
MASTER’S THESIS

Vrije Universiteit in Amsterdam

Faculty of Sciences

Division of Mathematics and Computer Science

Department of Theoretical Computer Science

Stanislav Živný

Properties of oracle classes that collapse or

separate complexity classes

Supervisor : dr. Václav Koubek, MFF UK

Second reader : dr. Femke van Raamsdonk, VU

Amsterdam 2005

iii

Acknowledgements

First of all, I would like to thank my supervisor RNDr.Václav
Koubek,DrSc. from Charles University in Prague for showing me the

interesting world of structural complexity and all his patience he has had
with me during all those years, especially in the last year during my stay in

Amsterdam.

Further, I would like to thank my second reader dr. Femke van Raamsdonk
from the Vrije Universiteit in Amsterdam for her support concerning my

studies at the Vrije Universiteit and the whole special “One Year Master’s
Program”.

During my second half-year term in Amsterdam, I had opportunity to work
with Leen Torenvliet from Institute for Logic, Languages & Computation

at University of Amsterdam. I thank him for all his support.

I am also grateful to Harry Buhrman from CWI (Centrum voor Wiskunde
en Informaticae) in Amsterdam, who allowed me to visit CWI and attend

their lectures.

Last no least, I would like to thank Petra Pivničková for her significant help
with language corrections.

This thesis was also submitted at Faculty of Mathematics and Physics,
Charles University in Prague under name “Relation between accepting

languages and complexity of questions on oracle”.

Amsterdam, July 28, 2005 Stanislav Živný

iv

Contents

1 Introduction 3

2 Preliminaries 7
2.1 Numbers and functions . 7
2.2 Alphabet, words, languages 7
2.3 Computational model . 10
2.4 Complexity classes and reductions 11
2.5 Complete and hard problems 15

3 Relativization 17
3.1 Relativization . 17
3.2 Separation . 18
3.3 Random oracle hypothesis . 22
3.4 Positive relativization . 23
3.5 Bibliographical remarks . 25

4 Collapsing Oracles 27

4.1 P
?
= NP problem in terms of X 28

4.2 Basic properties of X . 28
4.3 Inside of X . 30

4.3.1 Polynomial time . 30
4.3.2 Exponential deterministic time 31
4.3.3 Exponential nondeterministic time 32
4.3.4 Polynomial and exponential space 33
4.3.5 Beyond exponential classes 34
4.3.6 Between polynomial and exponential 39

4.4 Hard problems of complexity classes 44
4.5 Characterization of X . 47
4.6 X is not closed under ∩, ∪ and 4 50
4.7 X and the extended hierarchies 54
4.8 Sets reducible to X . 56

v

CONTENTS 1

5 Separating Oracles 59
5.1 Basic properties of Z . 59
5.2 Z is not closed under ∩, ∪ and 4 60
5.3 Z is not closed under ⊕ . 64

6 Conclusion 69

Bibliography 71

2 CONTENTS

Chapter 1

Introduction

Computational complexity is a part of theoretical computer science which
investigates the amount of resources (mostly time and space, but also for
example nondeterminism, randomness, interaction and others) which is nec-
essary to compute a solution of a problem. We are interested in two estimates,
upper and lower bounds. An upper bound is given by any algorithm (Turing
machine) which computes the solution of the problem. A lower bound is
intrinsically much more difficult. It says something about all possible algo-
rithms which solve the given problem.

A complexity class is the class of all problems which can be solved within
given restrictions on some resource. The main goal of computational com-
plexity is to investigate characteristics, properties and relationships between
different complexity classes. The most difficult questions are about a col-
lapse, i.e. an equality, and a separation, i.e. an inequality, of two classes.

An algorithm is considered to be effective if its time complexity is poly-
nomial in the length of its input. The class of all problems which can be
computed effectively, i.e. in polynomial time, is commonly denoted P. An-
other important class, NP, is the class of all problems which can be computed
nondeterministically (Turing machine can “guess”) in polynomial time. Hun-
dreds of practical problems from real life were shown to belong to this class.
The difference between the classes P and NP is the difference between verify-
ing a solution (in case of P) and finding a solution (in case of NP). Intuitively,
the latter one is more difficult. Nowadays, nobody can prove that. The

P
?
= NP problem seems to be one of the most difficult problems in theoretical

computer science.

While trying to tackle the P
?
= NP problem, many new areas of compu-

tational complexity have emerged. One of the thoughts, relativization, was
borrowed from recursion theory. If we cannot decide whether P = NP or

3

4 CHAPTER 1. INTRODUCTION

P 6= NP, can we find some relativized world (oracle) such that in this world
foregoing question can be answered?

Since the middle seventies, after the seminal paper on relativization
[BGS75], many oracles have been constructed for many relationships be-
tween complexity classes. Consider two complexity classes, for example C
and D. A typical situation is that C ⊆ D, but it is a question whether C (D
or C = D. We denote by CA the relativized complexity class C relative to the
oracle A. Construction of an oracle A such that CA 6= DA is perceived as a
difficulty of proving C = D. A possible proof of the unrelativized equality,
i.e. C = D, would have to use some technique which does not relativize.
Analogously, a construction of an oracle A such that CA = DA is perceived
as a difficulty of proving C 6= D.

This thesis

This thesis follows the idea of Balcázar [Bal84] to investigate properties of

oracles relative to the P
?
= NP problem.

We denote by X the class of sets relative to which P = NP relativized,
and by Z the class of sets relative to which P 6= NP. We investigate which
problems belong to X and Z and what are the characteristics and structural
properties of these classes. Of course, most of these questions are hard to
answer. Any nontrivial information about X or Z (like f.e. ∅ ∈ X) would

resolve the P
?
= NP problem.

Chapter 2 introduces the necessary definitions and notations.

Chapter 3 surveys some related facts from the theory of relativization.

Chapter 4 investigates properties of the class X . We present known prop-
erties about X . We strengthen the known facts about complete problems for
exponential classes to stronger classes. We show that some complete prob-
lems, if they ever exist, for deterministic classes between polynomial and
exponential time do not belong to X . We give an example of reduction un-
der which there complete problems out of X . We show that hard problems
for exponential classes do not generally belong to X . From that, we conclude
that X is not closed under polynomial reductions neither upward nor down-
ward. We characterize sets in X as the sets in the intersection of the first
level of the extended low and the zeroth level of the extended high hierar-
chy. We show a closer connection between X and the extended hierarchies.
Further, we prove that X is not closed under unions, intersections and sym-
metric differences. We mention results about sets reducible to X and other
related topics.

5

Chapter 5 investigates properties of the class Z. We show a close connec-
tion to the class X . We prove that Z is not closed under unions, intersections
and symmetric differences. We also prove that Z is not closed under disjoint
unions. We conclude that disjoint union can lower complexity measured in
terms of extended lowness.

Chapter 6 concludes this thesis and discusses further possible research.
The electronic version of this document can be found on the Internet at

URL http://standa.matfyz.cz/download/msthesis/, you can also con-
tact the author by e-mail standa@matfyz.cz.

6 CHAPTER 1. INTRODUCTION

Chapter 2

Preliminaries

In this chapter, we summarize basic definitions and explain the notation used
in this thesis. Most of this chapter follows standard textbooks on structural
complexity, [BDG88] and [BDG90]. We do not define everything in detail
here, and we refer our kind reader to these books.

2.1 Numbers and functions

We work with functions on natural numbers. These functions are often used
as time/space bounds. We often use the following “big O” notation. Let f
be a function on natural numbers.

Definition 2.1

1. O(f) is the set of functions g such that for some r > 0 and for all but
finitely many n, g(n) ≤ rf(n).

2. o(f) is the set of functions g such that for every r > 0 and for all but
finitely many n, g(n) ≤ rf(n).

The inverse of a function f is denoted by f−1. All logarithmic functions
in this thesis have base 2. To simplify the text, log n always means dlog ne.

2.2 Alphabet, words, languages

Definition 2.2

1. An alphabet is any non-empty, finite set. We use Σ to denote an
alphabet. If not said otherwise, Σ = {0, 1}.

7

8 CHAPTER 2. PRELIMINARIES

2. A symbol, or also a letter (or a bit, in case Σ = {0, 1}), is an element
of an alphabet Σ.

3. Given an alphabet Σ, a word, or string over Σ is a finite sequence of
symbols from Σ.

4. If w is a string over Σ, the length of w, written |w|, is the number of
symbols that w contains.

5. The empty word λ is the unique word consisting of zero symbols.

6. Given a word x and a word y, the concatenation of x and y, written
xy, is the word obtained by appending y to the end of x.

7. Given a word w over Σ and integer n, define wn inductively by: w0 = λ,
and wn+1 = wwn for all n ≥ 0 (we often consider the case when w = 0).

8. The set of all finite words over an alphabet Σ is denoted Σ∗.

9. Given an alphabet Σ, the set of all words over Σ with length less than
or equal to n is denoted Σ≤n, the set of all words over Σ with length
less than n is denoted Σ<n, and finally Σ=n = Σ≤n \ Σ<n.

10. Given an alphabet Σ, a language, set, or oracle (set), over Σ is subset
of Σ∗.

11. Given a set L, |L| denotes cardinality of L, i.e. the number of elements
in L.

12. Given a set L, χL(.) is the characteristic function of L.

13. Given a set L, exponential padding of L is a set {〈x, 0f(|x|)〉 | x ∈
L ∧ f(n) ∈ O(2nc

)} for some constant c.

We use standard, polynomial time computable, encoding of n-tuples
〈x1, x2, . . . , xn〉.

Given an alphabet Σ, we can order the symbols of Σ. In our case,
Σ = {0, 1}, 0 < 1. We suppose a standard lexicographical ordering on
Σ∗: a1a2 · · ·an ≤lex b1b2 · · · bm if and only if either 1. n < m or 2. n = m
and there is k, 1 ≤ k ≤ n, such that ai = bi for every i ≤ k − 1 and ak < bk.

With our implicit alphabet, Σ = {0, 1}, we can identify words over Σ
with natural numbers with zero: 0 = λ, 1 = 0, 2 = 1, 3 = 00, 4 = 01, and
so on (also called as enumeration of Σ∗. Generally, the n-th word over Σ
in lexicographical ordering corresponds to the natural number n. Another
possible correspondence is this one: A word α ∈ Σ∗ corresponds to the
natural number 1α in binary notation. In this thesis, we can use any of these
two, for example the second one.

2.2. ALPHABET, WORDS, LANGUAGES 9

Definition 2.3 Given languages A and B on Σ, define:

1. The union A ∪ B is the following language:

A ∪ B = {w | w ∈ A ∨ w ∈ B}

2. The intersection A ∩ B is the following language:

A ∩ B = {w | w ∈ A ∧ w ∈ B}

3. The difference of A and B is:

A \ B = {x | x ∈ A ∧ x 6∈ B}

4. The symmetric difference of A and B is:

A4B = (A \ B) ∪ (B \ A)

Notice that x ∈ A4B means that x is in A or in B, but not in their
intersection.

5. The complement of a language L over Σ is the language coL = Σ∗ \L.

6. The disjoint union, or join, or even marked union of A and B is:

A ⊕ B = {0w | w ∈ A} ∪ {1w | w ∈ B}

Definition 2.4 A language is tally if and only if it is included in {a}∗ for
some symbol a. TALLY denotes the class of all tally sets.

Definition 2.5 We say that a set A is sparse if and only if the number
of words of length n is bounded a polynomial in n, i.e. if there exists a
polynomial p(n) such that |Σ=n ∩A| < p(n) for every n. SPARSE denotes the
class of all sparse sets.

Note that an equivalent definition of sparse set A bounds Σ≤n ∩ A by
some polynomial p(n).

We define something like complement on the classes of sets.

Definition 2.6 Given a class C of sets, define coC = {L | coL ∈ C}.

10 CHAPTER 2. PRELIMINARIES

2.3 Computational model

As a computational model, we use a standard deterministic Turing machine
with k working tapes. We also use its nondeterministic and oracle vari-
ants. We suppose that our reader is familiar with basic knowledge about
Turing machines (computation, accepting/rejecting computation, configura-
tion, computation tree of nondeterministic Turing machine, computation tree
of Turing machine with an oracle, universal Turing machine, running time,
working space, time/space constructible functions). Without loss of gener-
ality, we can suppose that the considered nondeterministic Turing machines
have “nondeterministic fan-out 2”. We consider “oracle” and “oracle set” as
the same. For more details, see [BDG88].

Definition 2.7 We denote by L(M) the language accepted by the Turing
machine M .

Definition 2.8 We denote by L(M, A) the language accepted by the Turing
machine M with the oracle A.

Definition 2.9 For any function t(n) ≥ n + 1 and s(n) ≥ 1, define:

1. DTIME[t(n)] is the class of all sets accepted by deterministic Turing
machines whose running time is bounded above by t(n).

2. NTIME[t(n)] is the class of all sets accepted by nondeterministic Turing
machines whose running time is bounded above by t(n).

3. DSPACE[s(n)] is the class of all sets accepted by deterministic Turing
machines whose work space is bounded above by s(n).

4. NSPACE[s(n)] is the class of all sets accepted by nondeterministic Turing
machines whose work space is bounded above by s(n).

Note that we suppose t(n) ≥ n+1. In this thesis, we always suppose that
time bound is at least linear (Turing machine should at least read its input).

From the Tape Compression Theorem [BDG88], the class DSPACE[s(n)]
(NSPACE[s(n)], respectively) is equivalent to DSPACE[s′(n)] (NSPACE[s′(n)],
respectively) for every s′(n) ∈ O(s(n)).

From the Linear Speed-up Theorem [BDG88], it follows that
DTIME[t′(n)] ⊆ DTIME[t(n)] (NTIME[t′(n)] ⊆ NTIME[t(n)], respectively) for
every t′(n) ∈ O(t(n)) and n ∈ o(t(n)).

Theorem 2.10 (Deterministic Time Hierarchy Theorem) Let t and
t′ be time bounds such that t′ is time constructible and t log t ∈ o(t′). Then
DTIME[t′] contains a language which is not in DTIME[t].

2.4. COMPLEXITY CLASSES AND REDUCTIONS 11

Theorem 2.11 (Savitch Theorem) If s(n) ≥ log n is space constructible,
then NSPACE[s(n)] is included in DSPACE[s2(n)].

2.4 Complexity classes and reductions

Definition 2.12 (Complexity classes)
P =

⋃

i≥0 DTIME[ni]
NP =

⋃

i≥0 NTIME[ni]
PSPACE =

⋃

i≥0 DSPACE[ni]
NPSPACE =

⋃

i≥0 NSPACE[ni]
DEXT =

⋃

c≥0 DTIME[2cn]
NEXT =

⋃

c≥0 NTIME[2cn]

EXP =
⋃

c≥0 DTIME[2nc

]

NEXP =
⋃

c≥0 NTIME[2nc

]
DEXTSPACE =

⋃

c≥0 DSPACE[2cn]

EXPSPACE =
⋃

c≥0 DSPACE[2nc

]

Definition 2.13 PF is the class of (partial) functions that can be computed
in polynomial time.

Definition 2.14 (Many-one reduction) Given two sets A1 and A2, we
say that A1 is polynomial time many-one reducible to A2 if and only if there
exists a total function f : Σ∗ → Σ∗, f ∈ PF, such that x ∈ A1 if and only if
f(x) ∈ A2 holds for all x ∈ Σ∗. We call such a function f polynomial time
many-one reduction.

Definition 2.15 (Turing reduction) Given two sets A1 and A2, we say
that A1 is polynomial time Turing reducible to A2 if and only if there exists
a deterministic polynomial time Turing machine with an oracle such that
A1 = L(M, A2). We denote the fact that A1 is Turing reducible to A2 in
polynomial time by A1 ≤

p
T A2 or A1 ∈ P

A2 .

Definition 2.16 Given a set A, the class P
A consists of all sets L such

that there exists a deterministic polynomial time Turing machine M with an
oracle such that L = L(M, A).

In a similar way, we get relativization of other complexity classes, PF
A,

NP
A, PSPACE

A and so on (see [BDG88]).

Definition 2.17 (Polynomial time hierarchy) The polynomial time hi-
erarchy is the structure formed by the classes Σp

k, Πp
k, ∆p

k and Θp
k for each

k ≥ 0, where

12 CHAPTER 2. PRELIMINARIES

1. Σp
0 = Πp

0 = ∆p
0 = Θp

0 = P.

2. Σp
k+1 = NP

Σp

k for k ≥ 0.

3. Πp
k+1 = coNP

Σp

k for k ≥ 0.

4. ∆p
k+1 = P

Σp
k for k ≥ 0.

5. Θp
k+1 = P

Σp
k
[O(log n)] for k ≥ 0.

Define also PH = ∪k≥0Σ
p
k = ∪k≥0Π

p
k = ∪k≥0∆

p
k = ∪k≥0Θ

p
k.

Θp
k+1 levels of PH are from [HO02] and P

A[O(log n)] means that the deter-
ministic polynomial time Turing machine with the oracle A is allowed to
query only O(log n) queries on input of length n.

We do not know whether either PH is infinite, i.e. Σp
k (Σp

k+1 for every
k ≥ 0, or whether PH collapses to the k-th level, i.e. PH = Σp

k. Note that
PH = PSPACE implies collapse of PH.

Definition 2.18 (Relativized polynomial time hierarchy) The poly-
nomial time hierarchy relative to an oracle A is the structure formed by the
classes Σp,A

k , Πp,A
k , ∆p,A

k and Θp,A
k for each k ≥ 0, where

1. Σp,A
0 = Πp,A

0 = ∆p,A
0 = Θp,A

0 = P
A.

2. Σp,A
k+1 = NP

Σp,A
k for k ≥ 0.

3. Πp,A
k+1 = coNP

Σp,A
k for k ≥ 0.

4. ∆p,A
k+1 = P

Σp,A
k for k ≥ 0.

5. Θp,A
k+1 = P

Σp,A

k
[O(log n)] for k ≥ 0.

Define also PH
A = ∪k≥0Σ

p,A
k = ∪k≥0Π

p,A
k = ∪k≥0∆

p,A
k = ∪k≥0Θ

p,A
k .

Definition 2.19 (Strong exponential hierarchy [Hem89]) The strong
exponential hierarchy is the the structure formed by the classes ΣSEH

k , ΠSEH

k

and ∆SEH

k for k ≥ 0, where

1. ΣSEH
0 = ΠSEH

0 = ∆SEH
0 = DEXT.

2. ΣSEH
1 = NEXT, ΠSEH

1 = coNEXT, ∆SEH
1 = P

DEXT = EXP.

3. ΣSEH

k+1 = NP
ΣSEH

k for k ≥ 1.

4. ΠSEH

k+1 = coNP
ΣSEH

k for k ≥ 1.

5. ∆SEH

k+1 = P
ΣSEH

k for k ≥ 1.

Define also SEH = ∪k≥0Σ
SEH

k = ∪kΠ
SEH

k = ∪k≥0∆
SEH

k .

2.4. COMPLEXITY CLASSES AND REDUCTIONS 13

Note that we would get the same hierarchy if we replaced NEXT by NEXP.
Hemachandra [Hem89] showed the collapse of the strong exponential hierar-
chy to the second level, SEH = ∆SEH

2 . Note why the foregoing hierarchy is
called “strong”. The reason is the contrast with the (ordinary) exponential

hierarchy, which it defined as EH = NEXT ∪ NEXT
NP ∪ NEXT

NP
NP

· · · . EH

is included in SEH, but there exist an oracle A such that SEH
A is not con-

tained in EH
A. This is simply because from the second level up, EH can

query strings in A of length 2cn but SEH can query strings of length 2nk

. The
argument is the same as for showing DEXT

P (P
DEXT, since DEXT

P = DEXT

but P
DEXT = EXP, and DEXT (EXP by the Time Hierarchy Theorem 2.10.

Definition 2.20 Two languages A ⊆ Σ∗ and B ⊆ Σ∗ are p-isomorphic
(polynomial time isomorphic) if and only if there exists a bijection f : Σ∗ →
Σ∗ such that f ∈ PF, f−1 ∈ PF and f is a reduction from A to B.

From now on till the end of this chapter, consider a and b as an arbitrary
text strings for which ≤b

a is a reduction (we consider just two cases, ≤p
m and

≤p
T). If b is omitted, then it implicitly means b = p, p for polynomial time.

Analogously, when we talk about many-one or Turing reductions, and not
said otherwise, we implicitly mean polynomial time reductions. If A ≤b

a B
and B ≤b

a A, then A ≡b
a B. If A 6≤b

a B and B 6≤b
a A, then we call A and B

incomparable under ≤b
a-reductions.

Definition 2.21 ([HO02])

1. Given a set C, define Rb
a(C) = {L | L ≤b

a C}.

2. Given a class C, define Rb
a(C) = {L | (∃C ∈ C)[L ≤b

a C]}.

Definition 2.22 Given class C, say

1. C is closed upward under ≤b
a if and only if

([A ≤b
a B ∧ A ∈ C] ⇒ B ∈ C).

2. C is closed downward with under ≤b
a if and only if

([A ≤b
a B ∧ B ∈ C] ⇒ A ∈ C).

Note that class C is closed downward under ≤b
a if and only if C = Rb

a(C).
Note that most of the standard complexity classes (and all considered in

this thesis) are closed under polynomial time reductions downward.

Remark 2.23 Some reductions are powerful enough to bridge the difference
between seemingly (or absolutely) different classes.

14 CHAPTER 2. PRELIMINARIES

1. TALLY (SPARSE, but Rp
T (TALLY) = Rp

T (SPARSE) (Hartmanis coding,
see [BDG88]) and even Rp

ctt(TALLY) = Rp
ctt(SPARSE) (see [BHL95]),

where ≤p
ctt denotes polynomial time conjunctive truth-table reduction.

2. DEXT (EXP, but Rp
m(DEXT) = Rp

m(EXP) = EXP (via padding).

3. We suppose NP 6= coNP, but Rp
T (NP) = Rp

T (coNP).

Definition 2.24 (The extended low hierarchy)
For every n ≥ 1, define:

ELn = {A | Σp,A
n ⊆ Σp,A⊕SAT

n−1 }.

The extended low hierarchy is ELH = ∪n≥1ELn.

Definition 2.25 (The extended high hierarchy)
For every n ≥ 0, define:

EHn = {A | Σp,A⊕SAT

n ⊆ Σp,A
n }.

The extended high hierarchy is EHH = ∪n≥0EHn.

Immediately from the definitions of the extended hierarchies it follows
that:

Fact 2.26

1. For every n ≥ 1, ELn ⊆ ELn+1.

2. For every n ≥ 0, EHn ⊆ EHn+1.

Fact 2.27 For every recursive set A, there exists an effective enumeration
{Mi}i≥1 of deterministic Turing machines with oracles such that the running
time of the machine Mi is bounded above by polynomial pi, the machine Mi

can be found in polynomial time in i and P
A = {L(Mi, A) | i ≥ 1}. Without

loss of generality, we can assume that polynomial pi is a form of ni + i for
all i and for all n, and p0(n) = 0 for all n. This guarantees that polynomial
pi is nondecreasing for all i and that pi(n) ≤ pi+1(n) for all i and for all
n. In this thesis, we refer to this enumeration as enumeration {Mi}i≥1. See
[BDG88] for existence of this enumeration.

Recall that it is possible to design a Turing machine, called a universal
machine, which receives as an input the encoding of a machine M together
with an input w to M , and which is able to simulate the computation of
M on w. This fact is similar to the existence of “interpreters” for computer
programming languages, i.e. programs that read and execute other programs.

Let U be a fixed universal machine.

2.5. COMPLETE AND HARD PROBLEMS 15

Definition 2.28 (Resource-bounded Kolmogorov complexity)
The Kolmogorov time-bounded complexity set K[f, g] is the set formed

by the strings u such that there is a word w, of length |w| ≤ f(|u|), such that
U(w) = u and this result is obtained in at most g(|u|) steps.

Consider two relativizable complexity classes C and D. We call the oracle

A positive or collapsing, relative to the C
?
= D problem, if CA = DA. Similarly,

we call the oracle A negative or separating if CA 6= DA. Most of the time, we

use this for the P
?
= NP problem.

2.5 Complete and hard problems

Definition 2.29 K(A) = {〈M, x, 1t〉 | M is a nondeterministic Turing ma-
chine that accepts x with the oracle A in at most t steps }.

Definition 2.30 KS(A) = {〈M, x, 1s〉 | M is a deterministic Turing ma-
chine that accepts x with the oracle A using an amount of space bounded
above by s }.

Definition 2.31 (Hard problems)
Given a complexity class C, define

Hb
a = {L | (∀K ∈ C)[K ≤b

a L]}.

Definition 2.32 (Complete problems)
Given a complexity class C, define

Cb
a = {L | L ∈ C ∧ (∀K ∈ C)[K ≤b

a L]}.

K(A) is a standard complete problem for NP
A under ≤p

m-reductions and
KS(A) is a standard complete problem for PSPACE

A under ≤p
m-reductions.

Recall that SAT , the set of satisfiable quantifier-free boolean formulas in the
conjunctive normal form, is complete for NP under ≤p

m-reductions. Recall
that QBF , the set of quantified boolean formulas without free variables which
evaluate to true, is complete for PSPACE under ≤p

m-reductions.
Note that every level of the polynomial time hierarchy (and the relativized

polynomial time hierarchy also) has complete problem under ≤p
m-reductions.

16 CHAPTER 2. PRELIMINARIES

Chapter 3

Relativization

This chapter surveys some facts from the theory of relativization, which
are used later in this thesis. We present some basic theorems including the
existence of an oracle relative to which P = NP, and the existence of an oracle
relative to which P 6= NP. We also show the complexity of the latter one.
Then we mention the Random oracle hypothesis. We present the concept of
the positive relativization. We show a few examples of sets which provide a

positive relativization of the P
?
= NP problem. Sometimes, we just mention

results and concepts without explicit definitions and explanations, but with
references, where can be read more about the subject. The last section
includes references to the related work.

3.1 Relativization

The P
?
= NP problem is one of the most important problems in computa-

tional complexity. In order to understand it better, one can try to solve a
more general problem. The computational complexity has borrowed the rel-
ativization technique from recursion theory. In terms of Turing machines, by
which complexity classes P and NP are defined, we add to machine access
to an oracle. The oracle can be queried about membership of a given word
in the oracle set. These queries are performed in constant time. We get a

relativized version of the P
?
= NP problem. For a given oracle A, P

A ?
= NP

A.
The complexity theory concerns resource-bounded reductions. Many of

the questions ask about the properties of these resource-bounded reductions.
Relativization can be viewed as a question of deterministic and nondeter-
ministic polynomial time Turing reductions. Do these two reductions differ?
By definition, A ≤T B if and only if A ∈ P

B, and A ≤NP
T B if and only if

A ∈ NP
B. Suppose for every set B, P

B = NP
B. Then for every A and B,

17

18 CHAPTER 3. RELATIVIZATION

A ≤T B if and only if A ≤NP
T B. Thus A ≤T B and A ≤NP

T B would be
equivalent. Thus, for showing that these two reductions are different, it is
sufficient to show the existence of a set B such that P

B 6= NP
B.

Baker, Gill and Solovay [BGS75] showed the existence of an oracle relative
to which P 6= NP. Their seminal paper about relativization [BGS75] started
several decades of an intensive research in relativization.

They also showed the existence of an oracle relative to which P = NP.
This has led to many discussions about proof techniques and their chances to

resolve the P
?
= NP problem. Most of the known techniques can be relativized,

i.e. hold with the presence of the oracle. These techniques can not solve the

P
?
= NP problem. A great many articles are devoted to discussions about

usefulness and strength of relativization. See the references in the last section.
The relativization technique has been used in many areas of computa-

tional complexity. Not only for the P
?
= NP problem, but also for many other

complexity classes oracles have been constructed relative to which different
relationships hold. For more, see [BDG90] and [HO02].

3.2 Separation

In this section, we show the existence of an oracle relative to which P = NP

and we show the existence of an oracle relative to which P 6= NP. We also
show that the separating oracle belongs to DEXT.

First of all, we present some basic properties about K(A), standard com-
plete sets for NP

A under ≤p
m-reductions.

Lemma 3.1 (folklore) K(A) ∈ Cp
m(NP

A).

Lemma 3.2 (folklore) P
A = NP

A if and only if K(A) ∈ P
A.

Now we present the existence of the collapsing oracle, i.e. the existence
of the oracle relative to which P = NP.

Theorem 3.3 ([BGS75]) There is an oracle A such that P
A = NP

A.

Proof We construct inductively an oracle A such that A = K(A) by the
length of the strings. An empty string is not in A. Provided we have decided
about all strings up to length k whether they belong to A or not, we now
show how to decide about an arbitrary string of length k + 1. Let z be an
arbitrary string such that |z| = k + 1. If z is not a form of 〈M, x, 1n〉, then z
does not belong to A. If z has the desired form 〈M, x, 1n〉, then we simulate

3.2. SEPARATION 19

machine M with the oracle A on input x for time ≤ n. This simulation can
be performed because the machine M in this computation does not query
strings longer than n (it does not have time for it) and n ≤ k +1. Therefore,
M can query only for words shorter than its input and these words have been
already decided. Then z ∈ A if and only if M accepts x in at most n steps
with the oracle A. 2

We can prove more. Not only such an oracle exists, but complete sets for
PSPACE under ≤p

m-reductions accomplish a collapse of P = NP relativized.

Theorem 3.4 ([BGS75]) If A ∈ Cp
m(PSPACE), then P

A = NP
A.

Proof Given A ∈ Cp
m(PSPACE) and using facts PSPACE = P

A and
PSPACE

PSPACE = PSPACE we have PSPACE = P
A ⊆ NP

A ⊆ PSPACE
A ⊆

PSPACE
PSPACE = PSPACE. 2

Now we prove the existence of the separating oracle, i.e. the existence of
the oracle relative to which P 6= NP.

Definition 3.5 For a language B, define L(B) = {0n | (∃x ∈ B)[|x| = n]}.

Theorem 3.6 ([BGS75]) There is an oracle B such that P
B 6= NP

B.

Proof Clearly, L(B) ∈ NP
B for every B: For a given input x, |x| = n,

guess y of length n and check whether y ∈ B or not.
We construct B such that L(B) 6∈ P

B by diagonalization against machines
from P

B.
Consider an enumeration {Mi}i≥1 from Fact 2.27.
We construct B in stages. Denote by k(n) an increasing sequence of

natural numbers: k(n) is the length of word which is used in the n-th stage
to ensure that Mn does not accept L(B). After n stages, we denote the so
far constructed oracle set by Bn−1. In the n-th stage, we add at most one
word of length k(n) to ensure that L(B) 6= L(Mn, B). We show that either
0k(n) ∈ L(Mn, B) and B∩Σ=k(n) = ∅, or 0k(n) 6∈ L(Mn, B) and B∩Σ=k(n) 6= ∅.
Figure 3.1 describes the n-th stage in the construction of B. The final oracle
B = ∪nBn.

From the condition on k(n), an appropriate word y(n) of length k(n)
always exists if needed. There are 2k(n) words of length k(n) and pn(k(n)) <
2k(n).

The condition on k(n) also ensures that k(n) is long enough not to disturb,
by possible adding of y(n) to B, any computation from the previous stages.
It means that 0k(n) ∈ L(Mn, Bn−1) ⇔ 0k(n) ∈ L(Mn, B). This holds for every
n. Therefore, 0k(n) ∈ L(B) ⇔ 0k(n) 6∈ L(Mn, B) for every n. That means
L(B) 6∈ P

B. Since L(B) ∈ NP
B, we obtain P

B 6= NP
B.

2

20 CHAPTER 3. RELATIVIZATION

stage 0:
k(0) = 0
B0 = ∅

stage n:
Let k(n) be the smallest natural number such that

k(n) > pn−1(k(n − 1)) and pn(k(n)) < 2k(n).
If 0k(n) ∈ L(Mn, Bn−1) then Bn = Bn−1.
If 0k(n) 6∈ L(Mn, Bn−1) then Bn = Bn−1 ∪ {y(n)},
where y(n) is the first word, in lexicographical order, of length k(n)
such that y(n) is not queried in the computation of Mn on input 0k(n)

with the oracle Bn−1.

Figure 3.1 Construction of B such that L(B) 6∈ P
B.

Find(n):
i = 1
k(0) = 0
k(1) = 1
while (k(i) < n) do

k(i) = pi−1(k(i − 1)) + 1
if k(i) > n then return 0
if (k(i) = n) and (k(i))i + i < 2k(i)) then return i
while ((k(i))i + i ≥ 2k(i)) do

if k(i) ≥ n then return 0
k(i) = k(i) + 1

endwhile
if k(i) > n then return 0
if k(i) = n then return i
if k(i) < n then i = i + 1

endwhile

Figure 3.2 Computation of stage i such that k(i) = n.

3.2. SEPARATION 21

Inspecting the previous proof, we obtain an upper bound on time com-
plexity of the separating oracle.

Theorem 3.7 The oracle B from Theorem 3.6 belongs to DEXT.

Proof We describe an algorithm for B which belongs to DEXT. Suppose
input x of length n.

Recall that pi = ni + i and p0(n) = 0 for i ≥ 1 and for all n.
First we need to find out whether there exists an l such that k(l) = n,

where k(.) is defined in the proof of Theorem 3.6. If such l does not exist, then
x 6∈ B. Figure 3.2 presents the procedure Find, which for given argument
n finds out whether there exists a stage i (command “return i”, for i > 0)
such that k(i) = n (i.e. in the i-th stage, word 0n is used for diagonalization),
or finds out that such i does not exist (command “return 0”).

The procedure Find works in linear time in n. We are looking for the first
i such that k(i) ≥ n and because the sequence k(.) is increasing, we have to
evaluate k(.) at most n times (note that in case k(i) > n for some i, we can
stop immediately when we know k(i) > n and we do not have to evaluate
k(n)).

If we find l such that k(l) = n (and pl(n) < 2n), we need to simulate Ml

on the input 0n with the oracle B. If the simulation accepts 0n, then any
word of length n is not in B, and so x 6∈ B. If the simulation rejects 0n, then
x ∈ B if and only if x is the first word, in lexicographical order, of length n
which is not queried in the performed simulation.

Machine Ml works in time pl, and the simulation can be performed in time
O(pl(n)). But we do not know the oracle B. For every i = Find(m) > 0,
m = 1, . . . , n, we have to perform the simulation of Mi on input 0m and store
the information about the strings which belong to B.

Together, we have at most l simulations, l ≤ n, of the polynomial time
machines M1, M2, . . . , Ml working in polynomial time p1, p2, . . . , pl on inputs
of length k(1), k(2), . . . , k(l), where k(i) ≤ n for all 1 ≤ i ≤ l. The foregoing
estimate for the number of simulations, l ≤ n, is not sufficient and we do a
better one. We claim that k(i+1) > 2k(i) for all i ≥ 1. From the construction
of B (Figure 3.1), it is not hard to verify that k(1) = 2 and k(2) = 5. From
the condition on k(i + 1), k(i + 1) > pi(k(i)) = k(i)i + i > k(i)2 > 2k(i)
for i > 1 (note that i > 1 implies k(i) ≥ 5). We obtain an estimate for
the number of simulations, l ≤ log n. During the simulation of the machine
Mi on input 0k(i), we need to store all queries of length k(i). This takes
time O(pi(n)). After the simulation, we need to find the word y(i) (the first
word of length k(i), in lexicographical order, which is not queried during
the simulation). This can be done in time O(npi(n) log(npi(n))), which is
O(npi(n) log n).

22 CHAPTER 3. RELATIVIZATION

Therefore, time complexity of the algorithm for B can be bounded as

log n
∑

i=1

npi(n) log n = n log n

log n
∑

i=1

(ni+i) ≤ (n log2 n)(nlog n+log n) = O(nc+log n) = O(nO(log n))

for a constant c. Since DTIME[.] is closed under O(.), B ∈ DTIME[t(n)]
for every function t(n) such that t(n) = nO(logn). Function 2cn for a constant
c fulfils this requirement.

2

Note that the proof yields the following corollary.

Corollary 3.8 (from proof of Theorem 3.7) Let t(n) be a function such
that t(n) = nO(log n). Then there exists an oracle B ∈ DTIME[t(n)] with
P

B 6= NP
B.

3.3 Random oracle hypothesis

In one line of research, the following question was investigated: How frequent
are oracles relative to which P = NP relativized?

Mehlhorn [Meh73] showed that the class of oracles which makes P = NP

relativized is meager (a topological concept which can be interpreted as “such
sets are infrequent”).

In the seminal paper on the Random oracle hypothesis, Bennett and Gill
[BG81] presented that for almost all oracles P 6= NP relativized. What does
”almost all” mean ? It means that P 6= NP relativized to the random oracle.

Definition 3.9 ([BG81]) The oracle A is called the random oracle if and
only if every string is in A with probability 1/2.

Theorem 3.10 ([BG81]) For the random oracle A holds P
A 6= NP

A with
probability 1 .

The previous theorem can be formulated in terms of the measure theory.
Let us denote by µ the Lebesque measure on the unit interval and Ω as
the set of all languages. Since we can represent every element in Ω as an
infinite sequence of 0’s and 1’s (a characteristic sequence), we can identify
each language with a real number between 0 and 1. Then, the probability
measure over Ω is equivalent to the Lebesgue measure µ on the unit interval.
Hence, the statement µ({A | P

A = NP
A}) = 0 is equivalent to the statement

that probability (over A) of P
A 6= NP

A is equal to 1. And this is equivalent
to the statement of Theorem 3.10.

3.4. POSITIVE RELATIVIZATION 23

Baker and Gill [BG81] also conjectured the Random oracle hypothesis.
Roughly speaking, it says that “a relativized statement which is true with
probability 1 with the random oracle is true for the empty oracle”. Kurtz
[Kur83] disproved a certain version of this conjecture by double relativization
(two oracle sets are available for the machine).

Recently, another approach has been investigated. The Hausdorff dimen-
sion is used for classification of the sets of measure 0 (for sets of measure > 0,
the Hausdorff dimension is always 1; for sets of measure 0, the Hausdorff di-
mension ∈ [0, 1]). Note that for every dimension d ∈ [0, 1], there exists a
set of measure 0 with dimension d. Hitchcock [Hit04] proved that the class
{A | P

A = NP
A} has Hausdorff dimension 1.

3.4 Positive relativization

In recursion theory the relativization principle holds: If an assertion holds
in an unrelativized case, then it holds in the presence of an arbitrary oracle.
Theorems 3.3 and 3.6 show that this principle does not hold in a polynomial
time world.

The relativizing principle is a restriction on the machines or the oracles
which allows one to show that the equality/inequality among unrelativized
complexity classes is equivalent to the equality/inequality in any arbitrary
relativization of a restricted model. For solving an unrelativized case, it
is therefore sufficient to prove a relationship in arbitrary relativization of a
restricted model. See [BDG90] for example of relativizing principle.

The relativizing principle is a special and stronger case of something
which we meet in the structural complexity theory more often and what
we call positive relativization. The Positive relativization is a restriction
on the machines or the oracles which allows one to show that the equality
among unrelativized complexity classes is equivalent to the equality in any
arbitrary relativization of a restricted model. We do not require equivalence
between the inequality in unrelativized case and the inequality in arbitrary
relativization of restricted model anymore.

Negative relativization can be defined similarly. We still do not know
much about relationships among complexity classes. However, in most cases
we suppose a separation, i.e. an inequality between complexity classes. That
is the reason why positive relativization has been studied so much. When we

have positive relativization of the P
?
= NP problem, it is sufficient to separate

restricted classes with an arbitrary oracle in order to separate P from NP.
There are basically two types of positive relativization. The first of them

puts restrictions on the machines. Namely, it restricts access to the oracle.

24 CHAPTER 3. RELATIVIZATION

See [BDG90] for an example of this kind of positive relativization (nonde-
terministic machine can query only polynomial many words in the entire
computation tree). The second one puts restrictions on the type of the ora-
cle. The most studied property of the oracle is density, and special attention
is focused on tally and sparse sets.

Long and Selman [LS86] showed that sparse sets yield positive relativiza-
tion of particular levels of the polynomial time hierarchy from the second
level up. We show the idea of their proof in case of the first level of the
polynomial time hierarchy. But instead of sparse sets, we consider sets that
are “easily enumerable”.

But before that, one can ask how it is with the first level of the polynomial
time hierarchy and sparse sets. Does the following proposition hold: P = NP

if and only if P
S = NP

S for every sparse set S? This is probably hard to prove.
Theorem 3.6 shows the existence of the sparse oracle B with P

B 6= NP
B.

Proving the foregoing proposition would immediately separate P from NP.
On the other hand, showing P

S = NP
S for some sparse set S would collapse

the polynomial time hierarchy PH = Θp
2.

Definition 3.11 ([LS86]) For a set A, define function enumA(0n) which
returns the characteristic function of A≤n.

Theorem 3.12 ([LS86]) P = NP if and only if P
T = NP

T for every T such
that enumT ∈ PF

T .

Proof The if part is obvious since for an empty set enum∅ is clearly in PF
∅ =

PF. Only if part. Take an arbitrary L ∈ NP
T , then there is a nondeterministic

polynomial time Turing machine with an oracle such that L = L(M, T). Let
p be the polynomial which bounds the running time of M . We describe the
machine in P

T which recognizes L. Denote by M ′ the Turing machine that
works exactly the same as M , but instead of the oracle uses the characteristic
function of the oracle set on one of its working tapes. The language accepted
by M ′ is in NP, and therefore in P by the assumption P = NP. Consider
the machine N on input of length n. First of all, N computes enumT (0p(|n|))
with the help of the oracle T . Afterwards, N simulates the machine M ′ with
initial segment of T computed in the first stage. N recognizes L and belongs
to P

T . Since L is arbitrary, P
T = NP

T . 2

Clearly, enumT ∈ PF
T holds for every tally set T . That gives us the next

corollary.

Corollary 3.13 ([LS86]) P = NP if and only if P
T = NP

T for every T ∈
TALLY.

3.5. BIBLIOGRAPHICAL REMARKS 25

Note a general approach of the so-called oracle replacement. The oracle
is not too complicated and the class P is powerful enough to compute the
initial segment of its oracle (i.e. enumT ∈ P

T). The class NP is robust enough
for the oracle replacement: Instead of using the oracle T , the characteristic
function of (the needed part of) the oracle can be used.

Hartmanis extended the result from Theorem 3.12 to the oracles that
have the (desired) property that their initial segments can be computed de-
terministically in polynomial time relative to the set itself.

Theorem 3.14 ([Har83]) P = NP if and only if P
A = NP

A for every A ⊆
K[log n, nO(c)].

Finally, we prove that sets from the first level of the extended low level

hierarchy provide positive relativization of the P
?
= NP problem.

Proposition 3.15 ([BDG90]) P = NP if and only if P
A = NP

A for every
A ∈ EL1.

Proof Since the empty set is in EL1, the if implication is immediate. Only
if implication. Suppose P = NP and A ∈ EL1. By the definition of EL1,
NP

A ⊆ P
A⊕SAT . But if P = NP, the answer for the oracle queries to SAT can

be computed in polynomial time, and hence P
A⊕SAT = P

A. Thus NP
A ⊆ P

A.
2

3.5 Bibliographical remarks

We have surveyed some basic facts from the theory of relativization. Many
results are presented in [BDG90] and [HO02], where the reader can find many
references. All involved concepts, namely relativization, separation, the Ran-
dom oracle hypothesis, the relativizing principle and positive relativization,

do not concern only the P
?
= NP problem. All of them have been used in

many other problems concerning relationships among complexity classes.
Vereshchagin [Ver94] observed that all constructions of the separating

oracles have two parts: Standard diagonalization and the combinatorial part
which allows to perform the diagonalization. In his work, he introduced a
general framework for the construction of the separating oracles.

Hartmanis [Har83] proved Theorem 3.6 (the existence of the separating

oracle relative to the P
?
= NP problem) in terms of Kolmogorov complexity.

Balcázar, Book, and Schöning [BBS86], using a different technique than
[LS86], showed that sparse sets yield positive relativization of particular levels

26 CHAPTER 3. RELATIVIZATION

of the polynomial time hierarchy. Moreover, they showed that sparse sets
provide the relativizing principle for (non)collapse of the polynomial time
hierarchy and for equality of the polynomial time hierarchy and PSPACE .

Both Balcázar, Book, and Schöning [BBS86] and Long and Selman [LS86]
presented positive relativizations of other complexity classes with sparse sets.

Using the oracle replacement approach, Köbler et al. [KSTT89] showed
that sparse sets provide positive relativization of relationships between com-
plexity classes concerning the number of accepting computations paths.

Long [Lon85] compared restricting the density of the oracle (sparse sets)
with restricting the access to the oracle (polynomial number of queries in the
whole computation tree of nondeterministic computation).

Bovet, Crescenzi, and Silvestri [BCS95] presented a connection between
oracles and leaf languages. Their concept of a leaf language is a machine
independent characterization of complexity classes by a pair of languages.
Their work refines oracle replacement and generalizes all previously known
results and besides that gives us some new ones.

[All90], [For94], [HCCC+] are devoted to discussions about relativization.
[HZR95] is an open-questions paper in the theory of relativization.

Chapter 4

Collapsing Oracles

In this chapter, we investigate properties of the oracles relative to which
P = NP.

Definition 4.1 (Class of collapsing oracles)

X = {A | P
A = NP

A}.

First of all, we show a connection between the P
?
= NP problem and the

class X .
Next we show basic structural properties of X concerning reductions,

boolean operations and the question of density.
Then we show which sets belong to X . We show that complete problems

for the polynomial time hierarchy belong to X if and only the if the polyno-
mial time hierarchy collapses. We present the known results about complete
sets for deterministic/nondeterministic exponential time/space complexity
classes which belong to X . This allows us to show that X is not closed un-
der ≤p

m-reductions downward. We strengthen results concerning exponential
classes to double exponential classes, triple exponential classes and so on.
Then we consider subexponential classes. We show that one of those classes
does not have complete problems under polynomial time reductions. We also
show that if this class has a complete problem under any reductions, then it
has a complete problem which is not in X .

Further, we show the known result that hard problems of complexity
classes whose complete problems belong to X do not generally belong to X .
We conclude that X is not closed under ≤p

m-reductions upward.
We present two characterizations of the class X . The first one claims

that sets from X are those which are hard for NP relativized to the set itself.
The second one shows that sets from X are exactly those which lie in the

27

28 CHAPTER 4. COLLAPSING ORACLES

intersection of the first level of the extended low and the zeroth level of the
extended high hierarchy

Next we show that X is not closed under any of these boolean operations:
intersection, union and symmetric difference.

Then we investigate the relationship between X and the extended hier-
archies.

Finally, we consider sets reducible to X and mention a few open problems
and related results.

4.1 P
?
= NP problem in terms of X

First we show that the P
?
= NP problem is equivalent to the membership

of certain sets to X . Sets that are concerned are those that give a positive

relativization of the P
?
= NP problem.

Theorem 4.2 The following statements are equivalent:

1. P = NP.

2. ∅ ∈ X .

3. (∃A ∈ P)[A ∈ X].

4. (∀A ∈ P)[A ∈ X].

5. (∀T ∈ TALLY)[T ∈ X].

6. (∀A s.t. enumA ∈ PF
A)[A ∈ X].

7. (∀A ⊆ K[log n, nO(c)])[A ∈ X].

8. (∀A ∈ EL1)[A ∈ X] (i.e. NP
A ⊆ P

A⊕SAT).

Proof Statement (1) is equivalent with the statements (2) to (8), because
of the definition of X , the fact that P

P = P and NP
P = NP, Corollary 3.13,

Theorem 3.12 and 3.14 and Proposition 3.15 respectively.
Note that example of set A in (6) is an exponential padding of an arbitrary

set. 2

4.2 Basic properties of X

Here we present some basic structural properties of X which mostly follow
from known results from the relativization theory.

First we show that X is neither empty nor contains all languages.

4.2. BASIC PROPERTIES OF X 29

Proposition 4.3 X is neither the empty class (X 6= ∅) nor the class of all
sets.

Proof Nonemptiness follows from Theorem 3.3. The second statement
follows from Theorem 3.6. 2

Further we present the result that X is small by means of the measure
theory (see Theorem 3.10).

Proposition 4.4 ([BG81]) µ(X) = 0.

Note that this is a non-trivial result! But µ({X ∩ computable}) = 0 is
trivial because even µ({A | A computable}) = 0. Mehlhorn [Meh73] showed
that {X ∩ computable} is effectively meager.

Simple switching the answers from the oracle yields next result.

Proposition 4.5 X is closed under complements.

Next we show that X is closed under Turing equivalences and conse-
quently under many other computational weaker reductions and under poly-
nomial time isomorphisms.

Proposition 4.6 X is closed under ≡p
T .

Proof Let A ∈ X , A ≡p
T B and L ∈ NP

B be arbitrary. Since B ≤p
T A,

L ∈ NP
A and by assumption, L ∈ P

A. From A ≤P
T B, L ∈ P

B. Since L is
arbitrary, NP

B ⊆ P
B, and B ∈ X . 2

Later on we show that X is closed under many-one reductions neither
downward nor upward.

Afterwards we also show that X is not closed under unions, intersections
and symmetric differences. Now we prove that if X was closed under unions
(or intersections or symmetrical differences), it would mean that P = NP.

Proposition 4.7 If X is closed under unions, or intersections or symmetric
differences then P = NP.

Proof
From Proposition 4.3 consider an arbitrary L ∈ X . From Proposition 4.5

coL is also in X and clearly L and coL are disjoint. L∪coL = Σ∗, L∩coL = ∅
and L4coL = Σ∗. By assumption, ∅ or the set of all words Σ∗ belongs to X .
Both of these sets belong to P and Theorem 4.2 (3) finishes the proof. 2

We do not know whether X is closed under disjoint unions or not.
An interesting property concerning many problems is the question of den-

sity. Sparse sets, i.e. sets that have only polynomial many words of given

30 CHAPTER 4. COLLAPSING ORACLES

length, play an important role in many areas of structural complexity. As
mentioned in Section 3.4, sparse set in X would collapse the polynomial time
hierarchy PH = Θp

2. Because we do not suppose a collapse of the polynomial
time hierarchy, we do not expect sparse sets in X .

4.3 Inside of X

What sets are in X ? We saw in Theorem 4.2 that in some sense “computable
simple” sets (like sets from P, tally sets, sets from the first level of the ex-
tended low hierarchy and others) are in X if and only if P = NP. It is widely
believed that P 6= NP and therefore we do not suppose these sets to be in X .

In next sections, we present results about other sets and their relation-
ships with X . First we show that the sets from the polynomial time hierar-
chy are in X if and only if the polynomial time hierarchy collapses. Then we
show that complete sets for all standard, i.e. deterministic/nondeterministic,
time/space, exponential complexity classes belong to X . After that we
strengthen results about exponential complexity classes to double, triple and
so on exponential classes. At the end, we investigate some classes which lie
between polynomial and exponential complexity classes.

4.3.1 Polynomial time

First of all, we show that sets from the polynomial time hierarchy are in X
if and only if the polynomial time hierarchy collapses. It is the same case as
the one mentioned in the previous paragraph. The polynomial hierarchy is
believed to be infinite, so we do not suppose sets from the polynomial time
hierarchy to be in X .

This proposition is given in [BDG88] as an exercise.

Proposition 4.8 ([BDG88]) The following statements are equivalent:

1. (∃A ∈ PH)[A ∈ X].

2. (∃A ∈ PH)[PH
A collapses].

3. (∀A ∈ PH)[PH
A collapses].

4. PH collapses.

Proof
”1 ⇒ 2”:
If there exists A ∈ PH with P

A = NP
A, then PH

A collapses to the first
level PH

A = Σp,A
1 = NP

A.

4.3. INSIDE OF X 31

”2 ⇔ 3 ⇔ 4”:
From ∅ ≤p

T A, Σp
1 = Σp,∅

1 ⊆ Σp,A
1 ⊆ Σp

k+1 for A ∈ Σp
k. Further, Σp,A

1 = Σp
k+1

for A ∈ Cp
T (Σp

k) .
By mathematical induction over i, we obtain for all i that Σp,A

i ⊆ Σp
k+i ⊆

Σp,A
k+i for all A ∈ Σp

k and Σp,A
i = Σp

k+i for all A ∈ Cp
T (Σp

k). Hence, if Σp,A
i =

Σp,A
i+1 = PH

A for some A ∈ Σp
k, then Σp

k+i = PH, and if Σp
k = PH, then

Σp,A
k+i = PH

A for all A ∈ Σp
i and all i.

”4 ⇒ 1”:
Let PH = Σp

k. Take an arbitrary A ∈ Cp
T (Σp

k). Then NP
A = Σp

k+1 =
∆k+1 = P

A. 2

4.3.2 Exponential deterministic time

Next lemma states a well known simulation of nondeterministic computation.
This allows us to show that complete problems for deterministic exponential
time complexity classes belong to X .

Lemma 4.9 (folklore) Let A ∈ DTIME[t(n)] and DTIME[2nO(c)
t(nO(c))] ⊆

P
A. Then A ∈ X .

Proof Take an arbitrary L ∈ NP
A. We show that L ∈ P

A. Since L ∈ NP
A,

there exists a nondeterministic polynomial time Turing machine M with an
oracle such that L = L(M, A). Let p(n) be the polynomial which bounds the
running time of M on input of length n. We can simulate computation of M
by depth-first search in the computation tree of M . For input of length n, this
tree has depth p(n) and at most cp(n) branches for a constant c. Therefore,
the simulation can be performed deterministically in time O(cp(n)p(n)). Since
p(n) ≥ n, we can rewrite this as O(2q(n)) for some polynomial q(n). We
also have to take into account the oracle queries whose length is bounded
by p(n). Together, we get a deterministic simulation which works in time

O(2nO(c)
t(nO(c))). From DTIME[2nO(c)

t(nO(c)] ⊆ P
A, it follows that L ∈ P

A,
and thus P

A = NP
A. 2

Corollary 4.10

1. Cp
T (DEXT) ⊆ X .

2. Cp
T (EXP) ⊆ X .

Proof

1. Take an arbitrary A ∈ Cp
T (DEXT), i.e. A ∈ DTIME[2cn] for a constant

c. Clearly, O(2nc12cnc2) = O(2nc3) for some constants c1, c2 and c3.
Clearly, DTIME[2nc3] ⊆ EXP. Applying the previous Lemma 4.9 with
Remark 2.23 (2) prove the first statement.

32 CHAPTER 4. COLLAPSING ORACLES

2. Take an arbitrary A ∈ Cp
T (EXP), i.e. A ∈ DTIME[2nc

] for a constant
c. Clearly, O(2nc12nc2) = O(2nc3) for some constants c1, c2 and c3.
Clearly, DTIME[2nc3)] ⊆ EXP. Applying Lemma 4.9 finishes the proof.

2

Using the just presented result that complete problems for DEXT belong to
X , we can prove that X is not closed under many-one reductions downward.

Theorem 4.11 X is not closed under ≤p
m downward (A ≤p

m B and
B ∈ X 6⇒ A ∈ X).

Proof By Theorem 3.6, there exists B 6∈ X and by Theorem 3.7,
B ∈ DEXT. For an arbitrary A ∈ Cp

m(DEXT), B ≤p
T A and by Corollary

4.10 (1), A ∈ X . 2

A simple corollary is that X can not be closed downward under stronger
reductions than many-one, for example bounded truth-table, truth-table and
Turing reductions.

4.3.3 Exponential nondeterministic time

The case of the nondeterministic exponential time complexity class is not so
obvious as its deterministic counterpart.

Consider an arbitrary L ∈ NP
NEXT via the machine M . The deterministic

simulation of computation of the machine M which is used in Lemma 4.9

has complexity O(2nO(c)
22nO(c)

) which is not in NEXP much less in NEXT.
Hemachandra [Hem89] presented a much smarter strategy how to sim-

ulate computation of M . He showed that P
NEXT can construct increasingly

accurate partial census information about the number of yes responses that
NEXT makes to queries from NP in NP

NEXT computation.
By showing that P

NEXT = NP
NEXT, Hemachandra proved that the strong

exponential hierarchy collapses to its second level, SEH = ∆SEH
2 = P

NEXT.
This result gives us an analogy of Corollary 4.10 for nondeterministic

case. NEXP case is obtained by a padding argument. We do not proof the
next theorem now, but we present the proof technique later for obtaining a
more general result.

Theorem 4.12 ([Hem89])

1. Cp
T (NEXT) ⊆ X .

2. Cp
T (NEXP) ⊆ X .

4.3. INSIDE OF X 33

4.3.4 Polynomial and exponential space

The first sets known to belong to X are complete problems for PSPACE (see
Theorem 3.4).

By the same technique (the simple simulation of nondeterministic com-
putation), which is used in the previous sections, we can prove that complete
problems for exponential space complexity classes belong to X also.

Lemma 4.13 (folklore) Let A ∈ DSPACE[s(n)] and DSPACE[nO(c) +
s(nO(c))] ⊆ P

A. Then A ∈ X .

Proof Take an arbitrary L ∈ NP
A. We show that L ∈ P

A. Since L ∈ NP
A

there exists a nondeterministic polynomial time Turing machine M with an
oracle A such that L = L(M, A). Let p(n) be the polynomial which bounds
the running time of M on input of length n. Note that p(n) also bounds space
used by M on every input of length n because any branch of nondeterministic
computation does not have time to use more space than its working time.
We can simulate computation of M by depth-first search in the computation
tree of M . For input of length n, every branch of the computation tree
has space complexity O(p(n)) and there are at most cp(n) branches for a
constant c. Therefore, the simulation of all branches can be performed in
deterministic space O(p2(n)) (it can be performed in space O(p(n)), but
we do not need it since the estimate is polynomial). We also have to take
into account oracle queries, which can be at most p(n) long. Together, we
get a deterministic simulation working in space O(nO(c) + s(nO(c))). From
DSPACE[nO(c) + s(nO(c))] ⊆ P

A, it follows that L ∈ P
A, and thus P

A = NP
A.

2

Corollary 4.14

1. Cp
T (PSPACE) ⊆ X .

2. Cp
T (DEXTSPACE) ⊆ X .

3. Cp
T (EXPSPACE) ⊆ X .

Proof

1. Take an arbitrary A ∈ Cp
T (PSPACE), i.e. A ∈ DSPACE[nc] for a con-

stant c. Clearly, O(nc1 + (nc2)c) = O(nc3) for some constants c1, c2

and c3. Clearly, DSPACE[nc3] ⊆ PSPACE. Lemma 4.13 proves the first
statement.

2. Take an arbitrary A ∈ Cp
T (DEXTSPACE), i.e. A ∈ DSPACE[2cn] for some

a c. Clearly, O(nc1 + 2cnc2) = O(2nc3) for some constants c1, c2 and
c3. Clearly, DSPACE[2nc3] ⊆ EXPSPACE. Space analogy of Remark 2.23
(2) (padding of EXPSPACE problems to DEXTSPACE) and Lemma 4.13
prove the second statement.

34 CHAPTER 4. COLLAPSING ORACLES

3. Take an arbitrary A ∈ Cp
T (EXPSPACE), i.e. A ∈ DSPACE[2nc

] for a
constant c. Clearly, O(nc1 +2(nc2)c

) = O(2nc3
) for some constants c1, c2

and c3. Clearly, DSPACE[2nc3] ⊆ EXPSPACE. Lemma 4.13 finishes the
proof.

2

In space complexity classes, the nondeterministic case is not interesting
because before mentioned classes PSPACE, DEXTSPACE and EXPSPACE are
closed under nondeterminism because of Savitch Theorem 2.11.

4.3.5 Beyond exponential classes

We can strengthen the previous results, by the same technique, to the com-
plete problems for double, triple and so on exponential complexity classes.

Definition 4.15 For natural number k ≥ 1, define:

1. exp1 = ∪c{f | f = O(2nc

)}.

2. expk+1 = ∪g{f | f = O(2g) ∧ g ∈ expk}.

Definition 4.16 For natural number k ≥ 1, define:

1. EXPk = ∪f{DTIME[f(n)] | f ∈ expk}.

2. NEXPk = ∪f{NTIME[f(n)] | f ∈ expk}.

3. EXPSPACEk = ∪f{DSPACE[f(n)] | f ∈ expk}.

Clearly, EXP1 = EXP, NEXP1 = NEXP and EXPSPACE1 = EXPSPACE.
In case of deterministic time complexity classes, the strengthening is easy.

The same simulation of nondeterministic computation that is used in proof
of Corollary 4.10 gives us next result.

Theorem 4.17 For natural number k ≥ 1, Cp
T (EXPk) ⊆ X .

Proof For fixed k ≥ 1, take an arbitrary A ∈ Cp
T (EXPk), i.e. A ∈

DTIME[f(n)] for f ∈ expk, and DTIME[f ′(n)] ⊆ P(A) for every f ′(n) ∈ expk.
Clearly, 2nc1f(nc2) = O(f ′(n)) for some constants c1 and c2 and some
f ′(n) ∈ expk. Lemma 4.9 finishes the proof. 2

In case of space complexity classes, it is very similar.

Theorem 4.18 For natural number k ≥ 1, Cp
T (EXPSPACEk) ⊆ X .

4.3. INSIDE OF X 35

Proof For fixed k ≥ 1, take an arbitrary A ∈ Cp
T (EXPSPACEk), i.e. A ∈

DSPACE[f(n)] for f ∈ expk, and DSPACE[f ′(n)] ⊆ P(A) for every f ′(n) ∈
expk. Clearly nc1 +f(nc2) = O(f ′(n)) for some constants c1 and c2 and some
f ′(n) ∈ expk. Lemma 4.13 finishes the proof. 2

The situation is more difficult in case of nondeterministic time complexity
classes. As mentioned in Section 4.3.3, presenting Theorem 4.12, a simple
simulation of the nondeterministic Turing machine is not sufficient. We de-
scribe the technique of Hemachandra ([Hem89]), which is used in the proof
of Theorem 4.19.

Consider the computation tree of a machine from NP
NEXT. The idea is that

the machine from P
NEXT can compute the number of query strings receiving

yes answers from the oracle at each level of the computation tree.

We can not simply compute the number of yes answers at some level in
the tree. To even know which string are queried at a particular level, we
must primarily know the answers to queries at the previous levels of the
computation tree. So, we have to proceed gradually, first of all compute the
number of yes responses at the first level of the tree. Using this information,
we can compute the number of yes responses at the second level of the tree
and so on. At each level, we use knowledge of the previous levels to help us
binary search for the number of yes responses at the current level.

A typical example of foregoing computation is this one: We already know
that the computation tree has exactly 1, 0, 2, 3 yes responses at levels 1, 2,
3, 4 and between 4 and 8 at level 5. Our machine (from P) asks the oracle
(from NEXP) this question: Given input x and assuming 1, 0, 2, and 3 are
the correct numbers of yes answers at levels 1, 2, 3, and 4, are there at least
6 yes strings at level 5?

This question can be answered by NEXP machine: It guesses the first five
levels of computation tree, checks that the tree corresponds to the considered
NP machine, checks that guessed yes queries are really in NEXP (by guessing
the proofs), checks that there are 1, 0, 2, 3 yes responses at levels 1, 2, 3, 4
and at least 6 yes responses queried at level 5.

Finally, we know the number of yes responses at each level. The final
query of the machine from P to its NEXT oracle is about acceptance of the
input word.

Note that the machine from P can remember just the number of yes
responses at each level of computation tree. There is no way of how the
polynomial time machine could remember all the queries, whose number
may be exponential at a single level.

Theorem 4.19 For natural number k ≥ 1, Cp
T (NEXPk) ⊆ X .

36 CHAPTER 4. COLLAPSING ORACLES

Proof For fixed k ≥ 1, we show that P
NEXPk = NP

NEXPk . Consequently,
P

U = NP
U for U ∈ Cp

T (NEXPk).
Take an arbitrary L ∈ NP

NEXPk . Then there exists a nondeterministic
Turing machine M1 with an oracle such that its running time is bounded
by f(n) ∈ expk and there exists a nondeterministic polynomial time Turing
machine M2 with an oracle such that L = L(M2, L(M1)). Let denote by
L′ the language accepted by the machine M1, i.e. L′ = L(M1). Then L =
L(M2, L

′). Let p(n) be the polynomial which bounds the running time of
the machine M2. Consider the computation tree of the machine M2 with the
oracle L′. We refer to it later as to the computation tree. Since the running
time of M2 is bounded by p(n), its computation tree on input of length n
has at most p(n) levels and at each level M2 asks at most 2p(n) queries which
are at most p(n) long.

We describe a nondeterministic Turing machine M3 such that L(M3) ∈
NEXPk and a deterministic polynomial time Turing machine M4 such that
L = L(M4, L(M3)).

We define M3 so that L(M3) fulfils following:
L(M3) = {〈final, x, c1, c2, . . . , cl〉 | There exist sets C1, C2, . . . , Cl of strings

such that:

1. |Ci| = ci and
⋃

i Ci ⊆ L′, 1 ≤ i ≤ l.

2. If we simulate M2 on input x, answering each oracle query q at level i
of computation tree with a yes response ⇔ q ∈ Ci, then each y in Ci is
actually queried at level i in this simulation for every 1 ≤ i ≤ l.

3. If final is 1, there is an accepting path in the simulation mentioned in
2 above}.

Define (nondeterministic) Turing machine M3 such that on input x′:

1. If the input word x′ is not a form of 〈final, x, c1, c2, . . . , cl〉, then reject.
Otherwise, denote by n = |x|.

2. If l > p(n) or ci > 2p(n) for some i, 1 ≤ i ≤ l, then reject.

3. For every i, 1 ≤ i ≤ p(n), nondeterministically guess the set Ci of at
most 2p(n) words of length up to p(n).

4. If there is some i, 1 ≤ i ≤ l, such that |Ci| 6= ci, then reject.

5. For every i, 1 ≤ i ≤ p(n), for every word w ∈ Ci, m = |w|, do the
following:

(a) Nondeterministically guess p, the proof string of length up to
f(m).

4.3. INSIDE OF X 37

(b) Simulate M1 on input w in such way that in the i-th step of the
simulation, use the i-th bit of the string p to choose the next state.
Continue with the simulation until M1 accepts or rejects.

(c) If M1 accepts, then stop the simulation of M1 and we continue in
Step 5 with another word w.

(d) If M1 rejects, then reject.

6. Simulate M2 on input x by depth-first search of its computation tree
until M2 asks the oracle a word w or the simulation enters a leaf of the
computation tree.

7. If the simulation enters a leaf, then check whether it is an accepting
or rejecting leaf. If it is an accepting leaf, then remember the visiting
accepting leaf.

8. If M2 asks the oracle a word w in the simulation at the i-th level of
the computation tree, then the answer is yes if and only if w ∈ Ci. If
w ∈ Ci, then remember that the word w ∈ Ci was queried. We continue
on the simulation in Step 6.

9. If there is a i, 1 ≤ i ≤ l, and w ∈ Ci such that w was not queried in
the simulation of M2, then reject.

10. If final is 0, then accept.

11. If final is 1, then accept if and only if an accepting leaf was reached
during the simulation of M2 in Step 7.

Note that the language L(M3) accepted by the machine M3 fulfils the
conditions imposed on L(M3) above. Now we consider the complexity of
L(M3).

Claim 1 L(M3) ∈ NEXPk.

Running time of M1 is bounded by f ∈ expk, i.e. f is a form of 22..
2q(n)

for some polynomial q(n) and there are at most k powers of 2. Let us define
polynomial r(n) = q(p(n))2, and let f ′(n) ∈ expk be the same form as f(n)
only q(n) is replaced by r(n) at the top of k powers of 2. We show that
L(M3) ∈ NTIME[f ′(n)].

Suppose input x′ of length n.
Step 1 can be performed in time O(n) = O(f ′(n)).
Step 2 can be performed in time O(p(n)) = O(f ′(n)).
Step 3 can be performed in time O(p2(n)2p(n)) = O(f ′(n)).
Step 4 can be performed in time O(p(n)2p(n)) = O(f ′(n)).

38 CHAPTER 4. COLLAPSING ORACLES

Steps 5a - 5d are performed at most p(n)2p(n) times.
Step 5a can be performed in time O(f(m)), m = O(p(n)), which is

O(f(p(n))).
Steps 5b - 5d together consume the time corresponding to the computa-

tion of M1 on input of length m = O(p(n)). Since the running time of M1 is
bounded by f(n), Steps 5b - 5d consume time O(f(p(n)).

Together, Steps 5a - 5d can be performed in time
O(p(n)2p(n)f(p(n))f(p(n))) = O(f ′(n)).

Since the running time of M2 is bounded by p(n), Steps 6 - 9 can be
performed in time O(2p(n)) = O(f ′(n)).

Steps 10 - 11 can be performed in time O(1) = O(f ′(n)).
Therefore, the running time of M3 is bounded by f ′(n). Since f ′(n) ∈

expk and NTIME[f ′(n)] ⊆ NEXPk, Claim 1 is proved. 2

Define the (deterministic) Turing machine M4 such that on input x of
length n:

1. Let i = 1 and s = λ (empty string).

2. Let k = 0 and l = 2p(n).

3. If k + 1 = l, then go to Step 5.

4. Let m = b(k + l)/2c and q = 〈0, x, s, m〉.
Ask the oracle for a word q.
If the answer is yes, then let k = m. Otherwise, let l = m.
Go to Step 3.

5. Let q = 〈0, x, s, l〉.
Ask the the oracle for a word q.
If the answer is yes, then let ci = l. Otherwise, let ci = k.

6. Increase i and let s = c1, c2, · · · , ci−1.
If i ≤ p(n), then go to Step 2.

7. Let q = 〈1, x, c1, c2, . . . , cp(n)〉.
Ask the oracle for word a q.
Accept if and only if the answer is yes.

Claim 2 L = L(M4, L(M3)).

Proof First note that M4 is a deterministic polynomial time Turing ma-
chine with an oracle. Consider an input word of length n. For every i,
1 ≤ i ≤ p(n), M4 computes by standard binary search method the number
of yes responses at the i-th level of the computation tree of the machine M2.
In the i-th stage, binary search takes time O(log 2i−1) = O(i). Since there is
p(n) stages, M4 works in time O(p(n)2), i.e. in polynomial time.

4.3. INSIDE OF X 39

It remains to show that with the oracle L(M3), M4 accepts L.
An important observation is that if c0, c1, . . . , ci−1 are correct, then we

find correct ci. This is because some branch of nondeterminism computation
in L(M3) will guess the true yes strings C0, C1, . . . , Ci−1.

On the other hand, if some branch of computation in L(M3) does not
guess sets C0, C1, . . . , Ci−1 correctly, then it will not accept. Let us say the
branch guess sets C ′

0, C
′
1, . . . , C

′
i−1 such that |Cj| = |C ′

j| = cj, 1 ≤ j ≤ i − 1,
and let m be the minimal i ≤ j − 1 such that Cm 6= C ′

m. Then there is
a string w ∈ C ′

m which is not a yes string in the computation tree of M2.
Since C ′

i are correct at levels 1, 2, . . . , m − 1, the strings queried at level m
in the simulation are exactly those queried at level m in the computation
tree. Thus, the condition 1 imposed on L(M3) is violated and this branch
will not accept. If w is not queried at level m, then the condition 2 imposed
on L(M3) is violated and this branch will not accept.

After the last p(n)-th stage, we know the correct values c1, c2, . . . , cp(n)

and M4 accepts if and only if the oracle answers yes for query
〈1, x, c1, c2, . . . , cp(n)〉, which means M2 accepts with the oracle L′. 2

(Theorem 4.19) 2

4.3.6 Between polynomial and exponential

In the previous sections, we see that complete problems for strong (i.e. ex-
ponential and above) complexity classes belong to X . On the other hand,
we do not know about complete problems for the polynomial time hierarchy.
This section investigates how it is with complete problems for complexity
classes which lie between polynomial and exponential complexity classes.

First of all, we strengthen the result of Theorem 3.6 and Theorem 3.7.
Recall Theorems 3.6 and 3.7 which state existence of an oracle B ∈ DEXT

such that B 6∈ X .
Consider the enumeration {Mi}i≥1 from Fact 2.27.
Recall that ≤b

a, for appropriate strings a and b, denotes reduction. In case
b is equal to p, ≤p

a denotes polynomial time reduction whose type is deter-
mined by string a (f.e. ≤p

m stands for polynomial time many-one reduction
and ≤p

T stands for polynomial time Turing reduction).

Theorem 4.20 Let F be a class of functions. Let C = ∪f∈FDTIME[f] be
a complexity class. If C has a complete problem U ∈ DTIME[f] under ≤p

a,
f ∈ F non-decreasing, and f(n) = log n

∑log n

i=1 [pi(n)f(pi(n))] ∈ F , then C
has a complete problem V under ≤p

a with V 6∈ X .

Proof We show the construction of the oracle V that is complete for C and
V 6∈ X .

40 CHAPTER 4. COLLAPSING ORACLES

On words of even length, we encode U to ensure that V is hard for C .
On words of odd length, we diagonalize against P

V in the same way we do
in the proof of Theorem 3.6.

We construct V in stages. Denote by k(n) an increasing sequence of odd
natural numbers: k(n) is the length of word which is used in the n-th stage
to ensure that Mn does not accept L(V). After n stages, we denote the so
far constructed oracle set by Vn−1. In the n-th stage, we add at most one
word of length k(n) to ensure that L(V) 6= L(Mn, V). So, all words of length
smaller than or equal to k(n) are decided after the n-th stage. We show
that either 0k(n) ∈ L(Mn, V) and V ∩ Σ=k(n) = ∅, or 0k(n) 6∈ L(Mn, V) and
V ∩Σ=k(n) 6= ∅. Figure 4.1 presents the n-the stage in the construction of V .
The final oracle V = ∪nVn.

stage 0:
k(0) = 0
V0 = {uu | u ∈ U}

stage n:
Let k(n) be the smallest odd natural number such that

k(n) > pn−1(k(n − 1)) and pn(k(n)) < 2k(n).
If 0k(n) ∈ L(Mn, Vn−1) then Vn = Vn−1.
If 0k(n) 6∈ L(Mn, Vn−1) then Vn = Vn−1 ∪ {y(n)},
where y(n) is the first word, in lexicographic order, of length k(n)
such that y(n) is not queried in the computation of Mn on input 0k(n)

with the oracle Vn−1.
Figure 4.1 Construction of V ∈ X with U ≤p

m V .

From the condition on k(n), an appropriate word y(n) of length k(n)
always exists if needed. There are 2k(n) words of length k(n) and pn(k(n)) <
2k(n).

The condition on k(n) also ensures that k(n) is long enough not to disturb,
by possible adding of y(n) to V , any computation from the previous stages.
It means that 0k(n) ∈ L(Mn, Vn−1) ⇔ 0k(n) ∈ L(Mn, V). This holds for every
n. Therefore, 0k(n) ∈ L(V) ⇔ 0k(n) 6∈ L(Mn, V) for every n. That means
L(V) 6∈ P

V . Since L(V) ∈ NP
V , we obtain V 6∈ X .

4.3. INSIDE OF X 41

input x, |x| = n
if n is even and x 6= ww then

reject x
endif
if n is even and x = ww then

simulate MU on w and accept x ⇔ MU accepts w
endif
V ′ = ∅
for every m = 1, . . . , n do

i=Find(m)
if (i > 0) then

simulate Mi on input 0m

if Mi queries a word w of odd length,
then the answer is yes ⇔ w ∈ V ′

if Mi queries a word w of even length of form w = vv
then simulate MU on v,
and the answer is yes ⇔ MU accepts v
if Mi queries a word w of even length not of form w = vv
then the answer is no
if Mi rejects 0m, then V ′ = V ′ ∪ {y},
where y is the lexicographically first word of length m
which was not queried in the performed simulation
endif

endif
endfor
accepts x ⇔ x ∈ V ′

Figure 4.2 Decision algorithm for V .

From the construction of V , U ≤p
m V , i.e. V ∈ Hp

a(C). It remains to show
that V ∈ C.

Words of even length do not make problems. Since U ∈ C, U ∈ DTIME[f]
for f ∈ C, and so there exists a deterministic Turing machine MU such that
U = L(MU) and f(n) bounds its running time. We have to deal with words
of odd length, i.e. diagonalization words. Figure 4.2 describes an algorithm
for V . For input of odd length n, it constructs V ′ = V ∩ Σ≤n by performing
stages 0, 1, . . . l from Figure 4.1 such that k(l) ≤ n.

Consider time complexity of the algorithm from Figure 4.2. If input has
even length n, then we reject immediately or simulate the machine MU which
recognizes U . It takes O(f(n)) time. Suppose input has odd length n.

42 CHAPTER 4. COLLAPSING ORACLES

Note that we use the procedure Find from Figure 3.2 in order to shorten
the description of the algorithm. The procedure Find for an argument n
returns stage i ≤ n such that k(i) = n (or return 0 if such a stage does not
exist).

We call the procedure Find n times. Since Find works in linear time (see
description of the procedure Find in the proof of Theorem 3.7), this takes
time O(n2). This can be done in time O(n) by straight generating of the
sequence k(.).

We claim that the procedure Find returns nonzero value at most l = log n
times. It is sufficient to prove that k(i + 1) > 2k(i) for every i > 1. This is
proved in the same way as in the proof of Theorem 3.7. From the construction
of V (Figure 4.1), k(1) = 3 and k(2) = 5. From the condition on k(i + 1),
k(i + 1) > pi(k(i)) = k(i)i + i > k(i)2 > 2k(i) for i > 1 (note that i > 1
implies k(i) ≥ 5).

The algorithm from Figure 4.2 simulates at most l deterministic polyno-
mial time Turing machines, i.e. machines M1, . . . , Ml, on inputs of length
at most n. Recall that the running time of the machine Mi is bounded by
pi(n) = ni + i, the running time of the machine Mu is bounded by f(n) and
f(n) is non-decreasing. So, we obtain a time bound O(pi(n)f(pi(n))) for the
machine Mi.

During the simulation of the machine Mi on input Ok(i), we need to store
all queries of length k(i). This takes time O(pi(n)). After the simulation, we
need to find the word y(i) (the first word of length k(i), in lexicographical
order, which is not queried during the simulation). This can be done in time
O(npi(n) log(npi(n))), which is O(npi(n) log n). Since f is, as a time bound,
at least linear, this is O(pi(n)f(pi(n) log n).

From l ≤ log n, time complexity of the algorithm from Figure 4.2
is f(n) = log n

∑log n

i=1 [pi(n)f(pi(n))]. By assumption f(n) ∈ F , i.e.
DTIME[f(n)] ⊆ C. Hence, V ∈ C. We show before that V ∈ Hp

a(C), so
we obtain V ∈ Cp

a(C). 2

We define the hierarchy of complexity classes and further we apply The-
orem 4.20 on it.

Definition 4.21

1. For natural number k ≥ 1, Dk = DTIME[nO(logk n)].

2. DH =
⋃

k Dk.

Corollary 4.22 If DH has a complete problem under ≤p
a, then DH has a

complete problem V under ≤p
a with V 6∈ X .

4.3. INSIDE OF X 43

Proof We apply Theorem 4.20 with F = ∪c,k{n
c logk n} and C = DH. Let

the complete problem for DH belongs to DTIME[f] where f is a form of

nc logk n for some constants c and k. Consider

f(n) = log n
∑log n

i=1 [pi(n)f(pi(n))]

= log n
∑log n

i=1 [(ni + i)f(ni + i)]

≤ log n
∑log n

i=1 [(c1n
i)f(c1n

i)]

= log n
∑log n

i=1 [(c1n
i)(c1n

i)c logk(c1ni)]

≤ log n
∑log n

i=1 [(c1n)i+ci logk(c1ni)]

= log n
∑log n

i=1 [(c1n)i+ci(logk c1+ik logk n)]

≤ (log2 n)(c1n)log n+c log n(logk c1+logk n logk n)

≤ (log2 n)(c1n)c2 log2k+1 n

≤ (c1n)c3 log2k+1 n

for constants c1, c2 and c3 and n > 1.
So, f(n) is a form of O(nO(log2k+1 n)) and since DTIME[.] is closed under

O(.), f(n) ∈ F and we can apply Theorem 4.20.
Note that the exponent of logarithm changes from k to 2k + 1 (but still

constant) and this is why this proof does not work for case of Dk. Neverthe-
less, for union of all Dk, i.e. DH, it works. 2

It is not difficult to show that each level of DH has a standard complete
problem under ≤p

m-reductions: For natural number k, the complete problem
for Dk is Kk = {〈M, x〉 | M is a deterministic Turing machine that accepts

x, |x| = n, in at most nO(logk n) steps}.
On the contrary, the next proposition shows that DH does not have com-

plete problems under ≤p
T -reductions.

Proposition 4.23 DH does not have a complete problem under polynomial
time Turing reductions.

Proof By the Time Hierarchy Theorem 2.10, Di 6= Dj for i 6= j. As-
sume DH has a complete problem U under ≤p

T -reductions with U ∈ Dk.

Denote by d the constant such that U ∈ DTIME[nd logk n]. By the Time Hi-
erarchy Theorem 2.10, there exists V ∈ Dk+1 such that V 6∈ Dk. From
V ∈ DH and U is complete for DH , V ∈ P

U via the deterministic Tur-
ing machine whose running time is bounded by polynomial p(n). Therefore,

V ∈ DTIME[p(n) + p(n)d logk n)] and hence, V ∈ DTIME[nO(logk n)] which con-
tradicts the assumption that V 6∈ Dk. 2

Note that the proof of nonexistence of complete problems for DH is similar
to the proof that polynomial time hierarchy PH does not have a complete

44 CHAPTER 4. COLLAPSING ORACLES

problem unless PH collapses. In case of PH, we do not know whether it
collapses or not. In case of DH, we know it does not.

Consider the proof of Theorem 4.20 once again. We never use the fact
that the complete problem U for the class C is complete under polynomial
time reductions. We encode U on words of even length to V by doubling
the word (ww ∈ V ⇔ w ∈ U) and every reduction that is powerful enough
to double the input word can be considered in Theorem 4.20 and Corollary
4.22. Hence, if DH has a complete problem under appropriate, possibly not
polynomial, reductions, then it also has a complete problem under these
reductions does not belong to X .

Consider for example many-one reductions that can be computed in
deterministic time O(nO(logO(c) n)). Let us denote such reductions by ≤dh

m .
There is a standard complete problem for DH under ≤dh

m -reductions, namely
Kdh = {〈M, x, k〉 | M is a deterministic Turing machine that accepts x,

|x| = n, in at most nO(logk n) steps}. From Theorem 4.20, there exists a
complete problem for DH under ≤dh

m -reductions that does not belong to X .

4.4 Hard problems of complexity classes

We have seen that complete problems for strong complexity classes like for
example PSPACE, DEXT, EXP, EXPSPACE and others belong to X . Now we
show that this does not generally hold for hard problems for these classes. It
means that hardness is not sufficient for sets being in X . We use the result
by Hartmanis [Har85] which simply said states that a relativization method
can be relativized, i.e. relativization works for relativized computations too.

Lemma 4.24 ([Har85]) For every oracle C, there exists oracles A and B
such that P

C⊕A = NP
C⊕A and P

C⊕B 6= NP
C⊕B.

Proof First we prove the existence of A. Let be A = KS(C), i.e. a
standard complete problem under ≤p

m-reductions from Definition 2.30. We
want to show that P

C⊕A = NP
C⊕A.

Clearly,

P
C⊕A = P

C⊕KS(C) ⊆ NP
C⊕KS(C) ⊆ PSPACE

C⊕KS(C).

Further,

P
C⊕KS(C) = P

KS(C) = PSPACE
C

and
PSPACE

C⊕KS(C) = PSPACE
KS(C) = PSPACE

C .

4.4. HARD PROBLEMS OF COMPLEXITY CLASSES 45

It follows that in the foregoing string of inclusions all inclusions are actually
equalities.

To show the existence of B such that P
C⊕B 6= NP

C⊕B, we use standard
Baker-Gill-Solovay [BGS75] technique, but instead of diagonalization against
P we need to perform diagonalization against P

C .

Recall that L(B) = {0n | (∃x ∈ B)[|x| = n]}. Clearly, L(B) ∈ NP
B for

every B, and hence L(B) ∈ NP
B ⊆ NP

C⊕B .

Recall the enumeration {Mi}i≥1 from Fact 2.27.

We construct B in stages. Denote by k(n) an increasing sequence of
natural numbers: k(n) is the length of word which is used in the n-th stage
to ensure that Mn does not accept L(B). After n stages, we denote the so
far constructed oracle set by Bn−1. In the n-th stage, we add at most one
word of length k(n) to ensure that L(B) 6= L(Mn, C ⊕ B). We show that
either 0k(n) ∈ L(Mn, C ⊕ B) and B ∩ Σ=k(n) = ∅, or 0k(n) 6∈ L(Mn, C ⊕ B)
and B ∩ Σ=k(n) 6= ∅. Figure 4.3 presents the n-the stage in the construction
of B. The final oracle B = ∪nBn.

stage 0:
k(0) = 0
B0 = ∅

stage n:
Let k(n) be the smallest natural number such that

k(n) > pn−1(k(n − 1)) and pn(k(n)) < 2k(n).
If 0k(n) ∈ L(Mn, C ⊕ Bn−1) then Bn = Bn−1.
If 0k(n) 6∈ L(Mn, C ⊕ Bn−1) then Bn = Bn−1 ∪ {y(n)},
where y(n) is the first word, in lexicographic order, of length k(n)
such that 1y(n) is not queried in the computation of Mn on input 0k(n)

with the oracle C ⊕ Bn−1.

Figure 4.3 Construction of B such that L(B) 6∈ P
C⊕B.

From the condition on k(n), an appropriate word y(n) of length k(n) in
case (b) always exists if needed. There are 2k(n) words of length k(n) and
pn(k(n)) < 2k(n).

The condition on k(n) also ensures that k(n) is long enough not to disturb,
by possible adding of y(n) to B, any computation from the previous stages.
It means that 0k(n) ∈ L(Mn, C ⊕Bn−1) ⇔ 0k(n) ∈ L(Mn, C ⊕B). This holds
for every n. Therefore, 0k(n) ∈ L(B) ⇔ 0k(n) 6∈ L(Mn, C ⊕ B) for every n.
That means L(B) 6∈ P

C⊕B . Since L(B) ∈ NP
C⊕B , we get P

C⊕B 6= NP
C⊕B. 2

46 CHAPTER 4. COLLAPSING ORACLES

We show why the same technique does not give us a similar result for
union. Recall the construction of the separating oracle from the proof of
Lemma 4.24. A potential problem is this one: In the n-th stage we have
B(n−1) from the previous stages. We want to diagonalize against P

C∪B(n−1)

by adding of one string of particular length m to B(n−1) or leaving B(n−1)
unchanged. But there can be words of length m in C and this might cause
problems.

We can say even more. A similar result for operation union can not

hold without solving the P
?
= NP problem. Consider an alphabet Σ and

X = Σ∗, i.e. X is the set of all words over Σ. Clearly, X ∪ Y = X holds
for all Y ⊆ Σ∗. Since X is obviously in P, a result like for X exists Y such
that P

X∪Y 6= NP
X∪Y would immediately separate P from NP by Theorem

4.2. Similarly, a result like for X exists Y such that P
X∪Y = NP

X∪Y would
immediately collapse NP to P from Theorem 4.2.

The previous lemma has simple corollary: Every set can be encoded into
an oracle that is not in X , i.e. that separates P from NP relativized.

Corollary 4.25 For every oracle C, there exists an oracle D with D 6∈ X
such that C ≤p

m D.

Proof Given oracle C, take oracle B which is ensured by Lemma 4.24, i.e.
C ⊕ B 6∈ X . Desired oracle D = C ⊕ B. Clearly, C ≤p

m C ⊕ B and hence,
C ≤p

m D. 2

Finally, we can prove that not all hard problems of complexity classes
belong to X .

Theorem 4.26 Let C be a complexity class and U ∈ C b
a(C). Then, there

exists V ∈ Hb
a(C) with U ≤p

m V and V 6∈ X .

Proof By Lemma 4.24, there exists B such that U ⊕ B 6∈ X . From
U ∈ Cb

a(C), V = U ⊕ B ∈ Hb
a(C). 2

Theorem 4.27 X is not closed under ≤p
m upward (A ≤p

m B and A ∈ X 6⇒
B ∈ X).

Proof From Theorem 3.3, there exists A ∈ X . From Lemma 4.24, there
exists B such that A ⊕ B 6∈ X . 2

Simple corollary is that X cannot be closed upward under stronger re-
ductions than many-one, for example bounded truth-table, truth-table and
Turing reductions.

Let us mention a different proof of Theorem 4.27. Take an arbitrary
A ∈ X . Clearly, A ≤p

m A ⊕ L for an arbitrary L. But µ({A ⊕ L |

4.5. CHARACTERIZATION OF X 47

L arbitrary}) > 0 and that violates the statement of Proposition 4.4 which
claims µ(X) = 0.

Finally, note why the result of Corollary 4.25 is not in conflict with
the previous results that complete problems for exponential time complexity
classes belong to X .

Consider C ∈ Cp
T (EXP). By Corollary 4.25, there exists an oracle D

such that C ≤p
m D, i.e. D ∈ Hp

m(EXP), and D 6∈ X . Construction of
D from Lemma 4.24 does not ensure that D ∈ EXP (which would mean
D ∈ Cp

m(EXP)).
Consider the algorithm from Figure 4.2, which was used in the proof

of Theorem 4.20. In the simulation of the machine Mi , we have to deal
with queries of even length which encode the set U . For D we can use an
algorithm similar to the one from Figure 4.2. In the simulation of the ma-
chine Mi, we have to deal with queries which encode the set C ∈ Cp

m(EXP).
Let C ∈ DTIME[2p(n)] form some polynomial p(n). Then the complex-
ity of the above described algorithm for D is log nΣlog n

i=1 [pi(n)f(pi(n))] =
log nΣlog n

i=1 [pi(n)2p(pi(n))], which is not bounded by any function of form 2q(n)

for some fixed polynomial q(n).

4.5 Characterization of X

We have seen that complete problems for strong complexity classes belong
to X . What do these sets have in common? This section provides two char-
acterizations of the class X . First we show that sets in X are exactly those
sets A which are hard for NP

A and even for PH
A under Turing reductions.

Theorem 4.28 (Characterization of X I.) Following statements are
equivalent:

1. A ∈ X .

2. A ≡p
T K(A).

3. A ∈ Hp
T (NP

A).

4. A ∈ Hp
T (PH

A).

Proof From Lemma 3.2 (PA = NP
A ⇔ K(A) ∈ P

A) and the fact that
A ≤p

T K(A) for every A, the statements (1) and (2) are equivalent.
From Lemma 3.1 (K(A) ∈ Cp

m(NP
A)) the statements (2) and (3) are

equivalent.
The statement (4) follows from (1) and (3). In that case PH

A collapses
to the first level Σp,A

1 = NP
A.

48 CHAPTER 4. COLLAPSING ORACLES

From K(A) ∈ PH
A for every A, the statement (4) implies (2). 2

Note that from A ∈ NP
A for every A, completeness and hardness coincides

in case of NP
A. Therefore, we can replace Hp

T (NP
A) in Theorem 4.28 (3), by

Cp
T (NP

A). Similarly, with Cp
T (PH

A) in the statement (4).
Note also that K(A) can be substituted in the second statement of The-

orem 4.28 by an arbitrary problem from Cp
T (NP

A).
Another interesting characterization connects X with the extended low

and high hierarchies. First of all, we have the folloving basic observation.

Proposition 4.29 A ∈X⇒ A ∈ EL1.

Proof Let A ∈ X , i.e. P
A = NP

A. Clearly, NP
A ⊆ P

A ⊆ P
A⊕SAT . 2

Does the converse statement hold? Because sets from EL1 provide a pos-

itive relativization of the P
?
= NP problem this would immediately give a

collapse of NP to P. Showing the existence of A ∈ EL1 such that A 6∈ X
would give a separation P from NP. However, we can prove the converse
statement with additional an assumption that A is hard for NP under Turing
reductions.

Proposition 4.30 A ∈X⇔ (A ∈ EL1 ∧ SAT ≤p
T A).

Proof
”⇒” :
Let A ∈ X , i.e. P

A = NP
A. By the previous proposition A ∈ EL1. From

SAT ∈ NP
A = P

A, it follows that SAT ≤p
T A.

”⇐” :
Let A ∈ EL1 and SAT ≤p

T A. The former one means that
NP

A ≤p
T A ⊕ SAT . Since SAT ≤p

T A, we get A ⊕ SAT ≤p
T A. Together,

NP
A ≤p

T A and hence P
A = NP

A. 2

An interesting question about EL1 is whether there exists A ∈ EL1 such
that A is Turing incomparable with SAT . The just proved proposition shows
that this question is hard to solve: If such A did exist, then it would separate

P from NP because EL1 yields a positive relativization of the P
?
= NP problem.

Even showing an existence of A ∈ EL1 which is not hard for NP, i.e. SAT 6≤p
T

A, would separate P from NP.

Corollary 4.31 X is closed under disjoint unions ⇔ EL1 is closed under
disjoint unions.

Proof Note that hard sets for NP under Turing reductions are closed under
disjoint unions. Precisely, if SAT ≤p

T A and SAT ≤p
T B, then SAT ≤p

T A⊕B

4.5. CHARACTERIZATION OF X 49

(note that only one of the statements SAT ≤p
T A and SAT ≤p

T B is enough
to guarantee SAT ≤p

T A ⊕ B). Proposition 4.30 finishes the proof. 2

As we mention in Section 4.2, the class X is not known to be either closed
or not closed under disjoint unions. Equivalence from Corollary 4.31 shows
that solving the relationship between X and a disjoint union would immedi-
ately give us a relationship between EL1 and a disjoint union. Unfortunately,
this question remains still open.

Next we prove that sets in the zeroth level of the extended high hierarchy
are exactly those sets which are hard for NP.

Proposition 4.32 A ∈ EH0 ⇔ SAT ≤p
T A.

Proof
”⇒” :
If A ∈ EH0, then SAT ∈ P

A⊕SAT ⊆ P
A and hence SAT ≤p

T A.
”⇐” :
If SAT ≤p

T A, then there exists a deterministic polynomial time Turing
machine M with an oracle such that SAT = L(M, A). Consider an arbitrary
B ∈ P

A⊕SAT , then there exists a deterministic polynomial time Turing ma-
chine M1 with an oracle such that B = L(M1, A ⊕ SAT). Let us define a
Turing machine M2 such that on input x:

1. Simulate M1 on input x until M1 asks an oracle a word y or accepts or
rejects.

2. Accept whenever M1 accepts, reject whenever M1 rejects and stops.

3. If M1 asks y = 0y′, then M2 asks y′ and the answer is yes if and only if
the answer for M2 is yes and we continue on the simulation in Step 1.

4. If M1 asks y = 1y′, then we simulate M on input y and the answer is
yes exactly when M accepts y′. Then we continue on the simulation in
Step 1.

If the oracle of M2 is A, then M2 accepts B, i.e. B = L(M2, A). M2

is deterministic because M and M1 are deterministic and uses polynomial
time because both M and M1 work in polynomial time. Thus B ∈ P

A.
Assuming SAT ≤p

T A, we show that P
A⊕SAT ⊆ P

A. Therefore, A ∈ EH0 and
the statement is proved. 2

Finally, we have proved all needed propositions to present connection
between sets in X and the extended hierarchies.

Theorem 4.33 (Characterization of X II.)

A ∈ X ⇔ A ∈ EL1 ∩ EH0.

50 CHAPTER 4. COLLAPSING ORACLES

Proof Immediately from Propositions 4.30 and 4.32. 2

We investigate the relationship between X and the extended hierarchies
later.

4.6 X is not closed under ∩, ∪ and 4

In Section 4.2, we show basic structural properties of the class X . Here we
continue with more involved properties. We prove that X is not closed under
any of these operations: unions, intersections and symmetric differences.

Proofs for all three operations are similar. We formulate all of them in
one theorem. In the proof, we use the following notation.

Definition 4.34 (coding convention)

1. For a word β, let β ′ be the word β without the last symbol (bit) and let
β ′′ be the word β without the last two symbols (bits).

2. We say that a word is triplicate if it consists of a sequence of triples
where all three bits are the same (0 or 1) for each particular triple.

3. Define coding function h as follows: h(0) = 000 and h(1) = 111. We
extend this definition to the words h(a1a2 · · ·ak) = h(a1)h(a2) · · ·h(ak)
and to the sets h(B) = {α | (∃β ∈ B)[h(β) = α]}.

Consider the construction of B 6∈ X from the proof of Theorem 3.6.
Recall that L(B) = {0n | (∃x ∈ B)[|x| = n]} ∈ NP

B \ P
B, and by Theorem

3.7, B ∈ DEXT.

Theorem 4.35 X is not closed under intersections, unions and symmetric
differences.

Proof We prove that X is not closed under all three operations simulta-
neously. Take an arbitrary K ∈ Cp

m(DEXT). Our goal is to encode both sets
B and K into Xi and into Yi to ensure that Xi ∈ X and Yi ∈ X , 1 ≤ i ≤ 3
but X1 ∩ Y1 6∈ X , X2 ∪ Y2 6∈ X , X34Y3 6∈ X .

Before giving the formal definition of the sets Xi and Yi, 1 ≤ i ≤ 3, we
show the idea of the proof. It is represented by Figures 4.4 - 4.6. Figure
4.4 shows how X1 and Y1 are constructed. Both X1 and Y1 are divided into
three disjoint sections. The first section encodes the words of length 3k, the
second section encodes the words of length 3k+1 and finally the third section
encodes the words of length 3k + 2. In the first section, we encode the set
B in both X1 and Y1. The second section of X1 encodes the set K and the

4.6. X IS NOT CLOSED UNDER ∩, ∪ AND 4 51

third section of X1 is empty. The second section of Y1 is empty and the third
section of Y1 encodes the set K. The set X1 ∩ Y1 has both the second and
the third sections empty and the first section encodes the set B. It is not
difficult to show that if the set X1 ∩ Y1, which encodes the set B, was in X ,
then the set L(B) would be in P

B which is a contradiction to our choice of
B.

The same idea is used to show that X is not closed under unions. Look
at Figure 4.5. In this case the set X2 ∪ Y2 encodes the set B in the first
section and other two sections contain all words of given length. Again, is is
not difficult to show that if the set X2 ∪ Y2, which encodes the set B, was in
X , then the set L(B) would be in P

B which is a contradiction to our choice
of B.

Figure 4.6 shows the same for the case of symmetric difference.

X1

B

K

∅

∩

Y1

B

∅

K

=

X1 ∩Y1

B

∅

∅

Figure 4.4 X1, Y1 ∈ X but X1 ∩ Y1 6∈ X .

X2

B
K

coK

∪

Y2

∅
coK
K

=

X2 ∪ Y2

B
Σ∗

Σ∗

Figure 4.5 X2, Y2 ∈ X but X2 ∪ Y2 6∈ X .

X3

B

∅

K

4

Y3

∅

∅

K

=

X34Y3

B

∅

∅

Figure 4.6 X3, Y3 ∈ X but X34Y3 6∈ X .

52 CHAPTER 4. COLLAPSING ORACLES

Define the sets Xi, 1 ≤ i ≤ 3, as follows.

|β| = 3k + 0:
β ∈ Xi ⇔ (∃α ∈ B)[h(α) = β] (1 ≤ i ≤ 3)

|β| = 3k + 1:
β ∈ Xi ⇔ (∃α ∈ K)[h(α) = β ′] (1 ≤ i ≤ 2)
(∀β)[β 6∈ X3]

|β| = 3k + 2:
(∀β)[β 6∈ X1]
β ∈ X2 ⇔ (∃α 6∈ K)[h(α) = β ′′]
β ∈ X3 ⇔ (∃α ∈ K)[h(α) = β ′′]

Definition of Xi, 1 ≤ i ≤ 3, by the length of word β.

Define the sets Yi, i ≤ i ≤ 3, as follows.

|β| = 3k + 0:
β ∈ Y1 ⇔ (∃α ∈ B)[h(α) = β]
(∀β)[β 6∈ Yi] (2 ≤ i ≤ 3)

|β| = 3k + 1:
(∀β)[β 6∈ Yi] (i = 1, 3)
β ∈ Y2 ⇔ (∃α 6∈ K)[h(α) = β ′]

|β| = 3k + 2:
β ∈ Yi ⇔ (∃α ∈ K)[h(α) = β ′′] (1 ≤ i ≤ 3)

Definition of Yi, 1 ≤ i ≤ 3, by the length of word β.

Claim 1 Xi, Yi ∈ X , 1 ≤ i ≤ 3.

Proof From the definitions of Xi and Yi, K ≤p
m Xi and K ≤p

m Yi, 1 ≤
i ≤ 3. Since B ∈ DEXT and K is complete for DEXT under ≤p

m-reductions,
Xi ≤p

m K and Yi ≤p
m K, i = 1, 3. In X2 and Y2, also coK is encoded.

But since K ∈ Cp
m(DEXT), clearly coK ∈ DEXT and therefore, there exist a

≤p
m-reduction from coK to K. Hence, X2 ≤p

m K and Y2 ≤p
m K. Together,

Xi ≡
p
m K and Yi ≡

p
m K, 1 ≤ i ≤ 3. 2

Denote by B1 = X1 ∩ Y1, B2 = X2 ∪ Y2 and by B3 = X3 ∩ Y3.

Claim 2 B1 = h(B) = {α | (∃β ∈ B)[h(β) = α]}.

4.6. X IS NOT CLOSED UNDER ∩, ∪ AND 4 53

Proof From the definitions of X1 and Y1, there are no words of length
3k + 1 and 3k + 2 in B1. The only words in B1 are of length 3k. Clearly,
B1 = h(B) = {α | (∃β ∈ B)[h(β) = α]}. 2

Claim 3

B2 = {α | |α| = 3k ∧ (∃β ∈ B)[h(β) = α]}
∪ {wb | |w| = 3k ∧ b ∈ {0, 1} ∧ w is triplicate}
∪ {wb1b2 | |w| = 3k ∧ b1 ∈ {0, 1} ∧ b2 ∈ {0, 1} ∧ w is triplicate}.

Proof From the definitions of X2 and Y2, words of length 3k in B2 are
exactly those from the claim. From the definitions of X2 and Y2, words of
length 3k + 1 in B2 are {β | (∃α ∈ K)[h(α) = β ′]} ∪ {β | (∃α 6∈ K)[h(α) =
β ′]}. Those are exactly all triplicate words of length 3k with appended one
more bit at the end. From the definitions of X2 and Y2, words of length
3k + 2 in B2 are {β | (∃α 6∈ K)[h(α) = β ′′]} ∪ {β | (∃α ∈ K)[h(α) = β ′]}.
Those are exactly all triplicate words of length 3k with appended two more
bits at the end. 2

Claim 4 B3 = h(B) = {α | (∃β ∈ B)[h(β) = α]}.

Proof From the definitions of X3 and Y3, words of length 3k + 1 in B3 are
(∅∪ ∅) \ (∅∩ ∅) = ∅, i.e. there are no words of length 3k + 1 in B3. From the
definitions of X3 and Y3, words of length 3k+2 in B3 are (K∪K)\(K∩K) = ∅,
i.e. there are no words of length 3k + 2 in B3. The only words in B3 are of
length 3k. Those are h(B) = {α | (∃β ∈ B)[h(β) = α]}. 2

Claim 5 B1, B2, B3 6∈ X .

Proof From Claim 2 and 3, B1 = B3, so we need to prove only B1, B2 6∈ X .
Suppose the opposite. We show that Bi ∈ X implies L(B) ∈ P

B, 1 ≤ i ≤ 2,
which is a contradiction to our choice of B. For 1 ≤ i ≤ 2, define:

Lh(Bi) = {0n | n = 3k ∧ (∃β ∈ Bi)[|β| = n]}.

Clearly, Lh(Bi) ∈ NP
Bi , and therefore Lh(Bi) ∈ P

Bi by our assumption,
1 ≤ i ≤ 2. Hence, there exist deterministic polynomial time Turing machines
Mi with oracles such that Lh(Bi) = L(Mi, Bi), 1 ≤ i ≤ 2.

Define Turing machines M ′
1 such that on input x:

1. If input x is not a form of 0n, then reject.

2. If input x is a form of 0n, then simulate M1 on input 03n until M1 asks
an oracle a word w or accepts or rejects.

54 CHAPTER 4. COLLAPSING ORACLES

3. Accept whenever M1 accepts, reject whenever M1 rejects and stops.

4. If M1 asks w which is not a triplicate word, then the answer is no and
we continue on the simulation in Step 2.

5. If M1 asks w which is a triplicate word, then M ′
1 asks h−1(w) and the

answer is yes if and only if the answer for M ′
1 is yes and we continue

on the simulation in Step 2.

M ′
1 is deterministic because M1 is deterministic and uses polynomial time

because M1 works in polynomial time. If the oracle of M ′
1 is B, then M ′

1 ac-
cepts L(B), i.e. L(B) = L(M ′

1, B). Thus L(B) ∈ P
B, which is a contradiction

to our choice of B, so B1 6∈ X .
Define Turing machines M ′

2 such that on input x:

1. If input x is not a form of 0n, then reject.

2. If input x is a form of 0n, then simulate M2 on input 03n until M2 asks
an oracle a word w or accepts or rejects.

3. Accept whenever M2 accepts, reject whenever M2 rejects and stops.

4. If M2 asks w of length 3k, and w is not a triplicate word, then the
answer is no. Otherwise, M ′

2 asks h−1(w) and the answer is yes if and
only if the answer for M ′

2 is yes. Then we continue on the simulation
in Step 2.

5. If M2 asks w of length 3k+1, and w = vb for v triplicate and b ∈ {0, 1},
then the answer is yeas. Otherwise, the answer is no. Then we continue
on the simulation in Step 2.

6. If M2 asks w of length 3k + 2, and w = vb1b2 for v triplicate and
b1, b2 ∈ {0, 1}, then the answer is yeas. Otherwise, the answer is no.
Then we continue on the simulation in Step 2.

M ′
2 is deterministic because M2 is deterministic and uses polynomial time

because M2 works in polynomial time. If the oracle of M ′
2 is B, then M ′

2 ac-
cepts L(B), i.e. L(B) = L(M ′

2, B). Thus L(B) ∈ P
B, which is a contradiction

to our choice of B, so B2 6∈ X . Claim 5 is proved. 2

(Theorem 4.35) 2

4.7 X and the extended hierarchies

Recall Theorem 4.33, which claims A ∈ X ⇔ A ∈ EL1 ∩ EH0. From Fact
2.26, EL1 ∩ EH0 ⊆ EL1 ∩ EH1. Are there some conditions under which EL1 ∩

4.7. X AND THE EXTENDED HIERARCHIES 55

EH0 = EL1 ∩ EH1 (or EL1 ∩ EH0 6= EL1 ∩ EH1)? We show that EL1 ∩ EH0 =
EL1 ∩ EH1 provided the polynomial time hierarchy does not collapse and a
special hypothesis holds.

The next proposition connects EL1 ∩ EH1 with the class X .

Proposition 4.36 A ∈ EL1 ∩ EH1 ⇒ A ⊕ SAT ∈ X .

Proof From the definition of EL1, NP
A ⊆ P

A⊕SAT . From the definition of
EH1, NP

A⊕SAT ⊆ NP
A. Combining these facts with P

A⊕SAT ⊆ NP
A⊕SAT , we

obtain P
A⊕SAT = NP

A⊕SAT = NP
A, i.e. A ⊕ SAT ∈ X . 2

The next corollary shows that X is closed under joins with SAT .

Corollary 4.37 A ∈ X ⇒ A ⊕ SAT ∈ X .

Proof Take an arbitrary A ∈ X . From Theorem 4.33, A ∈ EL1∩EH0. From
Fact 2.26, EH0 ⊆ EH1. So, A ∈ EL1 ∩ EH1, and A⊕ SAT ∈ X by Proposition
4.36. 2

We are interested in the opposite implication. The first step is the fol-
lowing proposition.

Proposition 4.38 A ⊕ SAT ∈ X ⇒ A ∈ EL1.

Proof From A ⊕ SAT ∈ X , A ⊕ SAT ∈ EL1 ∩ EH0 by Theorem 4.33.
Since A ⊕ SAT ∈ EL1, NP

A⊕SAT ⊆ P
(A⊕SAT)⊕SAT . Clearly, P

A⊕SAT ≡p
T

P
(A⊕SAT)⊕SAT . Since NP

A ⊆ NP
A⊕SAT , NP

A ⊆ P
A⊕SAT , i.e. A ∈ EL1. 2

Corollary 4.39 A ∈ EH0 ∧ A ⊕ SAT ∈ X ⇒ A ∈ X .

Proof From assumptions and Proposition 4.38, A ∈ EH0 ∩ EL1. Therefore,
A ∈ X by Theorem 4.33. 2

From Theorem 4.33, we know that all sets from X belong to EH0. One
can ask whether the first assumption of Corollary 4.39 can be omitted, i.e.
whether holds A ⊕ SAT ∈ X ⇒ A ∈ X for every A.

Let us analyse the relationship between A and the polynomial time hier-
archy PH provided A ⊕ SAT ∈ X .

1. A ∈ PH: Since A ∈ PH, A ⊕ SAT ∈ PH. From A ⊕ SAT ∈ X and
Proposition 4.8, PH collapses.

2. A 6∈ PH and SAT ≤p
T A: Clearly, A ≤p

T A ⊕ SAT for every A. Since
SAT ≤p

T A, A ⊕ SAT ≤p
T A. Together, A ⊕ SAT ≡p

T A, and A ∈ X
from Theorem 4.6 (X is closed under ≡p

T).

56 CHAPTER 4. COLLAPSING ORACLES

3. A 6∈ PH and SAT 6≤p
T A: Since SAT 6≤p

T A, even PH 6≤p
T A. But From

Theorem 4.28, if A was in X , then A would be in Hp
T (PH

A). Therefore,
PH ⊆ PH

A ≤p
T A. That means that A can not be in X . The question

is if this case can actually happen.

Hypothesis T: There is not a set A such that A ⊕ SAT ∈ X , A 6∈ PH

and SAT 6≤p
T A. Note a special case of Hypothesis T: There is not a set A

such that A ⊕ SAT ∈ EL1 and SAT 6≤p
T A.

The foregoing analysis proves the following proposition.

Proposition 4.40 If PH does not collapse and Hypothesis T holds, then
A ⊕ SAT ∈ X ⇒ A ∈ X .

Now we can prove the main theorem of this section.

Theorem 4.41 If PH does not collapse and Hypothesis T holds, then EL1 ∩
EH0 = EL1 ∩ EH1.

Proof From Fact 2.26, the inclusion from left to right follows immediately.
We prove the inclusion from right to left. Take an arbitrary L ∈ EL1 ∩ EH1.
From proposition 4.36, L ⊕ SAT ∈ X . Assumptions of Proposition 4.40 are
fulfilled, we get L ∈ X . From Theorem 4.33, L ∈ EL1 ∩ EH0. 2

4.8 Sets reducible to X

As far as we know, Balcázar [Bal84], as the first one, proposed to investigate
the oracles relative to which P = NP. One idea mentioned in [Bal84] is to
investigate the following class.

Definition 4.42 ([Bal84])

H =
⋂

O∈X

Rp
T (O) = {L | (∀O ∈ X)[L ∈ P

O]}.

In the same paper, Balcázar claims a few simple propositions without
proofs.

Proposition 4.43 ([Bal84])

1. PH ⊆ H ⊆ PSPACE.

2. H = PSPACE ⇒ (∀Q ∈ PSPACE)[Q ∈X⇒ Q ∈ Cp
T (PSPACE)].

4.8. SETS REDUCIBLE TO X 57

Proof

1. Take an arbitrary A ∈ X , i.e. P
A = NP

A. From Theorem 4.28 (4),
PH

A ≤p
T A. Clearly, PH ⊆ PH

A and we obtain PH ≤p
T A, and so

PH ⊆ H.

Take an arbitrary complete problem Q for PSPACE under ≤p
T -reductions

(f.e. QBF). By Theorem 3.4, Q ∈ X , and obviously P
Q = PSPACE.

From the definition of the class H, H ⊆ P
Q = PSPACE.

2. Assume H = PSPACE. Take an arbitrary A ∈ PSPACE with A ∈ X .
From the definition of H, we get PSPACE = H ⊆ P

A, i.e A is hard for
PSPACE. Since A is from PSPACE, we get A ∈ Cp

T (PSPACE).

2

Regan [Reg83] also investigated the class H and proved the following
proposition.

Proposition 4.44 ([Reg83])
If PH = Σp

k for some k, then H = PH.

Proof PH ⊆ H follows from Proposition 4.43 (1). Assume PH = Σp
k. For

B ∈ Cp
m(Σp

k), P
B = NP

B = Σp
k, i.e. B ∈ X . Take an arbitrary L ∈ H. From

the definition of H, (∀A ∈ X)[L ∈ P
A]. Therefore, L ∈ P

B, i.e. B ∈ PH.
Since L is arbitrary, H ⊆ PH. 2

Corollary 4.45 H 6= PH ⇒ PH 6= PSPACE and PH does not collapse.

Proof If PH collapses, then H = PH by Proposition 4.44. If PH = PSPACE,
then PH collapses. 2

Proposition 4.46 H = PH 6= PSPACE implies the existence of an oracle
A ∈ X with P

A = NP
A (PSPACE.

Proof Since H = PH, there exists an oracle A ∈ X such that PH = P
A. 2

Conclusion of the previous proposition, i.e. the existence of an oracle
A ∈ X with P

A = NP
A (PSPACE, is an open problem. Note that a similar

problem, the existence of an oracle A such that P
A = NP

A 6= PSPACE
A, was

resolved by Ko [KO89] by using lower bounds on the size of constant depth
circuits.

Balcázar also claimed the opposite implication of Proposition 4.43 (2).
This was probably typo. Consider the “proof” of that implication, i.e. we
want to prove (∀A ∈ PSPACE)[A ∈X⇒ A ∈ Cp

T (PSPACE)] ⇒ H = PSPACE.

58 CHAPTER 4. COLLAPSING ORACLES

Suppose, the assumption of the implication holds. Take an arbitrary
L ∈ PSPACE, we want to show that L ∈ P

A for every A ∈ X . Take an
arbitrary A ∈ X . For A ∈ PSPACE, the task is simple: From the assumption,
A ∈ CP

T (PSPACE). Therefore, L ∈ P
A. Now consider A 6∈ PSPACE. We do

not know whether PSPACE ⊆ P
A. There is not known any set in X from

PSPACE which is not hard for PSPACE. There is not even known any set in
X which is not hard for PSPACE.

Note once more that the existence of a set A ∈ PH such that A ∈ X
would collapse the polynomial time hierarchy PH (Proposition 4.8). From
Corollary 4.14 (1), complete sets for PSPACE belong to X . Whether there
exists an oracle A ∈ X , A ∈ PSPACE which is not complete for PSPACE is
an open problem. What is between PH and PSPACE? Toda answered this
question: PP is polynomial time Turing hard for PH, i.e. PH ⊆ P

PP, where PP

is the class of languages accepted by probabilistic polynomial time Turing
machines (see [HO02]) and clearly PP ⊆ PSPACE. Nowadays, there is not
known whether P

PP = NP
PP or not. There is also not known any oracle A

such that P
PP

A

6= NP
PP

A

, which would mean, in some sense, a difficulty in
proving P

PP = NP
PP, i.e PP ∈ X .

Chapter 5

Separating Oracles

In this chapter, we investigate properties of the oracles relative to which
P 6= NP.

Definition 5.1 (Class of separating oracles)

Z = {A | P
A 6= NP

A}.

Note that Z is the complement of the class X , which is studied in the
previous chapter. Therefore, many properties of X pass to Z. We show that
Z is not closed under intersections, unions and symmetric differences. The
proof technique is similar to the one used for proving that X is not closed
under these operations. Unlike the case of X , where the connection with
disjoint union is open, we prove that Z is not closed under disjoint unions.
We conclude that disjoint union can lower complexity measured in terms of
extended lowness.

5.1 Basic properties of Z

Proposition 5.2

1. P 6= NP ⇔ ∅ ∈ Z ⇔ (∃A ∈ P)[A ∈ Z] ⇔ (∀A ∈ P)[A ∈ Z].

2. Z is neither the empty class nor the class of all sets.

3. µ(Z) = 1.

4. Z is closed under complements and under ≡p
T .

5. Z is closed under ≤p
m neither upward nor downward.

6. Z is closed under unions, intersection or symmetric difference ⇒
P 6= NP.

59

60 CHAPTER 5. SEPARATING ORACLES

Proof The first four statements are just a rephrasing of Theorem 4.2 and
Propositions 4.3, 4.4, 4.5 and 4.6. The statement (5) is rephrasing of Theorem
4.11 and 4.27. The last statement is proved in the same way as Proposition
4.7, by means of the foregoing propositions. 2

Concerning the question of density, the first known oracle which belongs
to Z is B from Theorem 3.6. This oracle B is obviously sparse. Even more,
for every length k there is at most one word of length k in B. It seems to
be hard to strengthen this to tally sets because tally sets yield a positive

relativization of the P
?
= NP problem (see Corollary 3.13).

5.2 Z is not closed under ∩, ∪ and 4

In this section, we prove that Z is not closed under any of these operations:
union, intersection and symmetric differences. The proof is similar to the
proof that X is not closed under the same operations.

Theorem 5.3 Z is not closed under intersections, unions and symmetric
differences.

Proof We construct sets Xi, Yi ∈ Z, 1 ≤ i ≤ 3, such that X1 ∩ Y1 6∈ Z,
X2 ∪ Y1 6∈ Z and X34Y3 6∈ Z.

Recall the coding function h from Definition 4.34. Take an arbitrary
K ∈ Cp

m(DEXT). From Corollary 4.10 (1), K ∈ X , i.e. K 6∈ Z.
Applying Lemma 4.24 on the set K, we obtain a set B such that

K ⊕ B ∈ Z. The way of how we construct the sets Xi, Yi, 1 ≤ i ≤ 3, is
represented by Figures 5.1 - 5.3.

X1

K

B

∅

∩

Y1

K

∅

B

=

X1 ∩Y1

K

∅

∅

Figure 5.1 X1, Y1 ∈ Z but X1 ∩ Y1 6∈ Z.

X2

K

B

Σ∗

∪

Y2

K

Σ∗

B

=

X2 ∪Y2

K

Σ∗

Σ∗

Figure 5.2 X2, Y2 ∈ Z but X2 ∪ Y2 6∈ Z.

5.2. Z IS NOT CLOSED UNDER ∩, ∪ AND 4 61

X3

K

∅

B

4

Y3

∅

K

B

=

X34Y3

K

K

∅

Figure 5.3 X3, Y3 ∈ Z but X34Y3 6∈ Z.

Define the sets Xi, 1 ≤ i ≤ 3, as follows.

|β| = 3k + 0:
β ∈ Xi ⇔ (∃α ∈ K)[h(α) = β] (1 ≤ i ≤ 3)

|β| = 3k + 1:
β ∈ Xi ⇔ (∃α ∈ B)[h(α) = β ′] (1 ≤ i ≤ 2)
(∀β)[β 6∈ X3]

|β| = 3k + 2:
(∀β)[β 6∈ X1]
(∀β)[β ∈ X2]
β ∈ X3 ⇔ (∃α ∈ B)[h(α) = β ′′]

Definition of Xi, 1 ≤ i ≤ 3, by the length of β.

Define the sets Yi, i ≤ i ≤ 3, as follows.

|β| = 3k + 0:
β ∈ Yi ⇔ (∃α ∈ K)[h(α) = β] (1 ≤ i ≤ 2)
(∀β)[β 6∈ Y3]

|β| = 3k + 1:
(∀β)[β 6∈ Y1]
(∀β)[β ∈ Y2]
β ∈ Y3 ⇔ (∃α ∈ K)[h(α) = β ′]

|β| = 3k + 2:
β ∈ Yi ⇔ (∃α ∈ B)[h(α) = β ′′] (1 ≤ i ≤ 3)

Definition of Yi, 1 ≤ i ≤ 3, by the length of β.

Denote Z1 = X1 ∩ Y1, Z2 = X2 ∪ Y2 and Z3 = X34Y3.
Since K ∈ Cp

m(DEXT), K 6= ∅ and coK 6= ∅. Since the complete sets
for DEXT under ≤p

m-reductions are closed under complements, K = ∅ or
coK = ∅ would imply P = DEXT, which is in contradiction with the Time
Hierarchy Theorem 2.10. Hence, we can take fixed words u ∈ K and v 6∈ K.

62 CHAPTER 5. SEPARATING ORACLES

Claim 1 Z1, Z2, Z3 ∈ Cp
m(DEXT).

Proof Recall that K ∈ Cp
m(DEXT). From the definitions of Zi, K ≤p

m Zi

via function f(x) = h(x), 1 ≤ i ≤ 3. Therefore, Zi ∈ Hp
m(DEXT).

From the definition of Z1, Z1 ≤
p
m K via function

f1(x) =

{

h−1(x), if |x| = 3k and x is triplicate
v, otherwise

From the definition of Z2, Z2 ≤
p
m K via function

f2(x) =

h−1(x), if |x| = 3k and x is triplicate
v, if |x| = 3k and x is not triplicate
u, otherwise

From the definition of Z3, Z3 ≤
p
m K via function

f3(x) =

h−1(x), if |x| = 3k and x is triplicate
h−1(y), if |x| = 3k + 1 and x is a form of yb,

y triplicate and b ∈ {0, 1}
v, otherwise

Since DEXT is closed under ≤p
m-reductions downward, i.e. L1 ≤p

m L2

and L2 ∈ DEXT imply L1 ∈ DEXT, we obtain Zi ∈ DEXT, 1 ≤ i ≤ 3.
Consequently, Zi ∈ Cp

m(DEXT), 1 ≤ i ≤ 3. 2

Corollary 1 Z1, Z2, Z3 6∈ Z.

Proof From Claim 1 and Corollary 4.10 (1), Zi ∈ X , i.e. Zi 6∈ Z, 1 ≤ i ≤ 3.
2

Claim 2 X1 ≡
p
m K ⊕ B ≡p

m Y1.

Proof From the definition of X1, K ⊕ B ≤p
m X1 via function

g1(x) =

{

h(y), if x = 0y
h(y)0, if x = 1y

Note that in case of x = 1y, g1 can be defined equivalently as g1(x) =
h(y)1.

From the definition of X1, X1 ≤
p
m K ⊕ B via function

g2(x) =

0h−1(x), if |x| = 3k and x is triplicate
1h−1(y), if |x| = 3k + 1 and x is a form of yb,

y triplicate and b ∈ {0, 1}
0v, otherwise

5.2. Z IS NOT CLOSED UNDER ∩, ∪ AND 4 63

From the definition of Y1, K ⊕ B ≤p
m Y1 via function

g3(x) =

{

h(y), if x = 0y
h(y)00, if x = 1y

Note that in case of x = 1y, g3 can be defined equivalently as g3(x) =
h(y)01, or g3(x) = h(y)10 or g3(x) = h(y)11.

From the definition of Y1, Y1 ≤
p
m K ⊕ B via function

g4(x) =

0h−1(x), if |x| = 3k and x is triplicate
1h−1(y), if |x| = 3k + 2 and x is a form of yb1b2,

y triplicate and b1, b2 ∈ {0, 1}
0v, otherwise

2

Corollary 2 X1, Y1 ∈ Z.

Proof From Claim 2 and Proposition 5.2 (4). 2

Claim 3 X2 ≡
p
m K ⊕ B ≡p

m Y2.

Proof From the definition of X2, K ⊕B ≤p
m X2 via the foregoing function

g1.
From the definition of X2, X2 ≤

p
m K ⊕ B via function

g5(x) =

0h−1(x), if |x| = 3k and x is triplicate
1h−1(y), if |x| = 3k + 1 and x is a form of yb,

y triplicate and b ∈ {0, 1}
0u, if |x| = 3k + 2
0v, otherwise

From the definition of Y2, K ⊕ B ≤p
m Y2 via the foregoing function g3.

From the definition of Y2, Y2 ≤
p
m K ⊕ B via function

g6(x) =

0h−1(x), if |x| = 3k and x is triplicate
0u, if |x| = 3k + 1
1h−1(y), if |x| = 3k + 2 and x is a form of yb1b2,

y triplicate and b1, b2 ∈ {0, 1}
0v, otherwise

2

64 CHAPTER 5. SEPARATING ORACLES

Corollary 3 X2, Y2 ∈ Z.

Proof From Claim 3 and Proposition 5.2 (4). 2

Claim 4 X3 ≡
p
m K ⊕ B ≡p

m Y3.

Proof
From the definitions of Y1 and X3, Y1 = X3. Therefore, X3 ≡p

m K ⊕ B
from Claim 2.

From the definition of Y3, K ⊕ B ≤p
m Y3 via function

g7(x) =

{

h(y)0, if x = 0y
h(y)00, if x = 1y

Note that in case of x = 0y, g7 can be defined equivalently as g7(x) =
h(y)1. Note that in case of x = 1y, g7 can be defined equivalently as g7(x) =
h(y)01, or g7(x) = h(y)10 or g7(x) = h(y)11.

From the definition of Y3, Y3 ≤
p
m K ⊕ B via function

g8(x) =

0h−1(y), if |x| = 3k + 1 and x is a form of yb
y triplicate and b ∈ {0, 1}

1h−1(y), if |x| = 3k + 2 and x is a form of yb1b2,
y triplicate and b1, b2 ∈ {0, 1}

0v, otherwise

2

Corollary 4 X3, Y3 ∈ Z.

Proof From Claim 4 and Proposition 5.2 (4). 2

(Theorem 5.3) 2

5.3 Z is not closed under ⊕

Theorem 5.4 Z is not closed under disjoint unions.

Proof We construct A and B such that A, B ∈ Z, but A⊕B 6∈ Z. Before
giving the formal proof, we show the idea of the proof. To ensure that A,
B ∈ Z, i.e. P

A 6= NP
A and P

B 6= NP
B, we diagonalize against deterministic

polynomial time Turing machines with oracles in the same way we do in the
proof of Theorem 3.6. Besides the diagonalization, we also encode a complete
problem K for PSPACE into A and B which ensures that both A and B are
hard for PSPACE. Of course, neither A nor B can belong to PSPACE (in that
case, they would be complete for PSPACE and therefore in X by Corollary
4.14 (1)). We encode some information about A into B and vice versa, so
that A⊕B is powerful enough to recognize strings which we use in A and B
for diagonalization, and so A ⊕ B ∈ X .

5.3. Z IS NOT CLOSED UNDER ⊕ 65

stage 0:
k(0) = 0
l(0) = 0
A0 = {xx | x ∈ K}
B0 = {xx | x ∈ K}

stage n:
Let k(n) be the smallest odd natural number such that
k(n) > max{pn−1(k(n − 1)), pn−1(l(n − 1))} and pn(k(n)) < 2k(n).
If 0k(n) ∈ L(Mn, An−1) then A′

n = An−1 and B′
n = Bn−1.

If 0k(n) 6∈ L(Mn, An−1) then A′
n = An−1 ∪ {y1(n)} and B′

n = Bn−1 ∪ S1,
where y1(n) is the first word, in lexicographic order, of length k(n) such
that y1(n) is not queried in the computation of Mi on input 0k(n) with
the oracle An−1 and S1 = {x | |x| = k(n) ∧ x ≤lex y1(n)}.
Let l(n) be the smallest odd natural number such that
l(n) > max{pn−1(l(n − 1)), pn(k(n))} and pn(l(n)) < 2l(n).
If 0l(n) ∈ L(Mn, B′

n) then Bn = B′
n and An = A′

n.
If 0l(n) 6∈ L(Mn, B′

n) then Bn = B′
n ∪ {y2(n)} and An = A′

n ∪ S2,
where y2(n) is the first word, in lexicographic order, of length l(n) such
that y2(n) is not queried in the computation of Mi on input 0l(n) with
the oracle B′

n and S2 = {x | |x| = l(n) ∧ x ≤lex y2(n)}.

Figure 5.4 Construction of A, B such that L(A) 6∈ P
A and L(B) 6∈ P

B.

Recall the enumeration {Mi}i≥1 from Fact 2.27. We construct A and B
in stages. Denote k(n) and l(n) increasing sequences of natural numbers:
k(n) is the length of word which is used in the n-th stage to ensure that Mn

does not accept L(A) and l(n) is defined similarly for Mn and L(B). After n
stages, we denote the the so far constructed oracles An−1 and Bn−1. In the n-
th stage, we add at most one word of length k(n) to A and at most one word
of length l(n) to B to ensure that L(A) 6= L(Mn, A) and L(B) 6= L(Mn, B).
If a word w is added to A, then some words are added to B in order to
ensure A ⊕ B ∈ X . Similarly, for B and A the other way around. We
show that either 0k(n) ∈ L(Mn, A) and A ∩ Σ=k(n) = ∅, or 0k(n) 6∈ L(Mn, A)
and A ∩ Σ=k(n) 6= ∅. Similarly, we show that either 0l(n) ∈ L(Mn, B) and
B ∩ Σ=l(n) = ∅, or 0l(n) 6∈ L(Mn, B) and B ∩ Σ=l(n) 6= ∅.

Figure 5.4 describes the n-th stage in the construction of A and B.

The final oracles are A = ∪nAn and B = ∪nBn.

From the conditions on k(n) and l(n), appropriate words y1(n) of length
k(n) and y2(n) of length l(n) always exist if needed. There are 2k(n) words
of length k(n) but pn(k(n)) < 2k(n) and there are 2l(n) words of length l(n)

66 CHAPTER 5. SEPARATING ORACLES

but pn(l(n)) < 2l(n).
Conditions on k(n) and l(n) also ensure that k(n) and l(n) are long

enough not to disturb, by possible adding of some words to A and B,
any computation from the previous stages. Condition on l(n), l(n) >
pn(k(n)) ensures that the second part of the n-th stage does not disturb,
by possible adding of some words to A and B, the first part of the n-th
stage. It means that 0k(n) ∈ L(Mn, An−1) ⇔ 0k(n) ∈ L(Mn, A). Sim-
ilarly, 0l(n) ∈ L(Mn, Bn−1) ⇔ 0l(n) ∈ L(Mn, B). This holds for every
n. Therefore 0k(n) ∈ L(A) ⇔ 0k(n) 6∈ L(Mn, A) for every n. Similarly
0l(n) ∈ L(B) ⇔ 0l(n) 6∈ L(Mn, B) for every n. Therefore, L(A) 6∈ P

A and
L(B) 6∈ P

B. Since L(A) ∈ NP
A and L(B) ∈ NP

A, we obtain P
A 6= NP

A and
P

B 6= NP
B, i.e. A ∈ Z and B ∈ Z.

Note the structure of A ⊕ B. From the construction of A and B follows:
If w is a word of even length from A ⊕ B, then either w is the only word of
length n in 0A (we call this word the unique word of length n in A⊕B) and
1B consist of all words of length n lexicographically smaller than w, or the
other way around (interchange A and B).

Claim 1 There is a deterministic polynomial time algorithm (with the oracle
A⊕B) that for a given odd n finds out whether there are no words of length
n in A ⊕ B, or it finds the unique word w of length n and also it finds out
whether w ∈ A or w ∈ B. The algorithm needs only O(n) queries to the
oracle.

Proof Binary search. 2

Claim 2 A ⊕ B 6∈ Z.

Proof Take an arbitrary L ∈ NP
A⊕B , then there exists a nondetermin-

istic polynomial time Turing machine M1 with an oracle such that L =
L(M1, A ⊕ B). Let polynomial p(n) bound the running time of M1.

We define Turing machine M2 which has on its input tape, besides the
input word x of length n, the description of words of even length in A ⊕ B.
Note that this description is polynomial in n: For every even number k
between 2 and p(n) (or p(n) − 1, if p(n) is odd), it consists of the unique
word w of length k (if it exists) and a single bit indicating whether w ∈ A or
w ∈ B. Define Turing machine M2 such that on input x (and its extended
input):

1. Simulate M1 on input x until M1 asks an oracle a word w or accepts
or rejects.

5.3. Z IS NOT CLOSED UNDER ⊕ 67

2. Accept whenever M1 accepts, reject whenever M1 rejects and stops.

3. If M1 asks w of odd length, then the answer is yes if and only if the
answer for M2 is yes and we continue on the simulation in Step 1.

4. If M1 asks w of even length, then use the extended input for the answer
and we continue on the simulation in Step 1.

M2 is nondeterministic because M1 is nondeterministic and uses polyno-
mial time because M1 works in polynomial time. Note that M2 does not
query words of even length. If the oracle of M2 is A ⊕ B and its extended
input agrees with the structure of words of even length in A ⊕ B, then M2

accepts L, i.e. L = L(M2, A ⊕ B).
Because M2 does not query words of even length, the only information

that M2 can obtain from the oracle A ⊕ B on odd words are words of even
length from A and B, which encode K ∈ Cp

m(PSPACE). From Corollary 4.14
(1), there exists a deterministic polynomial time Turing machine M3 with an
oracle such that L = L(M3, A⊕B) with an extended input. Let polynomial
q(n) bounds the running time of M3.

We define a Turing machine M4 such that on input x of length n:

1. By binary search with help of the oracle, compute in polynomial time
the description of words of even length in the oracle set.

2. Simulate M3 on input x until M3 asks a word w or accepts or rejects.

3. Accept whenever M3 accepts, reject whenever M3 rejects and stops.

4. If M3 asks w of odd length, then the answer is yes if and only if the
answer for M4 is yes and we continue on the simulation in Step 2.

5. If M3 asks w of even length to its extended input, use the extended
input of the machine M4 and we continue on the simulation in Step 2.

M4 is deterministic because M3 is deterministic and uses polynomial time
because M3 works in polynomial time and Step 1 takes polynomial time: For
polynomial many words apply binary search (Claim 1). If the oracle of M4

is A ⊕ B, then M4 accepts L, i.e. L = L(M4, A ⊕ B). Therefore, L ∈ P
A⊕B

and since L is arbitrary, NP
A⊕B ⊆ P

A⊕B, i.e. A ⊕ B 6∈ Z. 2

(Theorem 5.4) 2

We can prove that both X and its complement Z are not closed under
intersections, unions and symmetric differences. The reason is that under
these operations, we can construct the oracle sets in the way that some of
the information disappear and some other information reveals under these
operations. In case of Z, we also manage to show that Z is not closed under

68 CHAPTER 5. SEPARATING ORACLES

disjoint unions. In case of A and B from Theorem 5.4, the disjoint union
A ⊕ B reveals some information so that we could show collapse of NP to
P relativized to A ⊕ B. The same technique seems to be insufficient for
proving that X is not closed under disjoint unions. There, we need to lose
information, but disjoint union does not forget.

Corollary 5.5 There exist sets A 6∈ EL1 and B 6∈ EL1 such that
A ⊕ B ∈ EL1.

Proof From Theorem 4.33, A ∈ X ⇔ A ∈ EL1 ∩ EH0. In the proof of
Theorem 5.4, we construct A, B ∈ Z such that A ⊕ B 6∈ Z, i.e. A, B 6∈ X
and A ⊕ B ∈ X , i.e. (A 6∈ EL1 ∨ A 6∈ EH0) and (B 6∈ EL1 ∨ B 6∈ EH0). Since
K ≤p

T A and K ≤p
T B, where K is a complete problem for PSPACE, it follows

that SAT ≤p
T A and SAT ≤p

T B from Proposition 4.32. Consequently,
A 6∈ EL1 and B 6∈ EL1. 2

Let us comment the meaning of Corollary 5.5. In the classical complexity
theory, based on reductions, the join operator can not lower the complexity.
We just present a result that join operator can lower complexity measured
in terms of extended-lowness. This, with a similar result for EL2 [HJRW99],
shows that the extended low hierarchy is not a natural measure of complexity.

Chapter 6

Conclusion

We conclude this thesis with summarizing the main results and we also out-
line further possible research.

This thesis investigates characteristics and properties of the oracles rel-

ative to the P
?
= NP problem. Recall that X is the class of sets relative to

which P = NP relativized and Z the class of sets relative to which P 6= NP.
We show that complete problems for various complexity classes belong

to X and also the consequences of having complete sets in X for some other
complexity classes. Naturally, this can be investigated for other complexity
classes. The most interesting case is whether complete problems for PP,
which lies between PH and PSPACE, are in X or not. In Section 4.3.6, we
show that there are complete problems for DH under any reductions stronger
than polynomial, if they ever exist, that do not belong to X . We show an
example of such reduction and we obtain a complete problem for DH which
is out of X . Another approach is to investigate different complexity classes
(nondeterministic, space complexity, different time bound and so on) than
DH which lie between polynomial and exponential world.

The foregoing problems are connected with the following two problems:
1. Is there a set A ∈ X from PSPACE such that A is not complete for PSPACE?
2. Is there a set A ∈ X such that A is not hard for PH?

We show two characterizations of the class X . Further characterizations
are desired to understand the P

?
= NP problem better. Besides the charac-

terization of the class X in terms of the extended hierarchies, we also show
in Section 4.7 a connection between X and the extended hierarchies in the
following sense: If PH does not collapse and Hypothesis T about X (from
Section 4.7) holds, then EL1 ∩ EH0 = EL1 ∩ EH1. The question of proving or
disproving the Hypothesis T remains open. Its special case, whether there
exists a set A such that A ⊕ SAT ∈ EL1 and A is not hard for NP , is also
open.

69

70 CHAPTER 6. CONCLUSION

We investigate closedness of X under reductions and boolean operations.
We show that X is closed under ≤p

m-reductions (and therefore under any
stronger reductions) neither upward nor downward. We prove that X is not
closed under unions, intersections and symmetric differences. The question
about relationships between the class X and disjoint union is still open. An-
swering this question would explain the connection between EL1 and disjoint
union.

We show a close connection between the class X and Z. We prove that
Z is not closed under unions, intersections and symmetric differences.

We prove that Z is not closed under disjoint unions. This shows that
disjoint union can lower complexity measured in terms of extended lowness.
This result extends a similar result about EL2 ([HJRW99]). Closedness of
EL1, which is closely connected to X , under boolean operations is still open.

Different operations can also be investigated. The question of closedness
of X under homomorphisms seems to be connected with our results.

All foregoing open questions and problems are left for further investiga-
tion.

Bibliography

[All90] E.Allander. Oracles versus proof techniques that do not rela-
tivize. In Proceedings of the 1990 International Symposium on
Algorithms, pages 39-52. Springer-Verlag Lecture Notes in Com-
puter Science]450, August 1990.

[Bal84] J. Balcázar. Separating, strongly separating, and collapsing rela-
tivized complexity classes. In Proceedings of Mathematical Foun-
dations of Computer Science 1984, pages 1-16. Springer-Verlag
Lecture Notes in Computer Science]176, 1984.

[BBS86] J. Balcázar, R.Book, and U. Schöning. The polynomial-time hi-
erarchy and sparse oracles. Journal of the Association for Com-
puting Machinery, 33(3):603-617, 1986.

[BCS95] D.Bovet, P.Crescenzi, and R. Silvestri. Complexity classes and
sparse oracles. Journal of Computer and System Sciences,
50(3):382-390, 1995.

[BDG88] J. Balcázar, J.Diáz, and J.Gabarró. Structural Complexity I,
volume 11 of EATCS Monographs on Theoretical Computer Sci-
ence. Springer-Verlag, 1988.

[BDG90] J. Balcázar, J.Diáz, and J.Gabarró. Structural Complexity II,
volume 22 of EATCS Monographs on Theoretical Computer Sci-
ence. Springer-Verlag, 1990.

[BG81] C.Bennett and J.Gill. Relative to a random oracle A, P A 6=
NP A 6= coNP A with probability 1. SIAM Journal on Comput-
ing, 10(1):96-113, 1981.

[BGS75] T.Baker, J.Gill, and R. Solovay. Relativizations of the P=?NP
question. SIAM Journal on Computing, 4(4):431-442, 1975.

71

72 BIBLIOGRAPHY

[BHL95] H.Buhrman, E.Hemaaspaandra, and L. Longpré. SPARSE re-
duces conjunctively to TALLY. SIAM Journal on Computing,
24(4):673-681, 1995.

[For94] L. Fortnow. The role of relativization in complexity theory. Bul-
letin of the EATCS, 52:229-244, 1994.

[Har83] J.Hartmanis. Generalized Kolmogorov complexity and the
structure of feasible computations. In Proceedings of the 24th
Symposium on the Foundations of Computer Science, IEEE,
New York, 439-445, 1983.

[Har85] J.Hartmanis. Solvable problems with conflicting relativizations.
Bulletin of the EATCS, 27:40-49, Oct 1985.

[Hem89] L.Hemachandra. The strong exponential hierarchy collapses.
Journal of Computer and System Sciences, 39(3):299-322, 1989.

[HCCC+] J. Hartmanis, R.Chang, S.Chari, D.Ranjan, and P.Rohatgi.
Relativization: A revisionistic retrospective. Bulletin of the
EATCS, 47:144-153, 1992.

[Hit04] John M.Hitchcock. Hausdorff Dimension and Oracle Construc-
tions, Electronic Colloquium on Computational Complexity, Re-
port No. 72 (2004).

[HJRW99] L.Hemaspaandra, Z. Jiang, J. Rothe, O. Watanabe. Boolean
Operations, Joins, and the Extended Low Hierarchy. Theoret-
ical Computer Science, 205:317-327, 1998.

[HO02] L.Hemaspaandra, M.Ogihara. The Complexity Theory Com-
panion. EATCS Texts in Theoretical Computer Science.
Springer-Verlag, 2002.

[HZR95] L.Hemaspaandra, A.Ramachandran, and M.Zimand. Worlds to
die for. SIGACT News, 26(4):5-15, 1995.

[KO89] K.Ko. Relativized Polynomial Time Hierarchies Having Exactly
K Levels. SIAM Journal on Computing 18(2):392-408, 1989.

[KSTT89] J.Köbler, Uwe Schöning, S. Toda, and J.Torán. Turing ma-
chines with few accepting computations and low sets for PP. In
Proceedings, 4th IEEE Structure in Complexity Theory Conf.,
pp. 205-215, 1989.

BIBLIOGRAPHY 73

[Kur83] S.Kurtz. On the random oracle hypothesis. Information and
Control, 57(1):40-47, April 1983.

[Lon85] T. Long. On restricting the size of oracles compared with re-
stricting access to oracles. SIAM Journal on Computing, 14:585-
597, 1985.

[LS86] T. Long and A. Selman. Relativizing complexity classes with
sparse oracles. Journal of the Association for Computing Ma-
chinery, 33(3):618-627, 1986.

[Meh73] K.Mehlhorn. On size of sets of computable functions. Proceed-
ings of the 14th IEEE Symposium on Switching and automata
Theory, Iowa City, IO, 1973, pp.190-196.

[Reg83] K.Regan. Arithmetical degrees of index sets for complexity
classes. In Logic and Machines: Decision Problems and Com-
plexity, Proceedings of the Symposium “Rekursive Kombina-
torik” 1983, pages 118-130. Springer-Verlag Lecture Notes in
Computer Science]171, 1984.

[Ver94] N.Vereshchagin. Relativizable and nonrelativizable theorems
in the polynomial theory of algorithms. Russian Academy of
Sciences-Izvestiya-Mathematics, 42(2):261-298, 1994.

