polylog(n), which gives rise to the PSPACEcc

class, more precisely defined as PSPACEcc def
= ∪∞

c=1Σ
cc
(logn)c . Note that despite its name,
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Figure 1-6: Circuit Representation of Πcc
2

when this PSPACEcc class was first introduced in 1986 [7], the authors wrote, and we
quote

“. . . we do not have a notion corresponding to space. . . ”

(Babai, Frankl, Simon, 1986 [7])

Similar to its Turing machine counterpart, a central problem concerning the com-
munication polynomial hierarchy is whether the complexity classes at different levels
of this hierarchy can be separated. And recent works by Aaronson, Wigderson [2] and
Impagliazzo, Kabanets, Kolokolova [18] on the algebrization barrier put much more
importance into these separations. For example, Aaronson and Wigderson showed
that for two Turing machine complexity classes K1 and K2, if their communication
complexity counterparts Kcc

1 and Kcc
2 satisfies Kcc

1 6⊆ Kcc
2 , then the inclusion K1 ⊆ K2

does not algebrize, that is to say, we need some non-algebrizing technique to prove
the statement K1 ⊆ K2. A systematic investigation in [2] showed that all known
nonrelativizing results based on arithmetization do algebrize. Therefore separation of
such communication complexity classes constitute very strong evidence that resolving
the relationship between the corresponding Turing machine classes is really hard.

In addition, Aaronson andWigderson [2] showed that proving certain lower bounds
in the communication version of interactive proof model implies the separation of NL
and NP, an important open problem in complexity theory (see Theorem 7.2 in [2]).
These results brought a lot of new attention to the study of communication polynomial
hierarchy.

Separating the different levels in the communication polynomial hierarchy turns
out to be an easier task than separating their counterparts in the Turing machine
world. In particular, the classes Pcc, NPcc and coNPcc are easily separated using the
equality function EQ and its complement

Problem 1.6 (Equality, EQ). For two n-bit strings x and y, EQ(x, y) outputs 1 if
and only if x and y are exactly the same.
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The separation NPcc∪ coNPcc ( PNPcc is showcased by the Greater-Than function
GT presented on page 21. Based on the rectangle overlay characterization of PNPcc,
and the classical rectangle cover characterization of NPcc and coNPcc, this result can
be easily obtained by simply observing the fact that GT only has exponentially large
covers (in terms of input length n, see Figure 1-3 on page 23) 3, whilst it has a linear
length overlay (again, in terms of input length n, see Figure 1-4 on page 23) based
on the naive “comparing two numbers bit-by-bit” protocol.

As mentioned on page 26, Impagliazzo and Williams in 2010 [19] separated PNPcc

from Σcc
2 ∩ Πcc

2 using the List-Non-Equality function LNE√
n,
√
n. We provide a more

intuitive proof for that result, together with a stronger separation with the Gap-
Hamming-Distance function GHD.

Although the first level and the second level of the communication polynomial
hierarchy can now be separated, climbing even higher in the hierarchy remains an
open problem. In particular, it remains open whether Σcc

2 is equal to Πcc
2 . Our limited-

memory communication model has additional connections to the higher levels of the
polynomial hierarchy, besides the one between our memoryless model and PNPcc we
have just discussed. These connections may help resolving open problems in the
communication polynomial hierarchy. Specifically, we have

Theorem 1.6 (restated and proved as Theorem 5.8 on page 85). For any constant
k, if a function family {f ccn }∞n=1 is in Σcc

k , then {f ccn }∞n=1 can also be computed in our
limited-memory model with message length polylog(n) and 3 memory states for Bob’s
permanent memory.

Theorem 1.7 (restated and proved as Corollary 3.2 on page 50, and Theorem 5.14
on page 89). For any integer constant w ≥ 5, the complexity class defined by mes-
sage length polylog(n) and w memory states in our limited-memory model is exactly
equivalent to PSPACEcc. So is the complexity class defined by polylog(n) space in our
general space-bounded communication model.

This is the first space characterization of PSPACEcc that we know of.
Because of the connections between the communication polynomial hierarchy and

the bounded-depth circuit classes (see Fact 2.6 on page 43), the proofs of Theorem 1.6
and Theorem 1.7 also imply the following:

Theorem 1.8 (restated and proved as Corollary 5.13 on page 89). If a boolean func-
tion family f = {fn}∞n=1 (fn : {0, 1}2n → {0, 1}) is computable by an AC0 circuit
family, then under every input partition (to split the (2n)-bit input of every fn into
two n-bit inputs), the resulting communication problem is computable by a limited-
memory protocol family with message length polylog(n) and 3 memory states.

Theorem 1.9 (restated and proved as Theorem 5.15 on page 90). If a boolean func-
tion family f = {fn}∞n=1 (fn : {0, 1}2n → {0, 1}) is computable by an NC1 circuit
family, then under every input partition (to split the (2n)-bit input of every fn into
two n-bit inputs), the resulting communication problem is computable by a limited-
memory protocol family with message length O(log n) and 5 memory states.

3Easily shown with classical fooling set argument, see section 1.3 of [25] for an explanation of the
fooling set argument.
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More Connections to Other Related Models

Besides providing new tools for the study of the communication polynomial hierarchy,
our model also provides a unified framework for understanding the information theo-
retic nature of a lot of other models and techniques. We now examine the connections
between our model and other related models one by one.

First, the space-bounded Turing machines:

Here we add local preprocessing capability to a Turing machine and make it more
relevant to the communication setting, we exempt the Turing machine from the cost
of local computation on x and local computation on y, make it more focused on the
“communication” or information flow between these two.

Definition 1.7 (Turing machine with local preprocessing). Turing machines with
local preprocessing are of the form M(p(x), q(y)). Here x and y are two n-bit input
strings, p and q are arbitrary preprocessing function on input x and y respectively,
and M is a standard space s(n) Turing machine which receives p(x) and q(y) on its
input tape. Note the space-bound of M, s(n), is computed on the input length n of
original inputs x and y, not on the output length of p(x) or q(y).

The inspiration of the following theorem comes from a discussion with Buhrman
and Speelman [1].

Theorem 1.10 (restated and proved as Theorem 3.1 on page 49). For any function
s(n) ≥ log n, n being the input length, the set of functions computable in our general
space-bounded communication model with space O(s(n)) is exactly the set of functions
computable by a space O(s(n)) Turing machine augmented with local preprocessing.

Even with just one-way communication, the general space-bounded communica-
tion model can still simulate space-bounded Turing machines (note this time without
local preprocessing capabilities)

Theorem 1.11 (restated and proved as Theorem 3.3 on page 50). For any function
f : {0, 1}2n → {0, 1} and any s > log n, if f can be computed by a Turing machine with
space s and time t, then under any input partition for f , the resulting communication
problem f ′ : {0, 1}n × {0, 1}n → {0, 1} is always computable in our general space-
bounded communication model with one-way communication, space s + log n + O(1)
and communication t · n.

A consequence of the above simulation is that, proving any nontrivial (super-
logarithmic) space lower bound for any explicitly defined boolean function in our
general one-way communication model is quite hard, as already discussed in Sec-
tion 1.2.1 on page 18.

In [16], Buhrman, Fehr, Schaffner and Speelman introduced the garden-hose model
and proved that the garden-hose model is also equivalent to the space-bounded Tur-
ing machine with local preprocessing model. Therefore, their garden-hose model is
equivalent to our model:
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Theorem 1.12 (restated and proved as Corollary 3.4 on page 51). For any function
s(n) ≥ log n, n being the input length, the set of functions computable in our general
space-bounded communication model with space O(s(n)) is exactly the set of functions
computable in the garden-hose model with 2O(s(n)) pipes.

The above two models are equivalent to our general space-bounded communication
complexity model. Next, we look at models that are more restricted. We have men-
tioned before that the most notable previous space-communication tradeoff results
include Lam, Tiwari and Tompa’s work on straight-line protocols [27] and Beame,
Tompa and Yan’s work on communicating branching programs [9]. Both models can
be seen as restricted variants of our general space-bounded communication complex-
ity model, in which the transition function takes a restricted form. But we notice
that the proof techniques in these works are actually of information theoretic nature,
and are therefore transferable to our model.

More precisely, the proof technique in Lam, Tiwari and Tompa’s work on straight-
line protocols [27] can be applied to any protocol in our general space-bounded com-
munication model that satisfies the following conditions: first, the protocol is stut-
tering; second, the set of output bits produced in each step does not depend on the
input value. The proof technique in Beame, Tompa and Yan’s work on communicating
branching programs [9] is even more widely applicable to our model. The technique
can be applied to any stuttering protocol in our general space-bounded communica-
tion model. That means the same kind of space-communication tradeoff also holds
in the stuttering variant of our general space-bounded communication model. As an
example, we have

Theorem 1.13 (restated and proved as Theorem 3.6 on page 52). Any stuttering
protocol in our general space-bounded communication model computing the product of
an n× n matrix and an n-vector over GF (2) requires communication C and space S
such that C · S = Ω(n2), as long as S = o(n/ log n).

1.3.2 One-Way Communication versus Two-Way Communi-
cation

In this section we present some interesting results concern the comparison of the
computation power of two-way communication models and one-way communication
models.

One first result that compares one-way communication with two-way communica-
tion is about the limited-memory model, and it can be quite surprising and at a first
glance

Theorem 1.14 (restated and proved as Theorem 5.7 on page 84). For any s(n) >
log n, if a function family {f ccn }∞n=1 can be computed with space s(n) in the general
space-bounded communication model, then it is computable in the limited-memory
model with message length O(s(n)2) and 5 memory states.
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This shows that the general space-bounded communication model with two-way
communication model can always be simulated by the limited-memory model with
one-way communication and moderate space overhead.

Our second result, comparing the general two-way communication model with the
one-way memoryless model, is no less surprising

Theorem 1.15 (informally stated, see Theorem 4.2 on page 64 for formal version and
proof). For any 0 < s(n) < n

5
, almost every boolean function f : {0, 1}n × {0, 1}n →

{0, 1} that can be computed in the memoryless model with message length s(n)+⌈log n⌉
is not computable in the general space-bounded model with space s(n).

This shows that with slightly more space (⌈log n⌉), the seemingly severely re-
stricted memoryless model will be able to compute vast amount of functions that
are not computable by the general model with slightly less space. Here are some
corollaries:

Corollary 1.16 (restated and proved as Corollary 4.3 on page 65). For any n > 40
and 0 < s < n

5
, there exist functions f : {0, 1}n×{0, 1}n → {0, 1} that are computable

with space s + ⌈log n⌉ + ⌈log s⌉ in the general space-bounded communication model,
but not computable with space s in the general space-bounded communication model.

Corollary 1.17 (restated and proved as Corollary 4.4 on page 65). For any n > 40
and 0 < s < n

5
, there exist functions f : {0, 1}n×{0, 1}n → {0, 1} that are computable

with space s+⌈log n⌉+⌈log s⌉ in the memoryless model, but not computable with space
s in the memoryless model.

1.3.3 More Lower Bounds and Protocols

In this section, we present some more lower bound results and nontrivial protocols.

Lower Bounds

First, for non-boolean functions, even in the fluent variant of our general space-
bounded communication model, which is the strongest one among all the (deter-
ministic) models we introduce in this work, we are able to prove non-trivial space
requirement lower bound for explicitly defined functions

Problem 1.8 (All-Subset-Equality,ALL-EQ). Define the non-boolean function ALL-EQ :
{0, 1}n×{0, 1}n → {0, 1}2n such that it computes equality on all subsets of correspond-
ing bits in two n-bit strings x and y. Let {I1, I2, . . . , I2n} enumerate all subsets of
{1, 2, . . . , n}, and define the i-th output bit of ALL-EQ to be

ALL-EQi(x, y)
def

=

{

1 if ∀j ∈ Ii, xj = yj

0 otherwise
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Theorem 1.18 (restated and proved as Theorem 3.9 on page 54). ALL-EQ re-
quires Θ(n) space to be computed in the fluent variant of our general space-bounded
communication model.

Problem 1.9 (Equality-with-Combinatorial-Design, EQ-with-Designk). Define the
non-boolean function EQ-with-Designk (k is any positive integer) like ALL-EQ,
except that instead of using all the 2n subsets of {1, 2, . . . , n}, we use a combinatorial
design containing pk such subsets, where p is a prime satisfying p2 = n. 4 This family
of subsets has the following two properties: first, each subset in this family is of size
p; second, the intersection of every two subsets in this family is of size at most k. 5

These subsets defines EQ-with-Designk : {0, 1}n × {0, 1}n → {0, 1}pk .

Theorem 1.19 (restated and proved as Theorem 3.10 on page 54). For every positive
integer k, EQ-with-Designk requires space Θ(k log n) to be computed in the fluent
variant of our general space-bounded communication model.

In the boolean case, a nontrivial lower bound in the general space-bounded com-
munication model for some explicitly defined function still elude us. But by following
Shannon [36], one can easily show

Theorem 1.20 (informally stated, see Theorem 3.7 on page 53 for formal version
and proof). Almost all boolean functions f : {0, 1}n × {0, 1}n → {0, 1} require Ω(n)
space to be computed in our general space-bounded communication model.

Protocol Construction

In this section, we present some nontrivial results concerning the construction of
efficient protocols in our space-bounded communication model.

First is a technique for compositing multiple memoryless protocols:

Theorem 1.21 (restated and proved as Theorem 4.16 on page 74). For positive
integers n, c and functions f1, f2, . . . , fc : {0, 1}n × {0, 1}n → {0, 1}, h : {0, 1}c →
{0, 1}, suppose for each i ∈ {1, 2, . . . , c}, fi can be computed by a message length si
memoryless protocol Pi, then the function f : {0, 1}n × {0, 1}n → {0, 1} defined as

f(x, y)
def

= h(f1(x, y), f2(x, y), . . . , fc(x, y)) is computable by a message length
∑c

i=1 si
memoryless protocol

4We assume for simplicity that n is always the square of some prime number. Strictly speaking, it
suffices to find a prime between ⌈√n⌉ and 2 ⌈√n⌉, the existence of such a prime number is guaranteed
by Bertrand’s postulate (see e.g. [32] for a proof).

5For a specific construction, we use the one-to-one mapping between GF (p) × GF (p) and
{1, 2, . . . , n}. Consider all polynomials of degree at most k − 1 on GF (p), they are all of the form
q(x) = ak−1x

k−1 + ak−2x
k−2 + . . . + a1x + a0, in which all the coefficients ak−1, ak−2, . . . , a1, a0 ∈

GF (p). There are pk such polynomials, and each such polynomial defines a size p subset of
GF (p) × GF (p): {(0, q(0)), (1, q(1)), . . . , (p − 1, q(p − 1))}, which can be mapped into a subset
of {1, 2, . . . , n}. These subsets have the specified properties.
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Note that in the memoryless model Bob has no way of remembering intermediate
computational results, therefore the straightforward solution of simulating the proto-
col for each component function one by one does not work. The trick here is to try
to run all these protocols together “in parallel” (see Section 4.6 on page 74).

Next, we have some techniques for constructing non-trivial limited-memory pro-
tocols with 2 memory states

Theorem 1.22 (restated and proved as Theorem 5.1 on page 80). For communica-
tion problem f : {0, 1}n × {0, 1}n → {0, 1}, suppose f(x, y) can be decomposed into
g(h1(x, y), h2(x, y), . . . , hk(x, y)), where each hi : {0, 1}n × {0, 1}n → {0, 1} depends
on at most l bits in x (i ∈ {1, 2, . . . , k}), then f can be computed in the limited mem-
ory communication model with message length l + k + ⌈log k⌉ and 2 memory states
for Bob.

This gives a nontrivial protocol for inner product functions IPpk on GF (pk) with
pk ≥ 3 6 , because for this function, we can cut each of the two inputs into smaller
blocks, compute the partial inner product for each pair of corresponding blocks, then
sum them up.

Corollary 1.23. For every prime power pk ≥ 3, the inner product function of two
n-dimensional vector over GF (pk), IPpk , can be computed in our limited-memory
communication model with space O(

√
n) and 2 memory states for Bob. Note p and k

are considered to be constant here.

A consequence of this is that, although a width-w branching program of length
l (definition in Section 2.4) can always be simulated by a limited-memory protocol
with message length ⌈log l⌉+ 1 and w memory states for Bob (Fact 5.5 on page 83),
the simulation in the reverse direction is not always possible

Theorem 1.24 (restated and proved as Theorem 5.6 on page 84). The shortest width-

2 branching program that correctly computes IP3 has length Ω
((

3
2
√
2

)n)

, whilst there

is a limited-memory protocol with message length O(
√
n) and 2 memory states that

correctly computes IP3.

The branching program length lower bound is proved by Shearer [37].
Another result for constructing nontrivial protocols concerning bounded-size boolean

formulas: (recall that formulas are circuits with maximum fan-out 1)

Theorem 1.25 (restated and proved as Theorem 5.2 on page 81). If a function
f : {0, 1}2n → {0, 1} can be computed with a size S boolean formula C, then under
any input partition, the resulting communication problem f ′ : {0, 1}n × {0, 1}n →
{0, 1} can be solved in our limited-memory communication model with message length

4
⌈√

S
⌉

+
⌈

logS
2

⌉

+ 4 and 2 memory states for Bob.

6Problem 1.2 on page 25
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Chapter 2

Overview of Standard Models of
Computation

In this chapter, we fix our notation, introduce definitions of models appeared previ-
ously in the literature, and briefly discuss their basic properties which are used later
on. For a more complete treatment, we refer the reader to standard textbooks: [6] for
general complexity theory and models of computation, and [25] for communication
complexity, and [41] for circuit complexity.

2.1 Classical Communication Complexity

2.1.1 The Deterministic Model

This work regards only two-party communication complexity. In this basic setting,
there are two computationally unlimited players, Alice and Bob. Alice has an n-bit
input string x = x1x2 . . . xn and Bob has another n-bit input string y = y1y2 . . . yn.
They want to cooperatively compute a function f(x, y) by communicating as little
as possible between the two of them. Usually the function in question f is boolean,
meaning its output is also a bit from the set {0, 1}. In some part of this work, we also
study the case in which f is non-boolean, where the output of f can be a bit string
of variable length. For now, we focus on the boolean function case.

A deterministic protocol P in the communication complexity model is defined by
its associated protocol tree T . Figure 2-1 depicts such a protocol tree T corresponding
to a protocol for computing the Greater-Than function GT (Problem 1.1 on page 21),
here n=2.

Each internal node v of T is either designated as an Alice’s node (denoted in
Figure 2-1 as “A”), with an associated boolean function Av(·) on Alice’s input x, or
a Bob’s node (denoted in Figure 2-1 as “B”), with an associated boolean function
Bv(·) on Bob’s input y. Each leaf node has a designated output value of either 0 or
1.

During the execution of the protocol, Alice and Bob traverse the tree starting from
the root node v0. Suppose Alice initiates the communication (that is, v0 is an Alice’s
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Figure 2-1: Protocol Tree for GT

node, as in the case of the protocol tree in Figure 2-1), she starts by computing the
boolean function Av0 associated with the root node (in the case of the protocol tree
shown in Figure 2-1, this function is simply x1). Then, she sends the output of the
function Av0(x) to Bob. Based on this one bit of communication both Alice and Bob
descend to the corresponding child node of the currently traversed node and continue
from there. When a leaf node is reached, Alice and Bob takes the designated output
value of this node as the protocol’s final output.

Such a protocol is called deterministic for the obvious reason that every move
of Alice and Bob is deterministic and totally predictable once their inputs x and
y are fixed. We will also introduce the nondeterministic and randomized variants
shortly after this. The cost of such a protocol is defined to be h(T ), the height
of the associated protocol tree, that is, the number of communication bits required
in the worst case. The deterministic communication complexity of a function f :
{0, 1}n × {0, 1}n → {0, 1}, denoted by D(f), is defined to be the cost of the optimal
deterministic protocol that correctly computes f .

We note that the communication complexity model is a non-uniform model. That
is to say, if we need to compute a function family {f ccn }∞n=1 with variable input length,
then we must define a family of protocols, one for each input length n.

2.1.2 The Nondeterministic Model

Next we consider the nondeterministic variant of the communication complexity
model.

In the nondeterministic communication complexity model, like in its better-known
Turing machine counterpart, there is an all-powerful prover, who tries to convince
Alice and Bob that f(x, y) = 1. Alice and Bob first receive a proof w (or as in
commonly adopted terminology, a witness) from the prover. Then, they run a proof-
specific deterministic protocol Pw to verify the proof. We say such a protocol correctly
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computes the target function f(x, y) if Alice and Bob can be convinced only when
the output of f(x, y) is actually 1, in other words:

f(x, y) = 1 ⇔ ∃w such that Pw(x, y) outputs 1

The cost of the protocol is maxw (|w|+ h(Tw)), where |w| is the length of w when
encoded as a bit string, and h(Tw) is the height of Pw’s protocol tree Tw. The non-
deterministic communication complexity of a function f : {0, 1}n × {0, 1}n → {0, 1},
denoted as N1(f), is defined to be the cost of the optimal nondeterministic communi-
cation protocol as always. The co-nondeterministic communication complexity N0(f)
of function f is defined as a complement, with the roles of output value 0 and output
value 1 in the previous definition interchanged.

An observation about the nondeterministic/co-nondeterministic communication
complexity model is that: we can assume a normal form for every nondeterministic/co-
nondeterministic protocol we encounter: it always uses exactly one bit of communi-
cation. Because the all-powerful prover always knows Alice and Bob’s whole com-
munication transcript given her proof, therefore she can simply concatenate that to
the end of the proof/witness. Then Alice can verify if her part of the communication
is represented correctly in the transcript given by the prover and send her result to
Bob. Bob, upon receiving Alice’s result, verify his part and make a decision whether
to accept.

2.1.3 The Randomized Model

In the randomized communication complexity model the players first draw some ran-
dom bits r from a random source, these random bits are shared between the two of
them by default and are called public-coins. Then, they execute a public-coin specific
deterministic protocol Pr. We say a randomized protocol satisfactorily approximates
a function f : {0, 1}n×{0, 1}n → {0, 1} if for every input pair (x, y) ∈ {0, 1}n×{0, 1}n,
Prr[f(x, y) = Pr(x, y)] ≥ 2

3
. That is, for every possible input pair the probability that

the protocol chosen according to the random outcomes of public-coin tosses makes a
mistake is smaller than 1

3
.

The cost of the protocol is the worst-case communication cost, that is, maxr h(Tr),
here h(Tr) is the height of Pr’s protocol tree Tr. The (public-coin) randomized com-
munication complexity of function f : {0, 1}n × {0, 1}n → {0, 1}, denoted as R(f), is
the cost of optimal (public-coin) randomized protocol. 1

We can identify a public-coin randomized communication protocol as a probability
distribution over a set of deterministic communication protocols.

1Another commonly studied variant is the private-coin model. In this model, during the execution
of public-coin specific protocol Pr, the players also draw random bits that they do not share with
each other by default (unless explicitly communicated in the protocol) a.k.a. private-coins. See for
example section 3.1 of [25] for a formal definition. We do not deal with this model here.
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2.1.4 Communication Matrices

We have introduced the concept of communication matrices and combinatorial rect-
angles for a communication problem f : {0, 1}n × {0, 1}n → {0, 1} in Section 1.3.1
(page 21). After we have presented the formal definitions of the various communi-
cation complexity measures, we now examine on a more technical level how these
combinatorial tools (combinatorial rectangles, rectangle partitions, rectangle covers
etc.) connect with the complexity measures.

First, we note the central property that makes combinatorial rectangles so relevant
to the study of communication complexity: given any deterministic protocol tree T
corresponding to a protocol P , and choose any node v in the tree T ; then the following
set is a combinatorial rectangle

Rv
def
= {(x, y) | execution of P on input (x, y) will reach v}

Furthermore, we note

• In a deterministic protocol P , suppose that the leaf nodes in its protocol tree T
are {v1, v2, . . . , vl}. Then, the rectangles {Rv1 ,Rv2 , . . . ,Rvl} are all monochro-
matic. And these rectangles form a partition of the communication matrix.

This gives part of the following characterization of D(f), the deterministic com-
munication complexity, in terms of RP (f), the size of the minimum rectangle
partition. The other part is trickier, see section 2.2 and section 2.3 of [25] for a
proof.

⌈logRP (f)⌉ ≤ D(f) ≤ O(logRP (f))2

• Since we can assume that in every nondeterministic/co-nondeterministic pro-
tocol, Alice and Bob verify the proof/witness they receive by exchanging one
bit, then every witness in the nondeterministic (co-nondeterministic) proto-
col corresponds to one 1 (0) monochromatic rectangle. And the set of 1 (0)
monochromatic rectangles that corresponds to the set of all witnesses in a non-
deterministic (co-nondeterministic) protocol must form a cover for all the 1 (0)
entries in the communication matrix.

We also observe that whenever there is a monochromatic rectangle cover of all 1
(0) entries, we can construct a corresponding nondeterministic (co-nondeterministic)
communication protocol. Alice and Bob simply guess which rectangle in the
cover covers the matrix entry of their input (x, y).

Recall that we denote the smallest number of monochromatic rectangles to cover
all the 1 (0) entries in the communication matrix of a function f : {0, 1}n ×
{0, 1}n → {0, 1} as RC1(f) (RC0(f)). Then we have

N1(f) =
⌈

logRC1(f)
⌉

, N0(f) =
⌈

logRC0(f)
⌉

That is actually how nondeterministic (co-nondeterministic) communication
complexity is defined in some literature (for example, Definition 2.3 in [25]).
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In this way rectangle partition and rectangle cover concepts basically characterizes
the deterministic, nondeterministic and co-nondeterministic communication complex-
ity. The rectangle overlay concept we introduce in this work generalizes these classical
concepts, as demonstrated in Section 1.3.1;

2.2 The Communication Complexity Polynomial

Hierarchy

Now we define the complexity classes that is related to the communication complex-
ity polynomial hierarchy: Σcc

k , Π
cc
k , PH

cc, PSPACEcc and oracle query communication
complexity classes. This hierarchy has recently regained attention because its con-
nection to the algebrization barrier in complexity theory (see Section 1.3.1 page 26).

The complexity classes in the communication polynomial hierarchy can be defined
in terms of a (deterministic) game. Here Alice still only gets input x, and Bob still
only gets input y, but they are merely referees in this setting, and there are two
other players: the prover who wants to convince Alice and Bob that the output of
the function f(x, y) should be 1; and the disprover who wants to convince Alice and
Bob the opposite, that is, f(x, y) = 0. The prover and the disprover know both x
and y, and they take a total of k turns to prove/disprove that f(x, y) = 1. After
the prover and the disprover are done, the referees Alice and Bob will discuss about
their proves/disproves and decide who wins. The protocol outputs 1 if and only if
the prover has a winning strategy. In the game, if the prover speaks first then we
call the protocol a Σcc

k -protocol, whereas if the disprover speaks first then we call the
protocol a Πcc

k -protocol. The complexity classes Σcc
k (Πcc

k ) are defined to be the set of
functions {kccn }∞n=1 computable with “efficient” Σcc

k (Πcc
k ) protocols. Here is the formal

definition:

Definition 2.1. Given function k(n) ≤ polylog(n), We say a family of functions
{f ccn }∞n=1 is in the complexity class Σcc

(k(n)) if there exist function φ, ψ : {0, 1}n ×
{0, 1}∗ → {0, 1}, such that for every pair of n-bit strings x and y

fn(x, y) ⇔ ∃u1∀u2∃u3 . . . Qk(n)uk(n)(φ(x, u) ⋄ ψ(y, u))

Here u
def

= u1u2u3 . . . uk(n) is the concatenation of the k(n) component bit strings, it
should have length at most polylog(n). When k(n) is odd, then Qk(n) stands for ∃ and
⋄ stands for ∧; when k(n) is even, then Qk(n) stands for ∀ and ⋄ stands for ∨.

We define the complexity class Πcc
k analogously, by switching the roles of the ∀ and

∃ quantifiers and the roles of the ∧ and ∨ boolean operators in the above definition.
We define NPcc = Σcc

1 and coNPcc = Πcc
1 .

We define PHcc def

= ∪∞
k=1Σ

cc
k (here k ranges over all constants that are indepen-

dent of input length n) and PSPACEcc def

= ∪∞
c=1Σ

cc
(logn)c (here again c ranges over all

constants).

That is, in PHcc we allow any constant number of alternations between the prover
and the disprover, whereas in PSPACEcc we allow polylog(n) many alternations.

39



It is easy to see that the first level of the hierarchy, Σcc
1 = NPcc and Πcc

1 = coNPcc,
is characterized by polylog(n) nondeterministic/co-nondeterministic communication
complexity.

Fact 2.1. NPcc = Σcc
1 is exactly the set of functions f = {f ccn }∞n=1 with polylog(n) non-

deterministic communication complexity. coNPcc = Πcc
1 is exactly the set of function

f = {f ccn }∞n=1 with polylog(n) co-nondeterministic communication complexity.

Analogously, we define:

Definition 2.2. Pcc is the set of functions f = {f ccn }∞n=1 with polylog(n) deterministic
communication complexity.

Example: Πcc
2 Protocol for LNE. To demonstrate the above definition, let us

take a look at a concrete example. Recall the List-Non-Equality function defined
in Problem 1.3 on page 25. The Πcc

2 protocol is simply: first the disprover tries to
disprove that LNEk,l(x, y) = 1 by trying to find out index i ∈ {1, 2, . . . , k} such
that x(i) = y(i), then the prover tries to find out an index j ∈ {1, 2, . . . , l} such that

x
(i)
j 6= y

(i)
j . It is easy to see from the definition of the function LNEk,l that for every

input pair (x, y), the prover has a winning strategy if and only if LNEk,l(x, y) = 1.
In fact LNEk,l is also in Σcc

2 , but the proof is trickier (see [26]).
Next we define oracle query communication complexity classes:

Definition 2.3. In a communication protocol with oracle {Occ
n }∞n=1, the players Al-

ice and Bob not only can communicate bit strings between the two of them, they can
also make queries of the form Om(p(x), q(y)). That is, Alice computes a local pre-
processing function p : {0, 1}n → {0, 1}m on her input x, and Bob computes a local
local preprocessing function q : {0, 1}n → {0, 1}m on his input y, then they sub-
mit the output of p(x) and q(y) to the oracle O and immediately they both get the
output of O(p(x), q(y)). Such a query has associated cost of logm, whilst a normal
communication bit has associated cost of 1 as always.

The PNPcc class is defined to be the set of functions computable with such oracle
query protocols with total cost polylog(n) and oracle O ∈ NPcc. Note that NPcc = Σcc

1

is the set of functions with polylog(n) nondeterministic communication complexity.

Like the deterministic communication protocols introduced in Section 2.1.1, oracle
query protocols can also be presented using protocol trees. In the protocol tree of an
oracle query protocol, in addition to Alice’s nodes and Bob’s nodes, we have a third
type of nodes: query nodes. At each query node, Alice and Bob make a query of
the form Om(p(x), q(y)), where p and q are Alice’s and Bob’s preprocessing functions
respectively and Om is the oracle query function for query input length m. After the
query result is announced, Alice and Bob chooses the child node to go to based on
the query result rather than the communication bit.

Example: PNPcc Protocol for GT. To demonstrate the above definition, let us
take a look at a PNPcc protocol for the Greater-Than function GT. Here we use the
Not-EQual function NEQ ∈ NPcc as our oracle.
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Problem 2.4. The NEQ function is the complement of the EQ function, for two

n-bit strings x and y, NEQ(x, y)
def

= ¬EQ(x, y).

For two n-bit strings x and y, to figure out if x is greater than y, we simply need
to find out the smallest index i such that xi 6= yi, then we can compare xi and yi
and get the answer. To find this index i with the help of the NEQ oracle, we simply
do a binary search: we first test if the first n

2
bits of x and the first n

2
bits of y are

different with one query to NEQ, and if they are different, then we recurse on the
first half of x and y, otherwise we recurse on the second half of x and y. After at
most ⌈log n⌉ recursions, we will be able to find the index i we look for. The total cost
of this protocol is clearly O((log n)2), so it is a PNPcc protocol.

2.3 Boolean Circuits

The boolean circuit model is another non-uniform computational model like the com-
munication complexity model.

Here, we present some basic definitions and tools from circuit complexity that are
relevant to this work. For a more complete treatment, cf. [41].

First, the definition of a basic boolean circuit:

Definition 2.5 (Boolean Circuit). A boolean circuit with input length n is a directed
acyclic graph with a unique sink. Each source node of the graph is labelled with an
index i ∈ {1, 2, . . . , n}. Each non-source node is labelled with one of the three basic
boolean operations: ∧ as logical-and/conjunction, ∨ as logical-or/disjunction, and ¬
as logical-not/negation. A node in the circuit is also called a gate, so we have input
gates (source nodes), ∧-gates, ∨-gates, ¬-gates and output gate (the unique sink).
The fan-in of a gate is its in-degree. The fan-out of a gate is its out-degree. ∧-gates
and ∨-gates may have arbitrary fan-in, whilst ¬-gates must have fan-in 1. The depth
of a circuit is the length of the longest path from one of its input gates to its output
gate. The size of a circuit, denoted as |C| for circuit C, is the number of gates it has.

When evaluating a circuit on n-bit input x, each input gate with label i evaluates
to xi, each non-input gates takes input from all the gates with outgoing edges pointing
at it and evaluates the boolean operation indicated by its label. The output of the
circuit is the value evaluated by the output gate.

Here are some restricted classes of circuits

Definition 2.6 (Boolean Formula). A boolean formula is a boolean circuit with max-
imum fan-out 1. That is, its underlying directed acyclic graph is a directed tree.

Definition 2.7 (NC and AC). For every constant integer k ≥ 0, the ACk class include
all circuit families {Cn}∞n=1 with polynomial size (in input length n), O((log n)k) depth
and unbounded fan-in. 2 An important special case is the class AC0 which contains
circuit families of polynomial size, constant depth, and unbounded fan-in.

2Since the circuit model is non-uniform, to talk about asymptotics, we need to define a family of
circuits {Cn}∞n=1

, one for each input length. Here Cn : {0, 1}n → {0, 1}.
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For every constant integer k ≥ 1, the NCk class include all circuit families {Cn}∞n=1

with polynomial size (in input length n), O((log n)k) depth and maximum fan-in 2.

Circuits are more appealing to analyze than Turing machines. Given the following
connections between the circuit model and the Turing machine model, circuit com-
plexity still provides an alternative route to the most sought-out goals in complexity
theory: space and time lower bounds in the Turing machine world. These connections
are very important for this thesis as well.

Theorem 2.2 (Theorem 2.8 in [41]). Let t(n) ≥ n, then if a function family {fn}∞n=1

can be computed by a Turing machine in time t(n), then it can be computed by a
family of circuits of size O(t(n) · log t(n)).
Theorem 2.3 (Theorem 2.9 and Theorem 2.18 in [41]). Let s(n) ≥ log n. If a
function {fn}∞n=1 can be computed by a nondeterministic Turing machine in space
s(n), then it can be computed by a family of circuits of depth O((s(n))2) and fan-in
2.

On the other hand, if a function {fn}∞n=1 can be computed by a family of circuits
{Cn}∞n=1 of depth s(n) and fan-in 2, then there is a space O(s(n)) Turing machine
such that for each input length n and each input x ∈ {0, 1}n, the Turing machine
takes x and the description of Cn (see Section 2.3 in [41] for formal definition of an
admissible encoding scheme for circuits) as inputs and correctly computes fn(x).

In Definition 1.7 (page 29), we defined a model called Turing machine with local
preprocessing. Now, we add the same kind of local preprocessing to circuits and make
them more relevant in the communication setting.

Definition 2.8. A boolean circuit with local preprocessing Ccc takes two n-bit inputs
x and y. It is similar to a normal circuit, except that each input gate of it evaluates
an arbitrary boolean function p(x) on x or an arbitrary boolean function q(y) on y,
instead of just taking one of the n bits of x or one of the n bits of y.

A boolean formula with local preprocessing is defined similarly.

The connections between Turing machines and boolean circuits as presented in
Theorem 2.2 and Theorem 2.3 can clearly be extended to the case when both of them
are augmented with arbitrary local preprocessing.

Theorem 2.4 (Generalized Version of Theorem 2.8 in [41]). Let t(n) ≥ n, then if a
function family {fn}∞n=1 can be computed by a Turing machine with local preprocessing
in time t(n), then it can be computed by a family of size O(t(n) · log t(n)) circuits with
local preprocessing.

Theorem 2.5 (Generalized Version of Theorem 2.9 and Theorem 2.18 in [41]). Let
s(n) ≥ log n. If a function {fn}∞n=1 can be computed by a nondeterministic Turing
machine with local preprocessing in space s(n), then it can be computed by a family
of depth O((s(n))2) fan-in 2 circuits with local preprocessing.

On the other hand, if a function {fn}∞n=1 can be computed by a family of depth
s(n) fan-in 2 circuits with local preprocessing, then it can also be computed by a space
O(s(n)) Turing machine with local preprocessing.
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These two theorems can be proved in almost the exact same manner as their
classical counterparts, except that whenever the classical proof mentions about an
input bit, we replace it with an arbitrary local preprocessing function with boolean
output. For the second part of Theorem 2.5, the space-bounded Turing machine with
local preprocessing uses one of its preprocessing functions to produce the description
of the required circuit description.

Boolean formulas with local preprocessing actually gives an alternative way of
defining the communication complexity polynomial hierarchy

Fact 2.6. For k(n) ≤ polylog(n), Σcc
k(n) (Πcc

k(n)) is exactly the set of functions com-

putable by depth k(n) + 1, size 2polylog(n) boolean formulas with ∨-gates (∧-gates) as
output gates and local preprocessing.

PSPACEcc is exactly the set of functions computable by depth polylog(n), size
2polylog(n), and maximum fan-in 2 boolean formulas with local preprocessing.

PHcc is exactly the set of function computable by constant-depth, size 2polylog(n)

boolean formulas with local preprocessing.

This holds true because in Definition 2.1, we can simply replace an ∃ quantifier
with an ∨ gate, a ∀ quantifier with an ∧ gate, for each possible value of the quantified
variable, we define a subtree/sub-formula.

With these tools, we can prove the following theorem, which gives another char-
acterization of PSPACEcc in terms of “space” [1]:

Theorem 2.7. PSPACEcc is exactly the set of function families computable by space
polylog(n) Turing machines with local preprocessing.

Proof. First, we prove that every function family {f ccn }∞n=1 that is computable by space
polylog(n) Turing machine with local preprocessing is also in PSPACEcc. Suppose the
two preprocessing function of this Turing machine is p(x) and q(y). Then according to
Theorem 2.3, there is a depth polylog(n) circuit family with local preprocessing that
simulates this Turing machine, the proof is like for classical circuit families, except
that our circuit family takes input bits from p(x) and q(y) using their own local
preprocessing capability. Then according to Fact 2.6, we have {f ccn }∞n=1 ∈ PSPACEcc.

Second, we prove that every function family {f ccn }∞n=1 in PSPACEcc is computable
by a space polylog(n) Turing machine with local preprocessing. By Fact 2.6, {f ccn }∞n=1

is computable by a family of depth polylog(n) and fan-in 2 circuits with local prepro-
cessing. Then by Theorem 2.5, {f ccn }∞n=1 is computable by a space O(s(n)) Turing
machine with local preprocessing.

2.4 Branching Programs

The branching program processes its input bit-by-bit, and it has an space concept
that implicitly corresponds to intermediate result storage. And it is a non-uniform
model like the communication complexity model and the circuit model.
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Definition 2.9 (Branching Programs). A branching program B with n-bit input and
boolean output is a directed acyclic graph with a unique source. Each sink of the
graph is labelled with either 0 or 1. Each non-sink node is labelled with an index
i ∈ {1, 2, . . . , n}, and has two outgoing edges, one labelled with 0, the other labelled
with 1.

When executing this program on an n-bit input x, we traverse the nodes starting
at the unique source node. Each time we traverse a non-sink node with label i, we
read the i-th bit of the input xi, and go to the node pointed by the outgoing edge of the
currently traversed node labelled with xi. When we reach a sink node, then the label
of that sink node is the output of the branching program. The space of a branching
program is the logarithm of the number of its nodes.

A branching program B is layered if its nodes can be partitioned into several layers.
That is, there is a family of non-empty subsets of B’s nodes L0, L1, L2, . . . , Ll such
that ∪lj=0Lj contains all of B’s nodes, and no two different subsets Lj1 and Lj2 (0 ≤
j1, j2 ≤ l, j1 6= j2) intersect with each other. And further more, for every layer Lj
(0 ≤ j ≤ l − 1), all outgoing edges of all the non-sink nodes in this layer should
go to the next layer Lj+1. Obviously, the first layer L0 should contain exactly one
node, the source of B. The width of such a layered branching program is maxj |Lj|,
here |Lj| is the cardinality of Lj, that is, the number of nodes in Lj. The length of
such a layered branching program is l, the number of layers minus 1. Such a layered
branching program is oblivious if for every layer Lj (0 ≤ j ≤ l − 1), all non-sink
nodes in that layer have the same label i.

In this work, we are mostly interested in oblivious layered branching programs of
constant-width. For a constant integer w ≥ 2, we note that in a width-w branching
program B, if for every layer we give the nodes in that layer an order, then each
layer (except for the last layer) can be modelled by a tuple 〈i, f (0), f (1)〉, where i ∈
{1, 2, . . . , n}, and f (0), f (1) : {1, 2, . . . , w} → {1, 2, . . . , w}. That is to say, if we reach
the k-th node in this layer (1 ≤ k ≤ w), then we will go to the f (xi)(k)-th node in the
next layer, where xi is the i-th bit in the input x.

Fact 2.8. For any constant integer w ≥ 2 and l ≥ 1, an oblivious branching pro-
gram of width-w and length l can be defined as a sequence of l tuples: 〈i1, f (0)

1 , f
(1)
1 〉,

〈i2, f (0)
2 , f

(1)
2 〉, . . ., 〈il, f (0)

l , f
(1)
l 〉, here for each 1 ≤ j ≤ l, ij ∈ {1, 2, . . . , n}, f (0)

j , f
(1)
j :

{1, 2, . . . , w} → {1, 2, . . . , w}.
For an n-bit input x = x1x2 . . . xn, the output of the program on this input x is

f
(xil )

l (f
(xil−1

)

l−1 (· · · f (xi1 )

1 (1))).

In Definition 1.7 (page 29) and Definition 2.8 (page 42), we add arbitrary local
preprocessing capability to Turing machines and boolean circuits, we can do the same
thing to branching programs, and make them more relevant in the communication
setting

Definition 2.10. A branching program with local preprocessing Bcc takes two n-bit
inputs x and y, it is like a normal branching program, except that each node of it
branches based on the output of an arbitrary boolean function p(x) on x or an arbitrary
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boolean function q(y) on y, instead of just taking one of the n bits of x or one of the
n bits of y.

In 1989, Barrington discovered a surprising connection between bounded-depth
circuit and bounded-width oblivious branching programs [8]. Here is a slightly gener-
alized version of this theorem. We will use this in our work with circuits and branching
programs augmented with local preprocessing capability

Theorem 2.9 (Generalized Version of Barrington’s Theorem). There exists a uni-
versal constant c such that if a function f : {0, 1}n×{0, 1}n → {0, 1} is computable by
a depth d, maximum fan-in 2 circuit with local preprocessing Ccc, then it can also be
computed by a width 5, length cd oblivious branching program with local preprocessing
Bcc.

The proof follows closely the original proof given in Barrington’s paper [8].
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Chapter 3

The General Space-Bounded
Communication Model

In this chapter we study our general space-bounded communication model. We first
introduce the formal definition of this model, then we explore the connections between
our model and several other related models including space-bounded Turing machines,
the communicating branching programs [9] and the garden-hose model [16]. We will
also prove several lower bound results in our model for both boolean and non-boolean
functions.

3.1 Model Definition

First, the definition of the general space-bounded model.

Definition 3.1. A protocol P in the general space-bounded communication complex-
ity model for computing function f : {0, 1}n × {0, 1}n → {0, 1}m which use s bits of
space, is defined as a pair of transition functions: TA, TB : {0, 1}×{0, 1}n×{0, 1}s →
{0, 1}s × {halt, 0, 1} × {0, 1, ∗}m.

There are two players Alice and Bob. We use variables MA,MB ∈ {0, 1}s to
denote the content of Alice and Bob’s s-bit space respectively. When executing the
protocol, Alice and Bob receive local inputs x, y ∈ {0, 1}n respectively. MA and MB

are initialized to the string 0s in the beginning. In each step, each player sends one bit
of communication to the other player. 1 Then Alice/Bob computes her/his transition

function. Alice computes (M ′
A, h, r)

def

= TA(b, x,MA), here MA and M ′
A denote the

content of Alice’s local memory before and after this step; b is the communication bit
received from Bob; x is her local input; h ∈ {halt, 0, 1} denotes her decision whether
to halt the execution of the protocol, and if continue, what bit to send to Bob in the
next step; and r ∈ {0, 1, ∗}m denotes her output statement of this step, for every
j ∈ {1, 2, . . . ,m}, if the j-th bit of r rj 6= ∗, then rj is Alice’s answer for the j-th bit
in f ’s output. Symmetrically for Bob.

1The first communicated bit is by convention 0.
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We say such a protocol P correctly computes f if for every input pair (x, y) the
following three conditions are met: (i) Alice and Bob halts in the same step; (ii) for
every j ∈ {1, 2, . . . ,m}, the j-th bit of f ’s output is answered by either Alice or Bob
at least once; (iii) no output of Alice or Bob contains wrong answers.

Note that in this model the players can only exchange single bits, not whole bit
strings like in classical communication complexity. The reason is that if we allow
the players to send whole bit strings, then the communication channel between them
will somehow act like a temporary storage for communication bits, which contradicts
our goal of quantifying the players’ space requirement for storing communication bits
through the concept of their local memory space. For one thing, one of the original
motivations for introducing such space-bounded communication complexity models is
to show that the trivial upper bound of n+ 1 in classical communication complexity
no longer holds in the space-bounded setting, as already explained in Section 1.2.1.
But, if we allow the players to exchange whole bit strings, Alice would be able to
simply put her entire input string x on the “communication channel”, and Bob would
read this string and compute the target function in one step, which defies our original
goal.

Another remark we have for this definition is that we do not allow the players to
give wrong answers for certain output bits in the beginning and then correct those
wrong answers later; nor do we allow the players to have a “default” answer (either 0
or 1) for all output bits so that during the actual protocol execution they only need
to give answers to those output bits with the opposite value. In particular, certain
lower bound results in Section 3.5.2 would no longer hold if such behavior is allowed,
as we will explain when we present those lower bound results.

The above is the more general definition of our model. Let us now consider some
slightly restricted variants:

Definition 3.2 (General Stuttering Model). A general space-bounded communication
protocol P with space s as defined in Definition 3.1 is said to be stuttering, if the
output statement of each player in each step gives answer to at most one output bit.
More precisely, that means the defining transition functions TA, TB both satisfy the
following condition: for every x ∈ {0, 1}n, M ∈ {0, 1}s and b ∈ {0, 1}, suppose
TA/B(b, x,M) = (M ′, h, r), then in the output statement r ∈ {0, 1, ∗}m, at least m− 1
bits in r is ∗.

We use the word fluent to describe those protocols not subject to the above restric-
tion.

This stuttering variant of our model gives a very general information theoretic
setting in which the proof techniques introduced in Paul Beame et. al.’s communi-
cating branching programs paper [9] is applicable. We will discuss this later on in
Section 3.4.

Definition 3.3 (General One-Way Model). A general space-bounded communication
protocol P with space s as defined in Definition 3.1 is said to have only one-way
communication, if in the protocol only Alice can send bits to Bob, but Bob can not
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send bits back to Alice. More precisely, that means the function TB in Definition 3.1
satisfies the following condition: for every x ∈ {0, 1}n, M ∈ {0, 1}s and b ∈ {0, 1},
suppose TB(b, x,M) = (M ′, h, r), then h ∈ {halt, 0}. This restriction makes the
communication bit computed by TB meaning less. Since there is no way for Alice to
know how far the computation has gone, we spare Alice the duty to halt together with
Bob.

For the vast part of this work, we will actually focus on the boolean case, meaning
the function to be computed, f , has output length m = 1. In this case, there is no
point for Alice and Bob to continue once one of them has already given the answer.
Therefore, without loss of generality we assume that such protocols always halt once
the answer is given. In other words, for every x ∈ {0, 1}n, M ∈ {0, 1}s and b ∈ {0, 1},
suppose TA/B(b, x,M) = (M,h, r), and r 6= ∗, then we have h = halt.

3.2 Connections to Space-Bounded Turing Machines

In Section 1.3.1, we presented two connections between our general space-bounded
communication model and space-bounded Turing machines, one concerning the two-
way model, the other concerning the one-way model. Here we present formal state-
ments for them.

Theorem 3.1 (Theorem 1.10 restated [1]). For any function s(n) ≥ log n, n being
the input length, the set of boolean functions f : {0, 1}n×{0, 1}n → {0, 1} computable
in our general (two-way) space-bounded communication model with space O(s(n)) is
exactly the set of functions computable by a space O(s(n)) Turing machine augmented
with local preprocessing.

Proof. First, we prove that Turing machines with local preprocessing simulate pro-
tocols in our general two-way space-bounded communication model. Consider a
protocol P defined in terms of transition functions TA, TB. We define preprocess-
ing function p(x) (q(y)) to be the output table (a generalization of truth table for
boolean functions) of TA(·, x, ·) (TB(·, y, ·)). That is, we enumerate all different values
b ∈ {0, 1} andM ∈ {0, 1}O(s(n)) in lexicographic order, and concatenate the output of
TA(b, x,M) (TB(b, y,M)) for all these different input values together to form a “look-
up table”. Given these two look-up tables as input, the Turing machine can clearly
simulate P in work space O(s(n)), it simply keeps track of the memory content of
the two players and the communication bits in its work space and uses the look-up
tables to figure out how the memory content and communication bits change. For the
other direction, the two players of a space O(s(n)) protocol P cooperatively simulate
a Turing machine M(p(x), q(y)) with work space O(s(n)). The read-only head of the
Turing machine scans back and forth on its input tape with p(x) and q(y) written on
it side-by-side. Suppose initially the read head of the Turing machine points into the
region occupied by p(x), where Alice starts the simulation. Because of her unlimited
local computation power she can compute every input bit the Turing machine wants
to read from p(x) on the fly and she can also simulate any computation done by the
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Turing machine. Whenever the input tape read head of the Turing machine crosses
over to the region occupied by q(y), Bob takes over and Alice passes the content of the
Turing machine’s work tape to Bob. Every time the read head of the Turing machine
moves back to the region occupied by p(x), Alice takes over again, and so on. Each
of Alice and Bob needs at most O(s(n)) space to carry out this simulation.

Note that in Theorem 2.7 we showed that the complexity class PSPACEcc is char-
acterized by functions computable with space polylog(n) Turing machines with local
preprocessing. Therefore, we have the following corollary of the above theorem

Corollary 3.2 (part of Theorem 1.7 restated). PSPACEcc is exactly the set of function
families computable by space polylog(n) general two-way protocols.

Theorem 3.3 (Theorem 1.11 restated). For any function f : {0, 1}2n → {0, 1}
and any s > log n, if f can be computed by a Turing machine with space s and
time t, then under any input partition for f , the resulting communication problem
f ′ : {0, 1}n × {0, 1}n → {0, 1} is always computable in our general space-bounded
communication model with one-way communication, space s + log s + 2 log n + O(1)
and communication t · n.

Proof. The simulation protocol proceeds in t phases, each phase corresponds to one
time step of the simulated Turing machine M. In each phase Alice sends the bits
in her part of the input to Bob one-by-one in order. Bob simulates one step of M’s
computation. If the input tape read head of M points to Bob’s part of the input, Bob
simply simulates this step by himself; otherwise Bob takes the input bit from Alice
and simulate this step. The total communication is clearly t·n. Alice uses log n+O(1)
space to count through her input. Bob uses s bits to keep track of the content of M’s
work tape, log s+O(1) bits for M’s work tape read-write head position, log n+O(1)
bits for M’s input tape read head position, O(1) space for M’s internal memory and
log n+O(1) to count through Alice’s enumeration. Therefore the space requirement
of the simulation protocol is within the stated upper bound.

3.3 Connections to the Garden-Hose Model

We have already mentioned the garden-hose model in Section 1.3.1. This model was
introduced in 2011 by Buhrman, Fehr, Schaffner and Speelman [16], with application
to quantum position-verification scheme. In this model we have a water source and
a number of parallel pipes running between two players Alice and Bob. Each pipe
has one end on Alice’s side and the other end on Bob’s side. Given two inputs x and
y to Alice and Bob respectively, Alice decides how to connect the pipe-ends on her
side with hoses based on her input value x, and Bob does similar things based on
his input value y. Alice needs to make sure that the water source is connected to at
least one pipe-end, and they both make sure that each end of each pipe is connected
to at most one hose. After they are done connecting the pipes and hoses, the water
source will pump water into the system. The output of the system is defined to be
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0 if water comes out from one of the unconnected pipe ends on Alice’s side; it is 1 if
water comes out on Bob’s side. More formally:

Definition 3.4. A garden-hose protocol with p pipes is defined by two functions

CA : {0, 1}n → P({0, 1, 2, . . . , p})⌊ p+1
2 ⌋ and CB : {0, 1}n → P({1, 2, . . . , p})⌊ p

2⌋, here
P({0, 1, 2, . . . , p}) is the power set of {0, 1, 2, . . . , p}, similarly for P({1, 2, . . . , p}).
These functions must satisfy the following conditions

• for every x ∈ {0, 1}n (y ∈ {0, 1}n), and every element S (a subset of {0, 1, 2, . . . , p}
or {1, 2, . . . , p}) in the output of CA(x) (CB(y)), either S is the empty set ∅ or
S has exactly 2 elements;

• for every x ∈ {0, 1}n, there exists one element S (a subset of {0, 1, 2, . . . , p}) in
the output of CA(x) such that 0 ∈ S;

• for every x ∈ {0, 1}n (y ∈ {0, 1}n), and every two elements S1 and S2 in the
output of CA(x) (CB(y)), S1 ∩ S2 = ∅.

On input pair (x, y), the output of the garden-hose protocol is defined as follows:
find the longest integer sequence 2 of the form 〈a0 = 0, a1, a2, . . . , al〉 such that {a0 =
0, a1} is one of the elements in the output of CA(x), {a1, a2} is one of the elements in
the output of CB(y), and {a2, a3} is again one of the elements in the output of CA(x),
and so on. Then the output of the protocol is 0 if l is even, and it is 1 if l is odd.

The garden-hose complexity of a function f : {0, 1}n × {0, 1}n → {0, 1}, denoted
as GH(f), is defined to be the smallest integer p such that there is a garden-hose
protocol with p pipes that correctly computes f .

In their paper Buhrman et. al. proved that for any function s(n) ≥ log n, the
set of functions with garden-hose complexity 2O(s(n)) is exactly the set of functions
computable by space O(s(n)) Turing machines augmented with local preprocessing.
Combining their result with Theorem 3.1, we have

Corollary 3.4 (Theorem 1.12). For any function s(n) ≥ log n, the set of functions
f : {0, 1}n×{0, 1}n → {0, 1} with 2O(s(n)) garden-hose complexity is exactly the set of
functions computable with space O(s(n)) general two-way communication protocols.

3.4 Connections to Communicating Branching Pro-

grams

As mentioned in Section 1.3.1 (page 30), the communicating branching program model
is one of the space-bounded communication models introduced in 1990 by Beame,
Tompa and Yan [9]. In this model the authors used branching programs to model
the two players in a communication complexity model. Because of this their model is
not purely information theoretic like ours, as discussed in Section 1.2. Interestingly,

2Such a sequence is clearly unique.
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when they prove their space-communication tradeoff results, the proof technique they
use is in fact information theoretic. Therefore their proof technique is immediately
transferable to our stronger model, and our model provides a broader setting in which
their proof technique is applicable.

Let us first give a more formal definition to their model

Definition 3.5. A pair of communicating branching programs for computing function
f : {0, 1}n×{0, 1}n → {0, 1}∗ is similar to a a pair of classic branching programs (as
defined in Definition 2.9), one operates on input x and the other operates on input y,
but the following differences:

• each non-sink node in the branching program can also be a receive node, which
receives one bit of communication from the other branching program, instead
of reading one bit of input. The traversal process will stall at this node until
a communication bit is received, and the edge to traverse next depends on this
communication bit received rather than an input bit.

• each edge in the branching program may also carry an optional output statement
and an optional send command in addition to its 0/1 label that defines the
traversal process. Each output statement may give answer to at most one bit in
the output of f . Each send command is of the form send(0) or send(1), which
sends the bit value to the other branching program. A program executing a send
command is blocked until the other branching program reaches a receive node
and the communication bit is actually received.

• since the output is produced by output statements, the sink nodes in the branch-
ing program no longer produce output, they merely halts the program.

We say that the function f is correctly computed by such a pair of communicating
branching programs if: for every input pair x, y, both branching programs halt, and
each bit in the output of f(x, y) is answered in at least one of the output statements
executed by one of the branching programs, and none of the answers is wrong.

The authors proved several space-communication tradeoff results for communicat-
ing branching programs. For example, for matrix-vector multiplication, they have:

Theorem 3.5 (see Corollary 4.4 in [10]). Any pair of communicating branching pro-
grams computing the product of an n×n matrix and an n-vector over GF (2) requires
communication C and space S such that C · S = Ω(n2), as long as S = o(n/ log n).

We observe that although the communicating branching program model is not in-
formation theoretic, the proof technique used in [9] to achieve the space-communication
results is. Therefore, the same argument shows the following theorem:

Theorem 3.6 (Theorem 1.13 restated). Any stuttering general two-way space-bounded
communication protocol computing the product of an n × n matrix and an n-vector
over GF (2) requires communication C and space S such that C · S = Ω(n2), as long
as S = o(n/ log n).
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3.5 Space Lower Bound Results

In this section we prove several space lower bound results in our general space-bounded
model. These lower bounds show that certain functions are not computable at all
within certain space bounds, no matter how much communication we are willing to
pay.

We have conceptually more significant lower bound results in Section 4.5 (page 68),
for the memoryless model.

3.5.1 The Boolean Case

The first space lower bound result concerns boolean functions of the form f : {0, 1}n×
{0, 1}n → {0, 1}.

Theorem 3.7 (Theorem 1.20 restated). Let ǫ ∈ (0, 1) be a constant, The ratio of all
input length n boolean functions of the form f : {0, 1}n×{0, 1}n → {0, 1} that can be
computed by space ǫ · n general two-way protocols approaches 0 as n→ ∞.

We prove Theorem 3.7 using the following:

Lemma 3.8. The number of input length n boolean functions f : {0, 1}n×{0, 1}n →
{0, 1} that can be computed by space s general two-way protocols is at most 2(s+2)·2n+s+2

.

Proof. In Definition 3.1 a general two-way space-bounded protocol is defined by a pair
of transition functions TA, TB : {0, 1} × {0, 1}n × {0, 1}s → {0, 1}s × {halt, 0, 1} ×
{0, 1, ∗}m, here the output length m = 1 and we can safely assume that an optimal
protocol will halt whenever the output is produced. Therefore, for each of TA and TB,
we have at most 2(s+2)·2n+s+1

such transition functions. Each pair of such transition
functions defines one protocol, which computes at most one boolean functions of the
form f : {0, 1}n × {0, 1}n → {0, 1} correctly, if it computes any boolean function
at all. Therefore, the number of boolean functions computable by these protocols is
upper bounded by 2(s+2)·2n+s+2

.

Now we obtain Theorem 3.7 as a corollary

Proof of Theorem 3.7. The total number of functions f : {0, 1}n × {0, 1}n → {0, 1}
is 22

2n
, whilst the number of boolean functions computable by space ǫ · n general

two-way protocols is at most 2(ǫn+2)·2n+ǫn+2
, and

lim
n→∞

2(ǫn+2)·2n+ǫn+2

222n
= 0
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Barrier Ahead

Unfortunately, even though we can prove that almost all boolean functions require
Ω(n) space to be computed in our general two-way model, explicitly constructing
even one of them remains a very hard problem. According to Theorem 3.3, for an
explicit function f : {0, 1}n × {0, 1}n → {0, 1}, if we prove space lower bound s(n)
for it in our general one-way model, then we will also prove space lower bound s(n)
for it in the Turing machine world. The only natural functions we know that have
interesting Turing machine space lower bounds of the form ω(log n) are PSPACE-
complete problems. Some less natural functions with such space lower bounds can be
constructed using diagonalization ([39], cf. example Section 4.1.3 in [6]).

Suppose for example that we can prove space lower bound ω(log n) for one of
the PSPACE-complete problems (e.g. satisfiability of quantified boolean formulas, cf.
Section 4.2 in [6]), then by Theorem 2.5 and Theorem 3.1 we can also prove that
this problem does not have NC1 circuits. In other words, we would be able to prove
PSPACE 6⊆ NC1. The strongest result we know so far of this kind is Williams 2011
result that NEXP 6⊆ ACC0 [43]. Here NEXP is the set of functions computable by a
nondeterministic Turing machine in exponential time, which is believed to be a larger
set than PSPACE. ACC0 is the set of circuits like AC0 circuits but with additional
MODm gates (for every possible m). ACC0 is believed to be strictly weaker than
NC1. Therefore proving any ω(log n) space lower bound of this kind would be a
breakthrough in this direction.

3.5.2 The Non-Boolean Case

As mentioned in the boolean case, proving interesting space lower bounds for explicit
functions in our general model is very challenging, even if we restrict the model to
have only one-way communication. In the non-boolean case, the situation is better.
We are able to prove some non-trivial space lower bounds for some naturally defined
functions in the fluent variant of our general two-way model, which is the strongest
space-bounded communication model introduced in this work.

Theorem 3.9 (Theorem 1.18 restated). The ALL-EQ function (Problem 1.8 on
page 31) requires Θ(n) space to be computed in the fluent variant of our general
space-bounded communication model.

Theorem 3.10 (Theorem 1.19 restated). For every positive integer k, EQ-with-Designk
(Problem 1.9 on page 32) requires space Θ(k log n) to be computed in the fluent variant
of our general space-bounded communication model.

We have already mentioned (in Section 3.1 on page 47) that we do not allow
protocols in our general space-bounded model to set a “default value” for some output
bits, or to have wrong answers for some output bits, only to correct them later. The
reason is that, if we allowed this kind of behavior, then the above two lower bounds
would no longer hold. We would have a space ⌈log n⌉ + 1 protocol for both the
ALL-EQ function and the EQ-with-Designk function: the protocol sets “default
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value” 1 for every input bit, in round i (i = 1, 2, . . . , n) Alice sends i and xi (the i-th
bit in Alice’s input x) to Bob, Bob outputs 0 for all subsets in the function definition
that contain index i if xi is not equal to yi (the i-th bit in Bob’s input y).

To prove these theorems we first introduce some notation, for two n-bit strings
x and y, we have already defined the Hamming distance HD(x, y) between these
two string in Definition 1.4 on page 25 as the number of bit positions at which the
corresponding bits in x and y are different. HS(x, y) = n−HD(x, y), is the number
of positions at which the corresponding bits are the same. |x|1 is the number of 1 bits
in x.

When executing a general two-way space-bounded protocol P on input pair (x, y),
we denote the total number of 1 bits in all output statements produced by Alice (Bob)
as ‖P(x, y)‖A1 (‖P(x, y)‖B1 ). Note that if a bit in the output is answered several times
by Alice (Bob), it will be counted multiple times in ‖P(x, y)‖A1 (‖P(x, y)‖B1 ). We
have the following two lemmas, one for ALL-EQ, the other for EQ-with-Designk.
We will prove these lemmas later on.

Lemma 3.11. If there is a protocol P that correctly computes ALL-EQ, then we
have

• either ∃x ∈ {0, 1}n, such that

∑

y∈{0,1}n
‖P(x, y)‖A1 ≥ 3n

2

• or ∃y ∈ {0, 1}n, such that

∑

x∈{0,1}n
‖P(x, y)‖B1 ≥ 3n

2

Lemma 3.12. If there is a protocol P that correctly computes EQ-with-Designk,
then we have

• either ∃x ∈ {0, 1}n, such that

∑

y∈{0,1}n
‖P(x, y)‖A1 ≥ 2p

2−p−1 · pk

• or, ∃y ∈ {0, 1}n, such that

∑

x∈{0,1}n
‖P(x, y)‖B1 ≥ 2p

2−p−1 · pk

With the above two lemmas we are ready to prove Theorem 3.9 and Theorem 3.10.
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Proof of Theorem 3.9. For the upper bound part we note that with space n + O(1)
Alice can simply send her n-bit input x to Bob and relies on Bob to come up with
the whole answer. Bob has enough space to store all the bits in x.

For the lower bound part we show the contrapositive. Suppose that there is
a space s general two-way protocol P that correctly computes ALL-EQ and the
transition function for Alice and Bob in P are TA and TB.

3 Assume without loss of
generality that the clause of x in Lemma 3.11 is true and the input value that makes
this condition true is x0 = 0n.

For every memory state MA ∈ {0, 1}s and every possible communication bit b ∈
{0, 1}, denote the output of TA(b, x0,MA) by (M ′

A, h, r), denote the number of 1
bits in r by o1(MA, b), and denote the set of y ∈ {0, 1}n such that the execution
of P(x0, y) reaches MA with Alice receiving bit b from Bob by Y (MA, b). For every
y ∈ Y (MA, b), |ALL-EQ(x0, y)|1 ≥ o1(MA, b), since |ALL-EQ(x0, y)|1 = 2HS(x0,y),
therefore HS(x0, y) ≥ log o1(MA, b). This means |Y (MA, b)| ≤ 2n/o1(MA, b).

On the other hand,

∑

y∈{0,1}n
‖P(x0, y)‖A1

=
∑

MA∈{0,1}s

∑

b∈{0,1}

∑

y∈Y (MA,b)

o1(MA, b)

=
∑

MA∈{0,1}s

∑

b∈{0,1}
|Y (MA, b)| · o1(MA, b)

≤ 2s · 2 · 2n

Therefore 3n/2 ≤ 2s · 2 · 2n, which implies s ≥ log (1.5) · n− 2.

Proof of Theorem 3.10. For the upper bound part we give the following straightfor-
ward protocol: Alice and Bob each has two counters, one ⌈k log p⌉ bits long 4, to
enumerate through the pk subsets in the function definition; another one, ⌈log p⌉ bits
long, to enumerate through the bits in a particular subset. In each step the players
look at the counters, and compare the corresponding bits in their inputs x and y.

For the lower bound part we also show the contrapositive. Suppose that there is
a space s general two-way protocol P that correctly computes EQ-with-Designk.
Like we did in the proof of Theorem 3.9, we assume, without loss of generality that
the clause of x in Lemma 3.12 is true, and the input value that makes this condition
true is x0 = 0n.

∑

y∈{0,1}n
‖P(x0, y)‖A1 ≥ 2p

2−p−1 · pk (3.1)

For every state MA ∈ {0, 1}s and every possible communication bit b ∈ {0, 1}, we
likewise define o1(MA, b) and Y (MA, b) as in the proof of Theorem 3.9.

3See Definition 3.1.
4Note in the definition of EQ-with-Designk (see Theorem 1.19) we have p2 = n.
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∑

y∈{0,1}n
‖P(x0, y)‖A1

=
∑

MA∈{0,1}s

∑

b∈{0,1}

∑

y∈Y (MA,b)

o1(MA, b)

=
∑

MA∈{0,1}s

∑

b∈{0,1}
|Y (MA, b)| · o1(MA, b) (3.2)

Suppose the family of subsets of {1, 2, . . . , n} we use to define EQ-with-Designk
are {Ii}i=1,2,...,pk . We define

α(t) = min
i1,i2,...,it∈{1,2,...,pk}

i1,i2,...,it are all different

∣

∣

∣

∣

∣

t
⋃

j=1

Iij

∣

∣

∣

∣

∣

then for every MA ∈ {0, 1}s and every b ∈ {0, 1},

o1(MA, b) · |Y (MA, b)| ≤ max
t∈{1,2,...,pk}

t · 2p2−α(t) (3.3)

And clearly we have

• α(t) is non-decreasing for t ∈ {1, 2, . . . , pk}. In particular, for t ∈ {1, 2, . . . , ⌈p/2k⌉},
α(t) is strictly increasing

• for every t ∈ {1, 2, . . . , pk}, α(t) ≥ tp−
(

t
2

)

k

Therefore for t ∈ {1, 2, . . . , ⌈p/2k⌉}, t · 2p2−α(t) is strictly decreasing.

max
t∈{1,2,...,pk}

t · 2p2−α(t)

= max ( max
t∈{1,2,...,⌈p/2k⌉}

t · 2p2−α(t), max
t∈{⌈p/2k⌉,⌈p/2k⌉+1,...,pk}

t · 2p2−α(t))

≤ max(
(

t · 2p2−α(t)
)

|t=1,

(

max
t∈{⌈p/2k⌉,⌈p/2k⌉+1,...,pk}

t

)

·
(

max
t∈{⌈p/2k⌉,⌈p/2k⌉+1,...,pk}

2p
2−α(t)

)

)

= max(2p
2−p, pk ·

(

2p
2−α(t)

)

|t=⌈p/2k⌉)

≤ max(2p
2−p, pk · 2p2(1−3/8k))

= 2p
2−p
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Combine this with (3.1), (3.2), and (3.3), we have:

2s+1 · 2p2−p ≥ 2s+1 · max
t∈{1,2,...,pk}

t · 2p2−α(t)

≥
∑

MA∈{0,1}s

∑

b∈{0,1}
|Y (MA, b)| · o1(MA, b)

=
∑

y∈{0,1}n
‖P(x0, y)‖A1

≥ 2p
2−p−1 · pk

Therefore, 2s+1 ≥ pk/2, s = Ω(k log n). 5

Proofs of Lemmas

Proof of Lemma 3.11. It is easy to see that

|ALL-EQ(x, y)|1 = 2HS(x,y)

By definition, if a protocol P correctly computes ALL-EQ then for every possible
pair of inputs (x, y),

‖P(x, y)‖A1 + ‖P(x, y)‖B1 ≥ |ALL-EQ(x, y)|1
Since P correctly computes ALL-EQ then we have

∑

x∈{0,1}n

∑

y∈{0,1}n

(

‖P(x, y)‖A1 + ‖P(x, y)‖B1
)

≥
∑

x∈{0,1}n

∑

y∈{0,1}n
|ALL-EQ(x, y)|1

On the other hand:

∑

x∈{0,1}n

∑

y∈{0,1}n
|ALL-EQ(x, y)|1

=
∑

x∈{0,1}n

∑

y∈{0,1}n
2HS(x,y)

=
∑

x∈{0,1}n

n
∑

j=0





∑

y∈{ȳ|HS(x,ȳ)=j}
2HS(x,y)





=
∑

x∈{0,1}n

n
∑

j=0

(

n

j

)

2j

=
∑

x∈{0,1}n
3n

= 2n · 3n
5Note in the definition of EQ-with-Designk (see Theorem 1.19), we have p2 = n.
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Thus,

∑

x∈{0,1}n

∑

y∈{0,1}n
‖P(x, y)‖A1 +

∑

y∈{0,1}n

∑

x∈{0,1}n
‖P(x, y)‖B1 ≥ 2n · 3n

Therefore

• either
∑

x∈{0,1}n

∑

y∈{0,1}n
‖P(x, y)‖A1 ≥ 2n−1 · 3n

• or,
∑

y∈{0,1}n

∑

x∈{0,1}n
‖P(x, y)‖B1 ≥ 2n−1 · 3n

Then, by averaging we have

• either ∃x ∈ {0, 1}n, such that

∑

y∈{0,1}n
‖P(x, y)‖A1 ≥ 3n

2

• or, ∃y ∈ {0, 1}n, such that

∑

x∈{0,1}n
‖P(x, y)‖B1 ≥ 3n

2

Proof of Lemma 3.12. Since P correctly computes EQ-with-Designk, we have

∑

x∈{0,1}n

∑

y∈{0,1}n

(

‖P(x, y)‖A1 + ‖P(x, y)‖B1
)

=
∑

x∈{0,1}n

∑

y∈{0,1}n
|EQ-with-Designk(x, y)|1

Suppose the family of subsets of {1, 2, . . . , n} we use to define EQ-with-Designk
is {Ii}i=1,2,...,pk . We have

∑

y∈{0,1}n

∑

x∈{0,1}n
|EQ-with-Designk(x, y)|1

=
∑

y∈{0,1}n

∑

x∈{0,1}n
|{i | EQIi(x, y) = 1}|

=
∑

y∈{0,1}n

∑

i∈{1,2,...,pk}
|{x | EQIi(x, y) = 1}|

=
∑

y∈{0,1}n

∑

i∈{1,2,...,pk}
2p

2−p

= 2n · pk · 2p2−p
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By averaging like we did in the proof of Lemma 3.11, we have

• either ∃x ∈ {0, 1}n, such that

∑

y∈{0,1}n
‖P(x, y)‖A1 ≥ 2p

2−p−1 · pk

• or, ∃y ∈ {0, 1}n, such that

∑

x∈{0,1}n
‖P(x, y)‖B1 ≥ 2p

2−p−1 · pk
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Chapter 4

Overlays and the Memoryless
Communication Model

In Section 1.2.2 we introduced our memoryless communication model, and in Sec-
tion 1.3.1 we discussed the fact that this model fully characterizes PNPcc. This is
the communication complexity analog of the oracle Turing machine complexity class
PNP. In addition, we presented a new combinatorial tool called rectangle overlay that
greatly facilitates the study of the memoryless model and the PNPcc class. In partic-
ular, strong lower bounds can be shown through rectangle overlays, in very intuitive
ways.

In this chapter, we will first present formal definitions of the memoryless model
and of the rectangle overlay concept, and then explore the aforementioned connections
in detail.

4.1 Definitions

4.1.1 The Memoryless Model

Definition 4.1 (The Memoryless Model). A one-way memoryless protocol with max-
imum message length s is defined by two functions: A : Z+×{0, 1}n → {0, 1}s, which
defines Alice’s behavior; and B : {0, 1}n × {0, 1}s → {0, 1,⊥}, which defines Bob’s
behavior.

Alice receives input x ∈ {0, 1}n and Bob receives input y ∈ {0, 1}n. The protocol

proceeds in rounds. In round i (i = 1, 2, . . .), Alice computes a message α
def

= A(i, x)

and sends it to Bob. Bob, upon receiving this message, computes β
def

= B(y, α). If
β ∈ {0, 1}, he outputs β and the protocol ends. If β = ⊥, he does not output anything
and the protocol proceeds to round i+ 1.

SPACELESS[s] is the set of functions computable by a one-way memoryless pro-
tocol with maximum message length s. The memoryless complexity of a function
f : {0, 1}n × {0, 1}n → {0, 1}, denoted by S(f), is the smallest s such that f ∈
SPACELESS[s].

A few remarks are in order about the above definition: first, throughout this work,
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a memoryless protocol always only has one-way communication (from Alice to Bob),
therefore most of the time, we will simply refer to the one-way memoryless model
as the memoryless model, omitting the word “one-way”; second, in a memoryless
protocol, it is understood from the definition that at the end of each round, if Bob
chooses to continue to the next round without any output, then he will always forget
Alice’s message for this round completely and start anew in the next round, that is
exactly the reason why we call this model “memoryless”; and thirdly, given the limited
message length s, Alice has at most 2s different messages to send to Bob, once she
has exhausted all her possible messages there is no point to continue the protocol.
Therefore, without loss of generality we assume that every memoryless protocol with
message length s always halts within 2s rounds.

We further note that just like when we talk about the general communication
models in the last chapter, when we talk about the memoryless model we mostly
focus on whether a function is computable at all with certain message length (space
bound), without caring too much about the total communication cost.

Alternative Definition in Terms of Oblivious Space

The memoryless model can also be defined as a restricted variant of the general one-
way model (see Definition 3.3 on page 49), in which all of Bob’s space is “oblivious”
and can only be used to compress information received from Alice without mixing-in
any information about his own input.

Definition 4.2 (The One-Way Oblivious Model). The one-way oblivious commu-
nication model with s bits of space is a special case of the general one-way model
defined in Definition 3.3, in which Bob’s transition function TB is splitted into two:
T o
B : {0, 1}s × {0, 1} → {0, 1}s for updating the content of Bob’s oblivious space, and
T fB : {0, 1} × {0, 1}n × {0, 1}s → {0, 1,⊥} for making halting/output decision (here
we only deal with the case where output length m = 1).

We use MA and M o
B to denote the content of Alice’s local space and Bob’s local

oblivious space. In each step of the protocol, Alice executes her transition function as
usual (by definition of one-way protocols, Definition 3.3, the communication bit she
receives from Bob in each step is always 0). Bob executes M o

B
′ = T oB(M

o
B, b) to update

the content of his oblivious space, here M o
B and M o

B
′ denote the old and new content

of Bob’s oblivious space before and after this step, and b is the communication bit
received from Alice. In addition, Bob executes β = T fB(b, y,M

o
B) (here y is Bob’s local

input) to make halting/output decision: if β ∈ {0, 1}, Bob outputs β and the protocol
ends; if β = ⊥, Bob does not output anything and the protocol proceeds to the next
step.

The basic idea is that Bob does not mix-in any information about his own input
y into the content of his oblivious space. Therefore in each step of the protocol
execution, the content of Bob’s oblivious space is always just a compressed version of
Alice’s input x. In other words, in each step during the oblivious protocol execution,
Alice always knows exactly what’s in Bob’s oblivious space. Therefore an oblivious
protocol P with s bits of space (as defined in Definition 4.2) can always be simulated
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by a memoryless protocol P ′ with message length s+1 (as defined in Definition 4.1):
in each round of P ′ Alice simply computes the content of Bob’s oblivious space and
the communication bit according to P , and sends that to Bob in her message. On the
other hand, a memoryless protocol P ′ with message length s can always be simulated
by an oblivious protocol P with s + ⌈log s⌉ bits of space: Alice simply sends her
messages in P ′ bit-by-bit to Bob. This shows that Definition 4.1 and Definition 4.2
are practically equivalent for all the cases we deal with in this thesis. We prefer
Definition 4.1 because it is easier to handle and it better reflects the spirit of the
model.

Because the whole point of the oblivious model is to keep the content Bob’s obliv-
ious space free from information about Bob’s local input. It is important that we
only have one-way communication. If we have two-way communication, any mean-
ingful communication from Bob to Alice needs to carry information about Bob’s local
input. Once Alice learns partial information about Bob’s input and keeps that infor-
mation in her local space, Alice can mix-in that information into her communication
to Bob, thus defeating the original point of the model. Consequently we also only
have one-way communication in the memoryless model.

4.1.2 Rectangle Overlay

Next, we define our new combinatorial tool, rectangle overlay, and a related complex-
ity measure, overlay complexity.

Definition 4.3 (Rectangle Overlay). For a positive integer n, a combinatorial rect-
angle R is defined to be the Cartesian product of any two subsets X, Y ⊆ {0, 1}n:
R def

= X × Y . And a rectangle overlay (or simply an overlay) of length l is defined
to be an ordered sequence of tuples (R1, b1), (R2, b2), . . ., (Rl, bl), here for every
i ∈ {1, 2, . . . , l}, Ri is a combinatorial rectangle, and bi ∈ {0, 1}. This sequence of
tuples must satisfy: ∪li=1Ri = {0, 1}n × {0, 1}n.

An overlay defines/computes a function f : {0, 1}n×{0, 1}n → {0, 1} in a natural
way: for each input pair (x, y), suppose i0 = min {i | (x, y) ∈ Ri}. We define the
value of f(x, y) to be bi0.

For a function f : {0, 1}n × {0, 1}n → {0, 1}, we define the overlay number of f ,
denoted by RO(f), as min {l | there is an overlay of length l that correctly computes f}

The “rectangle overlay” name stems from the intuitive notion of forming an
“overlay” of “combinatorial rectangles” in the communication matrix of a function
f : {0, 1}n × {0, 1}n → {0, 1}; as demonstrated in Section 1.3.1. We have also ob-
served in that section that our rectangle overlay concept is obviously a generalization
of the classical rectangle partition and rectangle cover concepts. In particular, we
have:

Fact 4.1. For any positive integer n and any function f : {0, 1}n×{0, 1}n → {0, 1},

RO(f) ≤ min (RC1(f), RC0(f)) + 1
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.

Like classical communication complexity, we can also introduce public-coin ran-
domness into our memoryless model

Definition 4.4 (The Public-Coin Randomized Memoryless Model). In a public-coin
randomized memoryless protocol P with maximum message length s, Alice and Bob
start by drawing random bits r from a shared/public random source, therefore we call
these random bits public-coins. Then, they execute a public-coin specific deterministic
memoryless protocol Pr with maximum message length s. We say that P satisfactorily
approximates a function f : {0, 1}n × {0, 1}n → {0, 1} if for every input pair (x, y) ∈
{0, 1}n × {0, 1}n, we have Prr[Pr(x, y) = f(x, y)] ≥ 2

3
. That is to say, for every

possible input pair (x, y), the probability that the protocol chosen according to the
random results of public-coin tosses makes a mistake should be smaller than 1

3
.

The randomized memoryless complexity of a function f : {0, 1}n × {0, 1}n →
{0, 1}, denoted as SR(f), is the smallest s such that there is a public-coin randomized
memoryless protocol with message length s that satisfactorily approximates f .

Same as in classical communication complexity a public-coin randomized memory-
less protocol can be identified by a probability distribution over a set of deterministic
memoryless protocols.

4.2 Memory Hierarchy Theorems

The memoryless model may seem rather weak at a first glance, but the next theorem
hints the opposite: with slightly more space, the memoryless model can actually beat
the general two-way model

Theorem 4.2 (see also Theorem 1.15). For any n > 40 and 0 < s(n) < n
5
, the

number of boolean functions f : {0, 1}n×{0, 1}n → {0, 1} computable with space s(n)
general two-way protocols is always smaller than the number of boolean functions
f : {0, 1}n × {0, 1}n → {0, 1} computable with message length s(n) + ⌈log n⌉ one-way
memoryless protocols, and the ratio of these two numbers approaches 0 as n→ ∞.

Proof. It is easy to see that a boolean function f : {0, 1}n × {0, 1}n → {0, 1} that
depends only on the first s bits of its first n-bit input can always be computed with a
one-way memoryless protocol with message length s. This is because Alice can send
the first s bits of her input in one message to Bob and Bob can compute the function
in one round. The number of distinct such functions is 22

n+s
. Therefore, the number

of boolean functions that can be computed by message length s one-way memoryless
protocols is at least 22

n+s
.

On the other hand, by Lemma 3.8, the number of boolean functions f : {0, 1}n ×
{0, 1}n → {0, 1} that can be computed by space s two-way general protocols is at
most 2(s+2)·2n+s+2

.
For n > 40 and 0 < s(n) < n

5
, clearly 22

n+s(n)+⌈logn⌉
> 2(s(n)+2)·2n+s(n)+2

, and

lim
n→∞

2(s(n)+2)·2n+s(n)+2

22n+s(n)+⌈logn⌉
= 0
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We note that a one-way memoryless protocol P with message length s can always
be simulated by a general two-way protocol P ′ with space s+⌈log s⌉. In P ′, Alice uses
an s-bit counter to keep track of the round number, and Bob uses s bits of memory
space to simulate the s bit message buffer in P . In addition, each uses a ⌈log s⌉ bit
long counter to communicate each of Alice’s messages bit-by-bit to Bob. Therefore
we have:

Corollary 4.3 (Corollary 1.16 restated). For any n > 40 and 0 < s < n
5
, there exist

boolean functions f : {0, 1}n × {0, 1}n → {0, 1} computable with space s + ⌈log n⌉ +
⌈log s⌉ general two-way protocols, but not computable with space s general two-way
protocols.

Corollary 4.4 (Corollary 1.17 restated). For any n > 40 and 0 < s < n
5
, there

exist boolean functions f : {0, 1}n × {0, 1}n → {0, 1} computable with message length
s+ ⌈log n⌉+ ⌈log s⌉ one-way memoryless protocols, but not computable with message
length s one-way memoryless protocols. In other words, SPACELESS[s] ( SPACELESS[s+
⌈log n⌉+ ⌈log s⌉].

4.3 Overlay and the Memoryless Model

Now, we are ready to prove that a function’s overlay complexity fully characterizes
its memoryless complexity.

Theorem 4.5 (Theorem 1.1 restated). For any positive integer n and any function
f : {0, 1}n × {0, 1}n → {0, 1}, we have S(f) ≤ ⌈log (RO(f))⌉ ≤ 2S(f) + 1.

Proof. We first prove the easier inequality: S(f) ≤ ⌈log (RO(f))⌉.
Let l = RO(f). By definition there should be an overlay (R1, b1), (R2, b2), . . . , (Rl, bl)

that computes f . Based on this we can construct a one-way memoryless protocol with
messages of length at most s

def
= ⌈log l⌉. For each 1 ≤ i ≤ l, by definition we can write

Ri = Xi×Yi, here Xi, Yi ⊆ {0, 1}n. Given input (x, y) ∈ {0, 1}n×{0, 1}n, we enumer-
ate the set of all Xi’s such that x ∈ Xi as {Xi1 , Xi2 , . . . , Xil′

}, here i1 < i2 < . . . < il′ .

We define our protocol using the following two functions: A(x, j)
def
= ij for Alice and

B(y, i)
def
=

{

bi if y ∈ Yi

⊥ if y /∈ Yi

for Bob. By Definition 4.1, this defines a memoryless protocol with message length
at most ⌈log l⌉ because obviously l′ ≤ l.

Second, we prove the other inequality: ⌈log (RO(f))⌉ ≤ 2S(f) + 1.

Suppose that there is a memoryless protocol with maximum message length s
def
=

S(f) that computes f . We show that there is a rectangle overlay of length at most
22s+1 that computes f . By Definition 4.1, there are functions A and B such that
in the i-th round, Bob computes B(y, A(i, x)) ∈ {0, 1,⊥} to determine whether to
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give the final answer of either 0 or 1, or continue to the next round. Furthermore,
we can always assume that the protocol will halt within 2s rounds without loss of
generality. For each tuple (i, α, b) ∈ {1, 2, . . . , 2s}×{0, 1}s×{0, 1}, we define Xi,α,b

def
=

{x | A(i, x) = α}, Yi,α,b def
= {y | B(y, α) = b} and Ri,α,b

def
= Xi,α,b × Yi,α,b.

Note that for any fixed i, the rectangles Ri,α,b are disjoint for different values of
α and b. We order the rectangles {Ri,α,b}(i,α,b) in the increasing order of i and color
each rectangle Ri,α,b with color b. It is easy to verify that such a rectangle overlay
correctly computes f , and it clearly has length 22s+1.

4.4 P
NPcc and the Memoryless Model

Now, let us prove that the PNPcc complexity class defined in Definition 2.3 is fully
characterized by memoryless complexity we just introduced.

Theorem 4.6 (Theorem 1.2 restated). PNPcc = SPACELESS[polylog(n)].

For the proof, we need to define the following function

Problem 4.5 (Intersect, INT). For two n-bit strings x = x1x2 . . . xn and y =
y1y2 . . . yn, INT(x, y) = 1 if and only if there is an index i ∈ {1, 2, . . . , n} such
that xi = yi = 1.

This function is complete for NPcc under the so-called “rectangle reduction”, please
refer to [7] for more details.

Proof. We start with the easier direction. Suppose there is a function f = {f ccn }∞n=1

such that f ∈ SPACELESS[polylog(n)], or in other words S(f) ∈ polylog(n). We show
that such a function f is always in PNPcc by constructing a PNPcc protocol P for
f . The oracle we will use in P is the NPcc-complete function Intersect INT defined
above.

By Theorem 4.5 each f ccn has a rectangle overlay (R1, b1), (R2, b2), . . . , (Rℓ(n), bℓ(n))
where ℓ(n) ≤ 2polylog(n). Each rectangle can be represented by a Cartesian product:
Ri = Xi×Yi for each i ∈ {1, 2, . . . , ℓ(n)}. In the PNPcc protocol P we construct, Alice
and Bob first preprocess their respective inputs x and y into two ℓ(n)-bit strings
x̂, ŷ ∈ {0, 1}ℓ(n): for each index i ∈ {1, 2, . . . , ℓ(n)}, set x̂i to be 1 if x ∈ Xi and 0
otherwise; and we define ŷ analogously. Given these two ℓ(n)-bit strings, Alice and
Bob need to find the smallest index i such that x̂i = ŷi = 1 and output bi. They
can find this i using binary search, by querying INT at most log (ℓ(n)) times, and
each query has length at most ℓ(n). Given that ℓ(n) ≤ 2polylog(n), our protocol P is a
proper PNPcc protocol.

For the other direction, suppose f = {f ccn }∞n=1 ∈ PNPcc. We show that f ∈
SPACELESS[polylog(n)] by constructing a one-way memoryless protocol with maximum
message length polylog(n).

For each f ccn , let P be the corresponding PNPcc protocol with T as its protocol
tree. According to Definition 2.3, the depth of T is at most polylog(n), and every
query node in P makes an oracle query to an NPcc-function of input length at most
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2polylog(n). As already discussed in Section 2.1.4, for every NPcc-function Q, there is a
1-cover of Q consisting of at most 2polylog(n) 1-monochromatic rectangles {Ri}, such
that for each input pair (x, y), Q(x, y) = 1 if and only there is a rectangle Ri in the
cover such that (x, y) ∈ Ri. The index i plays the role of a witness for (x, y). Each
witness can clearly be encoded into a bit string of length at most polylog(n).

For each input pair (x, y) to f ccn , we can describe the computational history the
original PNPcc protocol P will follow in T as follows: first we use a polylog(n)-bit
string p to denote all the communication bits and query answers along the way, from
the root of T down to one of its leaf nodes; then we scan this path denoted by p,
for each query that answers 1 along the way, we concatenate one of the witnesses
for (x, y). This gives a string (p, w1, w2, . . . , wt), in which p, w1, w2, . . . , wt are all of
polylog(n) length and t = O(polylog(n)). Therefore, the length of the whole string
is at most polylog(n). This string can be independently verified by Alice and Bob
individually.

Now, let H be the set of all possible computational histories for all possible input
pairs (x, y). We construct our one-way memoryless protocol P ′ for f as follows: Alice
enumerates through all computational histories in H that are compatible with her
input x in lexicographically decreasing order of p. That is, if h = (p, w1, . . . , wt) and
h′ = (p′, w′

1, . . . , w
′
t′) are two histories from H with p < p′ (in lexicographic order),

then Alice enumerates h′ before she enumerates h. In particular, for an query node,
Alice enumerates all the paths that take its 1 child before she moves on to the paths
that take its 0 child.

Upon receiving a computational history h ∈ H from Alice, Bob checks to see if
this computational history h is also compatible to his input y. If so, he outputs the
label of the leaf node in T (the protocol tree of the original PNPcc protocol P) specified
by h, otherwise he just continues.

Clearly, this protocol P ′ is in SPACELESS[polylog(n)]. All we need to do now is
to prove that f is correctly computed by P ′. Consider an input pair (x, y) for f .
Let p be root-to-leaf path in T followed by the original protocol P on input (x, y),
and let h be one of the computational histories in H that are compatible with p as
defined above. Let h∗ = (p∗, w∗

1, . . . , w
∗
t ) be the computational history that is actually

accepted by Alice and Bob in protocol P ′. We prove that p = p∗ by contradiction.
Suppose p 6= p∗. Let v be the last node that is common to both path p and p∗, that
is to say, path p∗ deviates away from path p at node v.

• first, v cannot be a communication node, otherwise the owner of node v (either
Alice or Bob of course) would reject p∗ as incompatible to his or her input. She
would see that the communication bit she would send at node v based on the
local computation result on given input should be the one contained in p, not
the one contained in p∗.

• So v must be a query node.

– Suppose the 0-child of v is taken in p whilst the 1-child of v is taken
in p∗. This is impossible for the following reason: since p is the correct
path actually taken by the original protocol P , therefore the query answer
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obtained at v on the given input pair (x, y) should be 0, that means either
Alice or Bob should reject the purported 1-witness in h∗ for the query
performed at v as incompatible to his or her input;

– Suppose it is the other way around, the 1-child of v is take by p whilst
0-child of v is taken by p∗. Then p > p∗ in lexicographical order, this is
also impossible: because in that case Alice would enumerate h before h∗,
and since h is a correct computational history that is compatible with the
input pair (x, y), Alice and Bob would have accepted h before they even
consider h∗.

That means p = p∗ and P ′ is correct for an arbitrarily chosen input pair (x, y).
We conclude that f ∈ SPACELESS[polylog(n)].

Corollary 4.7. The complexity class PNPcc contains exactly the set of functions f =
{f ccn }∞n=1 with quasi-polynomial overlay number, in other words, RO(f) = 2polylog(n)

4.5 Overlay Lower Bounds

We showed before that rectangle overlays fully characterize both the memoryless com-
plexity and the PNPcc complexity class. A major application of this characterization
is an intuitive combinatorial lower bound technique provided by rectangle overlays.

4.5.1 Combinatorial Lower Bound Technique

Theorem 4.8 (complete version of Theorem 1.4). For any boolean function f :
{0, 1}n × {0, 1}n → {0, 1} and any product probability distribution µ on {0, 1}n ×
{0, 1}n. Let ǫµ

def

= maxR µ(R), where R ranges over all monochromatic rectangles in

the communication matrix of f . Then, RO(f) ≥ 1√
ǫµ
, and S(f) ≥ 1

4
log

(

1
ǫµ

)

− 1
2
.

Proof. Let ℓ = RO(f). Then according to the definition of overlay number, there is
a rectangle overlay (R1, b1), (R2, b2), . . ., (Rℓ, bℓ) that computes f . And according to

Theorem 4.5, S(()f) ≥ log(ℓ)
2

− 1
2
.

Next we show the desired lower bound by constructing a sequence of rectangles
T0, T1, T2, . . . , Tℓ with the following properties:

1. T0 = {0, 1}n × {0, 1}n;

2. Tℓ = ∅;

3. Rj ∩ Ti = ∅ for all 1 ≤ j ≤ i ≤ ℓ;

4. for every i ∈ {1, 2, . . . , ℓ}, we have Ti ⊆ Ti−1, and

5. µ(Ti) ≥ µ(Ti−1)−
√
ǫ.
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The existence of such a sequence clearly implies that ℓ ≥ 1√
ǫ
and S(f) ≥ log(ℓ)

2
− 1

2
≥

1
4
log

(

1
ǫ

)

− 1
2
.

Now, we construct the sequence {Ti}. First, we set T0 = {0, 1}n × {0, 1}n. Then,
define T1, T2, . . . , Tℓ inductively. For every i ∈ {1, 2, . . . , ℓ}, define R̄i

def
= Ri ∩Ti−1. R̄i

is clearly a combinatorial rectangle, and by property 3 above, it is disjoint from all
previous R1, . . . ,Ri−1. Thus, the function defined by the rectangle overlay outputs
color bi for all (x, y) ∈ R̄i. In other words, R̄i is monochromatic. Write Ti−1 =
Xi−1 × Yi−1 and R̄i = X̄i × Ȳi.

Since µ is a product distribution we can write it as a product of two distributions
µ = µX × µY , where µX and µY are both distributions on {0, 1}n. We have µ(R̄i) =

µX(X̄i) · µY (Ȳi) and min{µX(X̄i), µY (Ȳi)} ≤
√

µ(R̄i) ≤
√
ǫ. Then we define

Ti
def
=

{

(Xi−1 \ X̄i)× Yi−1 if µX(X̄i) ≤ µY (Ȳi)

Xi−1 × (Yi−1 \ Ȳi) if µX(X̄i) > µY (Ȳi)

In other words, we construct Ti by cutting a piece away from Ti−1 to ensure that Ti
and Ri are disjoint. Thus, Ti possess property 3 and property 4. In addition, we note
that the piece we cut away from Ti−1 has weight at most

√
ǫ, therefore property 5 is

also satisfied. Since per definition of rectangle overlays, ∪2m

i=1Ri = {0, 1}n × {0, 1}n,
it holds that Tℓ = ∅. This completes the construction of the rectangle sequence {Ti}
and our proof is done.

4.5.2 Applications of the Lower Bound Technique

In this section we apply the overlay lower bound technique presented above to several
boolean functions and obtain tight lower bounds for their memoryless complexity.

Theorem 4.9 (see also Theorem 1.5). n
4
− 1

2
≤ S(IP) ≤ n, and IP /∈ PNPcc. Here

IP is the Inner-Product function of two n-dimensional vectors over GF (2).

Proof. For the upper bound part we observe that every boolean function f : {0, 1}n×
{0, 1}n → {0, 1} has a memoryless protocol with message length n: Alice simply sends
her entire input to Bob in one single message and Bob computes the answer.

For the lower bound part we note that it is a well-known fact that every monochro-
matic rectangle in the communication matrix of IP has size at most 2n (measured in
the number of entries in the rectangle). See for example Example 1.25 in Kushilevitz
and Nisan’s book on communication complexity [25]. That is to say, if we choose the
distribution µ in Theorem 4.8 to be the uniform distribution over {0, 1}n × {0, 1}n,
then we have ǫµ ≤ 2−n. The lower bound above follows.

Theorem 4.10 (see also Theorem 1.5). 1
2

√
n − 1

4
log n − 1

2
≤ S(LNE√

n,
√
n) ≤

⌈√n⌉ + ⌈log n⌉, and LNE√
n,
√
n /∈ PNPcc, here LNEk,l is the List-Non-Equality func-

tion defined in Section 1.3.1.

Proof. For the upper bound part, we have the following memoryless protocol: for
i ∈ {1, 2, . . . ,√n}, in round i, Alice sends the index i and the i-th block of her input
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x (consisting of
√
n consecutive bits) to Bob, and Bob compares that to the i-th block

of his input y.

For the lower bound part, we choose the distribution µ in Theorem 4.8 to be the
uniform distribution on {0, 1}n×{0, 1}n. We wish to show that the corresponding ǫµ
in Theorem 4.8 is upper bounded by max{k2 · 2−2l, 2−2k} for LNEk,l.

For every 0-monochromatic rectangle R0 = X0×Y0 in the communication matrix
of LNEk,l (here X0, Y0 ⊆ {0, 1}n) if either X0 or Y0 is empty then µ(R0) = 0. If
neither of them is empty then we can take x0 ∈ X0 and y0 ∈ Y0. For every y ∈ Y0, x0
and y must be the same for one of the k blocks, therefore |Y0| ≤ k · 2n−l. Similarly

we have |X0| ≤ k · 2n−l. Therefore, µ(R0) ≤ max{0, (k·2n−l)2

22n
} = k2 · 2−2l.

For every 1-monochromatic rectangle R1 = X1×Y1 in the communication matrix
of LNEk,l (here X1, Y1 ⊆ {0, 1}n), and every i ∈ {1, 2, . . . , k}, we define

X
(i)
1 = {x̄ ∈ {0, 1}l | ∃x ∈ X1 such that the i-th block in x, x(i) = x̄}

and
Y

(i)
1 = {ȳ ∈ {0, 1}l | ∃y ∈ Y1 such that the i-th block in y, y(i) = ȳ}

Clearly, for every i ∈ {1, 2, . . . , k}, X(i)
1 ∩Y (i)

1 = ∅, because otherwise we can choose

r ∈ X
(i)
1 ∩ Y

(i)
1 , then there are x ∈ X1 and y ∈ Y1 such that x(i) = r = y(i), then

LNEk,l(x, y) = 0, this contradicts the fact that R1 is a 1 monochromatic rectangle.

Therefore since X
(i)
1 , Y

(i)
1 ⊆ {0, 1}l, we have

∣

∣

∣X
(i)
1

∣

∣

∣
+
∣

∣

∣
Y

(i)
1

∣

∣

∣
≤ 2l, and this implies that

∣

∣

∣
X

(i)
1

∣

∣

∣
·
∣

∣

∣
Y

(i)
1

∣

∣

∣
=

(∣

∣

∣X
(i)
1

∣

∣

∣+
∣

∣

∣Y
(i)
1

∣

∣

∣

)2

−
(∣

∣

∣X
(i)
1

∣

∣

∣−
∣

∣

∣Y
(i)
1

∣

∣

∣

)2

4
≤

(∣

∣

∣
X

(i)
1

∣

∣

∣
+
∣

∣

∣
Y

(i)
1

∣

∣

∣

)2

4
≤ 22(l−1)

Therefore

|R1| = |X1| · |Y1| ≤
k
∏

i=1

∣

∣

∣
X

(i)
1

∣

∣

∣
·

k
∏

i=1

∣

∣

∣
Y

(i)
1

∣

∣

∣
=

k
∏

i=1

∣

∣

∣
X

(i)
1

∣

∣

∣
·
∣

∣

∣
Y

(i)
1

∣

∣

∣
≤ 22(n−k)

That means µ(R1) ≤ 2−2k.

We conclude that ǫµ ≤ max{k2 · 2−2l, 2−2k} for LNEk,l, substitute in k = l =
√
n

in Theorem 4.8, we get the desired lower bound.

Note that this lower bound, together with the fact that LNE√
n,
√
n ∈ Σcc

2 ∩Πcc
2 [26],

gives a separation PNPcc
( Σcc

2 ∩Πcc
2 . This separation was first obtained by Impagliazzo

and Williams in 2010 [19]. With our new overlay characterization, the proof becomes
more intuitive. The next lower bound for Gap-Hamming-Distance we present gives a
somewhat stronger separation.

Theorem 4.11. For every full function extension f = {f ccn }∞n=1 of the Gap-Hamming-

Distance function, 1−H(1/3)
2

n − 1
4
log n − 1

2
≤ S(f) ≤ n, and f /∈ PNPcc, here H(·) is

the binary entropy function, for λ ∈ (0, 1), H(λ)
def

= λ · log
(

1
λ

)

+ (1− λ) · log 1
1−λ .
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For proving this theorem, we will need the following combinatorial lemma, the
proof of this lemma is a little bit technical and we will delay it to the next section.

Lemma 4.12. Suppose for X, Y ⊆ {0, 1}n, every x ∈ X and every y ∈ Y satisfy that
HD(x, y) > n/3. Then |X| · |Y | ≤ n · 4H(1/3)n.

Proof of Theorem 4.11. With the help of Lemma 4.12, we can show that all monochro-
matic rectangles of all full function extensions f = {f ccn }∞n=1 of Gap-Hamming-
Distance are very small.

Now, take an arbitrary 1-monochromatic rectangle R1 = X1 × Y1 in the commu-
nication matrix of f ccn , here X1, Y1 ⊆ {0, 1}n. By definition of the Gap-Hamming-
Distance function, it is clear that for every x ∈ X1 and every y ∈ Y1, we have
HD(x, y) > n/3. Therefore, by Lemma 4.12, it holds that |R1| = |X1| · |Y1| ≤
n · 4H(1/3)n.

Next, we take an arbitrary 0-monochromatic rectangle R0 = X0 × Y0 in the
communication matrix of f ccn , here X0, Y0 ⊆ {0, 1}n. Again it is clear that for every
x ∈ X0 and every y ∈ Y0, we have HD(x, y) < 2n/3. Now, for an n-bit string
x ∈ {0, 1}n, we define the complement of x to be another n-bit string such that: for
every i ∈ {1, 2, . . . , n}, if the i-th bit in x is 0, then the i-th bit in x’s complement is
defined to be 1; on the other hand, if the i-th bit in x is 1, then the i-th bit in x’s
complement is defined to be 0. We define X̄0

def
= {x̄ | the complement of x̄ is in X0}.

It is easy to see that for all x, y ∈ {0, 1}n, suppose the complement of x is x̄, then
HD(x, y) +HD(x̄, y) = n. Therefore, for all (x̄, y) ∈ X̄0 × Y0, we have HD(x̄, y) >
n/3. We apply Lemma 4.12 to the sets X̄0 and Y0, we get |R0| = |X0| · |Y0| =
∣

∣X̄0

∣

∣ · |Y0| ≤ n · 4H(1/3)n.
Finally, we apply Theorem 4.8 to f ccn , a full function extension of Gap-Hamming-

Distance, and choose the distribution µ in the theorem to be the uniform distribution
on {0, 1}n then we get ǫµ ≤ n·4−(1−H(1/3))n, and the lower bound part in Theorem 4.11
follows.

Together with the following theorem we present a stronger separation between
PNPcc and Σcc

2 /Π
cc
2 than Impagliazzo and Williams [19], using the Gap-Hamming-

Distance function.

Theorem 4.13. There are functions f = {f ccn }∞n=1 and g = {gccn }∞n=1, both are full
function extensions of the Gap-Hamming-Distance function GHD, and f ∈ Σcc

2 and
g ∈ Πcc

2 .

We will use the following boolean function in the proof:

Problem 4.6. the Approximate-Majority function, AppMaj is a partial function,
for an n-bit input x.

AppMaj(x)
def

=











0 if |x|1 ≤ n
3

1 if |x|1 ≥ 2
3
n

∗ otherwise

here ∗ means unspecified value.
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Proof. We observe that once we find function g with the desired properties, we can
simply set f(x, y)

def
= ¬g(x̄, y), in which x̄ is the complement of x, that is, we flip every

bit in x to get x̄, replace every 0 with 1, and every 1 with 0. It is easy to see that
f would also have the desired properties. Therefore, we can focus on constructing g,
which amounts to constructing gccn for every fixed input length n.

To construct the desired function gccn , we consider a function closely related to
Gap-Hamming-Distance, the AppMaj function defined above. It is easy to see that
for two n-bit strings x and y, GHD(x, y) = AppMaj(x ⊕ y), here ⊕ denotes the
exclusive-or operation.

Ajtai [3] proved that there is a polynomial-size depth-3 circuit family C = {Cn}∞n=1

that computes a full function extension of AppMaj. Furthermore, C’s output gate is
an ∧-gate; its middle layer consists of ∨-gates; and its bottom gates are ∧-gates of
fan-in O(log(n)).

Now we replace every input gate of Cn which takes the i-th bit in the input with
xi ⊕ yi, this gives us circuit Cccn which computes GHD on two n-bit strings. In Cccn ,
every ∧-gate that is just above the bottom level takes O(log(n)) inputs, therefore
can be rewritten as a DNF formula. Furthermore, the top ∨-gate of every such DNF
formula can be merged with one of the middle level ∨-gates. As a result, we get
a polynomial size depth-3 circuit with an ∧-gate as its output gate. According to
Fact 2.6 Ccc = {Cccn }∞n=1 is in Πcc

2 . We define gccn
def
= Cccn and we are done.

4.5.3 Proof of Lemma 4.12

In this section we prove the combinatorial lemma that is used above to prove the
memoryless complexity lower bound of the Gap-Hamming-Distance function. To show
this we need to use the well-known vertex isoperimetric inequality. Before getting to
this inequality, we first introduce some new notation for this section: For integer
n ∈ Z+ and real number r ∈ [0, n], we define:

(

n

≤ r

)

def
=

⌊r⌋
∑

i=0

(

n

i

)

For integer n ∈ Z+, real number r ≥ 0 and X ⊆ {0, 1}n, we define:

NB(X, r)
def
= {x′ ∈ {0, 1}n | ∃x ∈ X such that HD(x′, x) ≤ r}

It is easy to see that

• NB(X, 0) = X;

• for any real number r ≥ 0, NB(NB(X, r), 1) = NB(X, r + 1);

• for any real number r1 ≥ r2 ≥ 0, NB(X, r1) ⊇ NB(X, r2).

Now we can present the vertex isoperimetric inequality using the above notations:
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Lemma 4.14 (Vertex Isoperimetric Inequality, see e.g. Theorem 5, Chapter 16, page
128 in Bollobás [12]). Let n ∈ Z+, A ⊆ {0, 1}n, and let 0 ≤ r ≤ n− 1 be an integer.
If |A| ≥

(

n
≤r
)

, then |NB(A, 1)| ≥
(

n
≤r+1

)

.

Next we prove the following auxiliary lemma using the vertex isoperimetric in-
equality:

Lemma 4.15 (Far Sets). Let X, Y ⊆ {0, 1}n be two non-empty sets. Let d ∈ Z+ be
an integer such that for all x ∈ X and y ∈ Y , HD(x, y) ≥ d. Then there exists an
integer r ∈ {0, 1, 2, . . . , n− 1} such that |X| ≤

(

n
≤r+1

)

and |Y | ≤
(

n
≤n−(r+d)

)

.

Proof. It is easy to see that for a non-empty set X ⊆ {0, 1}n, there always exists an
integer r ∈ {0, 1, 2, . . . , n − 1} such that

(

n
≤r
)

≤ |X| ≤
(

n
≤r+1

)

. Next we prove that
this r has the desired properties as specified in the Lemma. We have two cases to
consider: either d− 1 ≥ n− r, or d− 1 < n− r.

• case 1: d− 1 ≥ n− r. In this case, we apply the vertex isoperimetric inequality
in Lemma 4.14 n − r times to X, and get |NB(X,n− r)| ≥

(

n
≤n
)

= 2n. This
meas NB(X,n−r) = {0, 1}n. Since Y is non-empty, we can pick y ∈ Y . Clearly
y is also in NB(X,n− r). Based on the definition of NB(X,n− r), there exists
x ∈ X such that HD(x, y) ≤ n− r ≤ d− 1. This contradicts the premise of the
theorem which says for all x ∈ X and y ∈ Y , HD(x, y) ≥ d! This means this
case would never happen. It is always true that d− 1 < n− r.

• case 2: d− 1 < n− r. In this case, we apply the vertex isoperimetric inequality
d− 1 time to X, and get |NB(X, d− 1)| ≥

(

n
≤r+d−1

)

.

And we observe that NB(X, d − 1) ∩ Y = ∅. Otherwise, pick any y ∈ Y ∩
NB(X, d−1), based on the definition of NB(X, d−1), there exists x ∈ X such
that HD(x, y) ≤ d− 1, contradicting the premise of the theorem.

Since NB(X, d−1) and Y are disjoint, we conclude that |NB(X, d− 1)|+|Y | ≤
2n. From this we obtain

|Y | ≤ 2n − |NB(X, d− 1)|

≤ 2n −
(

n

≤ r + d− 1

)

= 2n −
r+d−1
∑

i=0

(

n

i

)

=
n

∑

i=r+d

(

n

i

)

=

n−(r+d)
∑

j=0

(

n

j

)

=

(

n

≤ n− (r + d)

)

This concludes the proof.
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Now we are ready to prove the main lemma of this section, Lemma 4.12.

Proof of Lemma 4.12. We apply Lemma 4.15 to sets X and Y with d = ⌈n/3⌉. (Note
if either X or Y is empty, the conclusion of the theorem is already true.) We claim
that there is an integer r ∈ {0, 1, 2, . . . , n − 1} such that |X| ≤

(

n
≤r+1

)

and |Y | ≤
(

n
≤n−(r+⌈n/3⌉)

)

≤
(

n
≤n−(r+n/3)

)

.

For any real number x ∈ [0, 1], define function h(x) as follows:

h(x)
def
=

{

H(x) if 0 ≤ x < 1
2

1 if 1
2
≤ x ≤ 1

It is easy to see that the function h is continuous, monotonically increasing, and
concave within its domain [0, 1].

It is well-known (see for example Lemma 5.6 in [42]) that
(

n
≤xn

)

≤ 2h(x)n for all
x ∈ [0, 1].

Note that |X| ≤
(

n
≤r+1

)

≤ n
(

n
≤r
)

. Write r = ρn (since r ∈ {0, 1, 2, . . . , n − 1},
ρ ∈ [0, 1)). Then

|X| · |Y | ≤ n · 2h(ρ)n · 2h(1−(ρ+1/3))n = n · 2(h(ρ)+h(1−ρ−1/3))n

Since h is concave, we can apply Jensen’s inequality and obtain

n · 2(h(ρ)+h(1−ρ−1/3))n ≤ n · 22h(
ρ+1−ρ−1/3

2 )n = n · 4h(
1−1/3

2 )n = n · 4H( 1
3)n

This finishes the proof of Lemma 4.12.

4.6 Protocol Composition

In this section, we present a technique for compositing multiple memoryless protocols
into one.

Theorem 4.16 (Theorem 1.21 restated). For positive integers n, c and functions
f1, f2, . . . , fc : {0, 1}n × {0, 1}n → {0, 1}, h : {0, 1}c → {0, 1}, suppose for each i ∈
{1, 2, . . . , c}, fi can be computed by a message length si memoryless protocol Pi, then
the function f : {0, 1}n×{0, 1}n → {0, 1} defined as f(x, y)

def

= h(f1(x, y), f2(x, y), . . . , fc(x, y))
is computable by a message length

∑c
i=1 si memoryless protocol

Because a memoryless protocol is, as their name suggests, “memoryless”, it cannot
just simulate the other memoryless protocols one-by-one and try to remember their
outputs for later use. We instead run several memoryless protocols together “in
parallel”

Proof of Theorem 4.16. For each i ∈ {1, 2, . . . , c}, we denote the two defining func-
tions of protocol Pi as Ai (for Alice) and Bi (for Bob)

1. As discussed in Section 4.1.1

1See Definition 4.1 on page 61
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(page 61), without loss of generality we assume that protocol Pi halts within 2si

rounds for every i ∈ {1, 2, . . . , c}.
Given input pair (x, y) ∈ {0, 1}n × {0, 1}n, the “composite” protocol runs in

2s1 · 2s2 · . . . · 2sc rounds. In each round, Alice and Bob has a “working hypothesis”
(j1, j2, . . . , jc) ∈ {1, 2, . . . , 2s1} × {1, 2, . . . , 2s2} × . . . × {1, 2, . . . , 2sc} that for each
i ∈ {1, 2, . . . , c} the protocol Pi halts in round ji when executed on input (x, y). They
sort these different “working hypotheses” in lexicographic order and verify them one-
by-one. To verify a “working hypothesis” (j1, j2, . . . , jc), Alice sends one message

(α1, α2, . . . , αc)
def
= (A1(j1, x), A2(j2, x), . . . , Ac(jc, x)) to Bob. Upon receiving this

message, Bob computes bi
def
= Bi(y, αi) for all i ∈ {1, 2, . . . , c}. If all bi’s are in

the set {0, 1} then the current working hypothesis is accepted and Bob computes
and outputs h(b1, b2, . . . , bc), otherwise Alice and Bob proceed to the next “working
hypothesis”.

This memoryless protocol uses messages of length
∑c

i=1 si. We prove the correct-
ness of the protocol by contradiction. The protocol makes a mistake only when Alice
and Bob accept a wrong “working hypothesis”. Suppose for each i ∈ {1, 2, . . . , c}
protocol Pi actually halts in round j∗i when executed on given input, whilst in the
composite protocol Alice and Bob accept the “working hypothesis” (j1, j2, . . . , jc).
Find the smallest index i such that ji 6= j∗i , either ji < j∗i or ji > j∗i .

• Suppose ji < j∗i , then since protocol Pi actually halts in round j∗i , Bi(y, Ai(ji, x))
outputs⊥, the composite protocol will never accept working hypothesis (j1, j2, . . . , jc).

• Suppose ji > j∗i . Alice and Bob enumerate working hypothesis (j∗1 , j
∗
2 , . . . , j

∗
c )

before (j1, j2, . . . , jc), and they will accept the former hypothesis before they
even see the later one.

This contradiction concludes our proof.
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Chapter 5

The Limited-Memory
Communication Model

Our limited-memory communication model lies in between our memoryless model
and our general model. An impressive thing about this model is that it is capable of
simulating our general two-way model with moderate overhead. Its most interesting
application so far is its connections to the communication complexity polynomial
hierarchy, as already presented in Section 1.3.1 (page 26). These connections provide
new characterizations for the complexity classes in the hierarchy. Another notable
feature of this model is its similarity to bounded-width branching programs. We rely
on tools provided by branching programs to prove the aforementioned connections
between our limited-memory model and our general two-way model, and also the
connections between our limited-memory model and the communication polynomial
hierarchy.

In this chapter, we will first give formal definition to our limited-memory model
and some techniques for constructing non-trivial protocols in this model. Then, we
will explore the various connections this model has with other related computation
models and complexity classes one by one.

5.1 Definitions

Definition 5.1 (The Limited-Memory Model). A one-way limited-memory protocol
has two complexity parameters: the message length s, and the number of memory
states in Bob’s permanent memory w. The protocol is defined by two functions:
A : Z+×{0, 1}n → {0, 1}s, which defines Alice’s behavior; and B : {0, 1}n×{0, 1}s×
{1, 2, . . . , w} → {0, 1,⊥} × {1, 2, . . . , w}, which defines Bob’s behavior.

Alice receives input x ∈ {0, 1}n and Bob receives input y ∈ {0, 1}n as usual. Bob’s
initial memory state is 1. The protocol proceeds in rounds. In round i (i = 1, 2, . . .),

Alice computes a message α
def

= A(x, i) and sends it to Bob. Bob, upon receiving this

message, computes (β, q′)
def

= B(y, α, q), here q is Bob’s current memory state, and
q′ is his designated new memory state. If β ∈ {0, 1}, he outputs β and the protocol
ends. If β = ⊥, he switches to memory state q′ without outputting anything, and the

77



protocol proceeds to round i+1. There is a round number limit: if a protocol does not
halt within w · 2s rounds, then it is forced to halt and output 0 by default.

SPACELTD[s, w] is the set of functions computable by a one-way limited-memory
protocol with maximum message length s and w memory states for Bob.

As discussed in Section 1.2.2 (page 19), we measure Bob’s permanent memory
in terms of the number of memory states instead of the number of memory bits in
order to have a finer analysis of the computational power Bob’s permanent memory
has. For one thing, with 5 memory states (fewer than what can be represented by 3
memory bits), the limited-memory model can already simulate the general two-way
model with moderate overhead (see Theorem 5.7 on page 84). Number of memory
bits is too coarse a measure for Bob’s permanent memory.

Again, we mostly focus on the issue whether a function is computable at all within
certain space bound (the combination of a certain message length bound and a certain
number of memory states), without caring too much about the total communication
cost.

A feature in the definition is that there must be a round number limit in the
model. Without this limit the model will become too strong: every boolean function
f : {0, 1}n×{0, 1}n → {0, 1} will be computable with message length ⌈log (n+ 1)⌉+1
and 2 memory states, this is analogous to the (easy) fact that every boolean function
can be computed by a width-2 branching program with exponential length. The
protocol can be partitioned into 2n phases: in the i-th phase (i ∈ {1, 2, . . . , 2n}),
Alice assumes Bob’s input y to be the i-th element in the set {0, 1}n (basically that
is (i− 1) encoded in binary), computes the corresponding output f(x, y). Then Bob
verifies Alice’s assumption and if it is correct he takes Alice’s answer as the final
output and halt. At the beginning of each phase Bob initializes his memory state to
ok

def
= 1. Each of the first n messages from Alice in this phase consists of an index

j ∈ {1, 2, . . . , n} and the j-th bit in the input value y Alice assumes for this phase.
Whenever Bob discovers an inconsistency between the input y Alice assumes and the
input y he actually gets, he switches to state failed

def
= 2. At the end of each phase,

Alice sends index (n+1) together with her assumed answer f(x, y) to Bob, Bob takes
Alice’s answer as the final output if he is still in state ok, otherwise he initializes his
memory state back to ok and continues to the next phase.

It is easy to see that a memoryless protocol as defined in Definition 4.1 is merely
a restricted limited-memory protocol with just 1 memory state. A careful reader may
notice that we do not have a round number limit in the definition of our memoryless
model (Definition 4.1). That is because as discussed in Section 4.1 (where Bob is
memoryless), the model will not gain extra power even when the round number limit
is left out. Any memoryless protocol with message length s that runs for more than
2s rounds can always be optimized to a one that always halts within 2s rounds.

5.1.1 Alternative Definition in Terms of Semi-Oblivious Space

Like the memoryless model, the limited-memory model can also be defined as a re-
stricted variant of the general one-way model (see Definition 3.3 on page 49), in which
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part of Bob’s space is “oblivious” and can only be used to compress information re-
ceived from Alice without mixing-in any information about his own input, whilst the
“non-oblivious” part of Bob’s space can be used freely by Bob.

Definition 5.2 (The One-Way Semi-Oblivious Model). The one-way semi-oblivious
communication model with s bits of oblivious space and w bits of non-oblivious space
is a special case of the general one-way model defined in Definition 3.3, in which Alice
has a total number of (s+w) bits of space, and Bob’s transition function TB is splitted
into two: T o

B : {0, 1}s × {0, 1} → {0, 1}s for updating the content of Bob’s oblivious
space, and T fB : {0, 1} × {0, 1}n × {0, 1}s × {0, 1}w → {0, 1,⊥} × {0, 1}w for making
halting/output decision (here we only deal with the case where output length m = 1)
and updating the content of Bob’s non-oblivious space.

We use MA, M
o
B, and M

f
B to denote the content of Alice’s local space, Bob’s local

oblivious space and Bob’s local non-oblivious space respectively. In each step of the
protocol, Alice executes her transition function as usual (by definition of one-way
protocols, Definition 3.3, the communication bit she receives from Bob in each step
is always 0). Bob executes M o

B
′ = T oB(M

o
B, b) to update the content of his oblivious

space, hereM o
B andM o

B
′ denote the old and new content of Bob’s oblivious space before

and after this step, and b is the communication bit received from Alice. In addition,

Bob executes (β,M f
B

′
) = T fB(b, y,M

o
B,M

f
B) (here y is Bob’s local input, M f

B and M f
B

′

denote the old and new content of Bob’s non-oblivious space before and after this
step) to make halting/output decision and updating the content of his non-oblivious
space: if β ∈ {0, 1}, Bob outputs β and the protocol ends; if β = ⊥, Bob updates

the content of his non-oblivious space to M f
B

′
without outputting anything, and the

protocol proceeds to the next step.

Using arguments similar to the ones in Section 4.1.1 (page 62), we can show that
this definition is practically equivalent to the definition of the limited-memory model
(Definition 5.1), and it is important to have only one-way communication instead of
two-way communication in these model definitions.

5.1.2 Randomized Variants

A public-coin randomized limited-memory protocol, just like its classical and mem-
oryless counterparts (see Section 2.1.3 and Section 4.1), is defined as a probability
distribution over a set of deterministic limited-memory protocols

Definition 5.3. In a public-coin randomized limited-memory protocol P with maxi-
mum message length s and w memory states, Alice and Bob start by drawing some
random bits r from a random source, these random bits are shared between the two
of them by default and are therefore public-coins. Then, they execute a public-coin
specific deterministic limited-memory protocol Pr with maximum message length s
and w memory states. We say that P satisfactorily approximates a function f :
{0, 1}n × {0, 1}n → {0, 1} if for every input pair (x, y) ∈ {0, 1}n × {0, 1}n, we have
Prr[Pr(x, y) = f(x, y)] ≥ 2

3
. That is to say, for every possible input pair (x, y),
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the probability that the protocol chosen according to the random results of public-coin
tosses makes a mistake should be smaller than 1

3
.

Furthermore, in some part of this work, we will also work with another type of
public-coin randomized limited-memory protocols, in which Bob may end the protocol
by saying “I do not know” without giving a definitive answer. But whenever he gives
a definitive answer of either 0 or 1, the answer should never be wrong. In addition,
Bob should not dodge the question by saying “I do not know” all the time.

Definition 5.4. A public-coin randomized zero-error limited-memory protocol is like
a “normal” public-coin randomized limited-memory protocol as defined above in Defi-
nition 5.3, except that in each round in the public-coin specific deterministic protocol,
Bob may say “I do not know” and halt the protocol without giving a definitive an-
swer. But, whenever Bob gives an answer in the set {0, 1}, it should never be wrong.
Furthermore, for every input pair (x, y) ∈ {0, 1}n × {0, 1}n

Pr
r
[when executing Pr(x, y), Bob says “I do not know”] ≤ 1

2

To distinguish with zero-error protocols, we use the term bounded-error to describe
the “normal” kind of public-coin randomized protocols as defined in Definition 5.3.

5.2 Techniques for Constructing Efficient Proto-

cols

In Section 1.3.3 we talked about two techniques for constructing non-trivial protocols
for functions with certain special structure. Now we present them in detail.

Theorem 5.1 (Theorem 1.22 restated). For a communication problem f : {0, 1}n ×
{0, 1}n → {0, 1}, suppose f(x, y) can be decomposed into g(h1(x, y), h2(x, y), . . . , hk(x, y)),
where each hi : {0, 1}n × {0, 1}n → {0, 1} depends on at most l bits in x (i ∈
{1, 2, . . . , k}), then f ∈ SPACELTD[l + k + ⌈log k⌉ , 2].

Proof. Suppose that the function f(x, y) can be decomposed as specified. Then, we
construct a protocol P with message length l + k + ⌈log k⌉ and 2 memory states for
Bob as follows:

The protocol P is divided in 2k phases. In the i-th phase, Alice and Bob have the
“working hypothesis” that the outputs of the functions h1(x, y), h2(x, y), . . . , hk(x, y)
are simply the bits in the binary encoding of (i−1), denoted as z ∈ {0, 1}k. That is to
say, for every j ∈ {1, 2, . . . , k}, hj(x, y) = zj, here zj is the j-th bit in z. They try to
cooperatively verify this “working hypothesis”. If they find the “working hypothesis”
to be true, Bob can give the final output g(z1, z2, . . . , zk) and halt.

At the beginning of i-th phase (i ∈ {1, 2, . . . , 2k}) Bob always initializes his mem-

ory state to ok
def
= 1. They verify their “working hypothesis” for the current phase in

k rounds. In the j-th round (j ∈ {1, 2, . . . , k}), Alice sends Bob 3 things in her mes-
sage: phase index i, round index j, and the input bits in x that hj actually depends

80



on. Based on the definition of i and j, and the fact that each hj depends on at most
l bits in x, the message length does not exceed l+ k+ ⌈log k⌉ as specified. Bob, upon
receiving the message, computes hj(x, y) and compare it with zj, the j-th bit in the
binary encoding of (i − 1). If any inconsistency is found, Bob switches to memory

state failed
def
= 2 to denote that the working hypothesis of the current phase is in-

validated, otherwise he continues to the next round remaining in the current state.
After the verification for round k is done, Bob checks to see if he is still in memory
state ok, and if so, he outputs g(z1, z2, . . . , zk) and halts, otherwise he initializes his
memory state back to ok and continues to the next phase.

Using a very similar strategy, we can also prove the following protocol construction
technique for bounded size formulas, this result was intially inspired by Valiant [40].

Theorem 5.2 (Theorem 1.25 restated). If a function f : {0, 1}n × {0, 1}n → {0, 1}
can be computed by a boolean formula of size S and fan-in 2 (S ≥ 4), then f ∈
SPACELTD[4

⌈√
S
⌉

+
⌈

logS
2

⌉

+ 4, 2]

To prove this theorem we need the following lemma concerning how to break up a
bounded size formula into more manageable pieces. The proof of this lemma follows
the folklore “1/3-2/3 principle” and is presented in full in Section 5.2.1.

Lemma 5.3. Given a directed binary tree T of size S (S ≥ 4), with edges leading

from leaves to root, we have a way of deleting at most
⌈√

S
⌉

+ 1 edges of T , such

that the remaining graph is a forest consisting of at most
⌈√

S
⌉

+ 2 trees, and each

tree is of size between
⌊√

S
⌋

(inclusive) and 3
⌈√

S
⌉

(inclusive).

Proof of Theorem 5.2. Let the boolean formula of size S that can compute function

f be C, according to Lemma 5.3, we can delete a set of edges E (|E| ≤
⌈√

S
⌉

+ 1),

such that the remaining is a set of sub-formulas {C1, C2, . . . , Cm}, m ≤
⌈√

S
⌉

+2, and

for every i ∈ {1, 2, . . . ,m},
⌊√

S
⌋

≤ |Ci| ≤ 3
⌈√

S
⌉

(here we ignore the input gates

corresponding to the deleted edges).
Now, we can present a limited-memory protocol P with the desired complexity

parameter in terms of these sub-formulas. The protocol is divided into 2|E|+1 phases.
Alice and Bob enumerate all the elements (vE, o) ∈ {0, 1}|E| × {0, 1} one by one. In
each phase they take one element (vE, o) from {0, 1}|E| × {0, 1} as their “working
hypothesis”: they assume the bits in vE are the bits computed by C on the edges in
E and o is the output of C. They verify this hypothesis and if the verification passes,
they output o as the final answer.

In the beginning of each phase, Bob always initializes his memory state to ok
def
= 1.

Then they verify their current working hypothesis in m rounds. In the i-th round of
each phase (i ∈ {1, 2, . . . ,m}), Alice sends the following information to Bob in her
message: the current working hypothesis (vE, o), the round number i, and the input
bits in x that Ci depends on. Then, Bob takes all input bits to Ci, which must be
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among the bits in x, y and vE, computes the output of Ci, and compares his result
with the assumed output value in the current working hypothesis (the output gate of
Ci should either be the output gate of C, or corresponds to one of the edges in E).

If any inconsistency is found, Bob switches to memory state failed
def
= 2, otherwise

he remains in the current state and continues to the next round. After all the m
sub-formulas are checked, if Bob is still in the ok memory state, then he announces
the current working hypothesis (vE, o) to be true and takes o as the final answer.
Otherwise, he initializes his memory state back to ok and they proceed to the next
phase with the next working hypothesis.

We note that each sub-formula Ci has size at most 3
⌈√

S
⌉

, in particular it has

at most 3
⌈√

S
⌉

input gates, which means it will depend on at most 3
⌈√

S
⌉

bits

from x. Then, count in |E| ≤
⌈√

S
⌉

+ 1 and m ≤
⌈√

S
⌉

+ 2, we conclude that in

protocol P , each of Alice’s messages can be encoded into bit strings of length at most

4
⌈√

S
⌉

+
⌈

logS
2

⌉

+ 4 and Bob uses only two memory states {ok, failed}.

5.2.1 Proof of Lemma 5.3

For completeness we provide the proof of Lemma 5.3.
To prove Lemma 5.3, we need yet another lemma, which we prove using the “1/3-

2/3 principle”. We denote the size of a tree T (the number of nodes in T ) as |T |.
And for a node v in tree T , we denote the subtree of T rooted at v as Tv

Lemma 5.4. For any integer S ≥ 4, and any binary tree T such that |T | > 2
⌈√

S
⌉

,

there is a node v in T such that
⌊√

S
⌋

≤ |Tv| ≤ 2
⌈√

S
⌉

.

Proof. We prove this by contradiction. Suppose there is no such node v. Now let us
set v0 to be the root of the tree, suppose the two children of v0 are l0 and r0, without
loss of generality, we can assume that |Tl0 | > |Tr0 |, then we set v1

def
= l0. Again we

look at the two children of v1 and choose v2 similarly. We do this repeatedly until
we have reached a leaf node. (This process will clearly end in finite steps because we
have only S nodes in the tree.)

Suppose the node sequence we get is v0, v1, . . . , vk. The size of |Tv0 | > 2
⌈√

S
⌉

,

whilst |Tvk | = 1 <
⌊√

S
⌋

(given S ≥ 4). Based on our original assumption, there is

no i ∈ {0, 1, . . . , k} such that
⌊√

S
⌋

≤ |Tvi | ≤ 2
⌈√

S
⌉

. And |Tvi | must be a strictly

monotonically decreasing function in i. Therefore, there must be a i ∈ {0, 1, . . . , k−1}
such that |Tvi | > 2

⌈√
S
⌉

, whilst
∣

∣Tvi+1

∣

∣ <
⌊√

S
⌋

. But based on the way we choose

vi’s, we should have |Tvi | ≤ 1 + 2
∣

∣Tvi+1

∣

∣ < 1 + 2
⌊√

S
⌋

. This is impossible! That

concludes our proof.

Proof of Lemma 5.3. Now suppose we maintain a forest F which can always be ob-
tained by deleting several edges in T and collecting the resulting subtrees. Originally,
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F has just one tree, that is T itself. Each time, we pick one tree T ∗ in F with size

strictly bigger than 3
⌈√

S
⌉

, find a subtree T ′ of it with size between
⌊√

S
⌋

(inclu-

sive) and 2
⌈√

S
⌉

(inclusive), and delete the edge connecting the root node of T ′ to

its parent. (The existence of T ′ is guaranteed by the above lemma.) We do this
repeatedly until no such tree T ∗ exists.

Now, we note that there will never be a tree in F with size strictly smaller than
⌊√

S
⌋

. Because originally T has size greater than
⌊√

S
⌋

. And each time we cut up

a tree T ∗, it is easy to see that neither T ′ nor T ∗ \ T ′ has size strictly smaller than
⌊√

S
⌋

.

Secondly we note that this process will end after at most
⌈√

S
⌉

+1 steps. Because

each time we cut up a tree in F , the size of F increment by 1. And the size of F can

not exceed
⌈√

S
⌉

+2, because otherwise the total size of the trees in F would exceed

(
√
S − 1)(

√
S + 2) ≥ S, which is impossible.

All in all, that means we will end up with a forest F in which all the trees have
the desired size.

5.3 Comparison with Bounded-Width Branching

Programs

The reader may have already noticed the similarity between our limited-memory
protocols and bounded-width oblivious branching programs with local preprocessing
as defined in Definition 2.9 and Definition 2.10. In fact it is not hard to prove
that a width-w oblivious branching program with local preprocessing can always be
simulated by a limited-memory communication protocol with w memory states for
Bob:

Fact 5.5. If a function f : {0, 1}n × {0, 1}n → {0, 1} can be computed with a width-
w and length l oblivious branching program with local preprocessing, then it can be
computed with a limited-memory communication protocol with message length ⌈log l⌉+
1 and w memory states for Bob.

Proof. The protocol simulates the branching program layer by layer. Bob uses his w
memory states to keep track of the index of the traversed node in the current layer.
For each layer, if the underlying input function is a preprocessing function on x, Alice
sends the layer number together with the output of the preprocessing function to Bob;
if the underlying input function is a preprocessing function on y, then Alice sends the
layer number with a placeholder bit 0 to Bob, just to trigger Bob to move forward
one layer by himself.

Interestingly, the simulation in the reverse direction is not always possible.
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Theorem 5.6 (Theorem 1.24 restated). The shortest width-2 branching program that

correctly computes IP3
1 has length Ω

((

3
2
√
2

)n)

, whilst there is a limited-memory

protocol with message length O(
√
n) and 2 memory states that correctly computes

IP3, that is, IP3 ∈ SPACELTD[O(
√
n), 2].

Proof. The width-2 branching program length lower bound was proved by Shearer [37],
using the combinatorial tool called striped cube introduced by Borodin, Dolev, Fich
and Paul [14].

We prove the upper bound in our limited-memory model with the help of Theo-
rem 5.1. We note that we can cut the input bits of each of x and y into ⌈√n⌉ consec-
utive blocks, each block of length at most ⌈√n⌉. Then for each i ∈ {1, 2, . . . , ⌈√n⌉},
we define the hi(x, y) to be the GF (3) inner product of the i-th block in x and the
i-th block in y. We further define g to be the sum of h1, h2, . . . , h⌈√n⌉ over GF (3).

We apply Theorem 5.1 and conclude that IP3 has a 2 memory state limited-memory
protocol with message length O(

√
n).

5.4 Comparison with the General Two-way Model

In Section 4.2, we showed that the memoryless model is not as weak as it seems
to be according to its seemingly restricted definition. With a little bit more space
the memoryless model can beat the (strong) general two-way model in terms of the
number of boolean functions that can be computed in each of these two models. In
this section we will show that actually if you give the limited-memory model just 5
memory states (instead of just 1 memory state in the case of the memoryless model),
then it will be able to completely simulate the general two-way model with moderate
overhead. In particular, we have 2:

Theorem 5.7 (Theorem 1.14 restated). For any s(n) > log n, if a function family
{f ccn }∞n=1 can be computed by a space s(n) general two-way communication protocol,
then it is also computable by a limited-memory protocol with message length O(s(n)2)
and 5 memory states.

Proof. Suppose the function f can be computed by a space s(n) general two-way
protocol, then according to Theorem 3.1, it can also be computed by a space O(s(n))
Turing machine with local preprocessing. Furthermore according to Theorem 2.5,
this function f can also be computed by a depth O((s(n))2) circuit family with local
preprocessing.

Next we take into account our generalized version of Barrington’s theorem Theo-
rem 2.9, the function f can also be computed with a length 2O((s(n))2) width 5 oblivious
branching program with local preprocessing.

Finally we note that according to Fact 5.5, such a branching program can always
be simulated by a limited-memory protocol with message length O((s(n))2) and 5
memory states for Bob. This concludes the proof.

1See Problem 1.2 on page 25 for definition.
2Inspired by discussion with Buhrman and Speelman [1].
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5.5 Connections to the Communication Complex-

ity Polynomial Hierarchy

In Section 1.3.1, we introduced several connections between our limited-memory
model and the communication complexity polynomial hierarchy. The connection
between our memoryless model and the PNPcc complexity class that we examined
in detail in Section 4.4 is just one of them. Now we examine the other two in the
following sections.

5.5.1 3 Memory States and PHcc

Theorem 5.8 (Theorem 1.6 restated). For any constant k, if a function family
{f ccn }∞n=1 is in Σcc

k , then {f ccn }∞n=1 can also be computed in our limited-memory model
with message length polylog(n) and 3 memory states. In other words, PHcc ⊆ SPACELTD[polylog(n), 3].

The proof of this theorem follows a storyline similar to Allender and Hertrampf’s
work on circuit reduction [4]. The idea is that we first use Razborov and Smolen-
sky’s approximation [35, 38] to give a public-coin bounded-error randomized protocol
for any function in PHcc. This protocol uses messages of length polylog(n) and has
2 memory states for Bob. Then we borrow the “error-indicator” idea from Braver-
man [15] to make the protocol zero-error. We note that this technique of converting
a public-coin bounded-error randomized limited-memory protocol into a zero-error
one is specific to our proof for PHcc, we are not sure how to do this bounded-error
to zero-error conversion in the general case. Finally, we use Newman’s technique [29]
to reduce the total number of public-coin tosses needed and derandomize the zero-
error protocol with one more memory state for Bob. That gives us the protocol in
SPACELTD[polylogn, 3] we need.

The Bounded-error Protocol

First let us look at Razborov and Smolensky’s idea about how to approximate con-
stant depth circuits with polynomials over GF (2). Since it is quite straightforward
to compute polynomials over GF (2) with our 2-state limited-memory protocols, and
the complexity class PHcc contains only constant-depth circuits augmented with local
preprocessing (see Fact 2.6), this gives us a way to approximate functions in PHcc

with 2-state randomized limited-memory protocols.

Lemma 5.9 (Razborov and Smolensky [35, 38]). Suppose C is a depth d size S circuit
on the basis {∨,⊕,¬} (⊕ is exclusive-or gate) with unbounded fan-in, and it takes an
m-bit string x ∈ {0, 1}m as input. Then, we can choose a random string r uniformly
from {0, 1}S2 log (3S) and assign a polynomial pr,g over GF (2) to each gate g in the
circuit based on the value of r, such that: 3

3Here we use the additive identity 0 in GF (2) to represent the boolean value false, and we use
the multiplicative identity 1 to represent the boolean value true.
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• for each value r ∈ {0, 1}S2 log (3S) and each gate g in circuit C, the degree of the
corresponding polynomial pr,g is at most (log (3S))d;

• for every input value x ∈ {0, 1}m, the probability that all the polynomials cor-
rectly compute the output values of the corresponding gates on input x is at least
2
3
, or in other words,

∀x ∈ {0, 1}m Pr
r
[∀g ∈ C pr,g(x) = g(x)] ≥ 2

3

here, g(x) is the output of gate g given input x;

• if g is an input gate with input xi, that is, it takes the i-th bit in x as its output
(i ∈ {1, 2, . . . ,m}), then for every r ∈ {0, 1}S2 log (3S), pr,g = xi;

• if g is a ¬-gate with c as its only child, then for every r ∈ {0, 1}S2 log (3S),
pr,g = pr,c + 1;

• if g is an ⊕-gate with children c1, c2, . . . , ct, then for every r ∈ {0, 1}S2 log (3S),
we have pr,g =

∑t
i=1 pr,ci;

• if g is an ∨-gate with children c1, c2, . . . , ct and pr,c1(x) = · · · = pr,ct(x) = 0 for
a particular x ∈ {0, 1}m and r ∈ {0, 1}S2 log (3S), then pr,g(x) = 0, too.

Note that in the above lemma the circuit C can only have ∨, ⊕ and ¬ gates, but
no ∧ gates. Since we can always replace every ∧ gate with ∨ and ¬ gates using De
Morgan’s laws, and convert a depth d size S circuit C1 with ∧ gates into a depth 3d
size 2S circuit C2 without ∧ gates, so this is not a real problem.

Theorem 5.10. Let f = {f ccn }∞n=1 ∈ PHcc. There exists a public-coin bounded-
error randomized limited-memory protocol family with polylog(n) message length and
2 memory states that can satisfactorily approximate f

Proof of Theorem 5.10. Let f = {f ccn }∞n=1 ∈ PHcc. By Fact 2.6, there is a constant-
depth formula family Ccc = {Cccn }∞n=1 with local preprocessing that can compute f ,
and this formula family has quasi-polynomial (that is, 2polylog(n)) size.

We first apply De Morgan’s laws and transform Ccc into another formula family
Ccc∗ without ∧ gates but still has constant depth and quasi-polynomial size.

Then we take the formula for input length n, Ccc∗n, from Ccc∗. Suppose the pre-
processing function used by Ccc∗n are p(x) and q(y). According to Lemma 5.9, there
is a randomized polynomial pr,go (based on randomness r) over GF (2) with degree
polylog(n) that can approximate the output gate go of Ccc∗n. Such a polynomial p has at
most 2polylog(n) terms when expanded. Therefore Alice and Bob can use a public-coin
bounded-error randomized limited-memory protocol with polylog(n) message length
and 2 memory states to compute this polynomial p. First they use their public-coin
randomness to sample r uniformly from {0, 1}S2 log (3S), then they compute pr,go on
inputs p(x) and q(y) term-by-term. In each message, Alice sends Bob the index of a
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term and the product of all the factors in that term that are bits from p(x). Bob uses
his 2-state memory {0, 1} to keep the partial sum of already processed terms, and
upon receiving each of Alice’s message, he computes the product in the same term
that are bits from q(y), multiplies it with Alice’s product, and add that to his partial
sum.

The Zero-error Protocol

We now want to make the above protocol zero-error. Since the circuit we are dealing
with has only ∨, ⊕ and ¬ gates, according to the last four bullet points of Lemma 5.9
we can conclude that in this approximation, errors can only be introduced at ∨-
gates, and only if there is some ∨-gate g with children c1, c2, . . . , ct such that for some
x ∈ {0, 1}m and r ∈ {0, 1}S2 log (3S), there exists i ∈ {1, 2, . . . , t}, pr,ci(x) = 1 but
pr,g(x) = 0. Alternatively, an error is introduced at such an ∨-gate g only if the
following “error indicator”

Er,g(x) def
=

t
∨

i=1

(¬pr,g(x)) ∧ pr,ci(x)

evaluates to 1. We can define an “error indicator” for the whole circuit as follows:

Er(x) def
=

∨

∨−gates g
c is a child of g

(¬pr,g(x)) ∧ pr,c(x)

With this error indicator, we are now ready to present our zero-error protocol

Theorem 5.11. Let f = {f ccn }∞n=1 ∈ PHcc. There exists a public-coin zero-error ran-
domized limited-memory protocol family with polylog(n) message length and 2 memory
states that can satisfactorily approximate f

Proof. The zero-error protocol works as follows: first Alice and Bob use their public-
coin randomness to sample r uniformly from {0, 1}S2 log (3S), then their r-specific de-
terministic protocol proceeds in two phases: an “error checking” phase, in which Alice
and Bob evaluates the error indicator Er, and after than an “conclusion” phase, in
which Alice and Bob evaluates the polynomial that corresponds to the output gate
of the circuit. Whenever the error indicator evaluates to 1, Bob says “I do not know”
and halts the protocol. Therefore whenever they proceed to the second phase, the
polynomial of the output gate will give the correct answer.

We note that every (¬pr,g(x)) ∧ pr,c(x) part in the error indicator, where g is an
∨-gate, and c is a child of g, can be rewritten as a polynomial of degree polylog(n).
Furthermore, the size of the circuit is quasi-polynomial (2polylog(n)), so the number
of such (g, c) pairs we need to enumerate is at most quasi-polynomial (2polylog(n)).
Therefore in the error checking phase, Alice and Bob can enumerate over all such
polynomials and evaluate each of them term-by-term using just polylog(n) message
length and 2 memory states for Bob, like how we evaluate degree polylog(n) polyno-
mials in the bounded-error protocol in the proof of Theorem 5.10.
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In the “conclusion” phase, we again evaluates the polynomial corresponding to
the output gate of the circuit like we did it in the proof of Theorem 5.10.

To establish the protocol described above as a proper zero-error protocol, we need
to also show that Bob does not say “I do not know” too often. We observe that
according to Lemma 5.9, the probability that an error is introduced somewhere is at
most 1

3
, and the error indicator will evaluate to 1 only if some error is introduced

somewhere, therefore the probability that Bob says “I do not know” is at most 1
3
.

This concludes our proof.

Derandomization of Zero-Error Protocols

In this section we show a generic mechanism for derandomizing zero-error limited-
memory protocols

Theorem 5.12 (Derandomization of Zero-Error Protocols). Suppose there is a zero-
error protocol computing f : {0, 1}n×{0, 1}n → {0, 1} with maximum message length
s and w memory states. Then there is a deterministic protocol computing f with
maximum message length s+ ⌈log(3n)⌉ and w + 1 memory states.

The main idea is that if we can find a small set of random strings R such that for
every input pair (x, y), there is at least one random string r ∈ R for which the original
zero-error protocol will give a definitive answer for (x, y), then we can construct a
deterministic protocol by simply enumerating all random strings in R and simulate
the original zero-error protocol for each random string in turn. We have an additional
memory state for Bob called “I do not know”, which Bob switches to whenever the
original protocol tries to say “I do not know”. And whenever the original zero-error
protocol tries to give a definitive answer, Bob takes it as the final answer.

The existence of such a small set of random strings R can be proven using tech-
niques first introduced by Newman [29]; cf. Theorem 3.14 of [25].

Proof of Theorem 5.12. Suppose the original zero-error protocol is P0. We denote the
output of this protocol on input (x, y) and random string r as P0(x, y, r). By definition
P0(x, y, r) ∈ {0, 1, “I do not know”}. We say a random string r is good for input pair
(x, y) if P0(x, y, r) 6= “I do not know”. By definition, if we draw r according to the
distribution take by P0, then for each input pair (x, y), the probability that r is not
good for (x, y) is at most 1

2
. That means for each input pair (x, y), if we draw 3n

random strings r1, r2, . . . , r3n independently, all according to the distribution in P0,
then the probability that none of them is good for (x, y) drops to 2−3n. Therefore
since (x, y) ∈ {0, 1}n × {0, 1}n, and |{0, 1}n × {0, 1}n| = 22n, by a union bound we
have

Pr[∃(x, y) ∈ {0, 1}n × {0, 1}n none of r1, r2, . . . , r3n is good for (x, y)] ≤ 2−n < 1

That is to say, there exists a fixed choice of strings R = {r1, r2, . . . , r3n} such that for
every (x, y) there is at least one ri (i ∈ {1, 2, . . . , 3n}) that is good for (x, y).

With this set of random strings R, our deterministic protocol P works as follows:
we use w memory states to simulate the w memory states in the original zero-error
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protocol P0, and we give Bob one additional memory state called “I do not know”.
Given input pair (x, y), our protocol P proceeds in 3n phases. In the i-th phase
(i ∈ {1, 2, . . . , 3n}), P initializes Bob memory state to the same state as P0, and then
P simulates the execution of P0(x, y, ri). Whenever P0(x, y, ri) tries to say “I do not
know”, P switches Bob’s state to the “I do not know” state and makes Bob to stay
in that state until the phase ends. Whenever P0(x, y, ri) tries to give a definitive
answer, P takes that as the final answer. Each message Alice sends to Bob in P is
the original message in P0 plus the round number i. Since |R| ≤ 3n, the maximum
message length in P will not exceed s+ ⌈log n⌉. That concludes the proof.

Proof of Theorem 5.8. This theorem is clearly a corollary of Theorem 5.11 and The-
orem 5.12.

Implication for Circuits

By Fact 2.6 (page 43), it is easy to see that the AC0 circuit class is a subclass of the
PHcc class, therefore Theorem 5.8 implies:

Corollary 5.13 (Theorem 1.8 restated). If a boolean function family f = {fn}∞n=1

(fn : {0, 1}2n → {0, 1}) is computable by an AC0 circuit family, then under every
input partition (to split the (2n)-bit input of every fn into two n-bit inputs), the
resulting communication problem is computable by a limited-memory protocol family
with message length polylog(n) and 3 memory states.

5.5.2 5 Memory States and PSPACEcc

Theorem 5.14 (part of Theorem 1.7 restated). For any integer constant w ≥ 5, the
complexity class defined by message length polylog(n) and w memory states in our
limited-memory model is exactly equivalent to PSPACEcc. In other words, for every
w ≥ 5, PSPACEcc = SPACELTD[polylog(n), w].

Proof. First, we prove that SPACELTD[polylog(n), w] ⊆ PSPACEcc for every integer
w ≥ 5. We simply observe that the complexity class SPACELTD[polylog(n), w] is
contained in the complexity class defined by space polylog(n) in our general two-
way communication model. The later one is shown to be equivalent to PSPACEcc in
Corollary 3.2.

Second, we prove that PSPACEcc ⊆ SPACELTD[polylog(n), w] for every integer w ≥
5. We first note that according to Corollary 3.2, PSPACEcc contains exactly the set of
functions computable with space polylog(n) general two-way protocols. Furthermore,
according to Theorem 5.7, every space polylog(n) general two-way protocol can be
simulated by a limited-memory protocol with message length polylog(n) and 5 memory
states. Therefore for every w ≥ 5, we have

PSPACEcc ⊆ SPACELTD[polylog(n), 5] ⊆ SPACELTD[polylog(n), w]

That concludes our proof.
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Again because of the structural similarity between the PSPACEcc class and the
NC1 circuit class (see Fact 2.6 on page 43), we can prove an analog theorem for NC1:

Theorem 5.15 (restated and proved as Theorem 5.15). If a boolean function fam-
ily f = {fn}∞n=1 (fn : {0, 1}2n → {0, 1}) is computable by an NC1 circuit family,
then under every input partition (to split the (2n)-bit input of every fn into two n-
bit inputs), the resulting communication problem is computable by a limited-memory
protocol family with message length O(log n) and 5 memory states.

Proof. The proof is very similar to the proof of Theorem 5.14, except that the circuits
involved have no local preprocessing capability, and certain polylog(n) parameters
need to be replaced by O(log n).
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Chapter 6

Some Remarks on Randomized
Memoryless Lower Bound

In this chapter, we present results that may constitute the beginning of some future
works: proving lower bounds in the public-coin randomized variant of our memoryless
model. We will present mostly concrete and rigorous results, together with some
speculative remarks concerning possible future research directions. We include these
results in the hope of triggering future researches that continue this work.

In section 4.5.2, we proved a linear message length lower bound for the IP function
in our memoryless model. Intuitively, we believe there should be some strong lower
bound even in the randomized case. We conjecture a super-polylogarithmic lower
bound:

Conjecture 6.1. The Inner Product over GF (2) function IP requires ω(polylog(n))
message length to be computed in the public-coin randomized memoryless communi-
cation model.

Note that in the communication complexity community, proving explicit lower
bounds in the so-called Arthur-Merlin communication model, the public-coin ran-
domized version of NPcc, is widely considered to be a very hard problem. The only
lower bound results we know so far in this direction is achieved in a weaker model
called the Merlin-Arthur communication model [22, 33, 24]. See for example [24] for
definitions of these communication models. Since we have an exponential separation
between the complexity classes NPcc and PNPcc (see Section 1.3.1 page 28), and our
memoryless model gives full characterization for the PNPcc class, this means proving
randomized lower bounds in our memoryless model is even harder than proving cor-
responding lower bounds in the Arthur-Merlin model. Therefore progress in proving
randomized lower bounds in our memoryless model will lead to breakthrough in this
direction.

In section 4.1, we define a public-coin randomized memoryless communication
protocol as a probability distribution over a set of deterministic memoryless protocols.
This enables us to use Yao’s min-max lemma on our public-coin model ([45], also see
section 3.4 in Kushilevitz and Nisan’s book [25]). Therefore, in order to prove a strong
lower bound in our public-coin model for some explicit function, all we need to do is
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to find a “hard” input distribution for this function, and prove a strong distributional
lower bound for every deterministic protocol that satisfactorily approximates the
function under that input distribution. More precisely, we define the memoryless
complexity in the distributional setting below

Definition 6.1. Given probability distribution µ on {0, 1}n×{0, 1}n, we say a deter-
ministic memoryless protocol P satisfactorily approximates a function f : {0, 1}n ×
{0, 1}n → {0, 1} under input distribution µ if

Pr
(x,y)∼µ

[P(x, y) = f(x, y)] ≥ 2

3

The distributional memoryless complexity of function f under input distribution
µ, denoted as SDµ (f), is the smallest integer s such that there is a deterministic
memoryless protocol with message length s that satisfactorily approximates f .

A straightforward application of Yao’s min-max lemma [45] yields the following

Lemma 6.1. For every function f : {0, 1}n × {0, 1}n → {0, 1}, we have SR(f) =
maxµ S

D
µ (f), here µ ranges over all probability distributions over {0, 1}n × {0, 1}n

We want to use boolean function Fourier analysis as a tool to prove the conjectured
randomized lower bound for IP, so we first summarize the relevant results from Fourier
analysis.

6.1 Prerequisites: Fourier Analysis for Boolean Func-

tions

Here we only mention some of the concepts and tools in boolean function Fourier
analysis that are most relevant to this work. For a more complete treatment, we refer
the reader to O’Donnel’s survey [30] and online book [31] on this topic.

Note that in the field of boolean function Fourier analysis, it is more convenient
to represent the boolean domain with the two elements {1,−1} instead of the usual
{0, 1}, think of −1 as the usual 1, and 1 as the usual 0, since −1 = (−1)1 and
1 = (−1)0. We will use this convention for the remaining part of this chapter.
Thus a computational function will be of the form f : {1,−1}n → {1,−1}, and a
communication problem will be of the form g : {1,−1}n × {1,−1}n → {1,−1}.
Definition 6.2. For two real-valued functions defined on the boolean cube f, g :
{1,−1}n → R, we define their inner product 〈f, g〉 as follows

〈f, g〉 def

=
1

2n

∑

x∈{0,1}n
f(x)g(x)

The norm of a function f : {1,−1}n → R, denoted as |f |, is defined to be

|f | def

=
√

〈f, f〉
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By definition, every boolean function f : {1,−1}n → {1,−1} is normalized, that
is to say:

Fact 6.2. For every boolean function f : {1,−1}n → {1,−1}, |f | = 1.

The linear combination of a set of functions is defined in the natural way

Definition 6.3. For a set of real-valued functions f1, f2, . . . , fl : {1,−1}n → R

and a set of real numbers λ1, λ2, . . . , λl ∈ R, their linear combination function f =
∑l

i=1 λi · fi is defined to be

∀x ∈ {1,−1}n f(x)
def

=
l

∑

i=1

λi · fi(x)

Definition 6.4. The Fourier space is the 2n dimensional linear space over R formed
by the set of all real-valued functions f : {1,−1}n → R.

The set of parity functions play an important role in Fourier analysis

Definition 6.5. For a subset S ⊆ {1, 2, . . . , n}, the parity function on S, denoted as
χS, is defined as

∀x = x1x2 . . . xn ∈ {1,−1}n χS(x)
def

=
∏

i∈S
xi

As a special case, for every i ∈ {1, 2, . . . , n}, we define the dictatorship function χi
to be χ{i}.

By convention, χ∅ is the constant 1 function.

Definition 6.6. For a set of parity functions χS1, χS2 , . . . , χSl
, their linear combina-

tion χ is defined to be χS1⊖S2⊖...⊖Sl
, here ⊖ denotes the symmetric difference operation

over sets. In this work, we call the n dimensional linear space formed by all the par-
ity functions under this linear combination operation as the parity space. It is an n
dimensional linear space over GF2.

Fact 6.3. The set of n dictatorship functions form a complete basis of the parity
space.

Fact 6.4. The set of all 2n parity functions form an orthonormal basis for the Fourier
space.

6.2 Lower Bounds in Restricted Cases

Given the hardness of proving randomized lower bound in our memoryless model like
Conjecture 6.1, we try to first prove lower bounds in some more restricted settings.
And as show in Lemma 6.1, proving randomized lower bounds amounts to proving dis-
tributional lower bounds under “hard” input distributions. Therefore in this section
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we prove some distributional lower bounds for the IP function when only considering
some restricted classes of deterministic memoryless protocols.

In the classes of memoryless protocols we consider, we restrict what Alice can
send in her messages. In each of Alice’s messages, there are two parts: first there
is the round number i (i = 1, 2, . . .), then there is a part that contains information
about Alice’s input x. Our restriction is that every bit in this second part of Alice’s
message must be computable by a boolean function p(x) that comes from a prescribed
“repertoire”.

Definition 6.7. For a set of boolean functions P = {p1, p2, . . . , pt}, in which for
every i ∈ {1, 2, . . . , t}, pi : {1,−1}n → {1,−1}, we say a memoryless protocol to be
a P -protocol if each of Alice’s messages in this protocol contains exactly two parts: a
round number i (i = 1, 2, . . .), and a bit string of the form pi1(x)pi2(x) . . . pim(x), here
i1, i2, . . . , im ∈ {1, 2, . . . , t}, and x is Alice’s input.

We can prove that if each of Alice’s message simply consists of the round number
and a subset of bits from her input x, then we have a Ω(

√
n) lower bound for IP.

Theorem 6.5. Define P1 = {χ1, χ2, . . . , χn} being the set of dictatorship functions.
Then there exists an input distribution under which IP requires message length at
least Ω(

√
n) to be approximated by any deterministic P1-protocol

In fact, we can prove even a more generalized version:

Theorem 6.6. Define P2 to be an arbitrarily chosen set of linearly independent parity
functions in the parity space, then there exists an input distribution under which IP

requires message length at least Ω(
√
n) to be approximated by any deterministic P2-

protocol.

Now we present a proof for the more generalized theorem.
First, let us make an observation that the behavior of our memoryless protocols

can be simulated by depth-3 circuits

Lemma 6.7. Given a deterministic memoryless P -protocol with message length m
(here P = {pi} is any set of boolean functions pi : {1,−1}n → {1,−1}), suppose the
function it computes exactly is f : {1,−1}n × {1,−1}n → {1,−1}. Then for every
fixed input y0 for Bob, there exists a depth-3 circuit of size 2O(m) which computes the
function f(x, y0) on the single input x. Every input gate of this circuit is a literal of
form either p(x) or ¬p(x), where p ∈ P .

Proof. Now suppose we fix an input value y0 for Bob, let us analyze the behavior of
this protocol.

First, we observe that by Definition 4.1, in a memoryless protocol, when Bob’s
input y and the round number i is fixed, we can categorize all messages (i, α) ∈
{1,−1}m that Bob may receive from Alice in the i-th round into three categories:
1-messages, these messages will trigger Bob to output 1 and halt if received in the
i-th round, that is, B(y, i, α) = 1; (−1)-messages, these messages will trigger Bob
to output −1 and halt if received in the i-th round, that is, B(y, i, α) = −1; and
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⊥-messages, these messages will trigger Bob to continue if received in the i-th round,
that is B(y, i, α) = ⊥.

That is to say, Bob outputs (−1) in the protocol if he receives a (−1)-message in a
certain round, and he does not receive any of the 1-messages in previous rounds. Since
every bit in every message Alice sends except for the round number part is computed
based on some function p from P , that means checking a particular message Alice sent
in a certain round against a particular 1-message (or (−1)-message) for that round
can be done with a term, that is, a conjunction of literals. Therefore, it is easy to see
that to simulate Bob’s behavior with a fixed input value y, we just need a depth 3
circuit. Furthermore, since Alice can send at most 2m messages, and each message is
of length at most m, the size of the circuit can be bounded by 2O(m).

In fact, if we define function By : {1,−1}m → {0, 1,⊥}, By(i, α) = B(y, i, α), then
the structure of the depth-3 circuit described above is completely determined by this
function By.

Next, we need to argue that such depth 3 circuits cannot compute too complicated
functions. The following result from Boppana’s 1997 paper gives us what we need. It
gives a nice upper bound on the average sensitivity of bounded-depth circuits.

Lemma 6.8 (Main Result of [13]). An unbounded fan-in circuit of depth d and size
s has average sensitivity at most O((log s)d−1).

If we talk about P1-protocols (P1 being the set of all dictatorship functions, as
defined in Theorem 6.5), then we can apply Boppana’s lemma directly. But once we
start to talk about arbitrary parity functions, the simulation circuits we use are no
longer depth-3 circuits in the traditional sense.

But we observe that in fact every complete basis in the parity space works just
fine like the “dictatorship basis”. The key point is that given a complete basis P ∗

2

in the parity space, which consists of n linearly independent parity functions in the
parity space, we can device a new encoding for the input space {1,−1}n. For each
input x ∈ {1,−1}n, we simply use the output of these n parity function on x as the
new “encoding” for x! It is easy to verify that this mapping is one-to-one, therefore
our proposed encoding is valid. Let us call this encoding P ∗

2 -encoding

Fact 6.9. Given a complete basis P ∗
2 of the parity space, every parity function can be

written as a linear combination of a subset of basis functions from P ∗
2 by definition.

Suppose a parity function χ can be written as a linear combination of t basis functions
from P ∗

2 , then χ has sensitivity t on every input under the P ∗
2 encoding.

The “traditional” encoding of the boolean cube is merely a special case of P -
encoding in which P is chosen to be the set of the n dictatorship functions.

It is straightforward to generalize Boppana’s lemma to a general P -encoding:

Lemma 6.10 (Generalized Version of Boppana’s Lemma). Given any complete basis
P of the parity space, a depth d and size s unbounded-fanin circuit with input gates
coming from literals from P has average sensitivity at most O((log s)d−1) under P -
encoding.
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Now we are ready to prove Theorem 6.6:

Proof of Theorem 6.6. Given a set of linearly independent functions P2 in the parity
space, we can always augment it to form a complete basis P ∗

2 of the parity space.
Now we take the linear combination of all the n basis functions in P ∗

2 in the parity
space, we get a parity function χS, where S is a subset of {1, 2, . . . , n}. χS has average
sensitivity n in P ∗

2 -encoding. We define ȳ as follows

ȳi
def
=

{

−1 if i ∈ S

1 if i /∈ S

Clearly for every x ∈ {1,−1}n, IP(x, ȳ) = χS(x).
We define input distribution µ to be a uniform distribution over all (x, ȳ) ∈

{1,−1}n × {ȳ} and 0 everywhere else. Suppose there is a memoryless P2-protocol
P of message length m that approximates IP satisfactorily under distribution µ, then
denote the function the protocol computes on x given fixed input ȳ as f : {1,−1}n →
{1,−1}.

1. According to Lemma 6.7, f can be simulated with a depth-3 circuit of size
2O(m). The output of this circuit has average sensitivity at most O(m2) under
P ∗
2 -encoding. This is a corollary of the generalized version of Boppana’s lemma

(Lemma 6.10).

2. Since the protocol P satisfactorily approximates IP under distribution µ, based
on the definition of distribution µ, we have

Pr
x∼U({1,−1}n)

[f(x) = χS(x)] ≥
2

3

here U({1,−1}n) is the uniform distribution over {1,−1}n. This implies that
the average sensitivity of f under P ∗

2 -encoding must be at least Ω(n).

That means m = Ω(
√
n).

6.3 Going Forward

To achieve our final goal of proving Conjecture 6.1, we need to consider bigger and
bigger set of functions P and prove lower bounds for IP among these P -protocols.
For example, we may consider the following sets of functions in order, each being a
superset of the previous one:

1. P3, the set of all parity functions;

2. P4, an arbitrarily chosen orthonormal basis for the Fourier space that consists
of only boolean functions;

3. P5, the set of all boolean functions;
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A distributional lower bound for IP among P5-protocols clearly implies our main
conjecture, Conjecture 6.1. Therefore the sets P3, P4 and P5 give a possible step-by-
step roadmap towards achieving our goal.

Now we make some speculative remarks on how to finish each step.

6.3.1 P3-Protocols: Repertoire Containing All Parity Func-

tions

We first observe that in the IP function, Bob, given his input y, is simply computing
a parity function on x. Each different input value for y corresponds to a different
parity function on x. Overall, Bob needs to be prepared to compute every possible
parity function on every possible x. We actually already used this fact in the proof
of Theorem 6.6.

We observe that in theorem 6.6, once the n parity function repertoire is fixed,
we can immediately find one parity function χ on x, which corresponds to one spe-
cific input value for y. And this χ is very hard for this chosen repertoire. Even if
our repertoire P3 contains all 2n parity functions, for every specific protocol P with
message length m, the number of functions that will actually be used by Alice to
form her messages in the protocol is limited to m · 2m. There is still hope that we
can always find a hard parity function χ against these m · 2m parity functions when
m = O(polylog(n)).

We further observe that in each round of the protocol, Bob can get the output of
at most m parity functions. And he will be able to compute every parity function
that is contained in the subspace spanned by these parity functions in the parity
space. In each round, the number of such parity functions is at most 2m, and overall
the number of such parity functions that can be computed this way during the whole
protocol execution is bounded by 22m, we denote this set of parity functions as QP .
All the other parity functions that are not in QP seem to be hard. Because Bob has
very limited ability to carry information across different rounds, therefore intuitively
he has very limited means to correlate the parity functions Alice sends to him in
different rounds to approximate the parity functions outside QP well.

To make things more concrete, we propose the following conjecture:

Conjecture 6.2. If m = O(polylog(n)), given an arbitrary way of choosing m · 2m
functions from P3 (the set of all 2n parity functions) to form Alice’s messages, there
always exists one parity function χ, which corresponds to the input value y = ȳ, such
that no matter how we define the function Bȳ as in the proof of Lemma 6.7, the
Fourier spectrum (over the parity basis) of the depth-3 circuit determined by Bȳ will
always have a sub-constant o(1) coefficient in front of χ.

6.3.2 P4-protocols: Repertoire Containing an Arbitrary Fourier

Basis

Intuitively, we do not believe that the parity basis is that special among all orthonor-
mal basis for the Fourier space. Therefore, what holds true for the parity basis should
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also hold true for any arbitrarily chosen basis P3 to some extent. In particular, we
propose the following conjecture connecting the parity basis to any other Fourier basis
that consists entirely of boolean functions of the the form p : {1,−1}n → {1,−1}

Conjecture 6.3. Suppose P3 = {p1, p2, . . . , p2n} is an orthonormal basis for the
Fourier space such that for every i ∈ {1, 2, . . . , 2n}, pi : {1,−1}n → {1,−1}. Then
there exists bijective functions ψ : {1, 2, . . . , 2n} → P({1, 2, . . . , n}) 1, φ : {1,−1}n →
{1,−1}n and functions g1 : {1,−1}n → {1,−1} and g2 : {1, 2, . . . , 2n} → {1,−1},
such that for every i ∈ {1, 2, . . . , 2n} and every x ∈ {1,−1}n, we have

pi(x) = χψ(i)(φ(x)) · g1(x) · g2(i)

6.3.3 P5-protocols: Arbitrary Repertoire

Here we deal with general memoryless protocols with message length m. The basic
intuition is that there may exist a way to simulate every memoryless protocol P with
some P4-protocol P ′ with message length poly(m), where P4 is some orthonormal
basis of the Fourier space specifically chosen for P . We may use tools similar to
the standard Gram-Schmidt orthonormalization process to construct P4. If such a
universal simulation scheme exists, then the lower bound for P4-protocols would imply
lower bound for P5-protocols.

1P({1, 2, . . . , n}) is the power set of {1, 2, . . . , n}.
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