Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



ECCC BOOKS, LECTURES AND SURVEYS > ON THE POWER OF WEAK EXTENSIONS OF V0:
Sebastian Müller

On the Power of Weak Extensions of V0

Download

Charles University, Prague 2012

Abstract

In this thesis we investigate the power of weak fragments of arithmetic. We do this from a model theoretic and also from a proof complexity perspective. From a model theoretic point of view it seems reasonable that a small initial segment of any model of bounded arithmetic is a model of a stronger theory. We exemplify this by showing that any polylogarithmic cut of a model of V^0 is actually a model of VNC. Exploiting a well-known connection between frag- ments of bounded arithmetic and provability in various proof systems, we show a separation result between Resolution and the TC^0-Frege proof system on random 3CNF within a certain clause-to-variable ratio. Combining both results we can also conclude a weaker separation result for Resolution and bounded depth Frege systems.


Table of Contents
1 Preliminaries 6
1.1 Proof Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.1.1 Some Important Proof Systems and Their Interrelation . . 7
1.2 Bounded Arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.3 The Theory V0 and its Extensions . . . . . . . . . . . . . . . . . 15
1.3.1 The Theory VTC0 . . . . . . . . . . . . . . . . . . . . . . 18
1.3.2 The Theories VNCk and VNC . . . . . . . . . . . . . . . 20
1.3.3 Relation between Arithmetic Theories and Proof Systems . 22
2 Refutations of Random 3CNF in TC0-Frege 26
2.0.4 Step I. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.0.5 Step II. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3 Cuts of Models of V0 32
3.1 Polylogarithmic Cuts and VNC1 . . . . . . . . . . . . . . . . . . 33
3.2 Polylogarithmic Cuts and VNC . . . . . . . . . . . . . . . . . . . 34
4 Computations in VTC0 37
4.1 DH and extensions of VTC0 . . . . . . . . . . . . . . . . . . . . . 38
4.1.1 Proving EXP_{G;P} . . . . . . . . . . . . . . . . . . . . . . . . 41
5 Conclusion 45
A Short Refutations for Random 3CNF 1
A.0.2 Background in proof complexity . . . . . . . . . . . . . . . 1
A.0.3 Our result . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
A.0.4 Relations to previous works . . . . . . . . . . . . . . . . . 5
A.0.5 The structure of the argument . . . . . . . . . . . . . . . . 6
A.0.6 Overview of the Proof . . . . . . . . . . . . . . . . . . . . 8
A.0.7 Organization of the paper . . . . . . . . . . . . . . . . . . 12
A.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
A.1.1 Miscellaneous linear algebra notations . . . . . . . . . . . 13
A.1.2 Propositional proofs and TC0-Frege systems . . . . . . . . 13
A.2 Theories of Bounded Arithmetic . . . . . . . . . . . . . . . . . . . 16
A.2.1 The theory V0 . . . . . . . . . . . . . . . . . . . . . . . . 17
A.2.2 The theory VTC0 . . . . . . . . . . . . . . . . . . . . . . 24
A.3 Feige-Kim-Ofek Witnesses and the Main Formula . . . . . . . . . 36
A.4 Proof of the Main Formula . . . . . . . . . . . . . . . . . . . . . . 39
A.4.1 Formulas satisfied as 3XOR . . . . . . . . . . . . . . . . . 44
A.4.2 Bounding the number of NAE satisfying assignments . . . 46
A.5 The Spectral Bound . . . . . . . . . . . . . . . . . . . . . . . . . 48
A.5.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
A.5.2 Rational approximations of Reals, vectors and matrices . . 49
A.5.3 The predicate EigValBound . . . . . . . . . . . . . . . . 50
A.5.4 Certifying the spectral inequality . . . . . . . . . . . . . . 53
A.6 Wrapping-up the Proof: TC0-Frege Refutations of Random 3CNF 57
A.6.1 Converting the main formula into a Sigma^B_0 formula . . . . . 57
A.6.2 Propositional proofs . . . . . . . . . . . . . . . . . . . . . 58
A.7 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
B Polylogarithmic Cuts of Models of V^0                           62
B.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
B.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
B.2.1 Elements of Proof Complexity . . . . . . . . . . . . . . . . 64
B.2.2 The theory V0 . . . . . . . . . . . . . . . . . . . . . . . . 65
B.2.3 Extensions of V0 . . . . . . . . . . . . . . . . . . . . . . . 68
B.2.4 Relation between Arithmetic Theories and Proof Systems . 68
B.3 Polylogarithmic Cuts of Models of V^0 are Models of VNC^1. . . . 70
B.4 Implications for Proof Complexity . . . . . . . . . . . . . . . . . . 75
B.5 Conclusion and Discussion . . . . . . . . . . . . . . . . . . . . . . 75
B.6 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . 76
C Necessary Background 77
C.1 Logical Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . 77
C.1.1 Propositional Logic . . . . . . . . . . . . . . . . . . . . . . 78
C.1.2 First-Order Logic . . . . . . . . . . . . . . . . . . . . . . . 82
C.2 Complexity Theory . . . . . . . . . . . . . . . . . . . . . . . . . . 85
C.2.1 Circuit Complexity . . . . . . . . . . . . . . . . . . . . . . 89


ISSN 1433-8092 | Imprint